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Abstract
The ever-increasing attention of process mining (PM) research to the logs of low structured processes and of non-process-
aware systems (e.g., ERP, IoT systems) poses a number of challenges. Indeed, in such cases, the risk of obtaining low-quality
results is rather high, and great effort is needed to carry out a PM project, most of which is usually spent in trying different
ways to select and prepare the input data for PM tasks. Two general AI-based strategies are discussed in this paper, which
can improve and ease the execution of PM tasks in such settings: (a) using explicit domain knowledge and (b) exploiting
auxiliary AI tasks. After introducing some specific data quality issues that complicate the application of PM techniques in the
above-mentioned settings, the paper illustrates these two strategies and the results of a systematic review of relevant literature
on the topic. Finally, the paper presents a taxonomical scheme of the works reviewed and discusses some major trends, open
issues and opportunities in this field of research.

Keywords Process mining · Artificial intelligence · Data quality · Augmented analytics · Informed machine learning ·
Structured literature review

1 Introduction

The young discipline of process mining (PM) has already
produced a wide range of data analytics solutions for turn-
ing a log (i.e., a collection of process execution events)
into novel and interesting process-oriented knowledge and
insight and for offering operational support at run-time [89].
These solutions include both offline log data analytics meth-
ods (addressing process discovery, conformance checking
and enhancement tasks) and operational-support methods
(allowing for performing detection, prediction and recom-
mendation tasks on ongoing process instances, at run-time).

Many success stories have shown these techniques to be
quite effective and efficient in improving a business pro-
cess, when (i) the available log data provide good-quality
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information and (ii) the process behavior is regular enough.
Under these conditions, the full range of PM techniques can
be exploited, possibly combined in a pipeline-like fashion
(according to the “Extended L∗ lifecycle” model [89]): from
the induction and validation of a high-quality control-flow
model to the enrichment of this model with stochastic mod-
eling capabilities [76,78], up to the exploitation of these
predictive capabilities for run-time support.

By contrast, many existing PM techniques have problems
in dealing with less structured processes and with fine-
grained (and possibly imprecise/incomplete) logs, like those
that typically arise in important non-process-aware applica-
tion contexts (e.g., related to legacy transactional systems, as
well as to ERP, CRM, service/ message/ event-based systems
and, more recently, IoT systems [47]) that have been attract-
ing great attention from the PM community—this interest is
justified by the wealth of log data that characterizes these
contexts and by the need/opportunity of turning them into
valuable process-level knowledge.

In fact, most of the efforts spent in the development of
PM projects are usually devoted to iterated data extrac-
tion/preparation steps, typically performed across many
consecutive “prepare-mine-evaluate” sessions, and refined
on the basis of the quality (in terms of interpretability, insight
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and actionability) of the results obtained at the end of each
session.When dealing with heterogenous, incomplete and/or
fine-grained logs, the number of PM iterations and the bur-
den of both data extraction and data preparation steps tend to
explode, since choosing the granularity and scope of the log
data to be passed to PM tools becomes a critical task, which
needs high levels of expertise in terms of both domain knowl-
edge and data/process analysis skills. On the other hand, the
effectiveness of each PM session is also determined by the
ability of the analyst to tune effectively the parameters of the
PM algorithms employed and to post-process their results.

In general, the exploitation of AI methods as a support to
the internal decision making of PM algorithms can improve
the effectiveness, robustness, usability and efficiency of PM
projects in such challenging settings.

Two main families of AI-based strategies have been
exploited to this end in the literature: (A) using domain
knowledge to drive PM tasks and (B) addressing auxiliary
AI tasks jointly with the target PM task. Both strategies can
be regarded as a form of (AI-) augmented analytics [72] and
have been shown to help reduce the efforts spent in each PM
session (in terms of time and skills required to the analysts
in the preparation of log data, the configuration and applica-
tion of PM tools, and the evaluation of PM results), as well
the total number of PM sessions needed to eventually obtain
satisfactory achievements.

Goal, scope, contribution and novelty The main contri-
bution of this work lies in offering a critical study of the
combination of PM and AI techniques according to the
emerging vision of augmented analytics, by pursuing two
main objectives: (i) analyzing what has been done so far in
the literature in this direction and (ii) reflecting on emerging
trends and potentialities that have not yet been explored in
full and on the issues that are still open.

Both kinds of analyses are specifically focused on the
empowering of classical PM tasks (i.e., discovery, confor-
mance checking, enhancement, detection, prediction, recom-
mendation) through the adoption of complementary knowl-
edge representation, learning and inference capabilities, as a
way to better deal with the above-mentioned challenges (i.e.,
the low-level, incomplete and/or heterogenous nature of the
given log data).

The concrete result of our retrospective study is a sys-
tematic (and replicable) literature review and a taxonomical
classification of the relevant works reviewed. In perform-
ing this study, we excluded the works in the literature that
only proposed solutions to log data pre-processing problems
(such as event data extraction, integration, correlation, selec-
tion, transformation, augmentation, enrichment), which aim
at supporting the analyst in preparing a collection of log data
to the application of standard PM algorithms, but with no

kind of direct interaction/integration with the latter. In fact,
a recent survey of approaches (including some that leverage
AI methods) to the extraction and preparation of log data is
already available in the literature [26].

Despite the theoretical and practical importance of the
topic considered in this manuscript, to the best of our knowl-
edge, there is no systematic study in the literature that covers
it. The existing literature review that looks the closest to
our work is indeed the above-mentioned survey of log data
extraction and preparation methods [26], which does not
cover at all the efforts made in the literature for injecting,
in a stronger and more direct way, complementary AI capa-
bilities into core PM tasks.

Organization The remainder of thismanuscript is structured
as follows:

– Preliminaries on PM techniques and PMprojects are pro-
vided in Sect. 2.

– Section 3 illustrates three major categories of log quality
issues (namely, heterogeneity, incompleteness and hid-
den activities) that often complicate the application ofPM
solutions to real contexts and tend to make PM projects
more demanding in terms of required time and human
expertise.

– The two general AI-based strategies A and B mentioned
above (relying on explicit domain knowledge and on
performing synergistically multiple learning/reasoning
tasks, respectively) are illustrated in Sect. 4), framed in
the wider perspective of augmented analytics.

– Section 5 illustrates in detail both the research questions
underlying our literature review and the search protocol
employed in it.

– A critical structured discussion of the result of our liter-
ature review is given in Sects. 6 and 7, relatively to the
adoption of strategies A and B, respectively.

– Two interesting emerging trends (concerning the usage
of ensemble learning and deep learning methods in PM
tasks) are discussed in detail in Sect. 8, which are both
connected to Strategy B and are expected to find prof-
itable applications in the future within the research field
explored here.

– Section 9 summarizes the different classes of works
reviewed with the help of an ad hoc taxonomical scheme,
while providing the reader with a discussion of related
work, and open opportunities and challenges.
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2 Background

2.1 PM in Brief: General Aim and some Historical
Notes

Following awidely accepted definition, process mining (PM)
is a discipline at the intersection between data mining and
machine learning, on one side, and business process mod-
eling (BPM), on the other side [89]. The general goal of
PM can be roughly stated as that of devising data analytics
solutions/methods for extracting knowledge/insights from
process logs, to eventually support the comprehension, mod-
eling, monitoring, evaluation and improvement of business
processes. In a sense, PM techniques exploit the evidence
on the real behavior of a business process stored in log data
to allow for better addressing the ultimate goal, shared with
BPM approaches, of making the handling of a business pro-
cess and of organizational resources more efficient, effective
and aligned to business objectives and requirements (e.g., by
inspiring actions for redesigning or reconfiguring the process
or work-allocation policies).

In the last decade, PM has been a prominent prolific sub-
field of research in the BPM area and has attracted much
attention from the industry. This is witnessed by the high
number of papers concerning PM-related topics that have
been published in top-class journals and conferences, which
has continued growing from year to year [19], as well as
by the wide variety of PM techniques developed in the
academy (often as components of open-source frameworks
like popular ProM [94], currently featuring more than 600
PM plug-ins) and many commercial tools [18]—e.g., Aris
PPM,Celonis Discovery, Disco,Minit,Myivenio, Perceptive
Process Mining, Process Gold, QPR ProcessAnalyzer, Sig-
navio Process Intelligence, UpFlux to name a few. Further
evidence of the momentum gained by PM is given by: (i) the
popularity of the PMManifesto [88] promoted in 2011 by the
IEEE Task Force on Process Mining, (ii) the establishment
in 2019 of a specific conference on the topic (namely, the
International Conference on Process Mining), and (iii) the
many success stories in public and private organizations of
diverse sectors [18]. It isworth noting that the attention of PM
researchers and practitioners has started recently spreading
beyond the traditional application fields of BPM and started
covering diverse relevant sectors, including, e.g., software
engineering, healthcare, e-learning, IoT, and Cybersecurity.

2.2 Event Logs andMain Types of PMTechniques

Event logs Most PM techniques were (and still tend to be)
conceived to work on a well-structured (“process-aware”)
event log, which conceptually consists of multiple (process
execution) traces. Each trace is a list of (temporally ordered)
events that represent the history of a single process instance

(a.k.a. case) mainly in terms of the activities that performed
during the unfolding of the process instance. Each event
may be also associated with additional pieces of informa-
tion, such as a temporal mark (i.e., a timestamp), properties
of the resource involved in the execution of the activity, as
well as other payload data (e.g., parameters/results of the
performed activity, performance/cost measures, etc.).

Three fundamental properties are usually required to a
process log, in order to allow for meaningful and effective
applications of traditional PM techniques [59]:

(R1) each trace is explicitly associated with an identifier
(process ID) of the process that produced it or, alterna-
tively, the log only store traces of one process;

(R2) each event explicitly refers to an instance of the process
(case ID);

(R3) each event refers, or it can be easily mapped, to an
activity (activity label);

(R4) the log as a whole provides a sufficiently correct, com-
plete and precise picture of the possible behaviors of
the process that is being analyzed.

As noticed in [26] (and discussed in more detail later
on) the very task of obtaining an event log that meets such
requirements is quite a complicated task in many real-world
application scenarios and a major obstacle for the adoption
of the PM technology.

Main types of PM tasks (a.k.a. “use cases”) A standard cat-
egorization of PM tasks and techniques differentiates: (i)
offline tasks, to be performed on the “postmortem” traces
of fully executed process instances, and (ii) online tasks, to
be performed on the “pre-mortem,” partial, traces of ongoing
process instances [87].

Three foundational offline PM tasks considered in the
literature are process discovery, conformance checking and
enhancement [89]. Process discovery concerns the induction
of a process model from a given log L . Conformance check-
ing essentially relies on aligning the traces in a given log
L with a model, in order to assess and measure the level
of agreement between them and detect points of divergence.
Enhancement techniques use the data stored in a log L to
improve the quality/informativeness of an existing process
model M , by suitably repairing or enriching M (e.g., with
the addition of decision rules or time/performance annota-
tions).

To provide operational support to the execution of an
ongoing process instance c (based on its associated pre-
mortem trace), three main online PM tasks have been
considered in the literature: (i) the detection of deviances
between c and a given reference model M ; (ii) the prediction
of some properties of c (e.g., the remaining execution time of
c, the outcome of c, the next activity/activities performed for
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c), based on predictive models previously extracted from his-
torical log data; (iii) the recommendation of actions/choices
concerning forthcoming steps of c, by possibly leverag-
ing a predictive model. Aggregate-level prediction tasks
were recently considered in the PM community, concerning
the forecasting of measures/properties for process instances
groups, or for the process as a whole and/or its surrounding
environment [14,71].

2.3 PM Projects: Life Cycle and Inherent Complexity

Before discussing the structure and main characteristics of
PM projects, and the life cycle models proposed for them,
let us introduce some basic notions pertaining to the related
class of Data Mining (DM) projects.

CRISP-DM model for DM projects Many conceptual mod-
els have been proposed in the literature and used in practice
to describe and handle the life-cycle of a DM project. For
the sake of concreteness, let us examine the one used in
theCRISP-DM (CRoss-Industry Standard Process for Data
Mining) methodology [10]. As a matter of fact, the struc-
turing of DM project life cycle into high-level phases that
is adopted in CRISP is quite similar to those of other DM
methodologies [60], if abstracting from naming differences
and slight mismatches in the level of granularity of some
phases.

In general, after a specification of the project goals and
of related business questions/constraints (Business Under-
standing), and a preliminary exploration of the available data
sources (DataUnderstanding), the actual analysis of relevant
data instances starts with a Data Preparation phase. The lat-
ter typically consists of actions (e.g., collect, explore, clean,
select and transform) that are meant to improve the quality
of the selected raw data, in terms of relevance, completeness,
precision and reliability, as well as to put these data into a
form that better suit DM analyses. In the subsequentMining
phase, the analyst is in charge of selecting, configuring/tuning
and running specific DMmodels and algorithms. The quality
of the results obtained in the previous phase is studied in the
Evaluation phase, which usually amounts to interpreting the
models/patterns discovered, computing quality metrics, ana-
lyzing the errors, and estimating amodel/pattern application’
risks.

