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Abstract
Trichopria anastrephae Costa Lima, 1940 (Hymenoptera: Diapriidae) is a pupal endoparasitoid of Drosophila suzukii 
Matsumura, 1931 (Diptera: Drosophilidae) in Brazil. This species is of great agricultural importance and is almost exclu-
sively managed by organophosphate, spinosyn, pyrethroid, neonicotinoid, and avermectin insecticides. However, frequent 
application of insecticides can have negative effects on the parasitoid. The objective of this study was to evaluate the lethal 
and transgenerational toxicity of five insecticides on T. anastrephae adults during the F0, F1, and F2 generations. Drosophila 
suzukii puparia were sprayed prior to their exposure to T. anastrephae for 24 h. Parameters evaluated in generation F0 were 
mortality and rate of parasitism. After the emergence of the F1 generation, the emergence rate and sex ratio were analyzed. 
Then, pairs of parasitoids were selected from F1 and pupae; the host was offered to evaluate parasitism, emergence, and sex 
ratio of the F2 generation. In the F0 generation, malathion was the only insecticide that caused 100% mortality of adults of T. 
anastrephae. However, all insecticides tested affected the parasitism rate, being classified as moderately to slightly harmful. 
In F1, the emergence of T. anastrephae was also affected, making the insecticides moderately to slightly harmful. However, 
there were no significant differences in the sex ratio and parasitism rate or the parameters evaluated in F2, which means that 
all products were classified as harmless. These results are important for the development of Integrated Management programs 
for D. suzukii and for the conservation of natural populations of T. anastrephae in the field.
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Introduction

Trichopria anastrephae Costa Lima, 1940 (Hymenoptera: 
Diapriidae) is a parasitoid species endemic to South Amer-
ica (Cruz et al. 2011). It is classified as an idiobiont pupal 
endoparasitoid and deposits eggs in the hemocoel of fruit fly 
puparia (Wang et al. 2018; Gonzalez-Cabrera et al. 2019). 

In Brazil, it has been found on strawberry fruits infested 
by Drosophila suzukii Matsumura, 1931 (Diptera: Droso-
philidae) (Wollmann et al. 2016; Andreazza et al. 2017a), 
a pest insect considered of major agricultural importance 
in small fruit crops worldwide (Walsh et al. 2011; Calabria 
et al. 2012; Cini et al. 2012), and in Brazil as of the year 
2014 (Deprá et al. 2014; Schlesener et al. 2015; Andreazza 
et al. 2017b; Dos Santos et al. 2017).

In D. suzukii puparia, females of the genus Trichopria 
have the ability to cause the mortality of 100 individuals per 
generation (Yi et al. 2020). Trichopria anastrephae has a life 
cycle (egg to adult) of approximately 21 days (Krüger et al. 
2019; Vieira et al. 2020) and demonstrates a high capacity 
for interspecific competition with the pupal parasitoid Pachy-
crepoideus vindemmiae Rondani, 1875 (Hymenoptera: Ptero-
malidae), also on D. suzukii pupae (Oliveira et al. 2020).

Because D. suzukii larvae have a well-developed immune 
system, producing a physiological response by increasing 
the amount of hemocytes and encapsulating the immature 
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stages of larval parasitoids, the use of species such as Aso-
bara japonica Belokobylskij, 1998 (Hymenoptera: Braconi-
dae), Ganaspis brasiliensis Ihering, 1905, and Leptopilina 
spp. (Hymenoptera: Figitidae) (Poyet et al. 2013; Iacovone 
et al. 2018; Wang et al. 2021) can become compromised, so 
the use and conservation of the parasitoid pupal T. anastre-
phae are even more important (Kacsoh and Schlenke 2012).

Although the parasitoid T. anastrephae is effective against D. 
suzukii (Krüger et al. 2019; Vieira et al. 2020), chemical control 
with insecticides broad spectrum, including organophosphates, 
spinosyns, pyrethroids, neonicotinoids, and avermectins is the 
most used approach for pest management worldwide (Haye 
et al. 2016; Andreazza et al. 2017b). In Brazil, spinetoram 
(spinosyns) is the only insecticide registered for the control of 
D. suzukii to date (Agrofit 2021). In view of this, the insecti-
cides used are those recommended for other fly species, such 
as Anastrepha fraterculus (Wiedemann, 1830) and Ceratitis 
capitata (Wiedemann, 1824) (Diptera: Tephritidae) (Andreazza 
et al. 2017b; Schlesener et al. 2019; Morais et al. 2021).

