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Abstract Discovering connected regions in data space is
a complex problem that is extremely demanding on the
user. Datasets often require preprocessing and postprocess-
ing before they are fit for algorithm and user consumption.
Existing clustering algorithms require performance parame-
ters to achieve adequate results. Typically, these parameters
are either empirically optimized or scanned using brute force,
which ultimately adds additional burden to the user. We
present RADDACL2, a density-based clustering algorithm,
with the intent of reducing overall user burden. The algorithm
requires no information other than the dataset to identify clus-
ters. In addition, the algorithm is deterministic, meaning the
results will always be the same. Both of these features reduce
user burden by decreasing the number of passes one must
make to get an outcome. A number of experiments are per-
formed using toy and real datasets to verify the capabilities
of RADDACL2 as compared to existing algorithms.

Keywords Clustering · Discovering connected regions in
data space · Density · Non-linearly separable · Centroid ·
Segmentation · Deterministic · Neighborhood · Precluster-
ing · Statistics

List of symbols

Centroid [CX] The centroid of the current region. The
value of X associates the centroid with
a specific region
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Observation [O] A series of attributes representing a
single observation in the dataset

Region [RX] A region represents a subdivision of
the dataset. These are created during
Density Discovery

Precluster [PC] A set of related observations that con-
tain a very density. They are identified
during Density Discovery

Average Absolute
Deviation [AAD]

An average of the absolute deviations
from a measure ofcentral tendency

Standard Deviation
[STD]

The variability of data from a measure
of central tendency

Neighborhood
Function [NF]

An algorithm that is used to identify if
a pair of preclusters are neighbors

Neighborhood
Radius [NR]

A threshold assigned to each preclus-
ter. These are used by the neighbor-
hood function to determine if two
preclusters should be merged

1 Introduction

Clustering algorithms are an unsupervised learning tech-
nique, and represent statistical pattern recognition. The
primary purpose of a clustering algorithm is to identify rela-
tionships within a dataset of observations [1]. Clustering is
often used to classify data with no a priori labels or structure.
Clustering approaches are ubiquitous in nature, and used in
a variety of fields [2]. Typically, clustering approaches are
used in the broad field of data sciences: pattern recognition
[3–5],machine and statistical learning [6–8], and datamining
[9,10], but are applied in specific fields that range from image
processing [11,12], to surveys and questionnaires [13,14], to
genetics [15–17].
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There exist several broad categories of clustering algo-
rithms [18] of which hierarchical vector representation,
density, and, in general, partitionalmethods aremost relevant
to this paper. Each uses different criteria and assumptions to
group observations into clusters or categories. Furthermore,
with respect to the observations, all methods compute either
soft (e.g., fuzzy) or hard clustering. Soft clustering often uses
a probabilistic model to assign observations to groups based
on likelihood [18]. More relevant to this paper, and more
often used, is hard clustering, where observations map to
only one group.

In this paperwe introduceRADDACL2, a hybrid approach
between partitional vector representation and density-based
clustering algorithms. RADDACL2 is a more reliable exten-
sion of the RADDACL that introduces a number of usability
and performance improvements over its predecessor [19].
The primary goal of RADDACL2 is to reduce the com-
plexity of implementation for the user, while still achieving
adequate results on a variety of real datasets. In order to
achieve this goal, RADDACL2 uses no performance para-
meters when generating clusters from a dataset. The only
input is the dataset itself. The algorithm calculates all nec-
essary thresholds based on the data provided to it. Second,
the results of the algorithm are deterministic. Therefore, the
algorithm only has to be run once per dataset. Briefly, RAD-
DACL2 first performs density discovery stage, identifying
areas of high density, called preclusters, while separating
out outliers into noise. RADDACL2 then invokes a rebuild
function, to merge preclusters into their final connected
regions. The paper is organized as follows: Sect. 1 provides
an overview of particular forms within the taxonomy of clus-
tering approaches, Sect. 2 presents a review of clustering
methods and state-of-the-art algorithms that are related to
the concept of RADDACL2; Sect. 3 describes RADDACL2
algorithm in detail. Section 4 illustrates RADDACL2’s per-
formance via several experiments. Finally, Sect. 5 presents
the conclusion and evaluation, future directions, and limita-
tions of RADDACL2.

