
Journal on Data Semantics (2021) 10:189–228
https://doi.org/10.1007/s13740-021-00118-x

ORIG INAL ART ICLE

Evaluating Geospatial RDF Stores Using the Benchmark Geographica 2

Theofilos Ioannidis1 · George Garbis1 · Kostis Kyzirakos1 · Konstantina Bereta1 ·Manolis Koubarakis1

Received: 16 April 2020 / Revised: 13 January 2021 / Accepted: 19 January 2021 / Published online: 23 April 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Geospatial extensions of SPARQL, like GeoSPARQL and stSPARQL, have been defined since 2007, and while several
geospatial RDF stores have implemented a substantial part of these extensions, other stores limited their support mostly
on point geometry features. A parallel process with the above was that RDF frameworks evolved in an interesting way
by presenting a more mature set of geospatial features, such as GeoSPARQL support and including the latest indexing
technologies. As a logical consequence, a shift in the use of RDF frameworks is to be expected, from base platforms that users
extend to create more complete geospatial RDF stores, to attractive finished RDF solutions for many geospatial applications.
Alongside with the ever-increasing size of linked geospatial data that semantic stores need to handle, all the above provided our
group the motivation to improve our single-node systems benchmark Geographica, originally defined in 2013. Geographica
2 is more comprehensive, because it now includes new geospatial RDF stores and frameworks, big real-world datasets of
many hundred million triples with up to 50 million features of complex geometries, new tests and queries that reveal the
scalability of these systems. The augmented and revised real-world workload of Geographica 2 tests the efficiency of primitive
spatial functions in RDF stores, their performance in the geocoding scenario against the new Census dataset in addition to
many other real use case scenarios and finally includes computation of statistics for geospatial datasets. A more detailed and
systematic evaluation is performed using the synthetic workload. The new scalability workload aims at discovering the limits
of centralized geospatial RDF stores of various architectures. It employs a set of six well-balanced real-world datasets with
highly complex geometries covering many European countries and compares three RDF stores in terms of storage space, bulk
loading and query response time. In addition, a special version of the benchmark has been created for systems with limited
geospatial functionality and two more systems of this category are introduced along the six systems of the main benchmark,
all stressed against point-only subsets of the workloads. Three out of the eight systems use an RDBMS for the persistence
layer, while some of them offer a variety of persistence options.

Keywords Benchmarking · Geospatial · RDF store · Linked Open Data · GeoSPARQL · stSPARQL · Scalability

This work was supported in part by the European Commission Project
TELEIOS (257662), LEO (611141), MELODIES (603525) and
ExtremeEarth (825258).

B Theofilos Ioannidis
tioannid@di.uoa.gr

George Garbis
ggarbis@di.uoa.gr

Kostis Kyzirakos
kkyzir@di.uoa.gr

Konstantina Bereta
konstantina.bereta@di.uoa.gr

Manolis Koubarakis
koubarak@di.uoa.gr

1 Introduction

Many geospatial datasets have recently been added to the
Web of data and geospatial extensions to SPARQL, such as
GeoSPARQL and stSPARQL, have been defined.

GeoSPARQL [1] is a standard of the Open Geospatial
Consortium (OGC) for a SPARQL-based query language for
geospatial data expressed in RDF. GeoSPARQL defines a
vocabulary (classes, datatypes and properties) that can be
used in RDF graphs to represent geographic features with
vector geometries.

1 Department of Informatics and Telecommunications,
National and Kapodistrian University of Athens, University
Campus, 15784 Ilisia, Athens, Greece

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13740-021-00118-x&domain=pdf
http://orcid.org/0000-0002-1754-8748

190 T. Ioannidis et al.

The query language stSPARQL [2,3] is an extension of
SPARQL 1.1 developed by our group for representing and
querying geospatial data that changes over time. Similarly
to GeoSPARQL, the geospatial part of stSPARQL defines
datatypes that can be used for representing in RDF the seri-
alizations of vector geometries encoded according to the
widely adoptedOGC standardsWell-KnownText (WKT) [4]
and Geography Markup Language (GML) [5]. stSPARQL
and GeoSPARQL also define extension functions from the
OGC standard “OpenGIS Simple Feature Access” (OGC-
SFA) [4] that can be used for querying vector geometries.

The query languages stSPARQL1 and GeoSPARQL were
developed independently at around the same time, and
have produced very similar representational and query-
ing constructs. A detailed comparison of stSPARQL and
GeoSPARQL is given in [6] and the forthcoming book [7].

In parallel with the appearance of GeoSPARQL and
stSPARQL, researchers have been implementing geospatial
RDFstores that support theseSPARQLextensions (e.g., Stra-
bon [2], Parliament [8], and uSeekM). The earlier approach
for the implementation was by extending existing RDF
frameworks (e.g., Sesame) with limited geospatial function-
ality and relying on state of the art spatially enabledRDBMSs
(e.g., PostGIS) for the storage and querying of geometries
(e.g., Strabon and uSeekM with PostGIS). One reason that
this hybrid approach had been successful is that the rela-
tional realization of the OGC-SFA standard has been widely
adopted by many RDBMS for storing and manipulating vec-
tor geometries. The state of the art in this area is summarized
in the early survey paper [6].

However, new highly competitive geospatial RDF stores
appeared lately that belong to the NoSQL graph databases
technology family, e.g., GraphDB. In addition, as of mid-
2018, some RDF Frameworks (e.g., RDF4J, formerly known
as Sesame) advanced substantially in terms of GeoSPARQL
support, the availability of indexing and search technologies
andmaymake an attractive starting point for building geospa-
tial RDF stores rich in terms of features and more efficient
in terms of performance.

The above advances to the state of the art in query lan-
guages and implemented systems have also been matched
with work on evaluation and benchmarking of geospatial
RDF stores. Although there are various benchmarks for spa-
tially enabled Relational Database Management Systems
(RDBMS) [9–14], there are some publications [2,15–17] that
study the performance of geospatialRDFstores but nowidely
accepted benchmark exists.

Thework described in [15] has preceded theGeoSPARQL
and stSPARQL proposals, therefore it does not cover many
of the features available in these languages. Only point and
rectangle geometries and only few topological and non-

1 http://www.strabon.di.uoa.gr/files/stSPARQL_tutorial.pdf.

topological functions are included in its workload. Similarly,
only the geospatialRDF store SPAUK[18],which is a precur-
sor to Parliament, has been evaluated using this benchmark.
In [15] uses a synthetic workload only and does not con-
sider real linked geospatial datasets such as the ones that are
available in the LOD cloud today.

In [2], authors present the geospatial RDF store Stra-
bon2 and they include a section that is an evaluation targeted
mostly to Strabon than a general evaluation benchmark. Both
a real-world workload and a synthetic one is used in [2]. The
synthetic workload uses only point geometries and spatial
selection queries, but it allows the study of performance in a
controlled environment. In [16] presents a benchmark based
on [15] and adapted to the technological advances at the time.
In [16] evaluates several geospatial RDF stores taking into
account the expressive power of GeoSPARQL and using real
data fromOpenStreetMap (OSM)3 of various geometry types
(points, lines, polygons). Its workload covers the primary
query types covered in [15] (spatial location queries, spa-
tial range queries, spatial join queries, and nearest-neighbor
queries) and additional query types, such as queries using
non-topological spatial functions, and negation and aggrega-
tion queries that use spatial filters.

Finally, the previous version of our benchmark [17],
named Geographica4 was a comprehensive proposal at the
time and has been used to evaluate RDF stores supporting
GeoSPARQL and stSPARQL. It comprises two workloads
with their associated datasets and queries: a real-world work-
load and a synthetic workload. The real-world workload
uses publicly available linked geospatial data, covering a
wide range of geometry types (e.g., points, lines, poly-
gons). Thisworkload, follows the approach of the benchmark
Jackpine [13] and defines a micro-benchmark and a macro-
benchmark. The micro-benchmark tests primitive spatial
functions. The spatial component of a system is tested with
queries that use non-topological functions, spatial selections,
spatial joins and spatial aggregate functions. The macro-
benchmark tests performance of selected RDF stores in
typical application scenarios like reverse geocoding, map
search and browsing and a real-world use case from the
Earth Observation (EO) domain. For the synthetic workload
of Geographica, a generator was developed that produces
synthetic datasets of various sizes and generates queries of
varying spatial and non-spatial selectivity. In this way, per-
formance of geospatial RDF stores can be studied in a closely

2 http://www.strabon.di.uoa.gr/.
3 https://www.openstreetmap.org/.
4 Geographica
(Greek:� ε ω γ ρ αϕ ι κ ά) is a 17-volume encyclopedia of geographical
knowledge written by the Greek geographer, philosopher and historian
Strabon (Greek: � τ ρ ά β ω ν) in 7 BC. (http://en.wikipedia.org/wiki/
Geographica).

