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The effects of the intermittency of water flow on habitat structure and
substrate composition have been reported to create a patch dynamics
for the aquatic fauna, mostly for that associated with the substrate. This
study aims to describe the spatial distribution of Chironomidae in an
intermittent river of semiarid Brazil and to associate assemblage com-
position with environmental variables. Benthic invertebrates were sam-
pled during the wet and dry seasons using a D-shaped net (40 cm wide
and 250 μm mesh), and the Chironomidae were identified to genus
level. The most abundant genera were Tanytarsus, Polypedilum, and
Saetheria with important contributions of the genera Procladius, Aedok-
ritus, and Dicrotendipes. Richness and density were not significantly
different between the study sites, and multiple regression showed that
the variation in richness and density explained by the environmental
variables was significant only for substrate composition. The composi-
tion of genera showed significant spatial segregation across the study
sites. Canonical Correspondence Analysis showed significant correspon-
dence between Chironomidae composition and the environmental var-
iables, with submerged vegetation, elevation, and leaf litter being
important predictors of the Chironomidae fauna. This study showed
that Chironomidae presented important spatial variation along the river
and that this variation was substantially explained by environmental
variables associated with the habitat structure and river hierarchy. We
suggest that the observed spatial segregation in the fauna results in the
high diversity of this group of organisms in intermittent streams.

Introduction

The hydrological variation has been recognized as an im-
portant agent organizing communities in river systems of
tropical (Maltchik & Florin 2002) and temperate regions
(Vannote et al 1980). In dryland river systems, the hydrolog-
ical extremes proportionate high spatial variability (Sheldon
et al 2010), since water flow magnitude varies greatly in
different river reaches (Labbe & Fausch 2000) or can be
absent for long periods (Maltchik & Medeiros 2006). This
creates a patchy distribution of organisms, which is also
determined by local environmental characteristics and mor-
phology (Sheldon &Walker 1998, Marshall et al 2006). It has
been proposed that the patch dynamics is more important in

variable systems, where habitats become more restricted
and the composition of communities is governed by abiotic
factors rather than biotic ones (Peckarsky 1983, Williams
1987, Uys & O’Koeef 1997). Studies indicate that the hydro-
logical dynamics in streams create a mosaic of environmental
conditions at different spatial scales which influence
the distribution and abundance of the fauna and, conse-
quently, their spatial composition (Ward & Stanford 1995,
Amoros & Bornette 2002). Thus, the water flow plays a key
role in creating and connecting these diverse patches of
habitat with specific morphology and physicochemical
characteristics.

The intermittency in water flow is the principal charac-
teristic of Brazilian semiarid streams (Steffan 1977). In their
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natural state, these streams are characterized by extremes
of flood and drying (Maltchik & Medeiros 2006). These
events of hydrological disturbance are the main agents
structuring these ecosystems, leading to spatial fluctua-
tions in habitat structure and biotic communities (Maltchik
& Medeiros 2006). These biotic communities are thought
to respond to these disturbances by structuring themselves
in order to maximize survival and distribution of species
throughout the river (see Resh et al 1988).

In this sense, aquatic macroinvertebrates have been
used to determine these patterns of distribution of species
since they are associated with the substrate and are highly
dependent on underwater structures and substrate com-
position (Bennison et al 1989). Therefore, the macroinver-
tebrate composition is expected to respond to the spatial
variation, typical of disturbance-dominated systems such
as intermittent streams (Boulton & Lake 1992, Robinson et
al 2004, Acuña et al 2005).