Until the quality of the discovered knowledge is not fully
satisfying, a new iteration of the entire life cycle is performed.
Usually, many interactive “try-and-evaluate” iterations are
required, where the analyst often moves back and forth mul-
tiple times between phases in a non-sequential manner—e.g.,
the lessons learnt during a mining session may inspire new
ways to prepare the data or even novel (more focused) busi-
ness questions.

In cases where the discovered (validated) DM model fea-
tures predictive/inference capabilities (as it happens, e.g.,
with data classification/forecasting/tagging models), a fur-
ther Deployment phase can take place, where the model is
suitably implemented and integrated into some operational
system, in order to empower the latter with such “intelligent”
data processing capabilities.
The PM2 model for PMprojects In principle, the above high-
level conceptualization of DM projects could be adapted
to PM settings, taking into account the peculiarities of
the data, algorithms (addressing process-aware tasks like
conformance checking, discovery, enhancement, detection,
prediction, etc.) and evaluation metrics (e.g., concerning fit-
ness, precision and generalization criteria for the case of
control-flow models) that characterize these settings.

In fact, such a customization of the DM projects life
cycle to the case of PM projects was proposed in [95] as
part of a methodology, named PM2, which specifically con-
sists of the following project phases: Planning, Extraction,
Data Processing, Mining & Analysis, Evaluation, Process
Improvement & Support. Some of these phases have a single
counterpart in the CRISP-DM model. By contrast, i.e., Pro-
cess Improvement & Support (which may possibly involve
model deployment actions) emphasizes the strong link that
the results of PM analysis are required to have with the ulti-
mate goal of improving and supporting the executions of
business processes. Moreover, the Data Preparation phase
of CRISP-DM is split into two phases in the PM2 model:
Extraction and Data Processing. Indeed, a preliminary pro-
cess log is assumed to be derived from the data sources at
hand in the Extraction phase, whichmainly amounts to locat-
ing, extracting and consolidating relevant event-related data
(possibly stored in multiple information systems [26]), and
putting them into the form of traces satisfying the require-
ments mentioned in Sect. 2.2. This entails suitably choosing
the scope of representation, angle and granularity [89] in
the derivation of such traces, and may require accomplish-
ing tricky event correlation and event abstraction tasks, to
map each extracted event record to a process instance and a
process activity, respectively, whenever these entities are not
referred to in the record itself. Prior to the application of PM
techniques, these data may undergo an ad hoc Data Process-
ing phase, which consists of data transformation operations
like trace/log filtering, abstraction or enrichment. In a sense,
each instantiation of the Data Processing phase is meant
to yield a collection of traces that represents a particular
“process-oriented view” of the original event data, which is
expected by the analyst to allow PM algorithms to discover
interesting knowledge/models.
The L∗ life-cycle model for PM projects A specialized, five-
stage, pipeline-like model for PM projects, named L∗ life-
cycle model, was defined in [89], which mainly hinges on the
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discovery, extension and use of control-flow oriented process
models.

Specifically, the first two stages, named Plan & jus-
tify and Extract, basically correspond to the first two
phases of the PM2 model, respectively. The third stage,
named Create control-flow model and connect event log,
is devoted to obtaining a control-flow model that explains
the input log accurately, by using process discovery and
conformance checking techniques. This control-flow model
is then enriched (through extension methods) with addi-
tional perspectives and/or predictive capabilities [76,78] in
the fourth stage, named Create integrated process model.
The final Operational Support stage consists in performing
operational-support tasks on pre-mortem traces, based on a
prediction-augmented process model.

The L∗ model hence provides more structured guidelines
for the design and implementation of a PM project. How-
ever, it can be applied in full only when the processes under
analysis are lasagna processes, i.e., structured, regular, con-
trollable and repetitive business processes. A popular rule-
of-thumb for characterizing a lasagna process is that “with
limited efforts it is possible to create an agreed-upon process
model that has a fitness of at least 0.8” [89]. In application
settings where the processes exhibit more flexible/chaotic
behaviors, it is even difficult to build a control-flow model
that is both sufficiently accurate and readable. This makes
it prohibitive the application of classical model enhance-
ment and operational-support methods. Things become even
more complicated when the traces extracted from log data
are affected by noise, inconsistencies and other data quality
issues, or they are too heterogenous/fine-grained.

In general, preparing log data is a crucial and difficult task
in PMprojects (indeed, “finding,merging, and cleaning event
data”was identified as an open challenge in the PMmanifesto
[88]), which can impact negatively on the success of PM
initiatives, hence limiting the diffusion of PM techniques in
real-life contexts. These issues are discussed in more detail
in the following section.

3 Challenging Issues in Real-Life PM Projects

The success of a PM project, which typically requires many
long applications of the life cycle phases described above,
heavily depends on the expertise of PM analysts, in terms
of both domain knowledge and process/data analytics skills,
and on their ability (or good luck) in deriving, in a few
prepare-mine-evaluate sessions, a log that allows for extract-
ing valuable PM results (e.g., a meaningful/ interesting and
conforming enough control-flow model). In particular, most
of the efforts spent in a PM project are often devoted to data
extraction and data preparation steps—this actually reflects
a more general trend of data analytics projects, where such

phases consume up to 80% and 50% of the total time and
cost [99], respectively. Indeed, as the quality and relevance
of the analyzed event log strongly impact on the quality (sig-
nificance, interpretability, insight/actionability) of the results
that can be obtained with PM tools, the construction of such
a log is usually an iterative and interactive process in itself,
which typically needs multiple data extraction, preparation
and mining steps. In fact, data extraction/preparation steps
are often refined several times, based on the quality of the
results obtained by iteratively applying PM algorithms to
different views (differing in scope, angle or granularity) of
the same set of original log events.

Two main sources of complexity for PM projects can
severely threaten the achievement of satisfactory results: (i)
high-levels of variability characterizing the behavior of the
process under analysis; (ii) data quality issues affecting the
log data available for the analysis.

As to the latter point, different kinds of data quality issues
may affect the process logs [5,81,88], which should be han-
dled carefully in PM projects in order to avoid the a “garbage
in-garbage out” effect. For example, some major quality
dimensions for log data identified in the PM manifesto [88]
are (i) trustworthiness (i.e., an event is registered only if it
actually happened), (ii) completeness (i.e., no events relevant
for a particular scope are lost), (iii) semantics (i.e., any event
should be interpretable in terms of process concepts). Based
on these dimensions, five levels of maturity for the event
logs were defined in [88]. The lowest level of maturity (*) is
assigned to logs containing events (e.g., recorded manually)
featuring many wrong or incomplete entries, whereas the
highest level (*****) is assigned instead to logs (typically
coming from process-aware information systems) that are
both complete and accurate. In fact, the quality of most real-
life logs ranges in the middle of these two extremes [5,82].

The inherent complexity of PM projects is further exac-
erbated when dealing with the logs of non-process-aware
applications (such as CRM and ERP systems, or legacy
transactional information systems), which pose problems
concerning both the quality of the data and the variability of
the processes that generated them. An extreme, but increas-
ingly frequent and important application scenario for PM
projects regards the analysis of log data that are not clearly
associated with well-defined processes/activities/cases, so
that different alternative process-oriented views and models
could be extracted from them for the sake of PM-based anal-
yses (consider, e.g., the emerging application of employing
PM techniques for analyzing patient histories in healthcare
or logs of IoT/event-based systems).

When dealing with event data gathered in the above
scenarios, even extracting an informative log (meeting the
requirements R1–R4 of Sect. 2) entails a delicate process-
oriented interpretation task and suitable data selection and
transformation steps.
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The rest of this section provides more details on three
main issues that tend to cause a gap between the goals and
expectancies of PM project analysts and stakeholders, thus
complicating the project unfolding and threatening its suc-
cess:

(I1) the log contains heterogenous traces, as a consequence
of the fact that it was generated by multiple processes
or by a single but unstructured and flexible process
(Sect. 3.1);

(I2) the log consists of low-level events, which fail to repre-
sent process executions at an abstraction level that suits
the PM tasks to be performed (Sect. 3.2);

(I3) the log is incomplete, in that it does not contain sufficient
information (as concerns the PM tasks that are to per-
formed) on the behaviors that the process under analysis
has generated and can generate in general (Sect. 3.3).

The last two points above correspond to two well-known
types of data quality issues, which affect the semantics and
completeness quality dimensions of [88], respectively.

We pinpoint that log data may also suffer from other kinds
of issues that have not been listed above (e.g., the presence
of noisy or incorrect information and other problems under-
mining the trustworthiness of the data as well). Moreover,
while we are assuming here that the log data under analysis
already come in the form of (possibly low-level or incom-
plete) traces, in real-life scenarios the event records extracted
from transactional data sources may lack information on
which process instance generated them; therefore, some suit-
able “event correlation” tasks need to be performed, in order
to recognize/define groups of event records that pertain to
different process instances and turn each group into a dis-
tinct log trace. However, we believe that these additional log
quality problems (different from the core issues I1, I2 and
I3 above) are beyond the scope of this work, and we refer
the reader to [26] for a recent comprehensive survey on these
problems and existing solutions in the literature.

Note that all the above described data quality issues tend
to occur very frequently when trying to combine Business
Process Management (BPM) and Internet of Things (IoT)
solutions, as was already noticed in [47], which constitutes
a manifesto for such a novel topical area of research. A
noticeable work in this area that looks closely related to
issues I1-I3 is [53], which addresses the problem of extract-
ing good-quality process models from sensor logs, generated
by humans moving in smart spaces (i.e., IoT-enabled envi-
ronments equipped with presence sensors). Three challenges
are, indeed, acknowledged in [53]: (i) the high variabil-
ity of human behaviors, which makes the log data not
structured enough to be effectively described through a high-
quality (and readable) process model; (ii) the abstraction gap
between fine-granular sensor data and the human activities

that should be analyzed; (iii) the need to partition the log into
traces (or, in the specific case of modeling human habits, to
recognize what really is a habit)—a simple common way to
perform such a partitioning consists in applying a fixed time
window (e.g., of a day), and regarding each resulting segment
as a distinguished trace. Clearly enough, the former two chal-
lenges are closely linked to the above-defined general issues
I1 and I2, respectively, while the last one might be related to
event correlation issues (cf. [26]).

3.1 Issue I1: Heterogenous Logs

PM techniques have been shown to be very effective in set-
tings where the given log data results from the execution of
a single, well-structured process featuring a regular behav-
ior. Indeed, in this case, it is possible to discover a good
process model easily enough, and to apply enrichment and
operational-support methods profitably (hence allowing for
a complete application of the L∗ life-cycle model described
in Sect. 2.3).

However, there aremany real-life applications where such
an ideal situation does not hold, and the log to be analyzed
describes rather heterogenous process instances. This can
descend from two causes: (i) the log was generated by dif-
ferent processes, but this fact is not reflected by the presence
of an explicit process identifier in the traces (allowing for
separating them into different sub-logs); (ii) the log comes
from just one process, but this process is handled in a flex-
ible/unstructured manner, and its process instances follow
rather diverse patterns of execution.

An illustrative example for the former situation is pre-
sented below.

Example 1 (Running example) Consider the case (inspired to
a real-life application studied in [31]) of a phone company,
where twobusiness processes are carried out, one (W1) for the
activation of services and the other (W2) for handling tickets,
which both consist in performing a subset of the following
activities: Receive a request (R), Get more information from
the client (G), Retrieve client’s data (I ), Send an alert to
managers (A), Define a service package (P), Dispatch a
contract proposal (D), Fix the issue (F), Notify the request
outcome (N ). The actual link between these activities and the
processes W1 and W2 is shown in Fig. 1 via process activ-
ity edges—please disregard, for the moment, the event types
reported in the bottom of the figure, the meaning of which
is clarified in the next subsection. Notice that many activi-
ties are shared by the two processes. Assume moreover that
the processes are executed in a low structured way by using
a non-workflow-based IT system, which does not maintain
a process-aware log, but only a collection of traces without
any identifier of the process (i.e., either W1 or W2, in this
example) that triggered them. ��
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Clearly, a situation like that described in the above exam-
ple does not occur frequently in traditional BPM settings, but
it may not be so rare when analyzing the logs of non-process-
aware systems. Anyway, the difficulties that descends from
the presence of heterogeneous traces in the input log are
similar, from conceptual and technical viewpoints, to those
arising in contexts where the traces only regard a single
process, which, however, features different (often context-
dependent) execution scenarios (a.k.a. process variants, or
use cases). As an example of the latter situation, consider,
e.g., an e-commerce systemwhere quite different procedures
are used to handle the orders of gold customers, on the one
hand, and those of the other customers, on the other.

When applying traditional process discovery methods to
a log mixing different execution scenarios, there is a high
risk that a useless “spaghetti-like” process model is obtained,
featuring a great variety of execution paths across the process
activities. Beside being difficult to read, such a model is very
likely to be imprecise, as a consequence of the ambition of
these methods to cover the behaviors of all/most of the traces
in the log and of the limited expressivity of the model (owing
to typical language biases). In other words, the capability
of such a model to explain very heterogeneous behaviors
usually comes at the cost of also modeling many extraneous
execution patterns. In fact, an effective solution for better
modeling heterogenous traces is to take care of the existence
of different processes/variants, and to try to recognize and
model each of them separately [42], as discussed later on.