2 Review of related clustering methods

Hierarchical clustering is performed in one of two ways:
agglomerative, which joins observations in an iterative fash-
ion until all items have been paired, or divisive, which
splits observations into groups [20]. Hierarchical clustering
algorithms differ from the proposed algorithm in that they
generate a dendrogram rather than an actual clustering. The
dendrogram provides a visualization representing a holistic
view of dissimilarity among observations. One advantage of
hierarchical clustering is that it is deterministic: algorithms
only need to be run once and will produce the same results.
The main disadvantage of hierarchical clustering is the com-

plexity of the results. Extracting clusters from a dendrogram
can be difficult [21] especially when the dimensionality of
the dataset is high. In addition, results are affected by outliers,
and are, at times, subjective (i.e., the threshold for cutting a
dendrogram). Implementations [22] include single-linkage,
complete-linkage, and average-linkage. In recent years, there
have been numerous advancements on hierarchical clustering
[23,24].

Vector-representation methods (referred to as centroid
methods by [18]) partition the observations into groups, in
which a group is represented by a specific vector. These
approaches vary considerably and include classical methods
such as KMeans [4,25] (and derivatives [26–29]), follow-
the-leader approaches [30], self-organizing maps [31,32],
and vector quantization [33]. Clustering is complete when
every point in the original dataset has been assigned to a cen-
tral observation, that is, a representative vector. Usually, this
occurs through some convergence criteria. There are several
drawbacks of vector-representation (and similar) methods.
First, they cannot handle non-linearly separable data that
many real datasets contain. Second, they require pre- and/or
postprocessing to produce user-consumable results. Finally,
these methods often require users to decide, a priori, how
many vectors will be used to represent the data. These per-
formance parameters force the user to either preprocess the
data to determine the ideal initial parameters or run the
algorithm a multitude of times to identify the best set of
results. In either case, the user is burdened with additional
work unrelated to analyzing the results. Most of these algo-
rithms are also non-deterministic, so multiple runs with the
same parameters may be required to find an ideal cluster-
ing.

Distribution clustering algorithms assume clusters in the
dataset can be modeled by a number of known distribu-
tions. The dataset is fitted against the provideddistribution(s),
which are optimized iteratively until the results converge
to the local optimum. If improperly tuned, the algorithm is
likely to suffer from overfitting, which will manifest itself
as merging multiple clusters into a single, large cluster. Like
partition-based algorithms, the results are non-deterministic,
so multiple runs are required for ideal results. The greatest
challenge with distribution clustering lies in its assumption
that the observations in a dataset map to a distribution, which
is often not the case for real datasets. These algorithms tend
to be more challenging to implement, since the user must
decide on the distribution of the data. Often there exists a
more complex model that would better describe a particular
dataset. A common implementation of distribution cluster-
ing is Guassian Mixture Models [34], which is a form of
expectation-maximization clustering.

Density-basedvector-representation clustering algorithms
both partition space, but under different criteria [1,2,18].
Essentially, cluster boundaries are determined by near-
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contiguous distributions of points. A cluster becomes a chain
of observations and the borders of that cluster are created by
drops in observation density. Density algorithms can iden-
tify clusters that form unique shapes, including non-linearly
separable clusters. One known problem with existing archi-
tectures is that they require a number of performance tuning
parameters to achieve results. For example, DBSCAN [20],
a common variation, requires users to set a minimum cluster
size, and that the observations in a cluster must be within
a certain distance from another observation in that cluster.
Different algorithms have addressed this problem in various
ways. Identifying the appropriate values for these perfor-
mance parameters imposes an additional burden on algorithm
usability. Perhaps the greatest challenge for density cluster-
ing is the identification of borders between clusters that are
adjacent to one another. Density algorithms expect a sharp
decrease in density around the edges of a cluster. Borders
become difficult to identify when clusters are adjacent or
overlappingwithin the dataset. Several variants ofDBSCAN,
such GDBSCAN [35], OPTICS [36], and DeLiClu [37],
solve some of the problems discussed above. Furthermore,
density-based algorithms have been of particular interest in
recent years [38,39], especially as databases become larger
and, at times, more sparse.

To note, spectral clustering techniques [40] represent a
method in which eigenspaces are used to begin the clustering
process. However, a number of the aforementioned methods
are also used within spectral techniques in order to partition
the eigenspace.