Among the aquatic macroinvertebrates, the Chironomi-
dae is the most representative group in number of individ-
uals and richness (Trivinho-Strixino & Strixino 1995, Rocha
et al 2012). Chironomidae larvae show high resistance to
the environmental variation being able to rapidly colonize
new habitats (Pires et al 2000, Silva-Filho & Maltchik 2000,
Silva-Filho et al 2003). Their small body size, short life
cycle, and dispersion patterns by the adults contribute to
the high capacity of the group to colonize and adapt to
variable environments (Miller & Golladay 1996, Lake 2000).
Furthermore, these organisms are generalists in habitat
allowing a wide spatial distribution (Brito-Júnior et al
2005). The physical structure of the habitat also contrib-
utes to their patterns of distribution, the latter being
associated mostly with water flow and temperature, con-
centration of dissolved oxygen, pH, and food availability
(Cummins & Lauff 1969). Substrate composition and un-
derwater structures have also been emphasized as impor-
tant factors determining the distribution and abundance of
Chironomidae populations (Minshall 1984).

Nevertheless, the role of the hydrological disturbances
in the spatial dynamics of the habitat and their associated
communities in intermittent streams has received little
attention. There is important indication that higher magni-
tude flooding is able to disrupt and destroy benthic com-
munities of intermittent streams in short-term spatial and
temporal scales (Silva-Filho et al 2003). Furthermore, at
larger time scales and at the level of the catchment basin,
the effects of sediment transport and the modification of
the habitat structure available for colonizers by water flow
are critical to produce and maintain a mosaic of pools that
can be used for colonization and refugia for aquatic organ-
isms (Labbe & Fausch 2000).

This dynamics makes intermittent streams complex and
heterogeneous systems, which can be seen as highly

hierarchical systems subject to the patch dynamics (see
Frissell et al 1986 and Pringle et al 1988). Studies indicate
a subdivision in hierarchical scales in such systems into
macrohabitats, representing distinct morphological zones
(Thoms et al 2004); mesohabitats, representing pools,
runs, and riffles; and the microhabitats, representing
stands of macrophytes or submerged vegetation and sub-
strate types (Frissell et al 1986).

The importance of these spatial scales to the aquatic
invertebrates in streams has been recognized (e.g.,
Downes et al 1993, Scarsbrook & Towsend 1993), but it is
still under debate whether these scales actually generate a
response from the aquatic organisms (Frissell et al 1986) or
whether highly variable and fragmented systems such as
intermittent streams will generate such responses. There-
fore, to determine the patterns of spatial distribution of
aquatic macroinvertebrates in dryland intermittent
streams can provide the basis for the understanding of
the function of these systems, the potential importance
of the processes acting at these different scales, and as a
consequence, the ecological interactions that maintain the
diversity in such communities.

This study describes the distribution of Chironomidae
genera in an intermittent stream and associates the
assemblages' composition with environmental variables
that represent the structure of the habitat and water
quality. It is hypothesized that the Chironomidae fauna
(density, richness, and species composition) is patchy with
the assemblages' composition representing local character-
istics of the habitat and that the environmental variables
will be important elements explaining the spatial distribu-
tion of genera.

Material and Methods

Study area

The present study was carried out in the upper reaches of
the Ipanema River, an affluent of the left margin of the São
Francisco River. The catchment area of the Ipanema River
is located in the states of Pernambuco and Alagoas (Fig 1).
Average annual temperature and precipitation in the area
are 25°C and 1,095.9 mm, respectively (Rodal et al 1998).
The wet season starts in January–February, with higher
precipitation between April and June. The peak of the dry
season lasts from September to January (Rodal et al 1998).
Elevation ranges from 650 to 1,000 m (CPRM 2005). Pre-
dominant vegetation in the study area is the Caatinga, an
arboreal to shrubby open forest, characterized by the
presence of xerophytic species (Silva & Sales 2008). This
type of vegetation is sparse and does not provide strong
protection to the soil, which increases the loss of water by
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evaporation enhancing the intermittency of the streams
and rivers of the region. Climate is classified as semiarid
BSh and tropical Aw according to the classification of
Köeppen–Geiger modified by Peel et al (2007).