123

http://www.strabon.di.uoa.gr/files/stSPARQL_tutorial.pdf
http://www.strabon.di.uoa.gr/
https://www.openstreetmap.org/
http://en.wikipedia.org/wiki/Geographica
http://en.wikipedia.org/wiki/Geographica

Evaluating Geospatial RDF Stores Using the Benchmark Geographica 2 191

controlled environment. This workload follows the rationale
of earlier papers [2,12,19]. For reasons of reproducibility,
both workloads are publicly available on the web site5 of the
benchmark.

The present article revisits [17] and offers the following
contributions:

• We present a new version of Geographica, called Geo-
graphica 2, which contains the following extensions. We
extended the macro-part of the real-world workload of
Geographica [17] by adding two more application sce-
narios: the geocoding scenario and a scenario
that involves the computation of statistics
for geospatial datasets. Geocoding is tested against a
new dataset Census with detailed information on New
York’s street addresses.

• The second important addition to the original benchmark
is the scalability workload, which aims at dis-
covering the limits of centralized geospatial RDF stores
of various architectures. Six increasingly bigger andwell-
balanced datasets have been constructed by combining
OSM and CORINE Land Cover datasets with highly
complex geometries covering many European countries.
The queryset comprises a spatial selection and two spa-
tial joins of different selectivity.We study the behavior of
three stores (Strabon, GraphDB and RDF4J) in three key
areas, storage space, bulk loading and query response
time, all with respect to the number of triples of the
dataset. Thesemetrics help discover the positive and neg-
ative aspects of each system and can assist future research
in the areas of large data storage, indexing strategies and
query processing.

• We include in our evaluation a qualitative comparison of
geospatial RDF stores in order to stress the differences
between them in terms of supported geospatial features
and functionality.

• We also include in our evaluation a variant of the
main benchmark which compares two systems of lim-
ited geospatial functionality along with the six systems
that qualified for the main benchmark. OpenLink Virtu-
oso does not have substantial support of GeoSPARQL6

and another proprietary RDF store, called here Sys-
tem Y implements point-only functionality. We had
not included these systems in experiments presented
in our previous work [17], because our focus at the
time was only on systems that exhibited a high level of
GeoSPARQL compliance. We believe that this compari-
son will help shed light on the performance trade-offs of
spatial indexing methods employed by these RDF stores.

5 http://geographica2.di.uoa.gr/.
6 http://vos.openlinksw.com/owiki/wiki/VOS/
VirtGeoSPARQLEnhancementDocs.

For the purpose of this special benchmark, we used a
point-only subset of the real-world and synthetic work-
loads of Geographica 2.

• In [17], we chose to test three well-known open-source
RDF stores that provide GeoSPARQL functionality,
namely Strabon, Parliament and uSeekM. In this bench-
mark, we also include a geospatial RDF solution offered
as option of one of the leading proprietary RDBMSs,
called here System X7, the free edition of the GraphDB
v8.6.1 NoSQL graph database and the RDF4J v2.4.3
Semantic Framework.To the best of our knowledge, these
six systems are the only ones that currently provide sup-
port for a rich subset of GeoSPARQL and stSPARQL, so
we did not include any other system in the main part of
Geographica.

• The runtime of Geographica [17] supported systems that
are compliant with Sesame API. Geographica 2 provides
an additional runtime which allows easy integration of
systems that are compliant with the RDF4J API.

The rest of the paper is organized as follows. Section 2
presents themain datamodels and query languages for linked
geospatial data. Section 3 presents previous related work.
Section 4 presents well-known geospatial RDF stores and
compares them in terms of geospatial functionality that they
offer. The benchmark is described in Sect. 5 and its results
are discussed in Sect. 6. Section 7 discusses the performance
of generic RDF stores with limited geospatial capabilities
in comparison with geospatial RDF stores providing full
geospatial capabilities. Finally, the contributions of the paper
are summarized and future work is discussed in Sect. 8.

2 Background

In this section, we introduce GeoSPARQL and stRDF/
stSPARQL. GeoSPARQL allows the representation of geo-
graphic data in RDF and querying it using an extension of
SPARQL. stRDF is an extension of RDF that allows the rep-
resentation of geospatial linked data that evolves over time.
stSPARQL is an extension of SPARQL that permits query-
ing stRDF data taking into account its spatial and temporal
dimension.

7 Two proprietary RDF stores are used in this manuscript. We refer to
them as System X and System Y since their licenses do not allow us to
reveal their names. However, they are still included in our experiments,
because it is interesting to have a comparison between open-source
systems, that are usually developed in academic environments and focus
on extending the state of the art and proprietary systems, that mainly
focus on serving real applications well.

123

http://geographica2.di.uoa.gr/
http://vos.openlinksw.com/owiki/wiki/VOS/VirtGeoSPARQLEnhancementDocs
http://vos.openlinksw.com/owiki/wiki/VOS/VirtGeoSPARQLEnhancementDocs

192 T. Ioannidis et al.

2.1 GeoSPARQL

GeoSPARQL is a standard, developed by the OGC, that
defines a core RDF/OWL vocabulary and a set of SPARQL
extension functions for representing and querying linked
geospatial data. GeoSPARQL follows a modular architec-
ture, shown in Fig. 1, that defines six conformance classes.
Each implementation may support one or more conformance
classes.

The Core conformance class defines a basic RDFS/OWL
vocabulary for representing geospatial data. This vocabu-
lary includes the class SpatialObject and its subclasses
Feature and Geometry. Features can have geometries
and geometries can be encoded by the OGC standards WKT
and GML. The Topology Vocabulary Extension defines a
vocabulary for asserting topological relations between spa-
tial objects. This conformance class is parameterized so that
an implementation can use any of the well-known topologi-
cal relation families: RCC8 [20], Egenhofer [21], and OGC
SFA. The Geometry Extension conformance class defines a
vocabulary for asserting information about geometry data
and query functions operating on geometry data. This class
defines the appropriate RDFS datatypes for asserting geom-
etry data as literal values. A geometry literal can be encoded
in WKT or in GML; this is defined by a parameter of the
conformance class. The Geometry Extension conformance
class also defines non-topological functions that operate
on geometry data and return geometry or numeric data
(e.g., the distance between two geometries). The Geometry
Topology Extension conformance class defines topological
query functions that operate between two geometry liter-
als and return if a topological relation holds between their
corresponding geometries. According to parameters of the
Geometry Topology Extension, GeoSPARQL implementa-
tions can support any of the geometry serializations (WKT,
GML) and any of the aforementioned topology relation
families (RCC8, Egenhofer, OGC SFA). The RDFS Entail-
ment Extension conformance class defines a mechanism for
matching implicitly derived RDF triples in GeoSPARQL
queries. Finally, the Query Rewrite Extension conformance
class defines rules to support implication of direct topo-
logical predicates between features based on the geome-
tries of these features. This is achieved by a set of RIF
rules that expand direct topological predicates (from Topol-
ogy vocabulary) into a series of triple patterns and an
invocation of the corresponding extension function (from
Geometry Topology vocabulary). For example, a RIF rule
asserts that if the function geof:sfIntersects holds
between two geometry literals then the topological relation
geo:sfIntersects holds among the corresponding fea-
tures. Using these rules, queries that contain a topological
relation between two variables standing for features (e.g., ?x
geo:sfIntersects ?y) can be rewritten into queries

Fig. 1 Conformance class dependency graph of GeoSPARQL

that contain topological functions standing for two literals
(e.g., geof:sfIntersects(?f1, ?f2)).

2.2 stRDF and stSPARQL

stRDF and stSPARQL are extensions of RDF and SPARQL
that allow the representation and querying of linked spa-
tiotemporal data. stSPARQL has been developed by our
group at the same time as GeoSPARQL, and has resulted in
a similar representation model. It follows the categorization
for feature characteristics, proposed in Perry’s PhD the-
sis [22]: spatial, temporal and the non-spatiotemporal
attributes which are named thematic. Similar categoriza-
tion appears in GIS-related papers such as [23]. stSPARQL,
like GeoSPARQL, defines two datatypes (strdf:WKT,
strdf:GML) for encoding geometry literals and a set of
functions that correspond to the functions of the Geom-
etry extension and the Geometry Topology extension of
GeoSPARQL. In addition to these functions, stSPARQL
defines directional relation functions that are based on the
minimum bounding boxes of two geometries (e.g., if a geom-
etry is strictly on the left of another geometry) and spatial
aggregate functions that operate on sets of geometries and
compute new geometry objects (e.g., the union of a set of
geometries). Note that both GeoSPARQL and stSPARQL
include functions that compute the union of two given geom-
etry literals, stSPARQL additionally includes a function
computes the union of a given set of geometry literals.

In addition to its geospatial features, stRDF has a temporal
component which can represent the valid time of a triple and
stSPARQL defines a set of temporal functions for querying
the valid time of triples. The temporal component of stRDF
and stSPARQL are described in [3] and it will not be consid-
ered in the rest of the paper.

2.3 Selection of features to test

In the Geographica 2 benchmark, an effort has been made
to test against a fusion of non-redundant features from both
geospatial extensions of SPARQL, while taking into consid-

123

Evaluating Geospatial RDF Stores Using the Benchmark Geographica 2 193

eration some common design choices of the majority of the
systems under test.