3 RADDACL2

RADDACL [19] (and RADDACL2) fall under several of
the reviewed broad clustering categories. RADDACL recur-
sively partitions space based on density criteria. These
partitions are called preclusters, which are represented,
essentially, by a single vector (i.e., as would be found in
KMeans). Next is a rebuilding step to correctly re-classify
neighboring preclusters (in which the idea of a neighborhood
function is borrowed from self-organizing maps [31]). RAD-
DACL2 performs these steps in (a) a deterministic fashion
and (b) with no performance parameters that require tuning.
These two features combined, drastically reduce the num-
ber of runs required to produce a clustering. RADDACL,
however, executes these steps in two separate functions and
heavily depends on a threshold parameter to facilitate the
recombination of the isolated dense regions. RADDACLwas
initially conceived as a teaching tool to present three diffi-
cult concepts: recursion, clustering, and density-based data
processing. While the concept delivered excellent results,
limitations in the form of custom dataset parameters and
user-determined need for building of clusters kept it from

being fully utilized beyond the classroom. Here we present
RADDACL2 as a complete remodel of its predecessor.
We have utilized RADDACL as a concept, but developed
RADDACL2 as a full-fleshed clustering algorithm, which
eliminates any parameter and threshold dependencies. The
two fundamental steps—recursive discovery of dense regions
and combining these into final clusters—are realized in two
stages. The two phases of the algorithm, i.e., recursive den-
sity discovery and rebuild, are working in tandem by first
isolating preclusters by subdividing the dataset in recur-
sive fashion. The recursion stops when the average distance
from center of cluster is reached. This parameter is calcu-
lated from the dataset based on the subdivided regions and
the average deviation from the forming precluster centroids.
Once the subdivision stops and all preclusters are identified,
the rebuilding phase begins. This process relies on chaining
preclusters in the formation of the final clusters. The basis
here is the neighborhood function. While the neighborhood
threshold depends on the neighborhood threshold, this para-
meter is calculated from the dataset being clustered, meaning
no user involvement. Here, we present the full details of
RADDACL2, a robust implementation of its predecessor’s
concept.

3.1 Phase 1: recursive density discovery

The first phase of RADDACL2 is responsible for identifying
preclusters. Preclusters are obtained by recursively divid-
ing the dataset into smaller groups of datapoints around a
measure of central tendency. Figure 1 demonstrates a single
iteration of the division process. The division process stops
when the density of the remaining points exceeds the density
threshold. That group of points becomes a precluster for the
following phase. Figure 2 shows the results of the preclus-
tering phase for two of the toy datasets used in experiments.
The phase completes when all datapoints have been assigned
to a precluster. Outliers manifest in this phase as preclusters
with a small observation count.

In this phase, the initial centroid CI is calculated for the
dataset as well as a pairwise distance matrix for the obser-
vations in the dataset. We initialize the current region RI as
the entire dataset. The next step is to split RI into RN regions
aroundCI. The first region, R1, contains all observationswith
attributes less thanCI. The second region, R2, contains obser-
vations with first attribute greater than CI, and the remaining
attributes are less than CI. This process repeats until all dat-
apoints in RI have been assigned to a region. Then, for each
new region RX, we set RX = RI and repeat the process.
A region becomes a precluster once its density falls below
the precluster threshold T. This is calculated from RI using
absolution average deviation (AAD) from the centroid.When
eligible, the Region RI is not split, andwe continue to explore
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the remaining regions until all remaining regions are preclus-
ters. The AAD is calculated as follows:

AAD = ∑ |x − AVE| /n for each x distance from cen-
troid in the dataset of size n

where AVE is average distance to the centroid. While this
metric is similar to standard deviation, it allows for parame-
ter/independent preclustering.

Figure 3 presents the pseudocode describing the algorithm
for phase 1. The initial value of RI is the entire dataset.

It should be noted that the precluster stopping condition is
calculated as AAD/AVE. If the improvement in the process
is minimal (25% defined as the universal threshold), then the
preclustering process is terminated.

Fig. 1 Dividing the dataset to discover preclusters

3.2 Phase 2: rebuild

The second phase, called rebuild, is responsible for generat-
ing the final set of clusters. Each precluster identified in the
previous phase is assigned to a cluster. Pairwise comparisons
for the set of preclusters aremade using a neighborhood func-
tion. When two preclusters are considered neighbors, they
will be assigned to the same cluster. A visualization of the
neighborhood function is shown in Fig. 4. The result is a
series of chained preclusters where each chain represents a
cluster.

The neighborhood function works as follows: we identify
two preclusters PC1 and PC2. For each pair of datapoints
betweenPC1 andPC2,we check to see if the distance between
the pair is less than the neighborhood threshold NT. If it is,
then we mark these two clusters as belonging to each other.
Each unassigned precluster that is processed becomes a new
cluster in the result set.

The pseudocode for the rebuild is provided in Fig. 5 and
the one for the neighborhood function is presented in Fig. 6.
The DP refers to datapoints in the preclusters.