Sampling design and data collection

Samples were taken from three reaches of the Ipanema River
on four occasions during the wet (April and July 2007) and
dry (October 2007 and January 2008) periods (Fig 1). At each
river reach, three subsamples of benthic macroinvertebrates
were randomly taken using a D-shaped net (40 cm wide and
250 μmmesh). Samples were fixed in 4% formalin in the field
and taken to the laboratory where they were wet sieved and
preserved in 70% ethanol. A subsample of the larvae of
Chironomidae was counted (Baker & Huggins 2005) and
identified to the level of genus (Borror & Delong 1988,
McCafferty 1988, Trivinho-Strixino & Strixino 1995, Epler
2001, Trivinho-Strixino 2011). Identification was performed
after the individuals were mounted in semipermanent slides
using Hoyer's medium following Trivinho-Strixino (2011), and
voucher specimens were deposited in the reference collec-
tion of the Laboratório de Ecologia, UEPB.

The environmental characteristics consisted of (1)
physical and chemical variables, (2) reach morphology, (3)
substrate composition, and (4) habitat structure. Physical
and chemical variables were measured using portable

equipment for pH (TECNOPON MPA-210), conductivity (in
microsiemens per centimeter) (TECNOPON MCS-150), dis-
solved oxygen (in milligrams per liter), and temperature (in
degrees Celsius) (Lutron DO-5510). Transparency (in centi-
meters) was measured using a Secchi disk, and water
velocity (in meters per second) was estimated using the
float method (Maitland 1990). Stream reach morphology
was evaluated by the average width (in centimeters) and
depth (in centimeters) taken from three transects random-
ly placed in the stream reach or pool (during the dry
phase). The substrate composition and habitat structure
were estimated in 9 to 12 survey points of 1 m2 measured
in the margins (see Medeiros et al 2008). In each survey
point, the proportion of the sediment composition (classi-
fied as mud, sand, gravel, and cobbles) and littoral and
underwater structures (e.g., macrophytes, grass, submerged
vegetation, overhanging vegetation, leaf litter, algae, and
woody debris) were estimated visually.

Data analyses

All statistical analyses were performed on density [individ-
uals (ind) per square meter], calculated as the number
of individuals divided by the total sampled area of the
D-shaped net for each stream reach. Density and richness
of genera are used to describe patterns of distribution of
the assemblages.

Fig 1 Study area with the
location of the Ipanema River
in the states of Pernambuco
and Alagoas and the study
reaches during the hydrological
cycle of 2007/2008. 1 upper
reach, 2 middle reach, and 3
lower reach.
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The correlation between density and richness (dependent
variables) with the environmental characteristics (indepen-
dent variables) was evaluated using hierarchical multiple re-
gression (HMR) (Sheridan & Lyndall 2001). The independent
variables for each environmental characteristic were incorpo-
rated into the regression model based on their expected
order of importance in describing the assemblages studied:
(1) physical and chemical variables: dissolved oxygen, temper-
ature, transparency, conductivity, and pH; (2) morphometri-
cal variables: water velocity, depth, width, and elevation; (3)
substrate composition: mud, sand, gravel, and cobbles; and
(4) habitat structure: macrophytes, submerged vegetation,
leaf litter, algae, woody debris, overhanging vegetation, and
grass. Density and richness were square root transformed,
and the environmental variables were log10 (x+1) transformed
to enhance normality and homogeneity of variances (Sokal &
Rohlf 1969, Maltchik et al 2010).

In order to identify the spatial patterns of variation in the
Chironomidae assemblage composition, a Detrended Corre-
spondence Analysis (DCA) was performed on the log10 (x+1)-
transformed density data. The significance of differences
between stream reaches was tested using the Multiresponse
Permutation Procedure (MRPP) (Biondini et al 1985, McCune
& Grace 2002). To all MRPP analyses, the value of A is
presented as a measure of the degree of homogeneity be-
tween groups compared to random expectation. When
MRPP showed significant differences in fauna between
stream reaches, the Analysis of Indicator Species (ISA) was
performed to determine which Chironomidae genera con-
tributed significantly as the source of difference. The indica-
tor value (IV) for each genus was calculated using the
method of Dufrene & Legendre (1997). This value is tested
for significance using the Monte Carlo test with 1,000 runs.