3.2 Issue I2: Low-Level Logs

Often, the logs of non-process-aware systems do not refer
explicitly to meaningful process activities. Such a circum-
stance occurs when the tracing/enactment system records
“low-level” operations, instead of the corresponding “high-
level” activities that the users (analysts or process stakehold-
ers) are used to reasoning about. This causes a mismatch
between the alphabet of symbols describing the actions in
the log and the alphabet of these high-level activities.

Turning such a low-level log into traces referring to
high-level process activities is a hard and time/expertise con-
suming task when the possible event-activity mappings are
not one-to-one, at the levels of: (i) types (e.g., a low-level
operation can be used as a shared functionality to perform
different activities) and/or (ii) instances (e.g., there are com-
plex/composite activities that can trigger multiple log events,
as smaller “pieces ofwork”,when executed).Notably, the lat-
ter case leads to a gap of representation granularity between
the log and the users’ vision, in addition to having mismatch-
ing events and activities alphabets.

A toy example of such a situation is shown in Fig. 1, and
described in the example below.

Fig. 1 Example of all possible mappings between activities and events
in a low-level log (taken from [31])

Example 2 (... contd) Assume that all activities of the two
processes in Example 1 are performed through the execution
of generic operations such email exchanges, phone calls, db
accesses, and that the log traces produced by the IT system
just represent the history of a process instance in terms of
such operations, rather than in terms of high-level activities.
Figure 1 reports the different low-level event types that can
occur in these traces, denoted with Greek letters, as well as
their mapping to the (high-level) process activities. There, a
link between an activity and an event means that the activ-
ity may generate an instance of that event when executed
(e.g., an instance of activity N can produce an instance of
event δ or ξ ). Notably, the event-activity mapping is many
to many: for example, activity G can produce an instance
of either event δ or γ , while an instance of event δ can be
generated by the execution of either activity G or N . Thus,
any execution of a process activity generates a (potentially
different) instance of one of the events associated with the
activity itself. For example, a process instance Φ featuring
the activity sequence R I G P N might generate one of two
sequences of events: α β γ β ξ or α β δ β δ. Finally, in
order to extend this scenario with an example of granularity
representation gap, let us now assume that any execution of
activity N may trigger both events δ and ξ , in addition to
generating just one of them. Clearly, under this hypothesis,
two further event sequences may be generated from Φ, in
addition to the two above, namely: α β γ β ξ δ and α β δ β

δ ξ . ��
When directly applied to such logs, classic PM tools

typically yield results of little use, such as incomprehensi-
ble/trivial process maps featuring no recognizable activities.
Worst, some PM tasks like conformance checking cannot be
performed at all.

The urgent need to extend PM approaches with the
capability to deal with low-level logs is proven by many
recent research proposals concerning the definition of (semi-
)automated log abstraction methods [2,4,31,36,59], in two
different settings: (1) no predefined activities are known, and
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the only way to lift the representation of the events is to use
unsupervised clustering/filtering methods [4,36]; (2) there is
a conceptualization of process activities, in the stakehold-
ers’ minds or process documentation, which provide a sort
of “supervised” event log abstraction [2,31,59,83].

3.3 Issue I3: Incomplete Logs

According to [98], an important context-oriented quality
dimension for data is completeness, which generally pertains
the capability of the data to have sufficient breadth and scope
for the analysis task at hand. Hereinafter, a log L that does
not contain sufficient information for carrying out some cho-
sen PM task T will be said an incomplete log (relatively to
T ).

A direct application of this definition can also lead to clas-
sifying low-level logs as incomplete, seeing that the events
in such logs mainly lack a reference to high-level process
activities. On the other hand, heterogenous logs, mixing
traces of different processes/variants, could be effectively
handled if those traces were associated with the respective
process/variant identifiers (which are instead missing), given
that the analyst could select more homogeneous subsets of
traces by way of such identifiers; thus, in principle, also het-
erogenous logs are related to some form of incompleteness.
Finally, it is not so rare that a given log only gathers traces that
were generated in special operating conditions (e.g., under
particular resource allocation regimes, or for specific cat-
egories of cases), but this is not reflected explicitly in the
form of context-oriented log/trace attributes.

Abstracting from the kinds of incompleteness mentioned
here above (which have been partly covered by previous sub-
sections), we next focus on two other challenging situations
that make a log incomplete: (a) the log fails to cover the
execution flows of a process (in the case of control-flow
discovery tasks), and (b) the log data lacks ground-truth
labels necessary for performing a supervised PM task (e.g.,
trace/event classification).

Control-flow incompleteness This kind of incompleteness
occurs when a given log L: (i) lacks relevant types of the
lifecycle transitions that can characterize the execution of
process activities (e.g., it only contains completion events
only, so that the activities look as if they were instantaneous),
and/or (ii) represents activity sequences that do not satisfy the
typical “trace completeness” assumptions [89] that underlie
control-flow discovery algorithms.

As to the latter point, roughly speaking, approaches to
control-flow discovery typically assume that, whenever an
activity b depends on an activity a in a process, the log
used to analyze the process should contain traces where a
is (immediately) followed by b, as evidence for this depen-
dence; by contrast, for any two concurrent activities x and

y, there must be both traces where x (immediately) follows
y and traces where the opposite happens. In practice, how-
ever, two concurrent activities might always appear in the
same relative order in a log storing only completion events,
owing to some kind of temporal bias—e.g., because one of
the activities always finishes after the other, owing to the dif-
ferent durations of the two activities themselves or of some
of their predecessor ones [42]).

On the other hand, log completeness might not hold just
because the process under analysis features a high level of
non-determinism, and an unreasonably large collection of
traces would be required to cover the wide range of execution
patterns that it could generate.

Finally, even when there are complete log data exist for a
process, it can happen that the analysts only have restricted
access to them, e.g., owing to privacy reasons, or to the
difficulty of extracting and properly preparing these data
(especially when the latter are stored in multiple heteroge-
neous legacy systems).

Lack of labeled examples Another kind of incomplete-
ness descends from the scarcity of labeled data, which is
likely to arise in certain outcome-oriented classification tasks
(e.g., security breach detection [12]), where the classifica-
tion model must be induced from example traces with the
help of supervised learning methods, and the labels of these
traces need to be assigned (or validated)manually by experts.
Clearly, in such a setting, the number of labeled examples
available for training could be insufficient to train an accu-
rate classifier, especially when using data-hungry (e.g., deep
learning) models, so that there is a high risk of overfitting the
training set [34].

A different form of label scarcity can affect those log
abstraction methods (e.g., [83]) that rely on supervised
sequence-tagging schemes, where each example trace is
equippedwith per-event labels (representing the ground-truth
activities that generated the event itself), and the goal con-
sists in learning the hidden mapping from event sequences
to activity sequences. Indeed, such per-event labels are dif-
ficult to obtain in practice, owing to the strong (and tedious)
involvement of human operators/ experts that is required to
assign them.

4 Augmented Analytics and Two Strategies
for Pushingmore AI into PM Sessions

As discussed above, PM projects are highly interactive and
iterative and very demanding in terms of time and exper-
tise required, especially when dealing with hard application
settings featuring low-quality logs and/or complex/flexible
processes. In particular, when dealing with low-level and/or
heterogeneous logs, two log-preparation operations tend to
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be performedmultiple times by the analysts, in the attempt to
derive an optimal (w.r.t. the PM analysis that is being carried
out) log view: (i) data selection: a subset of events/traces
is selected according to either a frequency-based criterion
(e.g., retaining only frequent enough activities or paths) or
to an application-dependent domain-oriented strategy (e.g.,
focusing on cases with specific values of their associated data
properties); (ii) data abstraction: a (high-level) activity label
is assigned to each low-level event by resorting to a prede-
fined mapping/taxonomy.

Many existing commercial tools (e.g., Disco, Celonis
Disc., Minit to name a few) provide the analyst with efficient
functionalities that allow her/him perform many tentative
“prepare-mine-evaluate” sessions, in the ultimate attempt of
understanding both the log and the process that generated
it. Most of these systems combine intuitive functionali-
ties for visually and interactively select event/case, with
rough process discovery algorithms that can quickly return
an approximate (but simple) process map, as well as with
other data visualization and reporting features borrowed from
traditional Business Intelligence (BI) frameworks. Notably,
the opportunity to provide the analyst with interactive pro-
cess discovery algorithms has also been investigated in the
research community, in order to support repeated process
discovery sessions, while possibly trading lower models pre-
cisionwith higher speed andmodels readability. A noticeable
example of such an algorithm is that underlying the popular
ProM plug-in Inductive Visual Miner [51], which allows the
analyst to produce expressive Petri net maps interactively,
while letting her/him change the level of abstraction for the
activities and execution paths represented.

A step ahead on the way of interactive PM analyses was
made by the approach in [3] based on the concept of “Process
Cubes,”which tries to support the analyst efficiently and intu-
itively in both data selection and abstraction transformations
(through customized versions of the traditional SLICE/DICE
and ROLL-UP operators of OLAP, respectively). However,
developing such a framework requires skilled experts to carry
out a preliminary careful design of the (case/event) attribute
aggregations that could be useful for the analysis.

On the other hand, although all the above inter-activity-
bound solutions make PM sessions faster and easier, they
still need a skilled user, who can exploit the data prepara-
tion/mining facilities available in a proper and smart way,
as to eventually distillate informative log views and inter-
esting PM patterns/models (possibly navigating through a
predefined lattice of log views, in the case of OLAP-like
frameworks).

As a more advanced alternative, specifically targeted by
our paper, one can think of extending PMmethodswith smart
AI capabilities that help themwork better in amore effective,
efficient and easier-to-use way, even in hard application sce-

narios. This is exactly the vision prospected in Augmented
Analytics [72], which is the subject of the next subsection.

4.1 Augmented Analytics

The term augmented analytics (i.e., AI-powered analytics)
refers to the attempt to instill smart assistance for the ana-
lyst and a higher level of automation into the entire life cycle
of data analytics/mining processes by leveraging AI (and, in
particular, of Machine Learning) methods and technologies.
Among the various kinds of improvements that augmented
analytics efforts aims at providing, let us mention the follow-
ing major ones:

– allowing different kinds of stakeholders to easily collab-
orate with each other and with smart analytics tools and
models, throughout the entire data analytics process;

– empowering the core Data Mining phase with additional
AI capabilities allowing for enhancing the internal deci-
sionmakingofMLalgorithmsor for automatically tuning
ML algorithms/ models (AutoML), or with “human-in-
the-loop” ML schemes allowing for better controlling
the quality of ML results;

– giving assistance/guidance in Data Extraction and Data
Preparation phases (e.g., through smart services for
data exploration/visualization and data quality assess-
ment, or the suggestion of data transformation/ blend-
ing/enrichment/augmentation operations);

– providing assistance/guidance in the Evaluation phase
(e.g., by letting the analyst easily navigate across the
errors of a predictive model, and perform simulations
with the model);

– extending the cognitive capabilities of decision-makers.

As noticed in [72], this perspective looks particularly valu-
able in complex scenarios involving the analysis of big and/or
low-quality data, as well as a promising solution to the short-
age of (skilled) data scientists and the need of enabling a
more direct interaction (possibly in the guise of “citizen data
scientists” [72]) of domain experts and business users with
the analyst, the analytics tools and the analysis results.

In accordance with the perspective of augmented ana-
lytics, the following subsections specifically focus on two
general strategies for empowering data analytics solutions
with additional AI capabilities, which can be exploited in
the context of PM projects to make the application of PM
techniques smarter:

A) using declarative background knowledge, provided by
domain experts, and expressing requirements, prefer-
ences, or constraints that can guide PM algorithms and
PM analysts toward more effective and quicker analyses;
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B) performing a main PM task synergistically with other
auxiliary data analytics tasks (e.g., the discovery of struc-
tures or process-related concepts in the given log data)
that can somehow help the former task obtain better
and/or more interpretable results in fewer prepare-mine-
evaluate sessions.

The following subsections offer a brief general description
of these strategies.

4.2 Strategy A: Using Background Knowledge (BK)

Extending PM approaches with the capability to exploit
domain knowledge (expressing, e.g., known physical/
environmental constraints, user preferences, analyst’s intu-
itions, requirements, norms) can be a valuable way to
complement the information conveyed by the data available
in the log, especially when this information is incomplete
or of low quality. Indeed, such a source of high-level
information may both help improve the quality of the mod-
els/patterns/knowledge derived from the log as well as
better align their outcomes to the expectancies of domain
experts/business users. In particular, when this background
knowledge takes the form of hard/mandatory constraints, the
mining of patterns/models can be sped up, thanks to fact that
uninteresting portions of the search space can be pruned.

As a matter of fact, the attempt at having ML approaches
and inference methods capable of using background knowl-
edge has a long history in AI. In particular, logics-based
representation and reasoning is natively embedded in Induc-
tive Logic Programming (ILP) and Statistical Relational
Learning (SRL) frameworks [41,49] (consider, e.g., the use
of First-Order-Logics clauses in Markov Logic Networks),
whilemany constraint-basedmethods have been successfully
applied to several Data Mining tasks, such as pattern mining
and clustering [73].

A recent effort to frame different ways of incorporating
background knowledge coherently into ML-based data ana-
lytics processes is presented in [97], under the umbrella term
of Informed Machine Learning (IML). Basically, IML refers
to any kind of ML task where two different (but equally
important) sources of information are available: data and
Background Knowledge (BK ). The latter can be expressed in
different forms, such as logical rules, constraints, mathemat-
ical equations/inequalities/invariants, probability distribu-
tions, similaritymeasures, knowledge graphs and ontologies,
to cite a few.