4 Experiments

As with presenting every novel algorithm, comparative
analysis is of crucial importance. We have utilized the ELKI
framework to implement RADDACL2. ELKI [41] is a Java-
based framework containing implementations of various

Fig. 2 Precluster pairs from two toy datasets
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Fig. 3 Phase 1 algorithm
pseudocode

______________________________________________________________________________ 
1. Calculate CI for RI
2. Calculate AAD for RI
3. Calculate STD for RI
4. If RI exceeds density threshold 

a. Store RI as a precluster 
5. Else 

a. For each OI in RI
i. Assign OI to RN, where N is an index based on O's 

location relative to CI
b. For each RX generated in the previous step 

Repeat steps 1-5 where RI = RX 

Fig. 4 Shows two neighboring clusters, identified by overlapping den-
sities

clustering and outlier detecting algorithms. These implemen-
tations are designed for comparative analysis within ELKI;
they remain true to their peer-reviewed publications. Com-
mon tasks such as dataset indexing and parsing are provided
out of the box.

Results are gathered fromanumber of toy and real datasets
using two other related clustering algorithms—KMeans and
DeLiClu. KMeans belongs to the class of partitioning algo-
rithms and, in spite of its many drawbacks, it considered
something of a classic. DeLiClu is the latest and, arguably,

the best in density-based clustering, hence its utilization for
comparison. The results generated by these algorithms are
compared against an expected outcome provided for that
dataset. A number of statistical measures are used to gen-
erate metrics, which indicate the quality of the clustering.

ELKI provides pair-counting metrics based on the
expected and actual outcome. A contingency table [42] is
calculated between the two outcomes. An example of a con-
tingency table is provided in Fig. 4. In the example, the
expected outcome has three classes, each with a single obser-
vation. This is represented by the column to the right of the
table. The algorithm produced two clusters, one with two
observations and another with a single observation. This is
shown in the last row of the table in Fig. 7.

In our analysis of the compared algorithms, we utilize
several measures. From the contingency table, we are able to
generate a confusionmatrix, which describes the relationship
between the pairings.

• TP—The number of observation pairs correctly labeled
by the algorithm.

• FP—The number of observation pairs incorrectly labeled
by the algorithm.

Fig. 5 Rebuild (Phase 2)
algorithm pseudocode 1. Check if PC1 belongs to a cluster 

a. If it does not, assign PC1 to a new cluster C 
b. If it does, C = PC1’s cluster 

2. For each PC2 that has not be compared to PC1
a. Check if PC1 and PC2 are neighbors using NF. 

i. If they are, assign PC2 and all of its neighbors 
to C 

3. Remaining clusters with a single datapoint are merged 
together as noise. 

Fig. 6 Neighbor function
pseudocode

______________________________________________________________________________ 
1. Calculate radius NT by adding NT1 and NT2
2. For each pair of DP in PC1, PC2

a. If distance between DP1 and DP2 <= NT 
i. PC1 and PC2 are neighbors 

3. PC1 and PC2 are not neighbors. 
________________________________________________________________ 
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Fig. 7 The contingency table (above) and associated confusion matrix
(below)

• FN—The number of observation pairs missing from the
results.

TP =
r∑

i=0

c∑

k=0

X2
ik;

FP = TP −
c∑

i=0

(
r∑

k=0

Xik

)2

;

FN = TP −
r∑

i=0

(
c∑

k=0

Xik

)2

• r = the number of rows in the contingency table.
• c = the number of columns in the contingency table.
• Xi j = a cell in the contingency table.

Precision and recall are also useful for identifying the rela-
tionship between the number of clusters generated by the
algorithm and the expected outcome. A high score for pre-
cision with a low score for recall typically indicates that the
algorithm generated fewer clusters than was expected. Like-
wise, a high score for recall with a low score for precision
indicates that the algorithm generated more clusters than was
expected. The F-Measure provides a weighted average of
precision and recall. The experiments in the paper assume
F Measure with β = 1, which means equal weight between
recall and precision. The F-Measure is used to compare over-
all clustering results of the various algorithms used in the
experiments. These measures are summarized in Table 1.

Precision and recall are not directly used to compare the
results between algorithms, but they do evaluate how well
an algorithm clustered something. The F-Measure builds on
that by combining the two. This value can effectively be used
in comparison of two algorithms.