The Canonical Correspondence Analysis (CCA) was per-
formed to establish possible multivariate correlations be-
tween Chironomidae composition and the environmental
variables (McCune & Grace 2002). The data matrix was
centered and normalized and the correlations tested by the
Monte Carlo test with 999 runs. The environmental variables
used in the CCA were: water velocity, elevation, mud, sand,
macrophytes, submerged vegetation, leaf litter, and woody
debris. Density data and environmental variables were log10
(x+1) transformed (Sokal & Rohlf 1969, Maltchik et al 2010).
Statistical analyses were performed on SPSS 13.0 (Sheridan &
Lyndall 2001) and PC-ORD 4.27 (McCune & Mefford 1999).

Results

Environmental variables

The Ipanema River showed surface water flow during the
sampling occasions of April and July. Values of pH and

dissolved oxygen indicated neutral to slightly alkaline (pH
range, 7.8 to 8.7) and well-oxygenated water (3.7 to
7.7 mg/L). Conductivity was higher than 600 μS/cm during
the study period (reaching 1,268.9 μS/cm), and water tem-
perature ranged between 23.3 and 30.8°C. Transparency
ranged between 19.0 and 79.5 cm throughout the sampling
occasions. River width was higher during the flooding
phase, whereas the average depth tended to be greater
during the period with absence of water flow, when pool
formation was intensified. Substrate was composed mostly
of sand and mud, with gravel being observed in higher
proportion in the middle and lower study reaches. The
littoral habitat was diverse with woody debris, aquatic
macrophytes, algae, grass, and leaf litter. Overhanging
and submerged vegetation were scarcely present (Table 1).

Chironomidae assemblages

A total of 18 genera of Chironomidae was registered, dis-
tributed in the Chironominae and Tanypodinae subfamilies.
The Chironominae subfamily showed 13 genera and a total
average density (±SD) of 183.6 (±350.6)ind/m². Tanypodi-
nae presented five genera and an overall 22.7 (±16.2) ind/
m². The densest genera were Tanytarsus (116.3±90.76 ind/
m²), Polypedilum (64.2±55.5 ind/m²), and Saetheria (36.9±
50.6 ind/m²) that represented 86.9% of the overall density
of Chironomidae. These genera and Dicrotendipes were the
most commonly observed, being present in 9 out of the 10
sampling occasions (Table 2).

In the upper study reach, Tanytarsus (119.8±147.6 ind/
m²), Polypedilum (84.4±77.8 ind/m²), Saetheria (13.5±
9.7 ind/m²), and Procladius (9.4±14.7 ind/m²) were the
densest genera. In the middle reach, the densest genera
were Tanytarsus (88.2±38.5 ind/m²), Polypedilum (25.7±
17.3 ind/m²), and Aedokritus (18.1±14.6 ind/m²) followed by
Saetheria and Dicrotendipes, both with average densities of
13.2 ind/m² (±15.6 and ±5.2, respectively). In the lower
study reach, Tanytarsus (139.8±29.5 ind/m²), Saetheria
(91.8±68.5 ind/m²), and Polypedilum (75.9±35.2 ind/m²)
were the densest genera followed by Dicrotendipes with
an average density of 8 ind/m² (±7.5) (Table 2). ANOVA
showed no significant difference in richness (ANOVA, F0
0.23; df02, 7; P00.798) and density (ANOVA, F00.79; df0
2, 7; P00.489) between the study reaches. The lower reach
of the study river presented 13 of the 18 observed genera;
the upper reach showed 12 genera, and the middle reach
showed 10 genera (Table 2).