While biological control is a promising alternative for 
D. suzukii management (Schetelig et al. 2018; Gonzalez-
Cabrera et al. 2019; Krüger et al. 2019; Lee et al. 2019), the 
frequent application of insecticides each season can have 
lethal and/or sublethal effects on T. anastrephae and also 
impair the population density and biological performance 
of the parasitoid over generations (Costa et al. 2014; Beloti 
et al. 2015; Schlesener et al. 2019; Morales et al. 2020). 
Therefore, the objective of the present study was to evalu-
ate the lethal (mortality) and transgenerational effects on 
parasitism, emergence, sex ratio, and survival in F0, F1, and 
F2 generations of five insecticides widely used in Brazilian 
fruit growing on T. anastrephae adults.

Material and Methods

Insects

Drosophila suzukii was reared on an artificial diet based on 
cornmeal, yeast, and sugar as proposed by Schlesener et al. 

(2017). Trichopria anastrephae parasitoids were reared and 
multiplied in D. suzukii puparia as per Vieira et al. (2020). 
Both were kept in a climate-controlled room with a tem-
perature of 25 ± 2 °C, relative humidity of 70 ± 10%, and 
photophase of 12 h.

Insecticides

We used commercial formulations of five insecticides, repre-
senting the main chemical groups used to control arthropod 
pests of fruit trees grown in Brazil (Table 1). The applied 
doses followed the recommendations of the manufacturer’s 
package inserts and were diluted in distilled water (Table 1).

Bioassay of toxicity and transgenerational effects

First, 24-h-old D. suzukii pupae were separated and deposited 
on Petri dishes (8-cm diameter) (approximately 150 pupae/treat-
ment). Subsequently, insecticides diluted in distilled water (treat-
ments) were applied by spraying via a calibrated Potter tower to 
deposit a volume of 1.25 ± 0.25 mg cm−2 according to the proto-
cols established by the IOBC (Hassan et al. 2000). Distilled water 
was used as a negative control. The pupae were kept for one hour 
on filter paper at a temperature of 25 ± 2 °C and relative humidity 
of 70 ± 10% to allow evaporation of excess spray. After that time, 
15 pupae exposed to the treatments were offered for parasitism to 
each pair of T. anastrephae (aged 24 h) in plastic cages made from 
acrylic tubes (2.5-cm diameter × 4.5-cm height) closed at the top 
with voile fabric (Vieira et al. 2020). The adults of T. anastrephae 
were fed with pure honey droplets and the pupae were exposed 
to parasitism for 24 h. After this period, pupae were removed 
and packed in new acrylic tubes (until emergence, approximately 
18 days under bioassay conditions) and T. anastrephae pairs were 
kept in 2.5 cm × 8.5 cm flat-bottomed glass tubes closed at the 
top with voile tissue. The experimental design was entirely rand-
omized, with six treatments and 10 replicates (acrylic tubes) per 
treatment, with each replicate consisting of a pair of T. anastre-
phae. The biological parameters evaluated were mortality of T. 
anastrephae after 24 h in contact with pupae contaminated by 
the treatments, pupal parasitism defined by counting emerged 

Table 1   Commercial insecticides used to assess lethal and sublethal toxicity in Trichopria anastrephae 

Manufacturers: aSyngenta Crop Protection Ltda, São Paulo, SP, Brazil; bBayer S.A, São Paulo, SP. Brazil; cCorteva Agriscience, São Paulo, SP, 
Brazil; dFMC Chemistry do Brazil Ltda, São Paulo, SP, Brazil

Active ingredient Trade name Insecticide class (IRAC MoA) Dose Crop in which are registered

Abamectin Vertimec 18 ECa Avermectin (6) 75 mL/100 L Strawberry
Deltamethrin Decis 25 ECb Pyrethroid (3A) 50 mL/100 L Citrus, peach, and apple
Malathion Malathion 1000 EC 

Cheminovac
Organophosphate (1B) 200 mL/100 L Citrus and peach

Spinetoram Delegated Spinosyn (5) 20 g/100 L Blackberry, raspberry, and blueberry
Thiamethoxam Actara 250 WGa Neonicotinoid (4A) 10 g/100 L Strawberry
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parasitoids and opening puparia without emergence to verify the 
presence of D. suzukii or T. anastrephae, the emergence of para-
sitoids and sex ratio [Σ♀/Σ (♀ and ♂)].