Reachability plots are a dendrogramproduced byOPTICS
and DeLiClu, representing density reachability between dat-
apoints in the dataset. Clusters must be manually extracted
from the plot. They are provided to describe results generated
from the aforementioned algorithms. Figure 8 demonstrates
how valleys or “dents” correlate to regions of high den-

Table 1 Measuring the performance of RADDACL2 and other tested
algorithms

Metric Equation Definition

Precision P = TP
TP+FP A measure indicating the

number of datapoints that
belong to the same cluster in
the expected and actual
clustering

Recall R = TP
TP+FN A measure indicating the

number of datapoints
assigned to a cluster in the
that exists in the expected
clustering

F-Measure Fβ =
(
β2+1

)∗P∗R
β2∗P+R

A measure indicating a
weighted combination
Precision and Recall. β = 1
indicates equal weight
between Precision and Recall,
and is often call the
F1-Measure

Fig. 8 A reachability plot on a synthetic dataset. Demonstrates the
valleys or “dents” that separate areas of data point density within the
dataset

sity in the dataset. They are not produced or required by
RADDACL2, since the actual clustering is generated by the
algorithm.

DBSCAN[20] uses density rings tomerge together nearby
points into clusters. DBSCAN iterates through each point
in the dataset, either assigning it to a noise cluster or an
existing cluster depending on its neighbors. Points without
neighbors end up in the noise cluster. Points with neighbors
are assigned to an existing cluster (if its neighbors already
belong to one) or a new cluster, along with its neighbors.
This process continues until every point has been explored.
A neighborhood is determined using the ε value. It works like
a radius around a point to create a neighborhood. MinPTS,
the other user adjustable parameter, represents the minimum
number of points required to create a cluster. Clusters with
elements less than minPTS are included as noise.
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Density-linked clustering (DeLiClu) is considered an
improvement over OPTICS as it eliminates a parameter,
which is notoriously difficult to adjust. Nonetheless, the prin-
ciple of operation is very similar. For that reason, here we
will provide a brief overview of DeLiClu. This is a density-
based clustering method, which depends on one parameter
for its operation—minimum points per cluster—designated
as density smoothing parameter. The algorithm utilizes R-
trees, density distance, andhierarchical principles via priority
queues to “sort” the dataset into clustered datapoints. The
idea is very similar to hierarchical clustering. The hierar-
chy is maintained through a priority queue, where pairs of
close pair points are being stored ranked by density distance,
where DeLiClu parameter comes in. The result of the algo-
rithm is a reachability plot, same as OPTICS, albeit more
readable. This plot then needs to be “translated” into the
actual clusters. Although DeLiClu is dealing with only one
parameter, that still depends on the nature of the dataset and
requires preprocessing and user intervention. The reacha-
bility plot requires postprocessing to display the clusters.
RADDACL2 is free of all three requirements, which allows
it to deliver faster performance at a better or at least compa-
rable performance. Additional details on the calculation and
interpretation of the plots can be found in the OPTICS [36]
and DeLiClu [37] articles.

4.1 Toy datasets

Three datasets were created to test the capabilities of RAD-
DACL2. They are designed specifically for density-based

techniques. The same set of metrics and figures are provided
for each dataset. Each test maintains algorithm parameters
such as distance function and index structures when pos-
sible. If a distance function is required, Euclidian distance
is assumed. Some algorithms, such as DeLiClu, require a
special index structure to calculate results. The performance
parameters for these indexesweremaintained between exper-
iments to reduce variability. If a dataset needed to be scaled
prior to clustering for any reason, the same scale was used
for each algorithm in the experiment. As both OPTICS and
DeLiClu produce similar results and reachability plots, the
results of OPTICS (the base algorithm) were omitted. DeLi-
Clu operates with minimum points per cluster parameter of
25 % for all toy datasets. DBSCAN has the same value for
its minPTS and ε = 4. It must be noted that Figs. 9, 12,
and 16 represent the RADDACL2 results. RADDACL2 does
not need preset parameters as they are calculated based on
the dataset characteristics.

4.1.1 Spiral dataset

The spiral dataset consists of three dimensional datapoints
with two clusters. A visualization of the clusters is shown in
Fig. 9. There are a total of 6000 datapoints in the dataset.

This dataset is developed to test the algorithm’s ability
to identify clusters within clusters. It differs from the ring
dataset (Fig. 9) by adding a dimension to the datapoints and
varying the shapes. As shown through the provided metrics
in Table 2, RADDACL2 and the other density algorithms can
identify the two clusters.

Fig. 9 3D visualization of the two expected clusters for the spiral dataset and produced by RADDACL2
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Table 2 Toy dataset results comparison utilizing the defined measures

Algorithm Spiral dataset Ring dataset Grid dataset

F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall

RADDACL2 1 1 1 1 1 1 1 1 1

DBSCAN 1 1 1 1 1 1 1 1 1

KMEANS 0.76 0.77 0.8 0.44 0.67 0.33 0.78 0.8 0.77

DELICLU 1 1 1 1 1 1 1 1 1

Fig. 10 Reachability plot
produced by DeLiClu for the
spiral dataset

During the experiment, the datapoint attributes were
scaled by various constants, to see how many runs it would
take to re-identify the clusterings (structure is retained when
scaling by a constant). RADDACL2 required a single run to
identify the correct clustering when the dataset was scaled.
DBSCAN required multiple runs to properly tune the den-
sity threshold. OPTICS and DeLiClu required one run and
additional postprocessing to interpret the reachability plot.

