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Studies of the influence of biological parameters on the spatial distribution
of lepidopteran insects can provide useful information for managing agri-
cultural pests, since the larvae of many species cause serious impacts on
crops. Computational models to simulate the spatial dynamics of insect
populations are increasingly used, because of their efficiency in
representing insect movement. In this study, we used a cellular automata
model to explore different patterns of population distribution of
Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), when the
values of two biological parameters that are able to influence the spatial
pattern (larval viability and adult longevity) are varied. We mapped the
spatial patterns observed as the parameters varied. Additionally, by using
population data for S. frugiperda obtained in different hosts under labo-
ratory conditions, we were able to describe the expected spatial patterns
occurring in corn, cotton, millet, and soybean crops based on the param-
eters varied. The results are discussed from the perspective of insect
ecology and pest management. We concluded that computational ap-
proaches can be important tools to study the relationship between the
biological parameters and spatial distributions of lepidopteran insect
pests.

Introduction

The order Lepidoptera comprises many insect pests, such as
Helicoverpa armigera (Hubner), Helicoverpa zea (Boddie),
and Anticarsia gemmatalis (Hubner), whose larval stages
cause damage to crops (Mironidis & Savopoulou-Soultani
2008, Milano et al. 2010, Reigada et al 2016). One of the
most important lepidopteran pests is the fall armyworm
Spodoptera frugiperda (J .E. Smith) (Lepidoptera:
Noctuidae), a polyphagous pest widely distributed in North
and South America, which attacks several crops including
corn (maize), cotton, and soybean (Barros et al 2010).

Understanding the relationship between biological pa-
rameters and spatial patterns of insect pest populations in
agricultural landscapes may provide useful information for
the implementation of integrated pest-management

programs (IPM), since it can indicate the invasion potential
of a pest (Deffontaines et al 1995, Steingrover et al 2010).
One possible approach to study spatial patterns is the use of
computational models.

Spatial models have been widely used to study patterns of
insect distribution. Hassel et al (1991) found different pat-
terns of host-parasitoid dynamics, such as spiral waves, by
altering the parameter values of a Nicholson-Bailey model
projected on a lattice of cells. Petrovskii et al (2014) reviewed
ways to use spatial models to estimate insect density in IPM
programs, discussing mathematical approaches at the spatial
scale, including random walks and networks. Cerda &Wright
(2004) developed a model to test the impact of different
refuge sizes and configurations in an agricultural landscape
composed of transgenic and non-transgenic crops (refugia)
on the evolution of insect resistance to transgenic crops.
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Garcia et al (2014) presented a computational model to sim-
ulate the dynamics of Diabrotica speciosa (Germar)
(Coleoptera: Chrysomelidae) over different intercropping
landscapes, and concluded that intercropping systems com-
posed of corn and soybean were the most efficient in reduc-
ing populations of this beetle.

The growing interest in theoretical studies has led ecolo-
gists to use spatially structured models such as cellular au-
tomata (CA), which allow one to detail the spatial traits of a
system (Garcia et al 2014). CA are discrete, dynamic systems,
in which the space is represented as a grid of cells that as-
sume different states along the time steps. Cell states can
change over time by means of transition rules that can rep-
resent stochastic or deterministic processes. Therefore, one
of the greatest advantages of using CA is the possibility of
describing different stages of insect development, by using
discrete cell states that can change by means of rules based
on insect biology (Hiebeler 2005).

In this theoretical study, we present a cellular autom-
ata model to describe the spatial distribution of
S. frugiperda populations. Our main goal was to investi-
gate different spatial patterns that may develop when
larval mortality and adult longevity are varied. We decid-
ed to develop a model based on these two parameters
because they indicate the survival of two insect stages
that are important for pest management. Most control
strategies focus on reducing the viability of larvae within
the period when the insect feeds on plants. On the other
hand, the length of the adult stage is directly related to
the period when the insect is reproducing and laying
eggs. In order to represent the species in our CA, we
designed the transition rules and defined the interval of
parameter values based on population data from
S. frugiperda populations studied in laboratory conditions.

Some investigators have focused on studying spatial pat-
terns of S. frugiperda in agricultural contexts, such as Carroll
et al (2012), who developed a spatial model to study the
spatial dynamics of S. frugiperda in Bt and non-Bt maize.
Our study used a different approach, focusing on studying
the influence of biological parameters on population spatial
patterns, rather than the influence of landscape configura-
tion and composition. We intended to use the computational
model to study theoretically the influence of these parame-
ter variations on the spatial patterns of an important lepi-
dopteran pest, discussing the possible factors that can lead
to these patterns in agricultural systems. We also deter-
mined the expected spatial patterns of population distribu-
tion in corn, millet, soybean, and cotton fields (the main
crops attacked by this pest) by using parameter values ob-
tained in the laboratory when S. frugiperda was reared on
these hosts. The information from this study is especially
applicable to homogeneous landscapes, such as large corn
and soybean fields.