From the total number of emerged individuals from 
each treatment (F1 generation), a minimum of five and a 
maximum of 15 pairs of T. anastrephae were separated and 
placed in acrylic cages, as mentioned above, and offered 
15 pupae of D. suzukii (24 h of age) for a period of 24 h. 
After this time, the parasitoids were removed and placed 
in new cages (acrylic tubes) and fed with droplets of pure 
honey to evaluate the survival of males and females. Pupae 
were placed in an acclimatized room with a temperature of 
25 ± 2 °C to evaluate parasitism, emergence, and the sex 
ratio of F2 generation T. anastrephae.

IOBC classification

To determine toxicity classes, the reduction (R) in parasitism 
(F0 and F1) and emergence (F1 and F2) was calculated using 
the equation R = 100 − [(insecticide treatment value/control 
value) × 100], according to Hassan (1994). Then, insecticides 
were grouped into toxicity classes according to the calculated 
values based on the criteria established by the International 
Organization for Biological and Integrated Control (IOBC) 
(Hassan et al. 2000). The toxicity classes were class 1 = harm-
less (R < 30%); 2 = slightly harmful (R = 30–79%); 3 = moder-
ately harmful (R = 80–99%); and 4 = harmful (R > 99%).

Data analysis

The data obtained were tested for normality by the Shapiro–Wilk 
test and for homogeneity of variance by the Bartlett test. 
When these assumptions were not met, the data were sub-
jected to non-parametric Kruskal–Wallis analysis of vari-
ance, and means were compared using the Dunn test with 
Bonferroni correction at 5% error probability. For the sur-
vival curve, data on the longevity of individuals were used 
to estimate survival curves using the Kaplan–Meier estima-
tor and comparing the survival curves by the log-rank test 
through the program SigmaPlot (v.12.5, Systat Software Inc., 
California, USA). Statistical analyses were performed with 
R version 4.0.0 software (R Development Core Team 2020).

Results

Toxicity on T. anastrephae and on biological 
parameters in F0

When adult parasitoids were exposed to D. suzukii pupae 
treated with insecticides, significant mortality values were 

observed among the treatments evaluated (Kw = 44.51; 
df = 5, 54; p-value < 0.001) (Table 2). The insecticide 
malathion showed the highest acute toxicity, causing 100% 
mortality of T. anastrephae adults (Table 2). By contrast, 
the insecticides deltamethrin and spinetoram caused 60 and 
50% mortality of T. anastrephae, respectively (Table 2), 
whereas thiamethoxam and abamectin were statistically 
similar to the control treatment (Table 2). Regarding para-
sitism rate, significant differences (Kw = 47.62; df = 5, 54; 
p-value < 0.001) were found in all treatments compared to 
the control. The lowest parasitism rates were seen for the 
insecticides malathion (P = 0.60 parasitized pupae) and 
deltamethrin (P = 1.20 parasitized pupae) (Table 2). These 
produced the greatest reductions in parasitism, and thus, 
malathion (PR = 95.27%) and deltamethrin (PR = 90.50%) 
were classified as moderately harmful (class 3) (Table 2). 
Conversely, the insecticides thiamethoxam (RP = 55.11%), 
spinetoram (RP = 48.81%), and abamectin (RP = 32.28%) 
were classified as slightly harmful (Class 2) (Table 2).