As sketched in Fig. 2, in an IML process, background
knowledge can be used in three different phases:

– in the preparation of the data (BK4Data), which can
so benefit from semantics-driven selection, enrichment,
augmentation, and feature engineering;

Fig. 2 Informed Machine Learning (IML) flow (based on an image of
[97]). The dashed line between “Knowledge” and “Data” corresponds
to the IML modality (namely, BK4Data) that has not been considered
in our literature review

– in the core learning/mining phase (BK4Learning),
where the knowledge can be used to act either on the
hypothesis space (e.g., by choosing a specific struc-
ture/architecture or specific hyper-parameters for deter-
ministic ML models, or by assuming independency
between certain variables in the case of probabilistic
ML models), or on the training algorithm itself (e.g., by
choosing specific loss functions in the search for model
parameters, or specific priors in the case of probabilistic
models);

– in the evaluation/analysis or the usage (e.g., for infer-
ence/prediction tasks) of the discovered patterns/models
(BK4Patterns).

It is worth noting that the second, more advanced and
intriguing form of IML above (i.e., BK4Learning) has
been receiving renewed attention of late—and, in fact, it
was the main target of the preliminary literature study con-
ducted in [97]. In particular, several proposals for extending
sub-symbolic ML methods with prior knowledge appeared
recently [41], most of which rely on stating the learning task
as an optimization problemwhere “fuzzy” constraints encod-
ing both example-based supervision and prior knowledge
must be satisfied, and/or on enforcing the prior constraints at
testing time.

Strategy A in a PM scenario Different kinds of domain
knowledge may be available in real-life PM projects, which
can be used as valuable background knowledge for guiding
PM tasks, especially when the quality of the log data at hand
is not satisfactory. Two major forms of such knowledge are,
for example:

– process-oriented ontologies/taxonomies [15] providing
an articulated representation of business processes and/or
of organizational resources;

– existing workflowmodels or declarative behavioral mod-
els (represented, e.g., via simple ordering constraints over
process activities [31,42] or expressive temporal-logics
models [96]), possibly induced from historical data with
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one of the many process discovery techniques available
in the literature [1], and suitably validated by experts.

Let us refer to such a (more or less structured) source of
background information as knowledge base B, and regard
it as a complementary input for PM tasks, besides a log L ,
and possibly a reference model M (in the case of confor-
mance/enhancement tasks).

As mentioned in Sect. 1, we decided not to consider
the case where B is used for data preparation (BK4Data).
The reason under this choice is that our work is interested
in “smart” AI-based solutions addressing some common
PM task (such as process discovery, conformance checking,
predictive process monitoring, etc.) with the help of IML
methods that exhibit a more direct and tight form of integra-
tion between the background knowledge and the target PM
task itself.

More specifically, we will focus on two ways of using
the background knowledge in B: (i) using B in discov-
ery tasks entailing some kind of inductive learning process
(BK4Learning), and (ii) using B along with (automati-
cally discovered or manually defined) models or patterns
when performing inference, classification or verification
tasks (BK4Patterns).

4.3 Strategy B: PerformingMultiple AI Tasks

An alternative/complementary way to tame a difficult data
analytics task T , consists in devising methods that can auto-
matically extract and exploit “auxiliary” domain knowledge
thatmay improve the expected quality of T ’s results (in terms
of readability and/or meaningfulness/validity). Such hidden
knowledge can play indeed as a sort of surrogate of expert-
given domain knowledge, which may be particularly useful
performing T on complex, low-level, or incomplete data.

In general data analytics settings, such knowledge could
be captured (in a more or less interpretable form) by two
different kinds of auxiliary (sub-)models: (a) fully fledged
MLmodels, concerning correlated auxiliary tasks and trained
in a joint and synergistic way with the primary task T (as
in Multi-Task Learning and Learning-with-Auxiliary-Tasks
works [8]); (b) “smart” data pre-processing/preparation or
post-processing components having some level of integration
with the core learning/inference/verification technique.

Such an approach grounds on the expectation that the
knowledge or inductive bias coming from correlated tasks
provides additional information and intelligence skills to an
agent that must perform a learning/decision task on the basis
of insufficient/unreliable data and can hence lead to bet-
ter results in terms of generalization, stability and accuracy.
Interestingly, the hidden knowledge extracted automatically
via these auxiliary tasks can turn useful in performing T ,
even when it is left implicit (within the internal represen-

tation of an ML model), and it is inherently uncertain and
approximate.

Strategy B in a PM scenario In principle, different kinds of
auxiliary tasks could be beneficial to pursue when approach-
ing a “main/target” PM task that is difficult to solve effec-
tively, e.g., owing to the fact that the log data at hand are
insufficient, too finely granular or unreliable.

For example, performing trace clustering [16] and event
abstraction [2,31,83] tasks is widely reckoned as an effective
means for obtaining high-quality collections of log traces.
Indeed, trace clustering can help identify homogeneous and
regular groups of traces in a heterogeneous log, which are
easier to model and analyze (in that they represent sorts
of hidden process variants or usage scenarios); indeed, the
application of classic PM discovery tools to such clusters,
rather than to the log as a whole, was often shown empir-
ically to yield both better process models [16] (in terms of
conformance, generalization and readability) andmore accu-
rate forecasts in predictive monitoring settings [93]. Event
abstraction tasks allow instead for bringing low-level traces
to a higher level of abstraction that is more suitable for tradi-
tional PM analyses (e.g., by mapping the given log events to
instances of well-recognized process activities that were not
explicitly associated with the events, but are assumed/known
to have generated them). A further kind of task that can
turn useful in process discovery consists in automatically
detecting and purging infrequent behaviors and/or anoma-
lous traces (usually referred to in the literature as noise and
outliers, respectively) [11].

However, these three kinds of auxiliary tasks have been
prevalently employed so far in separate data pre-processing
steps, in order to transform a given low-quality collec-
tion of process execution data into an event log that better
suits the application of standard PM tools. As mentioned
in Sect. 1, this way of exploiting clustering, event abstrac-
tion and noise/outlier filtering methods, as a data preparation
tool, is out of the scope of our work, which ultimately aims
at studying more synergistic forms of hybridizing standard
PM task with AI-based auxiliary tasks.

5 Literature Search Protocol

We now illustrate the procedure adopted in our literature
study, identifying relevant works linked to the attempt to
empower PM methods with complementary AI capabilities,
according to the strategies A and B described before.

In order to enable a scientific, replicable and rigorous
analysis, we defined a structured literature search proto-
col, inspired some major principles of Systematic Litera-
ture Reviews (SLR) [48]. Specifically, we first defined the
research questions driving the search, and then performed
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some search queries on a specific data source. Next, we
applied a number of inclusion and exclusion criteria for
selecting the a more focused set of truly relevant works, to be
eventually examined in detail. The different components of
our search protocol are described in the following, in separate
subsections.

5.1 Research Questions

The general objective of our review study is investigating on
whether and how standard PM tasks (namely, process discov-
ery, conformance checking, model enhancement, detection,
prediction, recommendation) have benefitted so far from the
two AI-based strategies introduced in Sect. 4.1, in order to
gain effectiveness and robustness in presence of the challeng-
ing issues I1-I3 defined in Sect. 3. In line with this goal, we
formulated the following research questions:

(RQ1) What approaches to challenging PM problems are
there in the literature that leverageStrategy A or Strat-
egy B?

(RQ2) What forms of background knowledge (e.g., tax-
onomies, declarative constraints etc.) have been
employed, and according to which kind of IML
modality, in the PM approaches using Strategy A?

(RQ3) Which PM tasks have benefitted from using back-
ground knowledge, according to Strategy A?

(RQ4) What kinds of auxiliary tasks have been considered
in the PM approaches adopting Strategy B?

(RQ5) Which PM tasks have benefitted from jointly pursu-
ing auxiliary tasks, according to Strategy B?

Clearly, RQ1 is the fundamental research question driv-
ing our literature search, seeing as it is meant to identify
a set of candidate examples for the two classes of AI-based
PM approaches corresponding to Strategies A and B, respec-
tively. The remaining questions are meant to structure these
two broad classes by using some informative classification
dimensions, namely: the target PM tasks (i.e., discovery, pre-
diction, classification, etc.) addressed in works retrieved for
either class (RQ3 and RQ5, respectively); the kind of back-
ground knowledge and IML modality (i.e., BK4Learning
or BK4Patterns, cf. Sect. 4.2) employed in the approaches
adhering to Strategy A (RQ2); the kind of auxiliary tasks
(e.g., clustering, abstraction) exploited in the approaches of
Strategy B (RQ4). All of these classification dimensions are
meant to give us a basis for describing the retrieved literature
in a structured way (in Sects. 6 and 7), and for eventually
providing the reader with a taxonomical scheme (in Sect. 9).

5.2 Search Procedure

The search process was performed on the Scopus1 publi-
cation database, since, in our opinion, it ensures a better
trade-off between the quantity and quality of indexed works,
compared toGoogle Scholar (GS) andWebof Science (WoS).
Indeed, as noticed in [62], while on the one hand, GS returns
significantly more citations than both WoS and Scopus,
about half of GS unique citations are not journal papers and
include very many theses/dissertations, white papers, infor-
mal reports, and non-peer-reviewed papers of questionable
value and impact from a scientific viewpoint. On the other
hand, WoS is known to be far less inclusive than both GS
and Scopus, which may lead to missing (too many) relevant
publications.

In order to identify an initial, wide enough, range of poten-
tially relevant works, we defined two distinct queries, one for
Strategy A and the other for Strategy B, which are shown in
Table 1, along with their associated strategy and the num-
ber of results returned. For the sake of presentation, we will
refer hereinafter to each query by using the number associ-
ated with it in Table 1, i.e., either Query#1 or Query#2.
Similarly, we will sometime refer to the answer set returned
by the application of these two queries by using the notation
Group#1 and Group#2, respectively.

Basically, the two queries were devised to have the same
structure: three subqueries joined through AND operators,
and consisting each of multiple alternative keywords (i.e., of
a disjunction of multiple search terms). The former two sub-
queries define the specific research field (i.e., standard PM
tasks) and the challenging scenario considered in our work
(featuring incomplete, heterogeneous and/or low-level log
data), respectively. As these two subqueries specify our ref-
erence “PM setting”, they are instantiated identically in both
Query#1 and Query#2. The remaining parts of Query#1
and Query#2 differ instead from one another, since they
aim at defining the specific boundaries of Strategies A and
B, respectively. 2

Precisely, the first shared subquery of Query#1 and
Query#2 (i.e., the first conjunct in the context-oriented
preamble of both queries) contains the keywords “pro-
cess discovery”, “conformance checking”, “predictive pro-
cess monitoring”, “predictive process model”, “compliance
checking” and “run-time prediction”, which all correspond
to well established PM tasks, as well as a few syntacti-
cal/semantical variants of the former that can help widen
the set of relevant results retrieved—this is the case, e.g.,

1 www.scopus.com
2 The choice of performing separate searches for the two AI exploita-
tion strategies mainly serves the objective of easing the interpretation,
analysis and presentation of the two classes of works considered in our
review.
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Table 1 The two search queries employed, for the two AI-based strategies, in the literature review and the respective number of works returned by
Scopus

# Query Strategy #Works

1 (“process discovery” OR “conformance checking” OR “predictive process monitoring” OR A 48

“predictive process models” OR “predictive process model” OR “compliance checking” OR

“run-time prediction” OR “classifying business log traces” OR “classifying log traces”)

AND (“uncertainty” OR “low-level” OR “complex processes” OR “event abstraction” OR

“incomplete” OR “high-level” OR “uncertain” OR “spaghetti-like” OR “noise” OR

“infrequent” OR “flexible environments” OR “flexible processes”)

AND (“background knowledge” OR “a-priori knowledge” OR “prior knowledge” OR

“domain knowledge” OR “predefined constraints” OR “possible mappings” OR

“potential mappings” OR “activity mapping”)

2 (“process discovery” OR “conformance checking” OR “predictive process monitoring” OR B 82

“predictive process models” OR “predictive process model” OR “compliance checking”

OR “run-time prediction” OR “classifying business log traces” OR “classifying log traces”)

AND (“uncertainty” OR “low-level” OR “complex processes” OR “event abstraction” OR

“incomplete” OR “high-level” OR “uncertain” OR “spaghetti-like” OR “noise” OR

“infrequent” OR “flexible environments” OR “flexible processes”)

AND (“abstraction” OR “outliers” OR “deviance-aware” OR

“variants” OR “clustering” OR “groups”)

of the term “classify(ing) (business) log traces”, capturing
a possible specialized way to carry out certain confor-
mance checking tasks. The second subquery instead contains
terms related to the data-related PM issues I1-I3 discussed
in Sect. 3 (namely “uncertainty”, “low-level”, “complex
processes”, “event abstraction”, “incomplete”, “high-level”,
“infrequent”, “noise”, “flexible processes”, and “spaghetti-
like”), as well as some variations of these terms.