The developers of several RDF stores, when faced with
optional requirements or multiple equivalent alternatives of
the GeoSPARQL standard, they initially settle for a minimal
set of features that provide adequate spatial functionality.
Such dilemmas are, the support for multiple CRSs in the
WKT serialization, or the three topological relation fami-
lies (OGC SFA, Egenhofer, RCC8) for spatial relations and
functions. It is common ground that several RDF stores
implement only the WKT serialization of geospatial data
with support just for the default CRS84 and realize only the
functions of the Simple Features topological relation family.
Anyway, the GeoSPARQL standard also provides an equiva-
lence matrix between the three topological relation families,
which allows an implementer to consider using only one of
them, without some loss of expressivity or functionality.

With this in mind and since GeoSPARQL is the widely
accepted standard, the benchmark experiments focus on
features included in the Core, Geometry Extension and
Geometry Topology Extension conformance classes, with
the addition of the very useful aggregate functions offered
by stSPARQL. Datasets and querysets are using the WKT
serializationwith the defaultCRS84andonly theSimpleFea-
tures set of functions is tested. The Topology Vocabulary and
Query Rewrite conformance classes are rarely implemented
by the majority of the systems and are not considered in this
version of the benchmark. The RDFS Entailment Extension
albeit supported by a number of systems, is intentionally not
tested since: (i) it is not the primary focus of this work and (ii)
it would place additional computing resource requirements
to the very demanding task of querying large geospatial data
sources.

3 RelatedWork

This section discusses the most important benchmarks that
are relevant to Geographica. First benchmarks for SPARQL
query processing are presented, followed by those from the
geospatial relational databases area and, finally, we con-
cluded with benchmarks for querying linked geospatial data.

3.1 Benchmarks for SPARQL Query Processing

Awell-known benchmark for SemanticWeb knowledge base
systems is the Lehigh University Benchmark (LUBM) [24].
It tests scalability, efficiency and reasoning capabilities of
memory-based systems and systems with persistent stor-
age. Concerning reasoning capabilities, three degrees are
tested: (i) RDFS reasoning, (ii) partial OWL reasoning, and
(iii) complete or almost complete OWL Lite reasoning. The
authors propose a benchmark with fourteen queries over a

large dataset that commits to an ontology describing the
university domain. This is one of the first benchmarks for
SPARQL query processing and its design is based on tech-
niques applied to older database benchmarks. For example,
its data are synthetically generated so that the data size can
be arbitrarily large and the selectivity and output size of each
query can be predefined. Finally, LUBM uses a set of prede-
fined performancemetrics, namely load time, repository size,
and query response time and it also suggests two newmetrics
about completeness and soundness of the query evaluations.

EvoGen [25], a LUBM derivative, is a synthetic bench-
mark for evolving RDF. It includes configurable schema
evolution, change logging and representation between ver-
sions, as well as query workload generation functionality.
EvoGen extends LUBM’s ontology with 10 new classes and
19 new properties and adds queries commonly performed
in evolving settings, such as temporal querying, queries on
changes and longitudinal queries across versions. The imple-
mented change logging mechanism produces logs of the
changes between consecutive versions following the repre-
sentational schema of the change ontology.

The SPARQL performance benchmark (SP2Bench) [26]
is an RDF benchmark directed toward a comprehensive per-
formance evaluation of RDF stores. The authors of this
benchmark cover a wide spectrum of SPARQL features.
They define queries with various SPARQL operators (e.g.,
UNION, OPTIONAL, FILTER) and solution modifiers (e.g.,
DISTINCT, ORDER BY, LIMIT) and they also test negation
as failure queries. Queries are grouped in two categories: (i)
long path chains and (ii) bushy patterns and they are designed
so they are amenable to SPARQL optimization techniques
(e.g., triple reordering, FILTER pushing). SP2Bench defines
a data generator that produces datasets resembling the DBLP
dataset.

Another SPARQL query processing benchmark is the
Berlin SPARQL Benchmark (BSBM) [27]. This bench-
mark compares the performance of native RDF stores with
the performance of SPARQL-to-SQL rewriters. BSBM uses
synthetic data that describes an e-commerce use case. Dif-
ferent vendors offer products and reviews have been posted
about these products by consumers. Unlike the systematic
approach of SP2Bench, the Berlin SPARQLBenchmark uses
an application-based query mix that emulates the search and
navigation pattern of a consumer looking for a product. Thus,
the query mix covers an adequate range of SPARQL features
but not all of them. Since BSBM is application-oriented, it
uses metrics defined for application scenarios and not for
single queries, such as query mixes per hour (QMpH) and
queries per second (QpS).

TheDBpedia SPARQLbenchmark (DBPSB) [28] follows
a different approach and proposes a generic SPARQL bench-
mark creation procedure which is based on real application
data and query logs. DBPSB proposes a technique to create

123

194 T. Ioannidis et al.

data of arbitrary size that resembles real data. This technique
enables increasingor decreasing the size of a realRDFdataset
so that generated data retains the basic network characteris-
tics (in and out degree) and other characteristics, such as the
number of classes and properties of the original data. Also,
DBPSB proposes a query analysis technique to extract rep-
resentative queries of a set of real queries. The techniques of
DBPSB were applied in the use case of DBpedia8 but they
can be applied to any dataset and query log to produce a use
case-specific benchmark.

TheWaterlooSPARQLDiversityTest Suite (WatDiv) [29]
provides stress testing tools forRDF systems that face diverse
queries and varied workloads. It defines two classes of
query features based on which it discusses the variability
of the datasets and workloads in a SPARQL benchmark:
(i) structural features such as triple pattern count, join
vertex count, degree and type and (ii) data-driven fea-
tures such as result cardinality, filtered triple pattern (f-TP)
selectivity, basic graph patterns (BGPs) restricted f-TP selec-
tivity and join-restricted f-TP selectivity. The second part
of [29] includes an experimental evaluation of other SPARQL
benchmarks with emphasis on identifying test cases that are
not handled by these benchmarks. The last part of [29] is
an experimental evaluation of five RDF stores of different
architectures using WatDiv, demonstrating that none of the
systems is sufficiently robust across a diverse set of queries.

The Social Network Benchmark (SNB) [30] is the first
benchmark issued by the Linked Data Benchmark Council
(LDBC),9 an independent EU sponsored authority respon-
sible for specifying benchmarks, benchmarking procedures,
verifying and publishing benchmark results. SNB targets all
types of graph database systems, such as property graphs and
RDF stores. Its core component is a synthetic dataset mod-
eling a Facebook-like social network, consisting of persons,
their friendship connections and messages posted in forums.
It also comprises three different workloads, which all use
the common dataset, basically making available three sepa-
rate SNB benchmarks: SNB-Interactive, SNB-BI and
SNB-Algorithms. LDBC has released a draft version of
SNB-Interactive10 and a first stab of the SNB-BI formulated
in SPARQL which is tested against OpenLink Virtuoso. The
SNB-Algorithms workload is not available yet. The SNB-
Interactive queryset is defined in plain text, but example
implementations exist in Cypher, SPARQL and SQL. It is an
OLTP-like workload which measures a system’s throughput
using a mixed set of simple and complex queries along with
concurrent updates. Key contributions of SNB-Interactive
are: (i) the DATAGEN synthetic graph generator produces
scalable datasets, through a scaling factor, which at the same

8 https://wiki.dbpedia.org/.
9 http://ldbcouncil.org/.
10 http://ldbcouncil.org/benchmarks/snb.

time are more realistic than previous generators, by employ-
ing skewed value distributions, and exploiting plausible
correlations between property values and graph structures,
(ii) the expert and user community-driven choke-point
workload design which helps identify important technical
challenges for query optimization, (iii) the query driver man-
ages to generate a highly parallel workload to achieve high
throughput, on a difficult to partition dataset with a com-
plex structure of connected components, (iv) the introduction
of the parameter curation benchmarking concept,
which basically involves using datamining techniques during
data generation to find good query substitution parameters
with equivalent behavior.

LDBC also issued the first draft of their Semantic Publish-
ing Benchmark (SPB v2.0),11 an RDF focused benchmark
inspired by theMedia/Publishing industry.More specifically,
British Broadcasting Corporation (BBC) helped define this
benchmark and also contributed with workloads, ontologies
and data. Currently, the coordinator and main contributor for
SPB is Ontotext12 company, developer of the well-known
GraphDB semantic store, and the Institute of Computer Sci-
ence (ICS) of the Foundation for Research and Technology
Hellas (FORTH).13 The benchmark considers large volume
of streaming content and assumes that an RDF database
is used to store both the reference knowledge and related
metadata. The main operations on the repository are: (i)
updates, that add newmetadata or alter the repository, and (ii)
aggregation queries, that retrieve content according to vari-
ous criteria. The benchmark is very much based upon the
BBC use-case and places a strict requirement that the engine
should handle instantly large number of updates in parallel
withmassive amount of aggregation queries. Toproperly exe-
cute SPB v2.0, an RDF store has to also satisfy the following
requirements: support for storage of RDF data, support for
RDF named graphs, loading of data in one of the standard
RDF serializations (Turtle for ontologies, N-Quads for data),
support for standards SPARQL 1.1 Query/Update/Protocol,
RDFS v1.0 and the RL profile of Web Ontology Language
(OWL2). SPB provides a data generator which produces
scalable in size synthetic data based on ontologies, refer-
ence and previously generated data. Following the logic
of SNB, SPB identifies eleven choke points (CP1–CP11),
such asCP1:join ordering andCP8:geo-spatial
predicates, which, respectively, test the ability of RDF
store engines to decide which type of join to be used based on
cardinality constraints and the ability to handle queries about
entitieswithin a geospatial range. The two types ofworkloads
offered are: basic and advanced. The basic workload

11 https://github.com/ldbc/ldbc_spb_bm_2.0/blob/master/doc/
LDBC_SPB_v2.0.docx?raw=true.
12 https://www.ontotext.com/.
13 https://www.ics.forth.gr/.