Transgenerational effects in the F1 generation

The emergence rate of the F1 generation of T. anastre-
phae was significantly affected by the tested insecticides 
(Kw = 46.29; df = 5, 54; p-value < 0.001). The control treat-
ment had a mean of 12.20 emerged parasitoids (Table 3), 
while the lowest emergence rates were caused by the insec-
ticides malathion, with 0.50 parasitoids (SR = 95.90%), and 
deltamethrin with 1.20 parasitoids (SR = 90.16%) (Table 3), 
which were thus classified as moderately harmful (class 3). 
By contrast, the insecticides thiamethoxam (RE = 53.27%) 
and spinetoram (RE = 48.36%) were classified as slightly 

Table 2   Mortality, parasitism rate, parasitism reduction, and IOBC 
classification for F0 generation of Trichopria anastephae when sub-
jected to different insecticides

Means followed by the same letter do not differ statistically by Dunn’s 
test with Bonferroni correction (p < 0.05). aEvaluation of the num-
ber of parasitized pupae in each treatment. bPercentage of parasit-
ism reduction compared to control. cIOBC classes—class 1: innocu-
ous (PR < 30%); class 2: slightly harmful (30% ≤ PR ≤ 79%); class 3: 
moderately harmful (80% ≤ PR ≤ 99%); class 4: harmful (PR > 99%)

Treatment Mortality (%) P ( x ± SE)a PR(%)b Cc

Abamectin 10.0 ± 6.66c 8.6 ± 0.83b 32.2 2
Deltamethrin 60.0 ± 10.00b 1.2 ± 0.24d 90.5 3
Malathion 100.0 ± 0.00a 0.6 ± 0.26d 95.2 3
Spinetoram 50.0 ± 0.00b 6.5 ± 0.70b,c 48.8 2
Thiamethoxam 15.0 ± 10.67c 5.7 ± 0.52c 55.1 2
Control 0.0 ± 0.00c 12.7 ± 0.53a - -
Kw 44.513 47.6179
df 5, 54 5, 54
p-value  < 0.0000001  < 0.0000001
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harmful (class 2) and abamectin (RE = 29.50%) as harm-
less (class 1) (Table 3). No significant differences were 
observed in the sex ratio among the treatments (Kw = 9.12; 
df = 5, 54; p-value = 0.10 (Table 3) or with respect to the 
parasitism rates of the F1 generation (Kw = 9.94; df = 4, 60; 
p-value = 0.04) (Table 3). Based on the percentage reduction 
of F1 parasitism, the insecticides were classified as harmless 
(class 1) (Table 3).

The survival curves of males and females of the F1 gen-
eration of T. anastrephae showed a significant difference 
between treatments (males: χ2 = 77.4; df = 4; p-value < 0.001, 
females: χ2 = 77.9, df = 4, p-value < 0.001) (Fig. 1). The 
insecticides deltamethrin (10.80 days) and thiamethoxam 
(13.06 days) caused the greatest reductions in male insect 
survival, relative to the control treatment (29.73  days) 
(Fig. 1A). The same pattern was observed for T. anastrephae 
females (Fig. 1B). Abamectin did not affect the longevity of 
males and females of T. anastrephae compared to the control 
treatment (Fig. 1A and B).

Transgenerational effects in the F2 generation

No significant differences were observed in the emergence rate 
of T. anastrephae in the F2 generation (Kw = 9.77; df = 4, 60; 
p-value = 0.04) between the treatments evaluated (Table 4). 
In view of this, all the insecticides evaluated were classified 
as innocuous (class 1). Similarly, no significant differences 
were observed in the sex ratio of T. anastrephae of the F2 
generation (Kw = 1.49; df = 4, 60; p-value = 0.83) (Table 4).

Discussion

Chemical control involving insecticides is an important 
part of pest arthropod management in Brazilian fruit pro-
duction. However, the ecological services provided by 

natural enemies are now receiving due recognition as more 
sustainable practices are sought. Therefore, studies aiming 
to evaluate the compatibility between insecticides and natu-
ral enemies, within the precepts of IPM, are indispensable 
(Roubos et al. 2014). In this study, all insecticides tested 
have neurotoxic effects, and given that there are similarities 
between the modes of nerve impulse transmission between 
different animal phyla, they are usually classified as less 
selective to non-target organisms (Amarasekare et al. 2016; 
Fontes et al. 2018). The fact was verified about T. anastre-
phae adults in F0 generation, with emphasis on the organo-
phosphate insecticide.