The rightmost conjuncts in Query#1 and Query#2 were
chosen as to capture key distinctive aspects of the respec-
tive AI-based strategies, based on our personal background
and knowledge of the subject matter. In particular, the
last subquery of Query#1 features terms that are likely
used in works related to the adoption of Strategy A,
namely: “background knowledge”, “a-priori knowledge”,
“prior knowledge”, “domain knowledge”, “predefined con-
straints”, “possible mappings”, “potential mappings” and
“activity mapping”—actually, the last three terms may occur
in research works where the only kind of a-priori knowledge
driving a PM task pertains to the mapping between (low-
level) log events and (high-level) process activities.

Devising a specialized set of terms for the works related
to Strategy B was not an easy task. Indeed, we noticed that a
very small fraction of such works explicitly claimed to syn-
ergistically/jointly pursue multiple AI/PM tasks—and very
few of them actually contained terms like “auxiliary task,”
“multiple tasks,” “joint learning/training/mining,” etc.,which
one would naturally expect to find instead. We thus had to
leverage our knowledge of some major types of auxiliary

tasks (e.g., trace clustering, event abstraction) that have been
exploited in some popular works following Strategy B, and
tried to extend this set of task types with a number of possible
alternative ones. As a result, we eventually defined the third
subquery of Query#2 as the disjunction of the following
terms: “outliers,” “abstraction” and “clustering,” as well as
some terms that might witness the execution of complemen-
tary clustering or event abstraction/filtering tasks (namely,
“variants,” “groups” and “deviance-aware”) in the casewhere
such tasks are not referred to explicitly through the terms
“outliers,” “abstraction” and “clustering.”

The search queries Query#1 and Query#2 were run on
Scopus on October 30th, 2020, over the titles, keywords and
abstracts of all the publications stored in the database. For
the sake of fairness and reproducibility, we performed the
search in an anonymous mode (i.e., accessing the Scopus
website without using any personal account and disabling all
cookies), to prevent any possible bias coming from our past
searches.

The number of papers returned for these two queries were
48 and 82, respectively, as shown in Table 1.

5.3 Inclusion and Exclusion Criteria

According to [48], the next step in an SRL search pro-
tocol, after running the queries, consists in applying a
number of well-specified inclusion and exclusion criteria,
in order to obtain eventually a selection of really signifi-
cant and relevant works, while ensuring that this selection
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is both replicable and objective. The general rule followed
for including/excluding a study in/from our review can be
summarized as follows: a work must satisfy every inclusion
criterion (IC) in order to be retained, whereas it is discarded
whenever it satisfies any exclusion criterion (EC).

The following inclusion criteria were applied to any work
returned by our searches:

(IC1) The work has already reached its final publication
stage—no “in-press” works are allowed.

(IC2) The work was published as a journal article, as a
contribution to conference proceedings, or as a book
chapter—neither letters nor reviewswere considered.

(IC3) The work is written in English.

In practice, all the above described basic inclusion cri-
teria were enforced directly through the Scopus query
engine. This reduced the number of works in Group#1 and
Group#2 (from the values reported in Table 1) to 45 and
82, respectively—actually, the size of Group#2 remained
unchanged after the application of the inclusion criteria.

After that, all remaining works underwent a little more
aggressive and semantic selection phase, devoted to filtering
out works that might not be sufficiently significant/mature
or not relevant to our scope. To this end, we sequentially
applied the following exclusion criteria to any retrieved work
satisfying the inclusion criteria:

(EC1) The work was published before 2020 and it has
received less than 1 citation on average per year, start-
ing from the year of publication till October 30th,
2020.3

(EC2) The work appeared in a workshop (seeing as such a
kind of venue may accept proposals at an early stage
of development).

(EC3) The work is a survey or an empirical/benchmark
study (which hence does not propose any new techni-
cal solution), or it is a position/research-in-progress
paper (so that any proposed solution is likely not to
be mature enough from a technical viewpoint).

(EC4) The work is an abridged version of another work,
by the same authors, published later (typically as a
journal paper).

(EC5) The work proposes a solution that has no connection
with (at least) one of the strategies A and B defined
in Sect. 4.1.

3 The cutoff value of 1 citation per year acts as a reasonable “sur-
vival threshold” for purging both obsolete and low-impact studies. This
threshold is not applied to the works published in the current year 2020
for the sake of fairness, seeing as such works might still have no cita-
tions at all only due to their short life, independently of their quality
and relevance.

The application of EC1 cut the size of Group#1 from
45 to 35 works, and that of Group#2 from 82 to 42—in
fact, this also accounts for the removal (from Group#2) of
a paper, published in 2020, missing fundamental meta-data
data (namely, the author names and work title) in Scopus.

By using EC2, we excluded no paper from Group#1
and 7 papers from Group#2, thus shrinking the size of both
groups to 35 elements.

Criterion EC3 allowed us to further remove 4 works from
Group#1 and 2 from Group#2. This way, the number of
works reaching the next exclusion step was reduced to 31 for
Group#1 and 33 for Group#2.

By way of EC4 we excluded 3 and 2 further works from
Group#1 and Group#2, respectively, so coming to the size
of 28 and 31, respectively.

The last exclusion criterion, namely EC5, directly descends
from the research question RQ1 and serves the purpose of
marking a semantic boundary for our search. For the sake of
greater objectivity and fairness, the assessment of EC5 was
performed independently by both authors of this manuscript,
after carefully reading (at least the abstract, introduction and
conclusions of) each remainingwork. Any possible disagree-
ment among the authors was resolved through discussion
and deeper analyses. Enforcing this latter criterion caused
the exclusion of further 19 (resp. 13) works from Group#1
(resp. Group#2).

The 9 works of Group#1 and the 18 works of Group#2
that survived the five exclusion stages above are shown in
Tables 2 and 3 respectively, along with some major kinds
of categorical information (e.g., the main PM task pursued)
allowing for characterizing them in a finer way. These are the
works that we considered for our literature review study.

For the sake of traceability and replicability, the complete
set of works retrieved for Strategy A and Strategy B (after
running their respective queries and applying the inclusion
criteria) are reported, in a tabular form, in two separate CSV
files (named StrategyA.csv and StrategyB.csv, respectively).
The files indicating, for each excluded work, the first crite-
rion that determined its exclusion, can be found in the online
folder http://staff.icar.cnr.it/pontieri/papers/jods2021/.

The remaining collections of research works obtained for
Strategy A and Strategy B are discussed in a structured form
in the following two sections, respectively.

6 Review of PMMethods Using Strategy A

This section briefly discusses and categorizes all the relevant
PM works that were reckoned to take advantage of explicit
background knowledge, based on the results of our literature
search. A summarized view of these approaches is offered in
Table 2, where column BK Usage indicates, for each work,
which of the two consideredmodes of exploiting the available
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Table 2 Reviewed researchworks pertaining Strategy A. Theworks are
ordered according to the average number of citations per year. For each
work, the table reports the PM task addressed, the kind of background

knowledge (BK) taken as input, and the informed machine learning
(IML) mode according to which this knowledge is used

# Work title #Cit. Year Avg. cit. IML mode Used BK PM task

1 Robust process discovery
with artificial negative
events [39]

123 2009 10.3 BK4Learning Activity constraints Process discovery

2 Online and offline
classification of traces of
event logs on the basis
of security risks [32]

9 2018 3.0 BK4Patterns Possible
event-activity
mappings and
activity constraints

Conformance
checking

3 Process discovery under
precedence constraints
[42]

17 2015 2.8 BK4Learning Activity constraints Process discovery

4 Domain-driven actionable
process model discovery
[103]

12 2016 2.4 BK4Learning Activity constraints Process discovery

5 Using domain knowledge
to enhance process
mining results [27]

7 2017 1.8 BK4Learning Activity constraints
(DECLARE
model)

Model
enhancement

6 Process discovery using
prior knowledge [74]

8 2013 1.0 BK4Learning Beliefs on activity
dependencies

Process discovery

7 ProDiGy: Human-in-
the-loop process
discovery [28]

3 2018 1.0 BK4Learning (Incrementally
refined) process
model (Petri net)

Process discovery

8 Interactive data-driven
process model
construction [29]

3 2018 1.0 BK4Learning (Incrementally
refined) process
model (Petri net)

Process discovery

9 Efficient process
conformance checking
on the basis of uncertain
event-to-activity
mappings [90]

1 2020 1.0 BK4Patterns Possible
event-activity
mappings

Conformance
checking

Background Knowledge (BK)—i.e., either BK4Learning
or BK4Patterns (cf. Sect. 4.2)—is adopted in the work,
while column Reference Task reports the PM task addressed
in the work.

6.1 Using BK for Process Discovery

To improve the quality of the processmodels (more precisely,
control-flowmodels) discovered from incomplete/noisy logs,
some of the works retrieved by our literature search pro-
pose to exploit a set of a-priori known activity constraints,
providing a partial description of correct/forbidden process
behaviors [27,39,42,103].

In particular, in [42] the discovery task is stated as the
search for a process model (specifically represented as a
C-net [89]) for a given log L that satisfies a set of prece-
dence constraints provided by the expert. Essentially, these
constraints are meant to express requirements (in terms of
the existence or non-existence of edges and of paths) on
the topology of the model, regarded as a dependency graph
(while abstracting from local split/join constructs in the C-

net). This problem is shown to be equivalent to a constraints
satisfaction problem (CSP) [73] where these precedence
constraints are complemented with log-driven precedence
constraints, derived automatically from the traces of L . The
problem is also shown to be tractable in two cases: when the
background constraints only concern the absence of paths,
or they contain any other kind of constraints but forbidden
paths. Two different graph-based algorithms are proposed in
[42] for these two cases, respectively, as well as an extension
of the former algorithm that solves the general (intractable)
case heuristically.

Fairly similar in the spirit to [42] is the approach proposed
in [103]. The background knowledge is here expressed by
an expert in terms of pairwise activity constraints (prece-
dence/causality, parallelism) and designed start/end activi-
ties. These constraints are used to define an ILP problem,
which also takes account of activity dependency measures
extracted from the input log—in particular, a proximity
score capturing both direct and indirect succession relation-
ships. User’s constraints are considered as strong constraints,
which can correct log-driven relationships to some extent.
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Table 3 Reviewed research
works following Strategy B, still
ordered by decreasing average
numbers of citations per year.
For each work, the table reports
the (main) PM task addressed
and the auxiliary AI tasks
performed

# Work title #Cit. Year Avg. cit. Main PM task Auxiliary
task(s)

1 Filtering out infrequent behavior from
business process event logs [11]

59 2017 14.8 Process
discovery

Outlier/Noise
filtering

2 Active trace clustering for improved
process discovery [20]

79 2013 9.9 Process
discovery

Clustering

3 Data-driven process
discovery—Revealing conditional
infrequent behavior from event logs [58]

34 2017 8.5 Process
discovery

Classification

4 Guided process discovery—a
pattern-based approach [59]

20 2018 6.7 Process
discovery

Abstraction

5 Behavioral process mining for
unstructured processes [25]

28 2016 5.6 Process
discovery

Clustering

6 Process mining based on clustering: A
quest for precision [16]

60 2008 4.6 Process
discovery

Clustering

7 Predictive monitoring of temporally
aggregated performance indicators of
business processes against low-level
streaming events [14]

9 2019 4.5 Prediction Clustering +
Abstraction

8 Mining Predictive Process Models out of
Low-level Multi-dimensional Logs [36]

26 2014 3.7 Prediction Clustering +
Abstraction

9 Discovering hierarchical process models
using ProM [55]

29 2012 3.2 Process
discovery

Abstraction

10 Mining usage scenarios in business
processes: Outlier- aware discovery and
run-time prediction [35]

32 2011 3.2 Process
discovery

Outlier/Noise
filtering

11 Online and offline classification of traces
of event logs on the basis of security
risks [32]

9 2018 3.0 Conformance
checking

Trace
interpretation
(activity
inference)

12 Controlled automated discovery of
collections of business process models
[38]

19 2014 2.7 Process
discovery

Clustering

13 Leveraging process discovery with trace
clustering and text mining for intelligent
analysis of incident management
processes [17]

21 2012 2.3 Process
discovery

Clustering +
Classification

14 Correlating activation and target
conditions in data-aware declarative
process discovery [52]

6 2018 2.0 Process
discovery

Clustering +
Classification

15 Mining multi-variant process models from
low-level logs [37]

8 2015 1.3 Process
discovery

Clustering +
Abstraction

16 Process discovery from low-level event
logs [33]

4 2018 1.3 Process
discovery

Abstraction

17 Model checking as support for inspecting
compliance to rules in flexible processes
[54]

6 2015 1.0 Conformance
checking

Hypothetical
reasoning +
Data
inference

18 Partial order resolution of event logs for
process conformance checking [86]

0 2020 0 Conformance
checking

Trace
interpretation
(event order
inference)
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For example, even though an activity A never follows activ-
ity B in the log, the discoveredmodel is allowed to include an
edge from A to B in case the expert deems that B is directly
caused by A, provided that the proximity score from A to B is
high enough. Moreover, [103] presents a system that allows
the user to revise the background knowledge in an incremen-
tal and interactive way: after discovering a model, the user
can define novel constraints (allowing for obtaining a bet-
ter process model), before running the discovery algorithm
again.