Material and Methods

Cellular automata

We developed a system of cellular automata in the C program-
ming language in order to represent the life cycle of holome-
tabolous insects, i.e., we represented the immature and adult
insect stages differently. We chose this approach because lep-
idopteran insects are holometabolous. We also assumed that
only adults could move along the landscape and lay eggs (flying
stage). In order to represent the two stages, we constructed
two stochastic cellular automata, CA-1 and CA-2, respectively,
for immatures (larvae and pupae) and female adults, each with
600 × 600 sites. We decided to include only females in CA-2
because they are responsible for laying eggs, connecting CA-1
and CA-2. In CA-1, a cell could be empty (0) or occupied by only
one larva. This assumption was based on the horizontal distri-
bution of S. frugiperda larvae (mean number of larvae per corn
plant), according to Farias et al (2001). Only one larva per plant
is observed in farm fields because this species is highly canni-
balistic, which reduces the number of individuals. Therefore, in
our simulations, we simplified the system, assuming one larva
per plant as observed in the field.

In CA-2, a cell could be empty (0) or occupied by a number
of adults <10. We also used a parallel update with fixed
boundary conditions, which means that the first and last
rows and columns of cells in the lattice remained unaltered
and were equal to 0 (absence of individuals). Each time step,
t, corresponded to 1 day, and each cell of the CA represented
1 × 1 m of the crop system. An age-counter was associated
with each insect in order to indicate its age (i for immature
period and a for adult period). The following rules describe
the dynamics of holometabolous insects used in our ap-
proach (Garcia et al 2014, Garcia et al 2016):

1. CA-1 larvae/pupae population dynamics

a. A cell occupied by a larva or pupa could become
empty with probability θ (i) + δ (i) due to mortality
or adult emergence, respectively.

b. An empty cell could become occupied by a larva if
an adult (in a Moore neighborhood of radius 2) lays
eggs in it with probability τ (a) corresponding to the
per-capita oviposition.

2. CA-2 adult population dynamics

a. A cell occupied by an adult female could become
empty with probability μ (a) due to female
mortality.

b. An empty cell could be occupied with a metamor-
phosis probability δ(i)/2 if a pupa in the corre-
sponding cell in CA-1 develops into a female adult.
The fraction 1/2 was related to the sex ratio.
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In order to perform the simulations, we defined the set of
probability functions θ(i), δ (i), τ (a) and μ(a) described in our
transition rules. They were based on general trends observed
in population data for S. frugiperda (Barros et al 2010)
(Eqs. 1–4). Equations 1 to 4 describe the probability functions
θ(i), δ(i), μ(a) , and τ(a) as part of these transition rules
(Garcia et al 2016). They represent the probability of occur-
rence of each event on each day. In order to run the simula-
tions, we varied adult longevity (AL) from 8 to 20 days and
larval viability (LV) from 0 to 1. The range of AL was deter-
mined on the basis of the values of adult longevity found by
Barros et al (2010), studying S. frugiperda populations in
different hosts. Based on the population data for
S. frugiperda collected by Barros et al (2010), we were also
able to simulate the expected spatial patterns observed in
corn, millet, soybean, and cotton fields (Table 1).
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where LV is larval viability and AL is adult longevity.
We assumed no preferential direction of adult dispersal,

i.e., the adults moved randomly. In each time step, we as-
sumed that each adult female could move to any cell ran-
domly chosen by the computer within a radius of 35 cells
from the initial cell. We defined this radius by considering
the maximum distance reached by adult females of
S. frugiperda in cornfields per day (Vilarinho et al 2011).

The initial population (t = 0) was composed of 1600 adult
insects released in the center of the lattice in 40 × 40 cells
(one adult per cell). Simulations were run during 300 time
steps, and the spatial patterns of insect distribution (only
adults) at t = 300 were classified by using the Morisita index
of dispersion. We chose 300 time steps because there was a
transient and unstable period before this time, since the pop-
ulationwas still too small and was becoming established in the
field. From this time forward, we could observe a clearer and
more stable pattern of distribution, resulting from the initial
conditions defined in our simulations (Garcia et al 2016).