Tanytarsus, Polypedilum, and Saetheria were the dens-
est across the study period, followed by Dicrotendipes in
April (6.6±3.0 ind/m²) and October (11.8±5.2 ind/m²) and
Aedokritus (11.8±18.7 ind/m²) in July. October (14 genera)
and July (13 genera) showed greater richness, followed by
April (11 genera) and January (3 genera). It is important to
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note that the data for the January sampling occasion refer
only to the upper reach, where Tanypus (18.7 ind/m²) and
Coelotanypus (6.2 ind/m²) dominated, since the other rea-
ches dried out.

HMR showed that the variations in richness and density
explained by the environmental variables were not sig-
nificant for the models incorporating the physical and
chemical (Fchange richness00.28; df01, 4; P00.620 and
Fchange density00.92; df01, 4; P00.390, respectively)
and morphological (Fchange richness00.003; df01, 5;
P00.957 and Fchange density00.001; df01, 5; P0
0.985, respectively) variables. On the other hand, HMR
showed that for the substrate composition, the model
incorporating mud and sand explained 61.4% (Fchange0
6.9; df01, 7; P00.034) of the variation in richness and
44.8% (Fchange05.6; df01, 7; P00.049) of the variation
in density. For the habitat structure, the model incor-
porating macrophytes, submerged vegetation, and leaf
litter explained 72.3% (Fchange015.4; df01, 6; P00.008)
of the variation in density, whereas the variation in
richness explained by the structure of the habitat was
not significant (Fchange07.08; df01, 2; P00.117).

Detrended Correspondence Analysis showed segrega-
tion in the composition of Chironomidae genera across
the study reaches (total variance “inertia” of 1.09)
(Fig 2a), and the MRPP showed that this segregation was
significant between all study reaches (upper and middle:
A00.14, P00.02; upper and lower: A00.13, P00.01; middle
and lower: A00.26, P00.02). Grouping by DCA, defined as

the genera with correlation greater than 20% with the
ordination axes, showed that Procladius, Fissimentum, Cla-
dopelma, Coelotanypus, and Tanypus were important in
segregating the upper reach; Asheum, Aedokritus, and
Dicrotendipes segregated the middle reach; and Tanytarsus
and Polypedilum segregated the lower reach (Fig 2b). How-
ever, ISA showed that only Aedokritus (IV080.3, P00.03)
and Saetheria (IV049.3, P00.02) were significant indica-
tors of the middle and lower reaches, respectively.

The first three axes of CCA explained 66.8% of the varia-
tion in Chironomidae composition across river reaches, with
a total variance (“inertia”) of 0.79. Most of the explained
variation (based on the correlation between the environ-
mental variables and the CCA axes) were explained by the
first axis (26.2%), even though axes 2 and 3 have also been
important, explaining a substantial part of the variation in the
data matrix. The correlation between the Chironomidae
composition and the environmental variables was significant
as shown by the Monte Carlo test for the eigenvalues (P0
0.007) and the genera–environment correlations (P00.033)
(Table 3). According to the intragroup correlations between
the environmental variables and the CCA axes (see Table 3
and Fig 3), the most important variables explaining the
Chironomidae composition were the presence of submerged
vegetation, elevation, and leaf litter.

Discussion

Chironomidae is a highly diverse group considered ecolog-
ically important with a key role in the decomposition of
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Fig 2 DCA for the study river reaches in the 2007/2008 hydrological
cycle (a) and the Pearson correlations (r²>0.2) between the recorded
genera and the axes of the ordination (b). The direction and size of
the vectors indicate the direction and strength of the correlation.
Codes indicate river reach (U upper, M middle, and L lower) and
sampling occasion (S).

Table 3 Axes summary for the Canonical Correspondence Analysis of
the Chironomidae fauna and the environmental variables in the
Ipanema River during the 2007/2008 hydrological cycle.