The highest mortality caused by malathion (F0 genera-
tion of T. anastrephae) may have occurred by contact or 
inhalation during the period of exposure to parasitism, and 
the lethal impact of this organophosphate insecticide may be 
attributed to the rapid transformation of oxygenase enzymes, 
thus inhibiting the action of acetylcholinesterase and other 
enzyme systems that perform detoxification (Büyükgüzel 
2006). These results are similar to those found when T. anas-
trephae adults were exposed to dry insecticide residues via 
the tarsal contact method (Schlesener et al. 2019) and for 
the parasitoid Palmistichus elaeisis Delvare & LaSalle, 1993 
(Hymenoptera: Eulophidae) exposed to the insecticide mala-
thion (100% mortality) (Cruz et al. 2017).

In addition to providing high toxicity on T. anastrephae 
adults, in the F0 generation, all insecticides significantly 
affected the rate of parasitism of T. anastrephae. This may 
be attributed to the fact that neurotoxic insecticides affect the 
neurosecretory system of arthropods, and since reproduction 
is regulated by hormones, the insecticides may have caused 
the hormonal imbalance in the insects, interfering in parasit-
ism of the species (Maddrell and Reynolds 1972). Similar 
results were reported by Fontes et al. (2018) for Tricho-
gramma achaeae Nagaraja and Nagarkatti, 1971 (Hymenop-
tera: Trichogrammatidae) for the insecticides abamectin and 

Table 3   Emergence rate 
and parasitism, emergence 
reduction and parasitism, sex 
ratio, and IOBC classification 
for F1 generation of Trichopria 
anastephae when subjected to 
different insecticides

Means followed by the same letter do not differ statistically by Dunn’s test with Bonferroni correction 
(p < 0.05). aAssessment of the number of emerged parasitoids. bEmergency reduction (ER) or parasitism 
reduction (PR) compared to control. cIOBC classes—class 1: innocuous (ER or PR < 30%); class 2: slightly 
harmful (30% ≤ ER or PR ≤ 79%); class 3: moderately harmful (80% ≤ ER or PR ≤ 99%); class 4: harmful 
(ER or PR > 99%). dSex ratio. eEvaluation of the number of parasitized pupae in each treatment

Treatment E ( x ± SE)a ER(%)b Cc SR ( x ± SE)d P ( x ± SE)e PR (%)b Cc

Abamectin 8.6 ± 0.83b 29.5 1 0.6 ± 0.15a 10.8 ± 0.50a 14.28 1
Deltamethrin 1.2 ± 0.24d 90.1 3 0.5 ± 0.15a 11.2 ± 1.68a 11.11 1
Malathion 0.5 ± 0.22d 95.9 3 0.6 ± 0.06a - - -
Spinetoram 6.3 ± 0.77b,c 48.3 2 0.5 ± 0.09a 10.7 ± 0.56a 15.24 1
Thiamethoxam 5.7 ± 0.91c 53.2 2 0.4 ± 0.09a 11.9 ± 0.52a 5.76 1
Control 12.2 ± 0.74a - - 0.6 ± 0.06a 12.6 ± 0.28a - -
Kw 46.2943 9.1217 9.9418
df 5, 54 5, 54 4, 60
p-value  < 0.0000001 0.1043 0.04
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thiamethoxam, when sprayed on host eggs. The results for 
deltamethrin may be directly related to the high toxicity, 
penetration capacity, and fast action of the product since 
they act as modulators of sodium channels, causing paraly-
sis and physiological and behavioral changes. The repellent 
action of this chemical may also have contributed to the 
reduction of parasitism of T. anastrephae (Bos and Masson 
1983; Costa et al. 2020). Consequently, the emergence rate 
of the F1 generation was also significantly affected, such 
that malathion and deltamethrin reduced emergence by more 
than 90%.