Morisita index of dispersion

In order to quantify the degree of spatial dispersion of
S. frugiperda observed in each simulation, the Morisita index
of dispersion was calculated for each combination of the two
parameters. This tool is often used to evaluate the spatial
patterns of biological species (Amaral et al 2015). According
to Rossi & Higuchi (1998), a low sensitivity to the size of the
sampling unit is the main reason to make use of this index. In
order to calculate the Morisita index of dispersion (Id), initially
the lattice was divided into 100 plots of the same size (60 × 60
cells), recording the number of individuals in the cells per plot.
The index is defined as (5), according to Krebs (1999):
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where q is the number of plots and x is the number of individ-
uals in each plot. The values of Id = 1 indicate a random pattern,
values of Id < 1 indicate a uniform pattern, and values of Id > 1
indicate an aggregated pattern. However, it is essential to apply
a statistical test to verify if the index value is significantly differ-
ent from 1 (randomness). The statistics for theMorisita index of
dispersion (chi square distribution) is given by (6).

χ2 ¼ n

X q
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−
X

q
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x: d: f: ¼ n−1ð Þ ð6Þ

If the calculated χ2 is higher than the critical value
(p = 0.05), then Id is significantly different from 1 and the pop-
ulation has either a uniform or an aggregated distribution.

Results and Discussion

Varying the proposed parameter set (larval viability and adult
longevity), the Morisita index of dispersion indicated two
different spatial patterns (random and aggregated) as

Table 1 Adult longevity (AL) and larval viability (LV) values for
Spodoptera frugiperda populations in different hosts under laboratory
conditions, found by Barros et al (2010).

Parameters Corn Millet Cotton Soybean

AL (days) 16 14 15 13

LV 0.98 0.94 0.9 0.82
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illustrated in Fig 1. The spatial patterns obtained in the pa-
rameter space tested are represented in Fig 2.

The aggregated pattern (Fig 1b) is the most common one
described in the literature (Zillio & He 2010) and is character-
ized by the aggregation of individuals in some locales. We
observed that a Morisita index higher than 1 (aggregated
pattern) is highly dependent on higher values of larval viabil-
ity and adult longevity, and only extremely low larval viabil-
ities (less than 0.1) would prevent the formation of the pat-
tern when adult longevity exceeds 17 days (complete
parameter space in Fig 2). In our case, the highest abundance
of individuals is located in the cells of the initial infestation.
According to Molles (2009), this pattern is observed when
individuals are attracted to a common resource. However,
since we are working with a homogeneous area, the main
reason that this pattern appeared in our simulations is the
high values of the parameters being varied, which maintains
a high number of adults in the cells where the population
starts to spread over a homogeneous space, allowing the
formation of rings with different population densities around
this point (Gaussian behavior). Higher rates of larval viability
provide large numbers of adults to the population, while
increased adult longevities allow large numbers of adults to
remain in the field. At first concentrated in the cells of the
initial infestation, they start to disperse, creating rings with
progressively lower densities of adults. Petrovskii et al. (2014)
offered the same explanation for aggregated patterns. They
also noted that this behavior is characterized as a swarm and
is important for agricultural systems, because early detection
of the initial point (termed “point-source release”) may im-
prove pest monitoring and control, since control measures
can be focused on the initial point. This pattern was observed
in all host crops simulated (corn, millet, cotton, and soybean)
(Fig 2). Aggregated patterns are commonly reported for
S. frugiperda larvae, although studies on local movements

of adults have been limited (Vilarinho et al 2011). The pattern
was observed for S. frugiperda larvae in cornfields by Farias
et al (2001) and Elmo et al (2006), when population density
was high, as we found in our simulations. In cotton fields,
aggregated patterns were documented by Fernandes et al.
(2002).

An aggregated pattern indicates that the colonization of
the area proceeds from points of aggregation. This is essen-
tial information for the development of site-specific IPM
strategies. Following the principles of precision agriculture,
these strategies are based on maps showing the pest distri-
bution in order to minimize the measures needed for direct
control (Brenner et al 1998). However, one of the main

Fig 1 Spatial patterns of insect distribution (adults) observed in our simulation when values of the proposed parameter set were varied. a Random
(AL = 16, LV = 0.4, and Id = 1.02, χ2 = 40.5, d.f. = 99). b Aggregated (AL = 20, LV = 0.8, and Id = 2.67, χ2 = 145.6, d.f. = 99).