123

https://wiki.dbpedia.org/
http://ldbcouncil.org/
http://ldbcouncil.org/benchmarks/snb
https://github.com/ldbc/ldbc_spb_bm_2.0/blob/master/doc/LDBC_SPB_v2.0.docx?raw=true
https://github.com/ldbc/ldbc_spb_bm_2.0/blob/master/doc/LDBC_SPB_v2.0.docx?raw=true
https://www.ontotext.com/
https://www.ics.forth.gr/

Evaluating Geospatial RDF Stores Using the Benchmark Geographica 2 195

consists of 9 queries of types: search, aggregate, geospatial,
full-text search, time-range queries and the advanced work-
load adds: analytical, drill-down and faceted search queries,
a total of 25 queries. Each query definition includes the list
of choke points tested by it.

gMark [31] is a benchmark that concentrates on schema-
driven generation of graphs and queries. It is consid-
ered [32] the first domain-independent and query language-
independent synthetic graph benchmarking tool. Its design
aims to cover features and capabilities commonly found in
graph query processing, graph analytics, and schema valida-
tion. The authors identify the following three problem areas:
(i) there is no community consensus on schema formalisms
for graph data, (ii) the construction of synthetic workloads
with given selectivity and desired structural features is a very
difficult problem and (iii) the approaches, used by WatDiv
and LDBC, to perform selectivity estimation based on gen-
erated graph instances, does not scale for massive graphs
and queryworkloads. In gMark, graph instance generation
is leveraged through an optional graph configuration, which
includes the enumeration of predicates (i.e., edge labels) and
node types (i.e., node labels) occurring in the data, along
with their properties in generated instances. For query work-
load generation with desired behavior, gMark does not rely
on graph instances to generate them. Furthermore, the query
selectivity of the workload can be specified. gMark is inde-
pendent from particular query language syntaxes or systems
and supports various practical output formats for the graphs
and for the queries, including N-triples for data, and SQL,
SPARQL, Datalog and openCypher as concrete query lan-
guage syntaxes for queryworkloads. In the last part of [31], an
experimental comparison of selected state-of-the-art graph
query engines is performed, which reveals some limitations
of current graph query processing engines such as recursive
query processing.

3.2 Benchmarks for Geospatial Relational Databases

One of the first benchmarks for spatial databases is the
SEQUOIA benchmark [9] which focuses on Earth Science
use cases and which has been used for testing many Geo-
graphic InformationSystems (GIS). SEQUOIAuses real data
(satellite raster data, point locations of geographic features,
land use/land cover polygons and data about drainage net-
works covering the area of USA) and real queries. It also
considers different scales of datasets and use cases (e.g., local
or national scale). The SEQUOIA benchmark is formed by
11 queries trying to cover the most usual tasks in Earth Sci-
ence, like (i) data loading and building of respective indexes,
(ii) raster data management, (iii) selections based on spatial
and non-spatial filters, (iv) spatial joins, (v) and a recursive
spatial query.

SEQUOIA was later extended by [10] to evaluate the
geospatial DBMS Paradise. In [10], DeWitt et al. study tra-
ditional database techniques and how these techniques can
be used (or extended to be used) in geospatial query process-
ing. SEQUOIA takes into account only points and polygons,
while [10] also tests polylines and circles and broadens the
tested functionality (e.g., it tests spatial aggregate functions).
Finally, a methodology, called resolution scaleup, is applied
to scale up geospatial data. This technique simulates the
zoom-in operation of map applications. Existing spatial fea-
tures are represented in more detail by adding more points
to their boundaries, and at the same time new smaller spatial
features appear around the existing ones.

Rather than focusing on evaluating performance of sys-
tems, the Á La Carte [11] benchmark compares performance
of spatial join techniques. In particular, [11] tests the fol-
lowing algorithms: nested loops, scan and index, and syn-
chronized tree traversal. A data generator is presented that
generates rectangles with edges parallel to the axes. The Á
La Carte generator enables data of arbitrary size that can
follow various statistical distributions (uniform, normal and
exponential). This allows for the generation of realistic data
in terms of spatial distribution. However, the fact that gener-
ated rectangles have edges parallel to the axes does not allow
testing the full process of spatial evaluation in a DBMS. The
usual workflow of a spatial evaluation is composed of two
steps. The first step utilizes a spatial index, which is built
according to the minimum bounding boxes of geometries, to
find candidate results. This step is called filtering step. The
second step, which is called refinement step, tests the actual
geometries and discards false positives generated by the fil-
tering step. Using rectangles with edges parallel to the axes
means that their actual geometries are identical to their min-
imum bounding boxes. So, the exact answer is already found
by the filtering step that does not generate any false positive.

In order to generate data and conduct experiments, Á La
Carte defines some statistical models for the generator that
resembles typical cartographic applications. These models
are the following: (i) “Biotopes” simulates a biotope map
where there are few large rectangles uniformly distributed
that may overlap but not to a large degree, (ii) “Cities” sim-
ulates the distribution of cities and it is composed of many
small rectangles (modeled as squares) uniformly distributed
around the map, finally, (iii) a hybrid model is defined that
resembles a word map. This model comprises two nested
submodels. First, a “Biotopes” model creates the continents
of the world and inside each continent there are rectangles
modeled by the “Cities” model.

A more complex data generator is used in VESPA [12] to
compare PostgreSQLwith the Rock&Roll deductive object-
oriented database system. The data generator of VESPA
produces spatial features that resemble real maps. The spatial
features that are produced by the VESPA generator represent

123

196 T. Ioannidis et al.

land ownership, states, land use, roads, streams, gas lines and
points of interest. They are uniformly distributed, in contrast
to spatial features generated by the Á La Carte generator, but
they are more complex than simple rectangles. The dataset
consists not only of polygons but also of lines and points. The
produced polygons are hexagons and triangles, so their edges
are not parallel to the axes and both filtering and refinement
step of spatial joins can be tested. Apart from spatial selec-
tion and spatial analysis queries VESPA also tests updates
and spatial aggregate queries which are not tested by previ-
ous benchmarks.

Finally, a more generic benchmark is Jackpine [13]. Jack-
pine defines two kinds of benchmarking, micro and macro.
Micro-benchmarking tests spatial functions in isolation, in
order to evaluate the performance of systems in evaluating
spatial selection, spatial join, and spatial analysis queries.
Macro-benchmarking defines real application scenarios as
series of queries and tests the performance of systems for
evaluating the entire series of queries for each scenario.
Tested scenarios range from simple ones, like geocoding and
reverse geocoding, or more complex scenarios like flood risk
and toxic spill analysis.

3.3 Benchmarks for Geospatial RDF Stores

The first published benchmark for querying geospatial data
encoded in RDF has been proposed in [15]. In [15] extends
LUBM to include spatial entities and test the performance of
spatially enabled RDF stores. The data generator of LUBM
is extended so that each university, department or student
gets a spatial extent (rectangle or point). LUBM queries
are extended to cover four primary types of spatial queries,
namely spatial location queries, spatial range queries, spa-
tial join queries, and nearest-neighbor queries. Range queries
aim to test cases of various selectivity, while spatial joins aim
to test whether the query planner selects a good plan by tak-
ing into account the selectivity of the spatial and ontological
part of each query.

Another evaluation of geospatial RDF stores has been
done in [2]. In the context of presenting the geospatial RDF
store Strabon, experiments studying its performance were
conducted. Strabon is compared with Parliament [8] and an
implementation on top of RDF-3X [19] that supports spatial
queries. In this evaluation, more emphasis is given to study
Strabon itself rather than creating a benchmark for various
RDF stores. This is why different variations of Strabon are
studied in order to demonstrate advantages and disadvan-
tages of different implementation choices. Two workloads
are used: one based on real-world linked data and a synthetic
one. The first workload consists of eight real-world queries
that are either frequently used in Semantic Web applica-
tions (e.g., DBpedia and LinkedGeoData endpoints) or they
demonstrate the spatial extensions of Strabon. This work-

load contains thematic queries as well as spatial selection
and spatial join queries and queries using non-topological
spatial functions. The second workload uses a modified ver-
sion of the data generator of [19] to generate spatial datasets
with arbitrary size and predefined characteristics. The data
generator produces spatial data with point geometries and
only spatial query selections are studied.