Metrics were collected on the performance of the algo-
rithms used in this experiment (Table 2). The density
algorithms performed well, as expected, while KMeans, on
average, could not separate the two clusters. In terms of
usability, RADDACL2 surpasses the other algorithms. As
shown in Fig. 10, the valleys indicating cluster separation are
not readily observable. The same can be said for the parallel
plot in Fig. 11, which would look like a big mass of lines
if not for the color-coding. The proposed algorithm shows
superiority in the lack of tunable parameters as well as the
easiness of reading the results without requiring additional
postprocessing.

4.1.2 Ring dataset

The ring dataset consists of 2-dimensional datapoints with
three clusters. A visualization of the clusters is shown in
Fig. 12. There are a total of 5050 datapoints in the dataset.

This dataset was developed to test unbalanced represen-
tation of clusters, as well as clusters encapsulated by other
clusters. The outer ring contains 4000 datapoints, which is
just under 80 % of the data. The middle ring contains 1000
datapoints, representing 19.8 % of the data. The center ring
contains 50 datapoints, which is less than 1 % of dataset. It
is obvious that the outer-most ring encapsulates the remain-
ing rings, which makes for a heavily non-linearly separable
dataset. As shown through the provided metrics in Table 2,
RADDACL2 and the other density algorithms can identify
the three clusters.

Fig. 11 Parallel plot for the two clusters in the spiral dataset. The
yellow represents the cylinder, while the red is the spiral (color figure
online)

The parallel coordinate plot, seen in Fig. 13, is once again
too dense to provide any useful information about the struc-
ture of the data. The reachability plot (Fig. 14) does offer
some insight into the formation of clusters in the dataset. We
can see several valleys in the plot representing sub-clusters
within the outer and middle rings. It is difficult to identify
the borders between the outer and middle rings.

As with the spiral dataset, the datapoint attributes were
scaled by various constants, to see how many runs it would
take to re-identify the clusters. Once again, RADDACL2
required a single run to identify the correct clustering even
when scaling the dataset. DBSCAN required multiple runs
to properly tune the density threshold. OPTICS and DeLiClu
required one run and additional postprocessing to interpret
the reachability plot demonstrating RADDACL2’s usability
once again. Other algorithms, such as KMeans, were unable
to provide an adequate clustering (Fig. 15). Identifying clus-
ters in a non-linearly separable dataset has proven tobe a chal-
lenging problem for algorithms using non-density models.

4.1.3 Grid dataset

The grid dataset consists of 2-dimensional datapoints with
three clusters. A visualization of the clusters is shown in
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Fig. 12 A 2D visualization of
the dataset and the clustering
result by RADDACL2

Fig. 13 The parallel coordinates for the ring dataset. Color shows the
clusters (color figure online)

Fig. 16. There are 469 datapoints in the dataset, which is
developed to test clusters with varying levels of density
within the same dataset. Each datapoint within a cluster is
equidistant from their neighbors, and the borders between
clusters are well defined.

The parallel coordinate plot, seen in Fig. 17, could be used
to easily distinguish the three clusters. The reachability plot
shown in Fig. 18 also distinctly shows three different valleys,
each representing a cluster.

As with the previous toy datasets, the datapoint attributes
were scaled by various constants, to see how many runs it

would take to re-identify the clusters. The results of the scal-
ing test were consistent with the previous toy datasets.

Table 2 provides themetrics for this experiment, with sim-
ilar results as the Ring and Spiral Dataset. RADDACL2’s
usability is ahead of the competition with this dataset.
KMeans was unable to correctly identify clusters in this
dataset each time, occasionally producing results such as
the clustering in Fig. 19. Considering the amount of pre-
processing usually required to bring the dataset into a useful
format, only having to run the algorithm once certainly
removes much of the burden on the postprocess analy-
sis.