Axis 1 Axis 2 Axis 3

Eigenvalues 0.209 0.193 0.131

Monte Carlo test 0.007

% Variance explained 26.2 24.1 16.5

Pearson correlations 1.000 1.000 1.000

Group correlations (inter-set)

Macrophytes −0.333 0.354 −0.621

Submerged vegetation 0.411 −0.753 0.020

Leaf litter 0.371 0.431 0.707

Woody debris −0.038 0.702 −0.340

Mud 0.015 0.344 −0.607

Sand 0.320 −0.039 0.238

Water velocity 0.177 −0.118 0.116

Elevation −0.381 0.459 −0.692

Genera–environment correlations 1.000 1.000 1.000

Monte Carlo test 0.033
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organic matter in aquatic systems (Trivinho-Strixino &
Strixino 1995, Nessimian & Sanseverino 1998). Despite
that, studies on their patterns of diversity and distribu-
tion in dryland river systems, in particular in the Brazil-
ian semiarid, are recent (Rocha et al 2012) and/or
limited to lentic systems (Abílio et al 2005, Brito-Júnior
et al 2005, Silva-Filho 2004). The present study shows a
high richness of genera (18) and abundance of individu-
als compared to lakes and reservoirs in the Brazilian
semiarid (Abílio et al 2005, Brito-Júnior et al 2005).
Richness in the present study was in accordance with other
studies in Brazilian semiarid streams (Rocha et al 2012).

Among the genera recorded, the subfamily Chironomi-
nae showed greater richness and density. This taxon is
frequently reported as being dominant in tropical and
subtropical regions (Ashe et al 1987). In the tropics, Chiro-
nominae success has been associated with its tolerance to
high temperatures (Serrano et al 1998) and feeding plas-
ticity (Merritt & Cummins 1996). Predaceous taxa have
been reported as showing elevated richness and low den-
sity (Callisto et al 2001). In the present study, the mostly
predaceous subfamily, Tanypodinae, showed reduced rich-
ness when compared to the other taxa registered. Genera
of the subfamily Orthocladiinae were not recorded in the
present study as observed by Silva-Filho (2004) in inter-
mittent shallow lakes in the Brazilian semiarid.

The hydrological regime has been pointed out as one of
the most important factors creating spatially variable envi-
ronmental conditions in dryland rivers (Sheldon & Walker

1998), and such conditions have the potential to spatially
structure aquatic communities, creating segregated
assemblages of species (Marshal et al 2006). In the present
study, ordination showed that the composition of Chirono-
midae larvae was different across river reaches and that,
despite this spatial segregation, the genera Tanytarsus and
Polypedilum dominated. Dominance of specific groups
within segregated assemblages has been previously
reported for Brazilian semiarid aquatic systems (Medeiros
et al 2011) and seems to be the result of species responses
to the hydrological disturbances. In other dry regions,
Tanytarsus and Polypedilum have also been recorded in
high densities, this being associated to their opportunistic
characteristics, such as the capability to colonize different
types of habitat and resistance to variable environmental
conditions (Pinder & Reiss 1983, Epler 2001).

Environmental conditions associated with water temper-
ature, dissolved oxygen, pH, and food availability (Cummins
& Lauff 1969), as well as others associated with habitat
structure and complexity and the nature and composition
of the substrate, have also been reported as determinants of
the composition and distribution of Chironomidae in streams
(Rossaro 1991, Sanseverino & Nessimian 2001). In the present
study, some environmental variables showed a greater range
of variation, such as the water velocity, which was absent in
most of the hydrological cycle studied. River width and
length also showed wide variation. Other variables showed
lower variability and values in the range expected from other
studies in the Brazilian semiarid region (Medeiros et al 2008).
Substrate composition (mostly sand and mud) and the
presence of aquatic macrophytes, leaf litter, and under-
water woody debris dominated in the study reaches
being also relatively variable across sites and through
time. According to Medeiros et al (2008), these elements
contribute to the spatial heterogeneity in aquatic sys-
tems in semiarid Brazil and are affected by factors asso-
ciated to different scales in the catchment basin, such as
hierarchical level and elevation (in a larger regional
scale), and the presence of water flow, width, and depth
(in a local scale). Despite that, richness and density of
Chironomidae did not show significant difference across
study reaches. Nevertheless, the fact that the model
incorporating substrate composition variables, associated
with the significance of macrophytes, submerged vege-
tation, and leaf litter, in explaining density corroborates
the importance of these elements in the structure of
communities in intermittent streams and highlights the
need for further studies on the role of the structure of
the habitat on Chironomidae in these systems.