Fig 2 Diagram indicating the parameter values (larval viability and adult
longevity) for which the spatial patterns are observed. The four host
crops simulated are indicated in white. Gray indicates random (Id = 1)
and black indicates aggregated (Id > 1).
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requirements for the application of site-specific IPM strate-
gies is an aggregated distribution of the target population
(Sciaretta & Trematerra 2014). These strategies have yielded
effective results in study cases involving lepidopteran insects
reported in the literature. Sciaretta et al (2011) identified the
source of infestation in aggregated distributions of Lobesia
boltrana (Lepidoptera: Tortricidae). By identifying these
points, they were able to adopt two different control mea-
sures: the establishment of a pheromone-trap barrier to pre-
vent the males from moving, and a reduction in the amount
of insecticides, focusing their efforts on the highest concen-
trations of L. boltrana. In addition to reducing the amount of
insecticides needed, this treatment was more economical
and more efficient. Since S. frugiperda occurs mainly in ag-
gregations in all of its host crops, similar pest-management
strategies can be applied, resulting in more efficient pest
control. Finding the epicenter of the aggregated distribution
may allow farmers to focus their control efforts, disrupting
the wave of the pest outbreak (Johnson et al 2006).

Another factor is that an aggregated distribution is com-
posed of concentric rings, and the population density de-
creases progressively from the inner to the outer rings.
Therefore, in the case of biological control by means of in-
troducing either a predator or a parasitoid, it would be nec-
essary to consider these different densities along the rings.
According to Bjørnstad & Bascompte (2001), a highly mobile
parasitoid/predator can be a good choice to maintain a high
within-patch synchrony of the dynamics of the two species.
In this context, spatial synchrony refers to coincident chang-
es in abundance in both populations (Liebhold et al 2004).

The Morisita index was not significantly different from 1
(randomdistribution) when larval viability was low enough to
allow rapid changes along the cells. The amplitude of larval
viability values that correspond to this pattern increased as
adult longevity increased from 8 to 17 days (see the
parameter space in Fig 2). For smaller larval viabilities, many
larvae die over the time steps, leaving more empty cells to be
colonized by new individuals, which prevents intraspecific
competition and the aggregation of many adults in each cell.
This pattern is caused by higher values of adult longevity
(although less than or equal to 17 days), which also prevents
aggregation in the cells by allowing adults to disperse over
greater distances, moving away from the initial center of
infestation and avoiding intraspecific competition.
According to Molles (2009), random distributions are ob-
served when individuals in a population have an equal
chance of living anywhere within an area and do not affect
each other. This pattern was observed for S. frugiperda lar-
vae in cornfields in Brazil by Elmo et al (2006). They attrib-
uted the random pattern to low infestation levels that keep
the population small and reduce intraspecific competition.
This pattern was also observed by Mazza et al (2014) in cot-
ton fields, due to low captures in the winter. Therefore, it

should be taken into consideration that changes in the
weather may decrease larval viability, transforming an aggre-
gated pattern to a random pattern. As seen in Fig 2, a de-
crease in larval viability may change the aggregated patterns
observed in the four host crops to a random pattern. With
this in mind, it is not recommended to apply site-specific IPM
strategies during colder weather.

According to Elmo et al (2006), the random pattern may
change to a uniform distribution if the insects start to avoid
each other, competing for resources (Elmo et al 2006).
Uniform patterns were not observed in our simulations, since
the maximum number of adults defined in CA-2 was ob-
served in only a few cells, preventing a competition situation.
Additionally, we investigated a population of adults, which
do not compete intensely for resources as do larvae, since
adults are able to fly and to better exploit the space, reducing
the chance of a uniform distribution.

Conclusion

Morisita’s index of dispersion indicated two different spatial
patterns for the parameter space based on data from
S. frugiperda populations. Lower larval viabilities combined
with higher adult longevities (but less than or equal to
17 days) prevented the aggregation of more than one adult
per cell, resulting in a random pattern. Random distributions
can be observed in the field, in cases of low levels of intra-
specific competition or in unfavorable weather conditions.

For higher values of larval viability and adult longevity, an
aggregated pattern occurred, in which the number of adults
decreased progressively from the inner to the outer rings.
This pattern is related to high population densities in the
field, and it is required for the application of site-specific
IPM strategies that can lead to a more efficient and sustain-
able pest management. Detection of the epicenter of the
aggregated distributionmay allow farmers to focus their con-
trol efforts. Additionally, when the insect pest shows an ag-
gregated distribution, for effective biological control it is im-
portant to consider the pest’s spatial synchrony with the
parasitoid or the predator used.

The model developed here can potentially be used by
entomologists to predict the spatial distribution of
S. frugiperda populations in the field, proposing control strat-
egies based on the predicted pattern. It would only be nec-
essary to estimate the values of the biological parameters,
which can be obtained in the laboratory by using a sample
taken from the population studied. Although this approach is
theoretical, it may support monitoring studies that aim to
observe the same patterns in the field. The model can be
easily altered to study other lepidopteran pests, by changing
the defined equations in the transition rules.
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