Despite their negative effects on the emergence of F1 gen-
eration adults, the insecticides did not affect the sex ratio 
of T. anastrephae. Several studies have shown that agro-
chemicals products can also cause changes in the sex ratio of 
beneficial insects. For instance, the organophosphorus insec-
ticide chlorpyrifos modified the sex ratio of the offspring of 
several Hymenoptera parasitoid (Delpuech and Meyet 2003), 
whereas imidacloprid significantly changed the sex ratio 
of the progeny of Encarsia inaron Walker (Hymenoptera: 
Aphelinidae) by increasing the number of male offspring 
(Sohrabi et al. 2012). However, the mechanisms underlying 

Fig. 1   Survival curve of 
adults of the F1 generation of 
Trichopria anastrephae, A 
males and B females, when sub-
jected to different insecticides. 
The curves were generated 
using Kaplan–Meier estimators 
and compared using the log-
rank test (P < 0.05)
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the change in the sex ratio of beneficial arthropods caused by 
insecticides have not been evaluated yet. In the present study, 
the proportion of the sex ratio of T. anastrephae has not 
changed. This lack of effect on the sex ratio emphasizes the 
potential of this species as a biological control agent for D. 
suzukii. By contrast, negative effects, as reported by Costa 
et al. (2014) for Trichogramma galloi Zucchi, 1988, would 
reduce the proportion of females, making it impossible for 
them to perform their ecological role.

The insecticides deltamethrin and thiamethoxam caused 
the greatest reductions in the survival of T. anastrephae. 
The active ingredient thiamethoxam, belonging to the neo-
nicotinoid group, is a competitive agonist of nicotinic ace-
tylcholine receptors, being able to induce continuous exci-
tation in neuronal membranes, which results in discharges, 
paralysis, and the depletion of cellular energy. Pazini et al. 
(2019) demonstrated similar results regarding the survival 
of the F1 generation of Telenomus podisi Ashmead, 1893 
(Hymenoptera: Platygastridae) when eggs of Euschistus 
heros Fabricius, 1798 (Hemiptera: Pentatomidae) were 
exposed to thiamethoxam prior to parasitism by F0. As 
well as, the effect of deltamethrin on the nervous system 
of T. anastrephae affected adult emergence and subsequent 
longevity of insects (Garcia et al. 2006). Therefore, the 
use of deltamethrin-based insecticides in pest management 
will provide difficulties for the parasitoid to find the host 
and negatively affect the parasitism of D. suzukii.

The F2 generation of T. anastrephae was not affected 
by any of the treatments, so all insecticides were classified 
as innocuous at this stage. Similar results were found by 
Beloti et al. (2015) for Tamarixia radiata Waterston, 1922 
(Hymenoptera: Eulophidae) when treatments were sprayed 
on orange tree discs and the F0 parasitoids remained in 

contact for 24 h. Likewise, Paiva et al. (2018) reported 
that when treatments were sprayed on eggs of Ephestia 
kuehniella Zeller, 1879 (Lepidoptera: Pyralidae) prior 
to parasitism by the F0 generation of Trichogramma pre-
tiosum Riley, 1879 (Hymenoptera: Trichogrammatidae), 
there were no transgenerational effects on the F2 genera-
tion. However, it is worth noting that the present study was 
conducted under laboratory conditions, so the parasitoid 
was exposed to the worst possible conditions. Thus, stud-
ies in semi-field and field situations should be conducted 
since the effects of the environment, such as sunlight 
(Paiva et al. 2018), can accelerate the degradation of the 
chemicals and lead to lower acute and sublethal toxicity 
than in the laboratory setting.

The findings in this study will contribute to the develop-
ment of IPM programs in which the integration of chemi-
cal and biological control is sought of D. suzukii; this is 
because we have the constant occurrence of T. anastrephae, 
a recurrent species in small fruit crops infested by these 
flies in Brazil (Wollmann et al. 2016, Bernardi et al. 2017). 
Although the insecticides evaluated in this study (abamectin, 
deltamethrin, malathion, spinetoram, and thiamethoxam) do 
not show transgenerational effects on T. anastrephae, the 
use of these products in the management of D. suzukii and 
other arthropod pests that infest the strawberry crop must 
be used with care, so as not to harm the natural biological 
control of D. suzukii or in a possible mass release program 
of this parasitoid in the field (Krüger et al. 2019; Vieira et al. 
2020). Thus, in areas with the occurrence of T. anastrephae, 
producers should use alternative products, such as plant 
extracts and essential oils or products based on azadirachtin 
(De souza et al. 2021), as they do not present toxicity to the 
parasitoid and are toxic for D. suzukii adults.
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