Patroumpas et al. [16] have reviewed the state of the
art in managing geospatial data in the Semantic Web.
In [16] starts by presenting basic concepts and standards
(e.g., GeoSPARQL) about geospatial data in the Semantic
Web, then it presents the current state of the art geospa-
tial RDF stores and a qualitative comparison between them.
Finally, [16] presents and performs an evaluation of the
performance of the geospatial RDF stores. For this evalu-
ation, [16] uses data from OSM and it follows the guidelines
of [15] to define a query workload. This workload consists
of basic queries that cover the four primary types of spatial
queries that have been suggested in [15] and geospatial anal-
ysis queries that cover query types not studied in [15]. These
are queries that use non-topological spatial functions, com-
bine thematic and spatial criteria, and aggregate and negation
queries that use spatial filters.

Bellini andNesi [33] evaluate the needs and constraints for
RDF stores to be used for smart cities services. Several well-
known systems, including Virtuoso, GraphDB, Oracle, and
Stardog, are assessed for semantically enabled services. The
identified smart city requirements for RDF stores include: (i)
spatial indexing, like information near a given geographical
point, elements along a cycle path or inside a given polygonal
area, (ii) high spatial querying performance, (iii) support for
quads (named graph), to enable tracking the data source, with
metadata and associated licenses, (iv) SPARQL version 1.0
or 1.1, and (v) actively maintained source base. The included
benchmark found evidence of partial support of spatial oper-
ations in the majority of the RDF stores, and verified that
only few of them support GeoSPARQL adequately.

3.4 Benchmarks distilled

At this point, it is useful to contemplate about the common
requirements, techniques and metrics that got inherited and
evolved in the reviewed benchmarks. This will allow us to
more clearly envision which features a contemporary, com-
prehensive geospatial semantic benchmark should comprise.

Metrics. The metrics used in the most comprehensive or
generic benchmarks include: (i) load time, (ii) repository size,
(iii) cold and warm cache query response time for OLTP
applications and (iv) query throughput for real-world use
cases (OLAP applications).

Datasets. Synthetic datasets and generators are used
in all cases because they allow the creation of data of:
(i) arbitrary size and (ii) with the desired structural fea-

123

Evaluating Geospatial RDF Stores Using the Benchmark Geographica 2 197

tures (complexity) which in turn enables tests of controlled
selectivity. The attempts, though, to create real world-like
synthetic data by using various elaborately engineered dis-
tributions at the end cannot adequately substitute real-world
datasets even when accompanied by real-world inspired use
cases. Real world datasets are indispensable as they pro-
vide real data complexity, as in many thousands vertices
polygons and line strings instead of rectangles, hexagons
or simple sloped lines and points. At the same time, these
datasets give the opportunity of running real application
scenarios for demanding applications. Furthermore, by com-
bining and interlinking real-world datasets, with the same
spatial extent, we can increase even more the opportuni-
ties for hosting many more different application use cases.
Another real-world requirement for some of the datasets
under consideration is that they should contain quads (triples
with a named graph context), an aspect overlooked
by several benchmarks. Quads further complicate bench-
marking activities as it involves an extra context index,
which increases load time and repository size, but may favor
query execution times for appropriately formulated queries.

Querysets. The categories of spatial queries used,
include: (i) selections, (ii) joins, (iii) aggregates, (iv) near-
est neighbor, (v) distance. The cold or warm cache response
time of selections, joins and distance queries can be studied
in detail in controlled settings either with synthetic datasets
or within the context of a Micro-benchmark with small to
medium real-world datasets. On the other hand, the addition
of nearest-neighbor and aggregate queries comes natural to
a Macro-benchmark setting where we are primarily inter-
ested on the query throughput for a complex use case scenario
against real-world datasets. For datasets of quads, querysets
must be designed that can take advantage of the named graph
context.

Geographica 2 goes beyond the previously reviewed
benchmarks [15–17,33] as it is the first one that takes advan-
tage of themajority of the lessons learned by its predecessors.
It makes use of the most effective geospatial benchmark-
ing techniques for dataset and queryset creation and uses
appropriate metrics for evaluating geospatial RDF stores. It
contains a real-world workload that uses publicly available
linked geospatial data, covering a wide range of geom-
etry types (e.g., points, lines, polygons), some of which
are highly complex. Each dataset is loaded in a different
named graph and therefore allows for named graph query
patterns. The real-world workload follows the approach of
the benchmark Jackpine [13] and defines both a micro- and
a macro-benchmark. The micro-benchmark tests primitive
spatial functions. The spatial component of a system is tested
with queries that use non-topological functions, distance,
spatial selections, spatial joins and spatial aggregate func-
tions. The macro-benchmark tests performance of selected
RDF stores in typical application scenarios like geocoding,

reverse geocoding,map search andbrowsing and a real-world
use case from the EO domain. In these scenarios, a mix of
spatial nearest neighbor, spatial selections and spatial joins
are tested over multiple named graphs. The benchmark also
features a synthetic workload, which is based primarily on
VESPA [12] and [2,19]. It uses a generator that produces
synthetic datasets of various sizes and generates queries of
varying thematic and spatial selectivity. In this way, perfor-
mance of geospatial RDF stores can be studied in a closely
controlled environment.

4 A Functional Comparison of Geospatial
RDF Stores

This section presents all of the RDF stores known to the
authors that implement some geospatial functionality, and
compares them in terms of the geospatial functionality that
they offer.

Although GeoSPARQL is an OGC standard since 2012, it
is not fully supported by any geospatial RDF store. Usually
systems do not implement theQuery-Rewrite ExtensionAlso
there are someRDFstores that provide geospatial capabilities
which are limited to point geometries.

A common problem area is CRS support. A coordinate
reference system (CRS) also referred to as spatial reference
system (SRS) is a coordinate system related to an object (e.g.,
the Earth) through a datum which specifies its origin, scale,
and orientation. OGC is among the authorities that maintain
partial or non-fully compatible lists of CRSs and it provides
a set of CRS URIs.14 Another related organization is the
International Association ofOil andGas Producers (IOGP)15

which after the absorption of the European Petroleum Sur-
vey Group (EPSG) maintains the EPSG online registry of
geodetic parameters.16

Weorganize our comparison according to theGeoSPARQL
standard. We indicate which extensions of GeoSPARQL are
supported by each RDF store, which spatial relation classes
and geometry serialization formats are implemented, and
whether multiple CRSs are supported.We have also included
a selection of available geospatial extensions which are not
part of GeoSPARQL, such as the use of geometry literals
as objects in triple patterns, the spatial aggregate functions
definedby stSPARQL[2] and threemain spatial query classes
that are used for querying points. A tabular view of this com-
parison can be found in Table 1. The rest of the section
essentially explains the contents of Table 1 by discussing
in detail the functionality of each system.

14 http://www.opengis.net/def/crs/.
15 https://www.iogp.org/.
16 https://www.epsg-registry.org/.

123

http://www.opengis.net/def/crs/
https://www.iogp.org/
https://www.epsg-registry.org/

198 T. Ioannidis et al.

Table 1 Functionality of geospatial RDF stores

System Strabon uSeekM Parliament System X Virtuoso System Y GraphDB RDF4J

GeoSPARQL

Core Yes Yes Yes Yes No No Yes Yes

Topology vocabulary No Yes Yes Yes No No Yes No

Geometry Yes Partial Yes Yes No No Partial Partial

Geometry topology Yes Yes Yes Yes No No Yes Yes

Query rewrite No No No No No No No No

RDFS entailment No Yes Yes Yes No No Yes Yes

Relation classes

OGC-SFA Yes Yes Yes Yes No No Yes Yes

Egenhofer Yes Yes Yes No No No Yes Yes

RCC8 Yes Yes Yes No No No Yes Yes

Geometry serializations

WKT Yes Yes Yes Yes Partial No Yes Yes

GML Yes [GML-SF] No Yes [GML-SF] No No No No No

CRS support Yes No Yes Yes Partial Partial No No

Functionality not described by GeoSPARQL

Aggregation Yes No No No No No No No

Geometry literal as Object No No No No No No Yes No

Specific functionality for RDF stores with limited geospatial capabilities

Buffer Yes Yes Yes Yes Yes Yes Yes Yes

Distance Yes Yes Yes Yes Yes Yes Yes Yes

Bounding box Yes Yes Yes Yes Yes No Yes Yes

4.1 Geospatial RDF Stores that Conform to the
GeoSPARQL Standard

The system Strabon, which has been developed by our
group, is a storage and query evaluation module for stRDF/
stSPARQL [2]. Strabon extends the well-known RDF store
Sesame, allowing it to manage both thematic and spatial
data expressed in stRDF and stored in the PostGIS spa-
tially enabled DBMS. The version 3.2.9 of Strabon fully
implements stSPARQL,which provides themachinery of the
OGC SFA standard as well as spatial aggregation functions,
other useful spatial functions (e.g., directional relations) and
temporal extension functions. Given the close relationship
between stSPARQL and GeoSPARQL [6], it was straight-
forward to implement the relevant subset of GeoSPARQL
in Strabon. Strabon implements fully the Core, Geometry
Extension and Geometry Topology Extension components
of GeoSPARQL. It supports all three topological relation
classes defined by GeoSPARQL (OGC-SFA, Egenhofer,
RCC8), both geometry serializations (WKT, GML) andmul-
tiple CRS.