Another example of the same category is the approach
proposed in [39], where the discovery of a control-flow from
a log L is stated as a multi-relational classification problem,
in which pairwise temporal constraints over the activities
(including both local and non-local causal dependencies,
and parallelism) are known a priori and used as background
knowledge. The approach works in four steps: (i) a set of
temporal constraints is extracted from L; (ii) L and all the
temporal constraints (both those provided by the expert and
those derived from the given traces) are used to generate
negative examples (precisely, for each prefix of any trace,
negative events are generated stating which activities are not
allowed to be executed later on in that trace); (iii) using both
the log traces (as positive examples) and the artificially gener-
ated negative events, a logic program is induced that predicts
whether a given activity can occur in a given position of a
given trace; (iv) the logic program is converted into a Petri
net.

The problem of discovering a control-flow model from a
noisy log is faced in [74] by inducing a probabilistic graphical
model taking the form of an information control net (ICN),
the nodes of which represent different process activities. The
proposed method takes as further input background knowl-
edge expressed in terms of degrees of belief, associated with
elements of the ICN. This knowledge is exploited according
to a Bayesian inductive learning scheme, and it is shown to
help improve the quality of the discovered process model.

Quite a different, interactive, approach to injecting the
user’s knowledge into a process discovery task is adopted
in [29]. Here, the user is allowed to build a Petri net pro-
cess model incrementally, by possibly combining her/his
domain knowledge with statistical information extracted (by
using PM techniques) from a given event log. This enables
a human-in-the-loop scheme where the user and the process
mining component can collaborate, while leaving total con-
trol to the former over the latter.More specifically, log-driven
statistics concerning the ordering relationships between the
process activities are derived from the log and presented to
the user by visually projecting them onto the process model
defined so far. This lets the user make informed decisions
about where and how to accommodate a novel activity (i.e.,
an activity that appears in the log but not yet in the process
model). To this end, only three predefined kinds of synthesis

rules [21] can be used, which all ensure the soundness of the
resulting model.

A similar incremental process discovery approach is pro-
posed in [28], which describes a framework named Prodigy.
Rather than just projecting log-driven statistics on the current
process model, in this work the PM component is devised
to recommend a number of alternative ways to refine the
current version of the process model by inserting a novel
activity (according to the same kinds of synthesis rules [21]
as in [29]). These recommendations are ranked on the basis
of how accurate the corresponding resultant process models
are in describing the given log. The user can also leave the
control to the system according to an “auto-discovery” oper-
ation mode (for a chosen number of refinement steps, or until
the conformance scores of the model fall under some thresh-
olds), which consists in automatically selecting and applying
the top ranked recommendation.

It is worth noting that, differently from all the other works
described in this subsection, the incremental PM schemes
proposed in [28,29] do not require explicit domain knowl-
edge to be available at the beginning of the PM session.
However, whenever such knowledge is owned by the user,
it will guide her/him (together with new statistics extracted
from the log) in each incremental refinement of the process
model. On the other hand, the updates made by the user at
a certain time impact on those that can be performed subse-
quently, hence allowing for transferring the user’s knowledge
from one iteration of the approach to the following ones.

6.2 Using BK for Model Enhancement

Adeclarative processmodel encoded in languageDECLARE
[96] is used in [27], as an informative form of back-
ground knowledge, in order to improve an existing process
model, previously discovered from a given log L , in a
post-processing fashion. Specifically, assuming that the dis-
covered model takes the form of a process tree, three
alternativemethods are proposed to enhance it, based on both
L and the givenDECLAREmodel: (i) brute-force search; (ii)
a genetic programming scheme where candidate models are
made evolving according to a fitness function that accounts
for both log conformance metrics [89] and the fraction of
a priori constraints fulfilled; and (iii) a heuristics algorithm
that directly tries to correct a model based on the types of
constraint it infringes. Although the post-processing nature
of this solution might lead to regard it as a BK4Patterns
approach, since it comes back to the input data (which is,
indeed, a peculiarity of the enhancementPMtask),webelieve
that it is more appropriate to classify it as an instance of the
BK4Learning category.
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6.3 Using BK for Conformance Checking

The core problem of checking whether low-level traces com-
ply to high-level behavioral models is considered in [32,90]
in the challenging setting where the ground-truth mapping
between the events of the traces and the activities in themodel
is unknown and only uncertain information is available on
it—actually, the models in [32] are meant to represent known
security breach patterns.

Since pre-processing the traces with deterministic log
abstraction methods [2,59,83] in such a setting can lead to
misleading results [90]4, both proposals [32,90] adopt a prob-
abilistic approach for evaluating the degree of compliance of
each trace over either all of its admissible interpretations [90]
or a representative subset of them, computed viaMonteCarlo
sampling [32]. In particular, in [90], conformance is analyzed
at different levels of detail, across a hierarchy of (SESE) pro-
cess fragments. An efficient computation approach is defined
to help avoid enumerating all the possible interpretations
(“translations”) of a given log trace, so as to only focus on
the portions of the trace that are really affected by mapping
uncertainty and on the fragments that actually feature the
activities involved in these portions.

Prior event-activity mapping probabilities are used in
both works above to discard “meaningless” interpretations.
Known activity-level precedence constraints, describing the
behaviors of the processes in a loose partial fashion, are
exploited as well (as a partial process model) in the Monte
Carlo simulation of [32], to purge invalid interpretations of
a given trace. Since the proposals in [32,90] can be viewed
as informed inference-oriented PMmethods, they have been
both classified as instances of category BK4Patterns in
Table 2.

7 Review of PMMethods Using Strategy B

This section discusses the works that have been reckoned to
take advantage of the “multi-task” Strategy B introduced in
Sect. 4.3, within a PM setting, based on our literature search.
Let us recall that these works rely on pursuing a number of
auxiliary tasks, when approaching a “main/target” PM task
(which would be difficult to solve effectively in isolation,
e.g., owing to the fact that insufficient or unreliable log data
are available).

4 In fact, in a scenario affected by a high level of uncertainty (e.g.,
owing to the combined presence of flexible processes and of ambiguous
event-activity mappings), selecting just one optimal interpretation for a
trace leads to losing information whenever the trace can be explained
via different similarly plausible alternative interpretations, and the ana-
lyst’s expertise does not suffice to identify the “right interpretation” and
definitely discard the other ones.

Theworks are described next in separate subsections, each
ofwhich is titledwith the nameof themain PM task, followed
by those of the auxiliary ones. These twokinds of information
are also reported in Table 3, for each to the works reviewed.

7.1 Process Discovery with Clustering

As discussed in the final part of Sect. 4.3, trace clustering
task are usually performed before approaching a discov-
ery/prediction task, in order to recognize subgroups of traces
exhibiting more homogenous (and hence easier to describe
and predict) behaviors. However, such a two-phase approach
does not guarantee that the bias of the clustering task is
aligned with the evaluation bias of the discovery/prediction
task of interest.

The methods proposed in [16,20] deviate from this main-
stream use case of clustering methods, and look well aligned
to the essence of Strategy B. Indeed, the algorithm ActiTrac
[20] reduces the above-mentioned dichotomy by address-
ing two joint clustering and control-flow (CF) discovery
tasks, with a shared goal: maximizing the average confor-
mance of the different control-flow models describing the
discovered clusters. Precisely, the conformance of each clus-
ter is evaluated by computing the fitness of the control-flow
model induced for the cluster (through algorithm Heuris-
ticsMiner [101]) with respect to the cluster traces. A greedy
iterative clustering-plus-induction scheme, inspired toActive
Learning methods [80], is employed to solve this prob-
lem heuristically. Experimental results confirmed that the
control-flow models discovered this way are easier-to-read
and more accurate in describing their associated traces, com-
paredwith a single processmodel induced from all the traces.

The problem of discovering a set of CF schemas, named
Disjunctive Workflow Schema (DWS) from a given log L is
considered in [16]. In fact, this work is a follow-up paper
of [43], where the problem was considered originally, in a
setting where the model is required to satisfy fitness and
precision requirements. Since this problem is intractable, a
heuristics solution was proposed in [43], which starts build-
ing a preliminary DWS consisting of a single CF schema,
induced from the entire log L , and then iteratively refines
the DWS through the following hierarchical clustering pro-
cedure: (i) the most imprecise/flexible CF schema W in the
DWS is selected; (ii) the traces of W are split into clusters;
(iii) W is replaced in the DWS with a collection of novel CF
schemas, induced each from one of the clusters found. This
approach is generalized in [16], where it is made both inter-
active and independent of the particular clustering/process
discovery algorithms.

While the individual models discovered after cluster-
ing a given set of traces are usually simpler than one
induced from all the traces, these models tend to share many
duplicate/clone fragments, so that their overall description
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complexity is rather high. A two-way process discovery
approach is presented in [38], where a discovered process
model can be both refined into more specific process variants
based on trace clustering (“slicing”), and decomposed into
hierarchically structured fragments by way of sub-processes
extraction and merging (“dicing”). By slicing, mining and
dicing recursively, this approach can eventually yield an easy-
to-understand set of processmodels, satisfying user-specified
constraints on the number and structural complexity of the
discovered models. To let the user specify a minimal level of
fitness for the returned processmodels, a top-down hierarchi-
cal variant of the fitness-aware clustering algorithmActiTrac
[20] is proposed for the splitting step.

A different approach to control-flow model discovery is
proposed in [25], which relies on defining a methodology
for mining out common sub-processes (representing typi-
cal behavioral patterns). These patterns are expected, indeed,
to be better than an overall control-flow model at modeling
complex unstructured domains. To this end, a hierarchical
graph clustering method is exploited in the discovery of the
most relevant (based on a description length criterion) sub-
processes, and of their mutual hierarchical relations. The
input of this clustering method is a set of instance graphs,
each derived from a given log trace, based on the causal inter-
activity dependencies detected by an existing (noise-aware)
process discovery algorithm. An ad hoc repairing method is
employed to solve structural anomalies that can affect the
graphs of noisy instances.

7.2 Process Discovery with Outlier/Noise Filtering

The attempt to devise process discovery methods robust
to noisy logs dates back to Heuristics Miner [100], and
it has been pursued over time in several other discovery
approaches, such as Fodina [91] and Infrequent Inductive
Miner [50]. In fact, all of these process discovery methods
perform the induction task over a collection of pairwise (e.g.,
directly follows and/or eventually follows) activity relations,
providing a rather approximated representation of the log
behaviors, and mainly deal with noise by filtering out the
activity pairs in these relations that occur rarely in the log
(according to user-given frequency thresholds).

A more sophisticated noise filtering approach is pro-
posed in [11], where the identification of infrequent activity
dependencies is combined with the discovery of a (rough)
behavioral model for the log—even though the ultimate goal
of this work is to help the analyst remove the manifestations
of such infrequent behaviors from the log. The approach
essentially relies on inducing an automaton from the log,
where the nodes and transitions represent process activi-
ties and inter-activity dependencies, respectively, and then
deriving a reduced version of this automaton purged of all
the infrequent dependencies. By replaying the original log

through this reduced automaton, it is possible to detect all
the noisy events (as those that no longer fit the automaton),
and possibly remove them all from the log.

Still in the context of process discovery, the problem
of detecting outlier traces (representing exceptional process
executions, determined, e.g., by system malfunctioning or
anomalies) was also addressed in [35]. There, the idea of
tightly combining a clustering of the log traces with the dis-
covery of per-cluster control-flow models (pursued, e.g., in
[20,43]), is extended with the attempt to make the clustering
aware of outlying traces, so that the resulting control-flow
models only describe typical execution scenarios of the
process (and not outlier traces). To this end, a robust co-
clustering method is devised that splits the traces based on
their correlations with ad hoc behavioral patterns (encoding
activity precedences and split/join constructs, and discovered
automatically), and filters out all the (outlier) traces fallen
into small clusters or no cluster at all.

7.3 Process Discovery with Abstraction

To deal with fine-granular log events, some control-flow dis-
covery tools were devised to incorporate automated activity
abstraction capabilities, such as the method proposed in [55]
, which both discover hierarchies of process models based
on automatically extracted abstraction relationships over the
activities. In particular, in [55] , a two-phase process discov-
ery strategy is used, where: (1) the given log is first brought to
a desired level of granularitywith the help ofPatternAbstrac-
tions extracted from the log itself, and then (2) a process map
is discovered from the abstracted log (using the popular ProM
plug-in Fuzzy Miner [45]). In its turn, the former phase con-
sists of three steps: (i) finding common execution patterns (in
the form of a sequential patterns over the activities, includ-
ing tandem/maximal repeats); (ii) defining abstractions over
these patterns; (iii) using these abstractions to pre-process
the traces. Repeated applications of this method allow for
deriving an activity abstraction hierarchy. Basically, at each
iteration, for each defined abstraction x , a sub-log capturing
the manifestation of that x’ abstraction pattern is generated,
and the Fuzzy Miner plug-in is applied on the “transformed”
log to discover a process model for it.

The problem of discovering a good-quality behavioral
model for a given low-level log is rephrased in [33] into
that of inducing two different models: (i) a Hidden Markov
Model (HMM) from the log describing the process execu-
tion flows in terms of (hidden) activities; and (ii) a high-level
control-flow graph over the activities, which is built upon
inter-activity dependency statistics extracted from the HMM
model. Prior knowledge on activity dependencies and map-
pings can be used to guide the discovery of the HMMmodel
(and, indirectly, of the high-level control-flow model). Thus,
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in principle, the approach in [33] could be also seen as an
Informed-PM method of category BK4Learning.