The substrate composition has been reported as
highly associated with water flow, with sandy bottoms
being easily altered by flow and poorer in organic matter
(Henriques-Oliveira et al 2003). Therefore, a greater
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density of gatherer and predatory Chironomidae is
expected, such as the ones recorded in greater density in
the study river: Tanytarsus, Polypedilum, Saetheria, Aedok-
ritus, Dicrotendipes (gatherers), Procladius, Coelotanypus,
and Larsia (predators). Furthermore, predaceous taxa such
as the genera of the Tanypodinae family prefer muddy
substrate (Fittkau & Roback 1983). The predominance of
sand and mud in the substrate composition in association
with the extreme hydrological conditions can explain the
higher densities of the more opportunistic taxa of gather-
ers and predators.

Among the elements of the structure of the habitat that
had important effect on the Chironomidae fauna, the leaf
litter has been recognized as an important source of food,
acting as a trap for organic detritus and fine particulate
organic matter (Short et al 1980, Medeiros et al 2010) and
enhancing resource availability (food and protection) and
substrate heterogeneity (Henriques-Oliveira et al 2003).
Aquatic macrophytes may also act as filters retaining
organic matter and assimilating nutrients and therefore
stimulating the growth and abundance of gatherer Chiro-
nomidae (Dornfeld & Fonseca-Gessner 2005). Predator
guilds are also favored by the presence of aquatic macro-
phytes, serving as hiding places and facilitating capture of
prey organisms (McLachlan 1969).

CCA revealed that elevation was an important factor
explaining the distribution and composition of Chironomi-
dae. Recent evidence indicates that Brazilian semiarid in-
termittent streams may be organized as a nested hierarchy
(Medeiros et al 2008, 2011), where large-scale process
associated with geomorphology and flow patterns, and
consequently elevation, determines higher levels of orga-
nization of the physical environment, which in turn affect
lower-level biological processes (Poff & Ward 1990). In the
present study, the influence of elevation is represented by
its associated variables such as river morphology and level
of hierarchy, which affect the local variables and the local
pool of species. As opposed to local scale variables, such as
resource availability and habitat structure, elevation
reflects the catchment basin and acts at the macrodistri-
bution of the species in the river system (see Cummins &
Lauff 1969).

This study showed that the fauna of Chironomidae is
spatially segregated across river reaches, even though
some genera occur throughout the river system. Associat-
ed to, and as result of, the hydrological variation, the
spatial heterogeneity throughout the study river has the
potential to structure the wider pool of Chironomidae
genera into assemblages, a consequence of the influence
of the habitat structure and substrate composition on
genera distribution. We suggest that this spatial segrega-
tion is an important strategy to maintain the high diversity
observed in intermittent streams, compared to less

variable environments such as lakes and reservoirs (see
also Rocha et al 2012), enhancing community stability and
persistence through the local hydrological disturbances.
Therefore, this study contributes to the view that intermit-
tent streams are highly complex and heterogeneous sys-
tems, subject to a spatially hierarchical structure, where
benthic communities are segregated into specific groups of
species resulting from specific packages of environmental
conditions created by flow variability. This variability cre-
ates a wider and more segregated range of microhabitats
to be colonized by the benthic organisms and the Chirono-
midae leading to the spatial variability.
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