4.2 Real datasets

In these examples, we illustrate how RADDACL2 works
with real-world examples. Metrics are not provided here as
the expected clustering is not available. Each test tries to
share as many common attributes between the algorithms as
possible.When a distance function is required, Euclidian dis-
tance is used. Some algorithms, such as DeLiClu, require a
special index structure to calculate results. The performance
parameters for these indices weremaintained between exper-

Fig. 14 The reachability plot
for the ring dataset

123



30 Prog Artif Intell (2015) 4:21–36

Fig. 15 The clustering results
and centers of a KMeans run on
the ring dataset

Fig. 16 A 2D visualization of
the grid dataset and the
clustering result produced by
RADDACL2
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Fig. 17 The parallel coordinates for the grid dataset. Color shows the
clusters (color figure online)

iments to reduce variability. If a dataset needed to be scaled
prior to clustering for any reason, the same scale was used
for each algorithm in the experiment. It must be noted that
DeLiClu uses exorbitant amount ofmemorywhenprocessing
the MRI dataset. When it is done processing, everything is
determined to be one cluster. Hence, DeLiClu results for the
faces and MRI dataset are not provided. DBSCAN’s results,
however, are included. Although this algorithm uses two

parameters—the dreaded ε and minimum points required for
cluster formation, thus demonstrating inferiority to RAD-
DACL2, it is a benchmark representative of density-based
clustering. Therefore, the comparison is only fitting.

4.2.1 ORL faces

In this case, RADDACL2 clusters faces from the ORL data-
base (provided byAT&TLaboratories Cambridge) [43]. This
dataset comprises 400 grayscale images of faces from 40
different individuals. Each individual has 10 different per-
spectives (i.e., angle of taken image) of their face in the
database. Each picture is represented in 256 levels of gray
with a size of 92 × 112.

RADDACL2 is applied to the intensity values of the
image. Since we are looking for features, weight on the
intensity is more important than location, as features are
often separated by changes in contrast within the image. The
resulting images in Figs. 20 and 21 are colored based on the
resulting clusters provided by RADDACL2.

Fig. 18 The reachability plot
for the grid dataset

Fig. 19 The clustering results
with centers of a KMeans run on
the grid dataset
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Fig. 20 Clustering of the same
face with eyes open (bottom
row) and closed (top row)

Fig. 21 Two examples
demonstrating RADDACL2
differentiating between faces
with an opened or closed mouth

The results demonstrate that RADDACL2 is capable of
identifying structural changes in major features of the face,
including the eyes a mouth. Figure 20 provides an example
of the same face with both eyes open and closed. Using basic
geometry, it is possible to extract this information. For the
open eyes, the outline of the eyewill be closer to the eyebrow,
and the cluster should take upmore area than a closed eye, for
instance. For closed eyes, the distance between the eye and
eyebrow will be larger, as the data for eyelid will belong to a
different cluster. The eye cluster will be significantly flatter,
having a much greater width than height. These distinctions
can be used to identify open and closed eyes.

Open and closed mouth images exhibit a similar behav-
ior. Figure 21 provides two examples of faces with open and
closed mouths. In the first case, RADDACL2 demonstrates

the difference by the number of clusters around the mouth
area. We can see that when the mouth is closed, the mouth
blends with the beard, as they have similar contrast. When
the mouth is open, however, a large number of clusters form
around the mouth region, which can be easily extrapolated.
In the second example, the behavior is similar to the open and
closed eye problem. The closed mouth manifests as a thinner
cluster, while the open mouth has more height and draws a
distinction to the features contained within (the teeth, in this
case).

After this analysis, let us turn the attention to theDBSCAN
results presented in Fig. 22. The experiments are at minPTS
of 28%,while the epsilon parameter value varied in the range
3–9.5. Figure 22 features the best clustering with the applica-
ble epsilon value in the figure caption.What is important, that
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Fig. 22 DBSCAN results for the faces in Figs. 20 and 21. From left to right, the ε values are 8, 8.5, 8, 7.5, 8.5, 7.5; minPTS is 28 %

Fig. 23 KMeans results (k = 20) for the faces in Figs. 20 and 21

Fig. 24 From left to right, the
atlus-generated image, the
segmented result provided in the
database, and the RADDACL2
cluster containing extracted
white matter and skull on top of
the segmented result

even under these most favorable circumstances, the geome-
try of the facial features is lost on some of the faces. It would
be difficult for any postprocessing procedure to pick up the
closed eyes or the smiling mouth on every face. The compar-
ison between RADDACL2 and DBSCAN can be concluded
with the fact that RADDACL2 does not require parameter
adjustment, requires much less memory to run, and, finally,
the result can be successfully subjected to geometric inter-
pretation of clustered facial features. While we provide the
KMeans results for the faces in Figs. 20 and 21, a geometric
analysis will be impeded due to the blending of facial details
(Fig. 23).