OpenSahara uSeekM17 also builds upon the RDF store
Sesame. uSeekM is based on the native store of Sesame to

17 https://opensahara.com/projects/useekm/.

store and query thematic information and it utilizes PostGIS
for storing and querying spatial data. uSeekM supports the
majority of GeoSPARQL, namely the GeoSPARQL Core,
TopologyVocabulary Extension, Geometry Topology Exten-
sion, RDFS Entailment Extension components and partially
the Geometry Extension. uSeekM implements all three rela-
tion family classes (OGC SFA, Egenhofer, RCC8). Since the
implementation does not use URIs for coordinate reference
systems, it does not conform to requirement 20,18 because
geof:getSRID() returns an integer instead of a URI,
and fails requirement 1219 of the GeoSPARQL standard,
because axis order interpretation in geo:wktLiterals
is fixed lon-lat/x-y ordering and not derived by the spatial
reference system of the literal. It supports only the WKT
serialization for geometries in WGS84 CRS. Therefore, the
Geometry Extension support is marked as partial. Finally,
uSeekM implements some extension functions (not defined
by GeoSPARQL), which compute, for example, the area of
a geometry and the shortest line between two geometries
accordingly. For spatial indexing, uSeekM utilizes a PostGIS
database to create an R-Tree-over-GiST [34]. The optimizer
will check whether the query evaluation will benefit from

18 https://opensahara.com/issues/675.
19 https://opensahara.com/issues/675.

123

https://opensahara.com/projects/useekm/
https://opensahara.com/issues/675
https://opensahara.com/issues/675

Evaluating Geospatial RDF Stores Using the Benchmark Geographica 2 199

the extra index and if so, the spatial part of the query is exe-
cuted by PostGIS using the R-Tree and the rest of the query
is executed by the native store of Sesame.

The RDF store Parliament20 [8] implements most of
the functionality of GeoSPARQL except the Query Rewrite
Extension. BothWKT and GML serializations are supported
aswell asmultipleCRSandall three topological relation fam-
ily classes. Unlike Strabon and uSeekM, which detect spatial
objects from their datatype, Parliamentworks as follows. The
RDF graph is scanned for triples that contain geo:asWKT
or geo:asGML predicates and for each matching triple Par-
liament creates a record for the geometry that is represented
in the object of the triple and inserts it into its spatial index (a
standard R-tree implementation). The query optimizer tries
to split SPARQL queries into multiple parts and produce
an optimized query plan between the spatial and thematic
components of the query. The current version of Parliament
(v2.7.4) concentrates on optimizing query patterns (using
the TopologyVocabulary extension of GeoSPARQL)while it
omits optimization for functions in the filter clause of a query.
However, when the topological comparisons are included in
the triple patterns as predicates instead of the corresponding
filter functions, the optimizer of Parliament takes both the-
matic and spatial dimensions into consideration in order to
produce a better plan.

The proprietary RDF store System X also supports
the GeoSPARQL standard for representing and querying
geospatial data in RDF. System X supports the Core, Topol-
ogy Vocabulary Extension, Geometry Extension, Geometry
Topology Extension, and RDFS Entailment Extension com-
ponents of GeoSPARQL. Multiple CRS are supported but
only theWKT geometry serialization and the OGCSFA rela-
tion family class are supported.Additionally, SystemXoffers
some specific functions that are not defined byGeoSPARQL,
such as computing the area or theminimum bounding rectan-
gle of a geometry and computing the unionof twogeometries.
SystemXuses anR-Tree to index spatial data.When creating
a spatial index, a user should define the CRS which will be
used to create the spatial index, the minimum and maximum
value for each dimension of data and a positive number indi-
cating howclose together two pointsmust be to be considered
the same point.

RDF4J21 is a Java-based RDF framework which pro-
vides for creating, parsing, reasoning and querying over
linked data. It offers two core store NoSQL implemen-
tations. The Memory Store allows the creation of a very
fast transactional RDF repository in main memory with
optional persistence to disk. A more scalable alternative
which allows the creation of transactional RDF repository
of up to a hundred millions of triples is the Native Store,

20 https://github.com/SemWebCentral/parliament.
21 http://rdf4j.org/.

which uses direct disk I/O for persistence. Many of the
systems examined in this paper have extended the precur-
sor of RDF4J, Sesame, which additionally offered out of
the box a third repository implementation, the RDBMS
Store supporting persistence in PostgreSQL and MySQL
database systems. Its architecture allows for constructing
repositories in a layered approach using Sails(Storage
And Inference Layer) adding storage and inference
options. Starting from October 2018 and version 2.4.3,
RDF4Joffers adequate geospatial functionality andGeoSPARQL
support through the use of LocationTech’s Spatial4J22 and
JTS23 libraries. RDF4J supports the Core, Geometry Topol-
ogy Extension, RDFS Entailment Extension and partially
the Geometry Extension components of GeoSPARQL. It
supports all three topological relation classes (OGC-SFA,
Egenhofer, RCC8), non-topological and common query
functions and the WKT geometry serialization. Repositories
can use the RDFS Inference Sail. Although GeoSPARQL
is supported natively on all types of store implementations,
geospatial querying on large datasets is advertised to benefit
when enabling the Lucene Sail which spatially indexes a cus-
tomizable list of fields that contain the http://www.opengis.
net/ont/geosparql#asWKT field by default.

GraphDB24 v8.6.1 (formerly known as OWLIM) is a
NoSQL semantic graph database enhanced with geospa-
tial capabilities and it is the flagship product of company
Ontotext. GraphDB is implemented as a SAIL (Storage
and Inference Layer) of the RDF4J Framework v2.3.2 and
can support billions of triples per server. The supported
semantics, which are RDF rule-entailment by default, can
be configured through ruleset definitions such as RDFS with
OWLLite andOWL2profilesRLandQL.GraphDBsupports
the Core, Topology Vocabulary Extension, Geometry Topol-
ogyExtension, andRDFSEntailmentExtension andpartially
the Geometry Extension components of GeoSPARQL. Only
theWKTgeometry serialization and the defaultWGS84CRS
are supported. It supports all three topological relation classes
(OGC SFA, Egenhofer, RCC8). A provided extension which
is not part of the GeoSPARQL specification is the ability
to use geometry literals in the object position of triple pat-
terns. For its geospatial capabilities, it relies on a uSeekM
implementation. The spatial index mechanism is controlled
through an optional GeoSPARQL-plugin. The plugin sup-
ports two approximate matching indexing algorithms, a quad
prefix tree [35], which is the default option, and a geohash
prefix tree [36], each one with a different range of accuracy
values. GraphDB also provides support for the WGS84 Geo
Positioning RDF vocabulary25 which allows for

22 https://projects.eclipse.org/projects/locationtech.spatial4j.
23 https://projects.eclipse.org/projects/locationtech.jts.
24 http://graphdb.ontotext.com/documentation/free/.
25 https://www.w3.org/2003/01/geo/wgs84_pos.

123

https://github.com/SemWebCentral/parliament
http://rdf4j.org/
http://www.opengis.net/ont/geosparql#asWKT
http://www.opengis.net/ont/geosparql#asWKT
https://projects.eclipse.org/projects/locationtech.spatial4j
https://projects.eclipse.org/projects/locationtech.jts
http://graphdb.ontotext.com/documentation/free/
https://www.w3.org/2003/01/geo/wgs84_pos

200 T. Ioannidis et al.

the representation of latitude, longitude and altitude of fea-
tures with geospatial index and basic operations such as
distance calculation between points, filtering points within
a rectangle, polygon or circle.

4.2 RDF Stores with Limited Geospatial Capabilities

OpenLink Virtuoso26 provides geospatial support for rep-
resenting and querying two-dimensional point geometries.
Virtuoso allows geometries to be expressed either inWGS84
or a flat two-dimensional plane. Virtuoso does not support
GeoSPARQL but it models geometries by typed literals
like stSPARQL and GeoSPARQL. For this purpose, it
introduces its own datatype virtrdf:Geometry. The
value of such a literal is the WKT serialization of a
point. Virtuoso offers vocabulary for a subset of the ISO
13249 SQL/MM standard [37] to perform geospatial queries
using SPARQL. For example, a user can ask for points
in a region utilizing SPARQL functions corresponding to
the st_intersects, st_contains, and st_within
SQL/MM functions. Note that these functions are extended
with a third argument (called precision) which specifies a
maximum distance between two points such that the points
will still be considered to overlap with each other. Thus,
these functions can support buffer queries exploiting the
spatial index of Virtuoso. Virtuoso utilizes an R-tree index
implemented as a table in the relational database compo-
nent of Virtuoso. It is worth mentioning that we also had the
opportunity to examine the development branch v7.2.6-rc1
of Virtuoso OpenSource Server available since early Octo-
ber 2018 which introduced some features of GeoSPARQL.
However, there was still not enough support for several of the
features that we evaluate in our benchmark, so we decided
that it would only be fair to continue our experiments, once
a more stable release of Virtuoso supporting these features
becomes available.