The solution proposed in [59] for the supervised abstrac-
tion of low-level logs can be regarded as a piece of a more
comprehensive methodology for discovering abstract pro-
cess models from low-level logs. This methodology, beyond
the pre-processing steps meant to abstract low-level traces
into higher-level (activity annotated) ones, includes, in fact,
two other steps aimed at achieving a model recognizable
by process stakeholders: (i) inducing a high-level process
model from the abstracted version of the log, and (ii) com-
puting alignment-based conformance measure between the
original (low-level) event log and an expanded version of the
discovered model (where each high-level activity is replaced
with the associate activity pattern, describing the activity in
terms of low-level events). Thus, the whole approach can be
regarded as an example of hybrid approach that combines
discovery and abstraction tasks (plus alignment-based con-
formance checking).

7.4 Process Discovery with Clustering and
Abstraction

In order to facilitate the analysis of logs generated by low
structured processes and that contain low-level traces, a
twofold mining problem was introduced in [37]: (i) find-
ing a conceptual (co-)clustering function that automatically
abstracts log events into (non-predefined) event classes,
while assigning each trace to a different process variant based
on context data (e.g., properties of cases or environmental
factors); (ii) inducing a specializedworkflowschema for each
single variant (expressed in terms of the discovered event
clusters).

Notably, the event (resp. trace) clustering function is
encoded via predictive (logical) rules over the event attributes
(resp. the event classes). This allows, on the one hand, for pro-
viding the analyst with an interpretable description of both
the discovered event classes and the trace clusters; on the
other hand, to support the implementation of advanced run-
time services (besides providing descriptive analyses only).

7.5 Process Discovery with Classification

A process discovery method (named Data-aware Heuristic
Miner) is proposed in [58] that is meant to help reveal seman-
tically relevant infrequent behavior correlated with process
data properties. To this end, both activity labels and event
data attributes are given as input to the control-flow dis-
covery algorithm (built on Heuristics Miner [101]), which
leverages a classifier inductionmethod to capture conditional
inter-activity dependencies, and embed them in the resulting
process model.

7.6 Process Discovery with Clustering and
Classification

A combination of trace clustering and text mining methods
is proposed in [17] in order to enhance process discovery
tasks in the flexible environment of incident management.
Specifically, a number of accurate process models is dis-
covered by using a fitness-driven pattern-based clustering
method (implementing a semi-supervised learning strategy,
based on both selective trace sampling and a greedy model
optimization mechanism). Basically, the traces that do not fit
well enough any of these clusters are kept apart, and made to
undergo a combination of text mining and classifier induc-
tionmethods, with the ultimate aim of finding non-functional
patterns (i.e., patterns unrelated to control-flow aspects) from
the data fields (including free text descriptions) of those atyp-
ical cases.

In [52], a method for inducing multi-perspective declara-
tive process models is presented, which can discover condi-
tions on (both categorical and numeric) data attributes related
to the occurrence of log events pairs. Specifically, focusing
on pairwiseDECLARE [96] constraints, themethod can infer
correlated conditions on the payloads of the activation and of
the target of such a constraint—hence allowing going beyond
the pure modeling of control-flow aspects. The discovery of
such correlated conditions leverages both clustering tech-
niques and the induction of interpretable classifiers.

7.7 Prediction with Clustering and Abstraction

The combination of discovery and event abstraction capabil-
ities was also exploited in both [36] and [37], in a predictive
monitoring setting (aimed at forecasting the remaining time
of a partial trace) and a traditional control-flow discovery
setting, respectively. In both cases, the target task is pursued
synergistically with two auxiliary tasks that are addressed to
discovering two kinds of clusters: (i) event clusters (play-
ing as hidden activities), and (ii) trace clusters (playing as
process execution scenarios/variants). Both kinds of clusters
are defined via logical classification rules, for interpretability
and applicability reasons.

An approach similar to that in [36] is exploited in [14]
for forecasting aggregate performances of a process, defined
over time windows. Here, a further auxiliary task consists
in the discovery and application of a time-series forecasting
model, which is devoted to predict the performances of the
instances, of a current time window w, that have not started
yet is addressed. This task is performed jointly with the same
two tasks of [36], now used to make single-instance forecasts
on the ongoing low-level traces of w.
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7.8 Conformance Checking with Trace Interpretation

As noticed in Sect. 6.3, the problem of checking to what
extent a low-level trace complies to high-level behavioral
models was studied in [32], in a scenario where the ground-
truth mapping between the events of the traces and the
activities in the model is unknown. In [32] such a confor-
mance checking task is performed, on any given low-level
trace, jointly with that of bringing the trace itself to the level
of abstraction of the reference process activities. To this end,
a representative set of activity-level interpretations is com-
puted dynamically for the trace via a Monte Carlo sampling
procedure. More details on this work are in Sect. 6.3, where
it has been already reviewed as an application of Strategy A.

A very recent work [86] addresses the problem of per-
forming a conformance checking task in a situationwhere the
uncertainty pertains the ordering of the events in the traces—
i.e., the events are only partially ordered, e.g., owing to
synchronization problems, manual event recordings, or data
corruption. Here the sub-problem of partial order resolution
is defined, which amounts to estimating a probability distri-
bution over all possible total orders of the events in a trace,
and several alternative estimation models (based on different
notions of behavioral abstraction) are proposed. In order to
make conformance checking tasks feasible over a partially
ordered trace, an approximation method is presented, which
consists in sampling a subset of all the candidate order resolu-
tions of the trace while ensuring a statistical error guarantee.

7.9 Conformance Checking with Data Inference and
Hypothetical Reasoning

A conformance checking methodology is proposed in [54]
that leverages complementary data inference and hypo-
thetical reasoning capabilities. The methodology aims at
enabling thorough verifications of a flexible process model,
while tackling real-life processes issues like unpredictability,
inconsistency and uncertainty. To this end a combination of
Hybrid Logics and Description Logics methods is exploited,
which support rich representations of the entities, data and
context associated with a process instance. These additional
knowledge representation and reasoning capabilities allow
for possibly inferringmissing information (e.g., missing con-
nections between available evidence and previous inference
results), which prove useful for the checking task, as well
as supporting hypothetical reasoning (e.g., working with
an updated model of the world). The checking results can
be exploited to visualize and verbalize connections of the
properties checked with their dependencies over time. Con-
sidering the ability of this approach to take knowledge on
process-related business entities and context, it could also
be seen as an instantiation of Strategy A. However, we pre-

fer to assign it to Strategy B, owing to the flexible range of
reasoning services that it offers to the analyst.

8 Emerging Trend: Using Deep/Ensemble
LearningMethods for PM

As discussed in Sect. 4.3, Strategy B is ultimately meant to
support a target learning/inference task (coinciding with one
of the standard PM tasks in our specific setting) with hidden
knowledge or inductive bias coming from some other auxil-
iary task, which is performed jointly with the target one. The
systematic literature review described in Sect. 7 has revealed
that the auxiliary tasks exploited in challenging PM settings
often coincide with either traditional ML tasks (mainly, clus-
tering and classification) or specialized inference/reasoning
tasks (primarily, event abstraction and trace interpretation)
that aim at providing the target task with a semantically lifted
view of log data.

In particular, in the case of ML-oriented auxiliary tasks,
researchers in the field of PM have typically resorted to the
use of classic ML models and algorithms (e.g., decision
trees/rules induction), combined with a preliminary appli-
cation of ad hoc feature engineering methods—the types of
features commonly adopted for this purpose include differ-
ent types of sequence/set-based patterns extracted from the
log traces [93].

The recent impressive development of Deep Learning
(DL) [41] solutions has changed this landscape, by offer-
ing the opportunity to reduce the burden of manual feature
engineering tasks, owing to the inherent ability of a Deep
Neural Network (DNN) to learn expressive feature hierar-
chies for the input data automatically. And, in fact, the use
of DNNs has been rapidly growing of late in the field of PM,
especially in predictive process monitoring settings [22,93].

In the context of our study, the native representation
learning capability of a DNN-based model, say M , can
be regarded as an advanced form of auxiliary data pre-
processing/preparation task, which is integrated tightly and
transparently with M and solved in an integrated synergistic
way with target task addressed by M—indeed, the feature
abstraction (lower) layers of M are trained jointly with the
(final) task-specific layers of M .

Another recent line of research related to Strategy B con-
sists in exploiting Ensemble Learning methods as a form of
Meta-Learning [92], where different base models are eventu-
ally integrated with some combination model. In a sense, the
combiner sub-model acts as a sort of meta-model that rea-
sons on the “high-level” views of the input data instances that
result from projecting them onto the space of the base model
decisions/predictions (possibly complemented with internal
data representations computed by the base models). Training
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the base models and the combiner model can be regarded as
auxiliary tasks in the perspective of our study.

In other words, the research works combining PM tech-
niqueswith deep/ensemble learningmethods can be regarded
as an emerging subclass of those exploiting Strategy B.
However, we noticed that very few of these works explic-
itly relate the choice of combining ensemble/deep learning
methods and PM tasks to the need of dealing with the log
quality issues I1-I3 discussed in Sect. 3—despite the ability
of both kinds of methods to work automatically on abstract
data representation can alleviate the problems stemming from
having low-level log data. Moreover, all of these works only
focus on predictive PM tasks (mainly, run-time prediction,
recommendation, and classifier-based conformance check-
ing). Therefore, in order to extend our literature review to
this important area of related research, we defined an ad
hoc search query, which takes account of the peculiarities
described above: (“event logs” OR “business process”) AND (“run-

time prediction” OR “predicting next event” OR “event sequence

prediction” OR “classify process instances” OR “activity prediction”

OR“process prediction”OR“predictive processmonitoring”OR“pre-

dictive business process monitoring” OR “deviation detection”)AND
(“ensemble learning” OR “neural networks” OR “deep
learning” OR “deep predictive model” OR “LSTM”).

By using the search protocol described in Sect. 5 in com-
bination with this query, we eventually obtained 18 works,
summarized in Table 4. To be more precise, after running the
query and applying all the inclusion criteria we obtained 43
works; 9, 1, 7, 3 and 5 of theseworkswere then filtered out by
sequentially enforcing the exclusion criteria EC1, EC2, EC3,
EC4, and EC5, respectively. Details on the research works
obtained after running this query on Scopus alongwith all the
inclusion criteria, can be found in a CSV file, named Emerg-
ingTrends.csv, within the shared online folder: http://staff.icar.
cnr.it/pontieri/papers/jods2021/.

The final collection of research works obtained this way
are discussed in the following, within two separate sub-
sections: one for the works leveraging ensemble learning
methods (Sect. 8.1), and the other for those relying on deep
learning methods (Sect. 8.2).

8.1 Use of Ensemble LearningMethods in PMTasks

In [12], it was noticed that there is no consensus on which is
the best among the many different kinds of patterns proposed
[93], for deriving a vector space representation of log traces,
while mixing multiple pattern families is likely to produce
too heterogeneous and sparse representations. Thismotivated
the definition in [12] of an ensemble learning method, where
multiple base (deviance-oriented) trace classifiers are trained
on different feature-based views of the log (each obtained
by mapping the traces onto a distinguished collection of
patterns) [12]. A probabilistic meta-learning (stacking) pro-

cedure is adopted to combine the discovered base classifiers
into an overall “multi-view” classification model, which will
classify any novel trace x on the basis of both the data fea-
tures of x and the predictions returned for x by the discovered
base models.

A different (heterogeneous) ensemble strategy is devised
in [64], which consists in exploiting three different base
learners to build up an ensemble model for predicting
whether a process instancewill eventually violate a QoS con-
straint.More specifically, the approach combines an artificial
neural network (ANN), a constraint satisfaction technique
(CSP), and the aggregation of QoS measurements into a
(voting-based) ensemble, which is shown to improve the per-
formances of the each of the base learners.

8.2 Use of Deep LearningMethods in PMTasks

Different Deep Neural Network (DNN) architectures have
been proposed recently (see Table 4) for inducing pre-
mortem trace predictors, most of which rely on using
Recursive (primarily, LSTMs) Neural Networks.

In particular, an LSTM-based model is defined in [84],
for predicting both the next activity and the associated times-
tamp for a running process instance. The encoding of each
trace event in input is simply obtained by concatenating a
one-hot representation of the associated activity with a num-
ber of numerical features derived from the timestamp of the
event. The resulting vectorial representation of an input trace
is passed to a stack of LSTM layers, topped with a linear pre-
diction layer.

A fairly similar architecture is adopted in [30] for predict-
ing the next activity. The main difference from the one in
[84] resides in the presence of ad hoc embedding layers for
encoding the activity (and possibly the executor) associated
with each input event.

A similar multi-layered LSTM architecture is still used
in [77] to predict the next activity of a process instance,
which can take account of both continuous and discrete event
attributes as input.

Several alternative LSTM-based architectures are defined
(and empirically compared) in [7] for the prediction of the
activity, timestamp and resource of the next event of a pro-
cess instance, which take into account both categorical and
numerical event properties.

The problem of predicting all the categorical attributes
of the next event (including the activity label) is addressed
in [56], which proposes an ad hoc “multiway” LSTM-based
model, including an attention-like mechanism for combining
the outputs of different LTSM stacks (one for each event
attribute).