4.2.2 MRI databases

RADDACL2 is also used on a variety ofMRI scans provided
by OASIS [44]. Each patient comes with three or four raw
scans captured form the MRI and additional postprocessed

images. For the experiments, the SUB_111 and T88_111
postprocessed images were used. The SUB_111 images are
produced by averaging the provided raw scans and applying
some basic processing techniques. T88_111 contain atlus-
corrected imagery and provide a top-down MRI. The exact
procedure is described in the fact sheet provided with the
dataset. RADDACL2 is applied to the intensity values only.
Position was omitted, since the features we are looking for
are mostly divided by contrast.

Figure 23 contains the results of the RADDACL2 clus-
tering on the T88_111 and the segmented imagery provided
by the database. RADDACL2 can identify major features
comparably to modern segmentation techniques, as shown
in the overlay provided by Fig. 24. The difference is that
RADDACL2 came to the result without making any strong
assumptions about the data being processed,whereas the pro-
vided segmentation algorithm onlyworks specifically on that
type of imagery.

123



34 Prog Artif Intell (2015) 4:21–36

Fig. 25 Images on the left represent the original SUB_111 co-
registered average images. The images on the right contain RADDACL
clustering information, including white matter and skull location

Figure 25 demonstrates the results produced by RAD-
DACL2 on the SUB_111 for the same patient. Again,
RADDACL2 identifies the skull and white matter with suf-
ficient accuracy. Using basic geometry, we can associate

clusters generated by RADDACL2 to specific features of the
brain.

Once the discovery of connected regions has been
achieved, it becomes possible to automate a number of
applications. One common application would be region seg-
mentation. This subsequently allows for the extraction or
removal of those features from the image, which would
depend on the user’s needs. These processed results aid in
the diagnosis of a variety of diseases and behavioral patterns
compared to the raw imagery [45,46].

The results from DBSCAN are shown in Fig. 26. The
minPTS is at 29 % and the epsilon value is in the figure
caption. In this experiment we have also included the noise
generated from parts of the image that are determined to have
too fewpoints (below theminPTS threshold) to be considered
clusters. It would seem that these regions containmore usable
information than the actual clusters.

Although the experiments were performed onMRIs of the
brain, it is likely that RADDACL2will achieve similar results
when applied to different areas of the body. Another com-
mon application would be to directly classify a disease from
the imagery. RADDACL2 could be used to directly detect
anomalies, such as lesions associated with breast cancer and
potentially stage of cancer in the patient [47]. Here we also
provide the results from KMeans, as DeLiClu delivers only
one cluster at the end. Aside from needing long processing
times (much longer in comparison to RADDACL2), it also
utilizes a good amount of memory, which RADDACL2 does
not need. Figure 27 shows the KMeans results with 20 prede-
termined clusters for the images in Figs. 24 and 25. Needless
to analyze, any useful detail is lost in the process of parti-
tioning.

Fig. 26 DBSCAN results from
the MRI database; from left to
right the ε values are 5.5, 6.5,
6.5; the third and fifth images
are the noise generated by the
algorithm
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Fig. 27 KMeans clusters (k =
20) for the original images in
Figs. 23 and 24

5 Conclusion

In this paper we present RADDACL2, a Recursive Algo-
rithm for Density Discovery and Clustering. RADDACL2
offers several advantages over various other algorithms by
satisfying the following two conditions. First, RADDACL2
provides a deterministic clustering for a given set of data.
Second, RADDACL2 internally calculates thresholds and
performance parameters based on the shape of the data.
These two points significantly reduce the amount of time
a user must spend tuning the algorithm to get correct results.
However, it would only matter if RADDACL2 could per-
form comparably to existing algorithms. Therefore, a number
of experiments are performed using toy and real datasets
to verify RADDACL2’s capabilities. The results indicate
that RADDACL2 can be used in a number of clustering
space tasks. Experiments performed on toy datasets confirm
that RADDACL2 can properly classify non-linearly sepa-
rable datasets. Traditional, and oft-used, algorithms, such
as KMeans, are unable to successfully classify under these
conditions without excessive preprocessing. Experiments on
the face data provide evidence that RADDACL2 can be
used for feature recognition and differentiation. Experiments
with the MRI database demonstrate RADDACL2’s ability
to use a region of interest for segmentation applications.
These two datasets confirm that RADDACL2 can be used
to automate tasks, which normally require an expert, such
as disease detection or target tracking. Considering the pre-
sented findings, we can conclude that RADDACL2 provides
the deterministic results experts are looking for when work-
ing in the clustering domain while simultaneously reducing
user burden by simplifying the problem constraints. These
two key features are what separate RADDACL2 from the
competition. It is interesting to follow this research with
investigations of different distance metrics, e.g., Bregman
Divergences [48].
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