The proprietary RDF store System Y, also provides lim-
ited support for geospatial data. SystemYcan store and query
only points. Support is provided both for Cartesian coordi-
nate systems and for spherical coordinate systems but not
for standard geographic CRS, like those maintained by the
IOGP. System Y supports only range queries (points within
a rectangle or a circle) utilizing either property functions27

or a non-SPARQL compliant syntax.

26 http://virtuoso.openlinksw.com/.
27 https://www.w3.org/wiki/SPARQL/Extensions/
Computed_Properties.

5 The Benchmark Geographica 2

This section presents in detail the benchmark Geographica 2
which extends our earlier benchmark Geographica [17]. Sec-
tion 5.1 presents its first part (the real-world workload) while
Sect. 5.2 presents the second part (the synthetic workload).

5.1 Real-WorldWorkload

This workload aims at evaluating the efficiency of basic spa-
tial functions that a geospatial RDF store should offer. In
addition, this workload includes five real use case applica-
tion scenarios.

5.1.1 Datasets

In this section, we describe the datasets that we use for the
real-world workload. We have datasets that are part of the
LinkedOpenDataCloud, such as theGreek version ofDBpe-
dia and part of the GeoNames dataset referring to Greece.

DBpedia is a crowd-sourced knowledge base that contains
structured information from Wikipedia. DBpedia contains
also geographic information for its articles. For example, a
point position for a country, a city or a building.

GeoNames28 is a crowd-sourced geographical database
containing more than eleven million unique features. These
placenames are classified according to a two-level schema.
The first level uses very generic categories. For example,
a point may be characterized as a waterbody or some kind
of facility. The second level narrows down to very specific
categories. For example, a waterbody may be characterized
as a river, a lake, etc., while a facility may be characterized
as a bank, a hospital, etc. Each point in Geonames is a pair
of latitude and longitude in CRS WGS84. More complex
geometries (e.g., lines or polygons) are not included.

Since the spatial information of GeoNames and DBpedia
is limited to points, datasets with richer spatial information
are also used in Geographica 2. LinkedGeoData29 (LGD) is
a project which in 2009 made OSM data available on the
Web as linked data [38]. We have included a part of the OSM
dataset about the motorways and rivers of Greece.

We also chose to use a dataset containing geometries of
Greek municipalities defined by the Greek Administrative
Geography30 (GAG) and the CORINE Land Cover31 (CLC)
dataset for Greece which have complex polygons. The CLC
dataset is made available by the European Environmental

28 http://www.geonames.org/.
29 http://linkedgeodata.org/.
30 http://www.linkedopendata.gr/dataset/greek-administrative-
geography/.
31 http://www.linkedopendata.gr/dataset/corine-land-cover-of-
greece.

123

http://virtuoso.openlinksw.com/
https://www.w3.org/wiki/SPARQL/Extensions/Computed_Properties
https://www.w3.org/wiki/SPARQL/Extensions/Computed_Properties
http://www.geonames.org/
http://linkedgeodata.org/
http://www.linkedopendata.gr/dataset/greek-administrative-geography/
http://www.linkedopendata.gr/dataset/greek-administrative-geography/
http://www.linkedopendata.gr/dataset/corine-land-cover-of-greece
http://www.linkedopendata.gr/dataset/corine-land-cover-of-greece

Evaluating Geospatial RDF Stores Using the Benchmark Geographica 2 201

Agency for the whole of Europe and contains data regarding
the land cover of European countries. Both of these datasets
with information about Greece have been published as linked
data by us in the context of the European project TELEIOS.32

Finally, Geographica 2 includes a dataset containing poly-
gons that represent wild-fire hotspots. This dataset has been
produced by the National Observatory of Athens (NOA) in
the context of project TELEIOS by processing appropriate
satellite images as described in [39]. Each dataset is loaded
in a separate named graph so that each query access only the
part of the dataset that is needed.

All the aforementioned datasets were loaded in a com-
mon repository for each RDF store and they were used for
all experiments of the real-world workload of Geograph-
ica apart from the “Geocoding” scenario, that is described
in Sect. 5.1.3. This scenario requires detailed information
about street addresses (e.g., zip code and building number)
which is not provided in any of the above datasets. So, the
“Geocoding” scenario uses data about the street network
of New York that is publicly available as part of TIGER
(Topologically Integrated Geographic Encoding and Refer-
encing) products33 produced by the US Census Bureau.34

This dataset contains geometries of streets of New York
as linestrings and address information like street name, zip
code, building numbers, etc. It has been stored in a separate
repository for each RDF store and it was used only for the
“Geocoding” scenario.

Table 2 describes important characteristics of the datasets.
In this table, the size of each dataset is presented in MB and
the number of contained triples. The size in MB is calcu-
lated from uncompressed text files in N-Triples syntax. Also,
Table 2 presents the type and number of geometries that each
dataset contains. In parenthesis, we give the maximum, min-
imum and average number of points per geometry to give an
insight of the geometry complexity for each dataset.

5.1.2 Micro-benchmark

Themicro-benchmark aims at testing the efficiency of primi-
tive spatial functions in state of the art geospatial RDF stores.
Thus, it uses simple SPARQL queries which consist of one
or two triple patterns and a spatial function. In this way,
the spatial module is stressed instead of the basic triple pat-
tern matching module of RDF stores. First, simple spatial
selections are tested. Next, more complex operations such as
spatial joins are tested. Spatial joins are tested using the topo-
logical relations defined in stSPARQL [2] and the Geometry
Topology Extension component of GeoSPARQL.

32 http://www.earthobservatory.eu/.
33 http://www.census.gov/geo/maps-data/data/tiger.html.
34 http://www.census.gov/. Ta

bl
e
2

D
at
as
et
ch
ar
ac
te
ri
st
ic
s

D
at
as
et
s

Si
ze

T
ri
pl
es

#
of

po
in
ts

#
of

L
in
es

(m
ax
/m

in
/a
vg

#
of

po
in
ts
pe
r
lin

e)
#
of

Po
ly
go

ns
(m

ax
/m

in
/a
vg

#
of

po
in
ts
pe
r
po
ly
go
n)

G
A
G

33
M
B

4K
–

–
32
5
(1
4K

/4
/1
92
)

C
L
C

40
1
M
B

63
0K

–
–

45
K
(1
5K

/4
/1
71
)

O
SM

(o
nl
y
w
ay
s)

29
M
B

15
0K

–
12
K
(1
.6
K
/2
/2
1)

–

G
eo
N
am

es
45

M
B

40
0K

22
K

–
–

D
B
pe
di
a

89
M
B

43
0K

8K
–

–

H
ot
sp
ot
s

90
M
B

45
0K

–
–

37
K
(4
/4
/4
)

C
en
su
s

3.
3
G
B

23
M

–
89
4K

(2
62
/2
/6
)

–

123

http://www.earthobservatory.eu/
http://www.census.gov/geo/maps-data/data/tiger.html
http://www.census.gov/

202 T. Ioannidis et al.

Table 3 Topological relations
tested in (a) spatial selections
and (b) spatial joins

Query point Query line Query polygon

(a)

Point (GeoNames) Within buffer – Within

In distance Disjoint

Line (OSM) – Equals Intersects

Crosses Disjoint

Polygon (CLC) – Intersects Overlaps

(GAG) Equals

Point (DBpedia) Line (OSM) Polygon (GAG)

(b)

Point (GeoNames) Equals Intersects Intersects

Within

Line (OSM) – – Intersects

Within

Crosses

Polygon(CLC) – – Within

(CLC) Overlaps

(GAG) Touches

Table 3 summarizes the combinations between topological
relations and geometry types that are tested by Geographica
2. In Table 3a, columns indicate the geometry type of the
constant used for the spatial selections and rows indicate the
geometry type of retrieved spatial features. In Table 3b, both
columns and rows indicate the geometry types that participate
in each join query. In parenthesis, the datasets that participate
in every query are reported. The possible combinations of
geometry types and topological relations are too many and
it would be pointless to exhaustively test all of them. Thus,
we selected an interesting part of these combinations based
on previous work (e.g., [13]) and our experience in building
geographical applications. All topological functions defined
by the OGC SFA relation family and every geometry type
combination are included at least once. Mainly, we focus
on topological relations including polygons since polygon is
the most complex 2-D geometry type which can form many
topological relations and is the most demanding geometry
type to handle.