A multi-step approach is proposed in [102] for recom-
mending the next best action (w.r.t. a given target perfor-
mance indicator) to be performed for a process instance. The
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approach exploits a DNN as one of its main components,
which exhibits essentially the same LSTM-based architec-
ture as in [84].

A-priori knowledge encoded via LTL rules is leveraged in
[23], in order to complement an LSTM-based next-activity
predictor (previously discovered from historical log data)
when forecasting the sequence of activities that will be per-
formed in the future steps of a pre-mortem trace. These
a-priori rules are exploited to prune out “invalid” candi-
date sequences, among those that are computed by iteratively
applying the LSTM predictor within a beam search scheme.
Notice that this approach could be also considered as an
instantiation of Strategy A following the BK4Patterns IML
modality.

We found a few proposals in the reviewed literature that
deviate from the mainstream pattern of using recurrent DNN
architectures.

In particular, the approach proposed in [63] combines fea-
ture engineering and deep learning methods to improve the
prediction of the next activity. To this end, a feed-forward
neural network (composed of a stack ofmultiple dense layers
plus a linear predictionone) is trainedoverfixed-length repre-
sentations of the input traces, computed via a feature-hashing
method (applied to the sequences of activities appearing in
the traces).

The three works [24,68,69] all investigates the problem of
applying a CNN-based architecture to a 2-D representation
of the traces, in order to predict the next activity. Specifi-
cally, in [68] a standard convolution approach is applied to
an image-like representation of the traces, extracted through
an ad hoc featuring engineering step, whereas both [24,69]
feature amore sophisticated convolutional architecture based
on an Inception block. While both [24,68] convert each trace
into a matrix where each column is associated with one
event property (e.g., the activity or time), a different encod-
ing is proposed in [69], inspired on the RGB-based scheme
commonly adopted in computer vision (with each channel
capturing a distinguished property of the trace).

An adversarial learning [40] framework is used in [85] for
next activity prediction, which is meant to overcome the dif-
ficulty of standard deep learning schemes to generalize well
when provided with insufficient training data or when using
a sub-optimal network configuration/architecture. Interest-
ingly, the worst-case accuracy of the proposed approach is
shown to be at least equal to those of similar non-adversarial
ones.

In [67], a method is proposed for predicting process per-
formances, in terms of aggregate performancemeasures over
a future range of time. Different alternative kinds of DNN
predictors (based on CNN, LSTM and hybrid CNN-LSTM
architectures) are exploited to learn such a prediction func-
tion, after discovering a state-based process model from a
given log and annotating it with performance measurements

(based on a log replay procedure). The annotated perfor-
mance model is then used to extract a dataset encoding
temporally aggregated state/transition performances, which
is eventually employed to train the DNN predictor.

DNN models are typically used as complex, black-box
function approximators [44], which learn effectively to asso-
ciate a given input with some output, without providing any
explanation/justification on what led to the final decisions.
This is clearly bound to raise concerns in scenarios (such as
medical diagnosis, planning, control) that need some degree
of human supervision, and require machine outputs to be
human-understandable (for the sake of experts’ validation).
In such a case, a DNN should provide interpretable justifica-
tions for its output, possibly supplying insights on its inner
workings [9].

Special attention is paid to the interpretability of DNN
predictors is payed in two recent approaches to predictive
process monitoring [46,79]. In particular, an attention-based
LSTM model for predicting the next activity of a process
instance is proposed in [79], while exploring the possibil-
ity of providing insights into those model inputs that have
influenced the prediction the most. Since such explanations
are extracted directly from the weights of the model, it is
claimed in [79] that they should reflect the prediction logics
of the DNN better than the results of local post-hoc explana-
tion techniques like LIME [75] and SHAP [57].

In the same vein as [79], the work in [46] tries to make
process instances’ forecasts more explainable by visualiz-
ing how much different activities have impacted on the
prediction. To this end, a Gated Graph Neural Network
(GGNN) is applied to graph-like representations of the pro-
cess instances—in the graph of each process instance, the
nodes and edges correspond to process activities and prece-
dence relationships between activities, respectively. Notably,
for any process instance x , information on the relevance of
the activities to the prediction returned for x (extracted from
the values that the weights of the discovered GGNN take
when taking x’s representation as input) is presented in the
form of a process model.

9 Summary and Discussion: Literature
Taxonomy, Opportunities and Open Issues

Summary: a taxonomy for the reviewed literature In this
work, we have investigated on how classical PM tasks (i.e.,
discovery, conformance checking, enhancement, detection,
prediction, and recommendation) have taken advantage of
complementary AI capabilities (ranging from knowledge
representation to machine learning and inference methods),
while paying special attention to the challenging case where
the log data at hand are low-level, incomplete and/or het-
erogenous.
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Fig. 3 A taxonomy of the
reviewed literature works:
shadowed nodes represents
subclasses of works that either
have not been covered by our
study (namely, BK for Data,
depicted with a dotted border) or
constitute emerging kinds of
solutions somehow related to
certain subclasses of Strategy B.
Each leaf class is annotated with
the number of works reviewed
for the class, and refers to the
section of the manuscript that
describe them

Specifically, we have focused on two different broad fami-
lies of approaches, which hinge upon two different strategies
for improving the performance of a target PM task: A) taking
account of user-driven background knowledge; B) pursuing
one ormultiple auxiliary learning/inference tasks jointlywith
the target one.

A systematic literature review was carried out for both
strategies, which entailed the retrieval and analysis of a num-
ber of major research works. This study confirmed that both
kinds of strategies constitute a valuable means for improving
the quality of the results that can be achieved on incomplete,
low-level and heterogenous logs, and for enabling some level
of operational support for low structured processes.

In order to provide the reader with a final compact view
of the research field analyzed, in Fig. 3 we have depicted a
taxonomy that summarizes the main different kinds of the

approaches reviewed at decreasing (from left to right) levels
of abstraction. The leaves in the taxonomy correspond to
the homogenous groups of works, addressing a similar kind
of problem and adopt similar ways to exploit additional AI
capabilities.

For the reader’s convenience, each of these leaf nodes
refers to the section of the manuscript where the correspond-
ing group of works has been discussed.

A special meaning is associated with the following two
kinds of nodes, depicted as shadowed in thefigure: (i) the sub-
class of Strategy A (namely, BK for Data) that has been left
out of our review (but that has been covered by another recent
survey [26]); (ii) groups of recent works, exploiting emerg-
ing deep/ensemble learning methods, which can be regarded
as a sort of evolution of Strategy B.
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Related areas, opportunities and open issues The idea of
exploiting smart AI capabilities in PM settings links to a
wider recent stream of research targeting the development
of AI-enabled BPM solutions. For example, two notice-
able emerging topics in this area regard: (i) extending BPM
systems with Automated-Planning solutions [61], capable
of supporting process design (e.g., suggesting new process
models/variants), or enabling run-time case adaptationmech-
anisms (e.g., by reconfiguring the execution of a case to react
to incidents/failures); (ii) leveraging prediction-oriented ML
methods (currently mainly used to provide per-trace fore-
casts) in a more extensive way [71], to support better BPM
configuration/design phases, or even foster the development
of pro-active BPM systems, capable of performing decisions
and optimization actions autonomously at run-time.

Such an ambitious goal, however, is difficult to pur-
sue in contexts featuring low-quality event data, and lim-
ited/uncertain knowledge on the behavior of the process
and of its surrounding environment. In particular, the desire
to exploit a model discovered automatically as a basis for
human/automated decisions and actions poses a number of
delicate issues, which concern the validity (in terms of accu-
racy/correctness, reliability/robustness and accountability)
of the model and of the entire data analytics process that
produced it.

In fact, the validity of the models (especially in terms of
generalization power) and of the inference results returned
by PM tools strongly depends both on the quality of the
log data used as input, and on the expertise of the ana-
lyst. Different kinds of bias can undermine the validity
of a PM model in real-life projects and lead to faulty
conclusions/predictions/decisions: (i) analyst’s bias (e.g.,
pertaining to data preparation, or PM algorithm selection/
configuration); (ii) statistical data-level bias (e.g., low repre-
sentative logs); (iii) algorithmic/model bias (e.g., concerning
the hypothesis space or search heuristics); (iv) evaluation bias
(e.g., coming from the validation data/criteria used).

The first step toward making the use of PM tools more
aware of these validity threats consists in trying to increase
the level of transparency of PM analyses for the sake of vali-
dation/debugging, by both making the model biases explicit
and producing explainable models/inferences. Interestingly,
several works discussed in Sects. 6 and 7 have alreadymoved
in this direction.

In particular, some kinds of constraints (e.g., declarative
process models [96]) or precedence constraints [32,33,39,
42]) adopted inStrategy Amethods constitute a formalway to
put domain knowledge, business requirements and analyst’s
preferences/beliefs into a well-structured unambiguous form
that can be easily inspected and validated. Moreover, as this
background knowledge is used to guide the PM tasks (in the
case of BK4Patterns and BK4Learning methods), it also
helps interpret and evaluate the results of these tasks.

On the other hand,many existingmethods followingStrat-
egy B can capture hidden structures in the data, such as
trace/event clusters and activity patterns, which they mainly
exploit as high-level features for the target PM task at hand. In
several cases, such pieces of domain information discovered
automatically are accompanied by readable descriptions,
(e.g., the cluster-wise process models in [13,20,37,43], the
trace/event clustering rules in [36,37], and the hierarchies of
pattern abstractions in [6,55]), which can inspire new data
preparation and mining steps (e.g., fine-grain analyses on
interesting trace clusters), or serve as a basis for producing
novel explicit background knowledge (e.g., event classifiers,
activity taxonomies, process/context variants). This way, a
virtuous circle is enabled, where knowledge discovered from
log data can both inspire new data analytics steps and help
extend/revise the base of domain knowledge, while the lat-
ter, in its turn, allows for better guiding and documenting
novel PM sessions. Notably, the possibility of distilling novel
data-driven knowledge from discovered models proves par-
ticularly useful in many real-life dynamic contexts where
building up and maintaining a rich and updated enough
base of background knowledge is not easy, owing to the
lack of systematic, regular and effective interactions between
domain experts, on the one hand, and data analysts and data
analytics tools, on the other.

However, in dynamic/unstructured BPM scenarios it is
unrealistic to assumeall relevant humanobjectives/constraints
to be encoded explicitly in a definite way, but it may be
easier to get qualitative/quantitative feedback on the quality
of PM results and of PM-based decisions/actions, directly
from different process stakeholders (and possibly from the
clients of process executions) or via performance/QoS indi-
cators computed automatically. Methods developed in the
field of Reinforcement Learning (RL) [80] offer a solid basis
for devising ways to exploit feedbacks coming from BPM
environment (including analysts, experts and process stake-
holders) in a systematicway, in order to allow smartAI-based
BPM tools to make their inferences, predictions, recommen-
dations and decisions/actions as aligned as possible to the
human desiderata and beliefs (even though the latter are not
fully encoded in terms of objectives and constraints). Such an
extension of PM/BPM frameworks has not received adequate
attention in the literature so far, and it might be a valuable
direction of future research.

Interestingly, the adoption of RL schemes and a syn-
ergistic use of learning and reasoning methods are two
complementary technical solutions that can prove very use-
ful in the appealing perspective of cognitive BPM systems
[65], which are meant to continuously improve their levels
of performance and of context-awareness through a continu-
ous “plan-act-learn” cycle—where newknowledge and skills
are learnt through the analysis of their interactions with the
environment and of novel (event/sensor) data.
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Finally, let us provide a brief discussion of some chal-
lenges and opportunities that specifically concern the design
of Deep Learning (DL) methods for PM, which is gaining
momentum, especially in the discovery of classification and
forecasting models for predictive process monitoring (see
the last part of Sect. 7), and in the detection of anoma-
lous/noisy log data (see, e.g., [66]). As mentioned above,
this success mainly descends from the capability of Deep
Neural Networks (DNNs) to learn effective hierarchical fea-
tures for complex data (as are log traces, because of their
sequential and multi-dimensional nature) automatically. It is
reasonable to expect this trend to grow in the near future,
owing to the flexibility of DNN architectures, the avail-
ability of many consolidated DL libraries providing diverse
reusable built-in neural network models/layers. In partic-
ular, these capabilities can prove very useful for devising
novel more advanced approaches of Strategy B (e.g., imple-
menting multi-task, transfer and/or semi-supervised learning
schemes), compared to those described in Sect. 7.

However, as discussed in Sect. 8, the higher expressivity
and flexibility of DNNs come at a cost: the internal data
representation and decision logics of these models are hard
to interpret and to control. This may be a serious obstacle for
the acceptance of such solutions in real application contexts,
considering thewidespread demand for transparent, trustable
and accountable AI/ML.

Interestingly, the rapidly growing body of research on
Explainable DL [44] and on interpretable deep neural net-
works [9] is expected to help mitigate this critical issue—in
fact, the two very recent works [46,79], reviewed in Sect. 8,
constitute two initial steps in this direction within the field
of Process Mining.

It is also worth noticing that recent advancements on the
long-standing attempt to extendANNmethodswith the capa-
bility to use Informed-PMmethods that can exploit guidance
from the analyst/expert.
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