Apart from topological relations, the micro-benchmark
tests non-topological functions (e.g.,geof:buffer), defined
by theGeometryExtension ofGeoSPARQL,which construct
new geometry objects from existing ones. Additionally, a
metric function for evaluating the area of a polygon is tested.
This function is not defined by GeoSPARQL, but it is sup-
ported by almost all tested geospatial RDF stores (Strabon,
uSeekM, System X, GraphDB). The aggregate functions
strdf:extent, and strdf:union of stSPARQL are
also included in the evaluation although the GeoSPARQL
standard does not define them. We include aggregate func-

tions in Geographica 2 since they are present in all geospatial
RDBMS, and we found them very useful in EO applications
in the context of the project TELEIOS [39]. A short descrip-
tion of queries used in the micro-benchmark can be found in
Table 4 and the full SPARQL queries can be found online.35

5.1.3 Macro-benchmark

The macro-benchmark tests the performance of the selected
RDF stores in three typical application scenarios, namely
“Geocoding,” “Reverse Geocoding,” and “Map Search and
Browsing” and twomore sophisticated scenarios from theEO
domain, namely “Rapid Mapping for Fire Monitoring” and
“Computing Statistics of Geospatial Datasets.” Descriptions
of the queries associated with these scenarios can be found
in Table 5 and SPARQL templates used to generate these
queries are provided on the site of the benchmark.

Geocoding. Geocoding is the process of finding the coor-
dinates of a feature based on other geographic data, such
as street address, house number, city and country. The sim-
plest method of geocoding is called address geocoding and
is applied to street network data that contain street segments
and address ranges for each segment. The address range of a
street segment is theminimum andmaximumhouse numbers
that are attributed to this street segment. Usually, two address
ranges are assigned to a street segment, one for its left side
and one for its right one. A geocoding query retrieves a street
segment based on thematic criteria and then interpolates its

35 http://geographica.di.uoa.gr/.

123

http://geographica.di.uoa.gr/

Evaluating Geospatial RDF Stores Using the Benchmark Geographica 2 203

Table 4 Queries of the micro-benchmark

Query Operation Description

Non-topological construct functions

Q1 Boundary Construct the boundary of all polygons of CLC

Q2 Envelope Construct the envelope of all polygons of CLC

Q3 Convex Hull Construct the convex hull of all polygons of CLC

Q4 Buffer Construct the buffer of all points of GeoNames

Q5 Buffer Construct the buffer of all lines of OSM

Q6 Area Compute the area of all polygons of CLC

Spatial selections

Q7 Equals Find all lines of OSM that are spatially equal with a given line

Q8 Equals Find all polygons of GAG that are spatially equal a given polygon

Q9 Intersects Find all lines of OSM that spatially intersect with a given polygon

Q10 Intersects Find all polygons of CLC that spatially intersect with a given line

Q11 Overlaps Find all polygons of CLC that spatially overlap with a given polygon

Q12 Crosses Find all lines of OSM that spatially cross a given line

Q13 Within polygon Find all points of GeoNames that are contained in a given polygon

Q14 Within buffer of a point Find all points of GeoNames that are contained in the buffer of a given point

Q15 Near a point Find all points of GeoNames that are within specific distance from a given point

Q16 Disjoint Find all points of GeoNames that are spatially disjoint of a given polygon

Q17 Disjoint Find all lines of OSM that are spatially disjoint of a given polygon

Spatial joins

Q18 Equals Find all points of GeoNames that are spatially equal with a point of DBpedia

Q19 Intersects Find all points of GeoNames that spatially intersect a line of OSM

Q20 Intersects Find all points of GeoNames that spatially intersect a polygon of GAG

Q21 Intersects Find all lines of OSM that spatially intersect a polygon of GAG

Q22 Within Find all points of GeoNames that are within a polygon of GAG

Q23 Within Find all lines of OSM that are within a polygon of GAG

Q24 Within Find all polygons of CLC that are within a polygon of GAG

Q25 Crosses Find all lines of OSM that spatially cross a polygon of GAG

Q26 Touches Find all polygons of GAG that spatially touch other polygons of GAG

Q27 Overlaps Find all polygons of CLC that spatially overlap polygons of GAG

Aggregate functions

Q28 Extension Construct the extension of all polygons of GAG

Q29 Union Construct the union of all polygons of GAG

geometry within the address range to estimate the position
of the given house number. Imagine a user who is looking
for the Metropolitan Museum of Art in New York (address is
1000 5thAvenue, NewYork, 10028). A geocoding querywill
retrieve a street segment with name “5th Avenue,” ZIP code
equal to 10028 and an address range that contains even num-
bers including 1000 (e.g., from 998 to 1002). Then taking
into account the spatial extent and the minimum and maxi-
mum numbers of this segment an estimation of the position
of the museum in 5th Avenue is calculated and returned to
the user.

Because neither GeoSPARQL nor any geospatial RDF
store offer any sophisticated function for geometry inter-

polation, used queries perform a simple linear interpolation
between the start and end points of a street segment. This
scenario tests two identical queries that search the left and
right sides of streets and they return a point estimation for
the given address number and the actual geometry of the
street segment that is matched to the given address. This sce-
nario, uses the Census dataset that is described in Sect. 5.1.1.
Address ranges are published by Census Bureau as ESRI
shapefiles. Each shapefile contains a relational table and
each tuple of the table represents a street segment. The
main contents of the shapefile can be modeled as the rela-
tion: StreetSegment(geo GEOMETRY, fullname
VARCHAR, lfromhn NUMBER, ltohn NUMBER,

123

204 T. Ioannidis et al.

rfromhn NUMBER, rtohn NUMBER, parityl
VARCHAR, parityr VARCHAR, zipl VARCHAR,
zipr VARCHAR). In this relation, geo represents the
geometry of a road segment and fullname its name. The
minimum and maximum house numbers of the left (right)
side of a road are represented by lfromhn (rfromhn) and
ltohn (rtohn). One side of a road usually has only odd
or even house numbers. This is indicated by parityl and
parityr that take the values “O” for only odd numbers,
“E” for only even numbers, and “B” if a road side has both
odd and even house numbers. The zip code of a road side
is represented by zipl and zipr. Finally, in order to sim-
plify the linear interpolation computation, the following extra
attributes are added: minx NUMBER, maxx NUMBER,
miny NUMBER, maxy NUMBER. These attributes rep-
resent the coordinates of the extreme points of a road
segment. This data was transformed into RDF in a straight-
forward way. For each tuple of the table, an instance of
the class StreetSegment was generated and for every
column of the table a data property that associates the
StreetSegment instance with the relevant value from
the table column was created. This transformation resulted
in 23 million triples and 1 million linestrings. Also a list
of addresses composed by a street name, a zip code, and a
building number is exported. For each iteration of this sce-
nario, an address is randomly selected by this list, the queries
are produced using the corresponding SPARQL query tem-
plates, populating themwith the street name, the zip code, the
building number and the parity of the number (even or odd)
of the selected address and the estimated coordinates of this
address are retrieved. This random sequence of addresses is
generated using a pseudo-random number generator, which
is initialized with the same seed for every experiment run.
The same process is repeated for the initialization of each
iteration of the other scenarios thus, the experiments of the
macro-benchmark are repeatable.

Reverse geocoding Reverse geocoding is the process of
attributing a readable address or place name to a given
point. This scenario tests two nearest-neighbor querieswhich
retrieve the nearest point (from GeoNames) and the nearest
motorway (from OSM) of the given point. To achieve this
nearest-neighbor functionality the queries of this scenario
sort retrieved geometries by their distance to the given point
and select the first one. Every iteration of this scenario is
initialized with a given point. This point is picked at random
from a list of point coordinates extracted from GeoNames.

Map search and browsing This scenario demonstrates the
queries that are typically used in Web-based mapping appli-
cations. A user first searches for points of interest based on
thematic criteria. Then, he/she selects a specific point and
information about the area around it is retrieved (e.g., POI
and roads). Similarly to the “Reverse Geocoding” scenario,
this scenario is initialized by picking at random a toponym

from a list of toponyms extracted by GeoNames. The coor-
dinates of this toponym are retrieved by the first query of
the scenario. Then, these coordinates are used to create an
area of interest which is used by the remaining two queries.
These queries retrieve points of interest (from GeoNames)
and roads (from OSM) that lie inside this area.

Rapid mapping for wild fire monitoring This scenario
tests queries which retrieve map layers for creating a map
that can be used by decision makers tasked with the mon-
itoring of wild fires. This application has been studied in
detail in project TELEIOS [39] and the scenario covers its
core querying needs. First, spatial selections are used to
retrieve basic information of interest (e.g., roads, adminis-
trative areas, etc.). Second, more complex information can
be derived using spatial joins and non-topological functions.
For example, a user may be interested in those road seg-
ments damaged by fire. We point out that this scenario is
representative of many rapid mapping tasks encountered in
EO applications. Again, a list of areas, and the relevant time,
where fire occurred has been compiled by data from the real
fire monitoring application and used to randomly initialize
each iteration of this scenario.

Computing statistics of geospatial datasets This scenario
concentrates on generating a high level overview of geospa-
tial datasets by calculating summary statistics (e.g., how
manyfields are identified as agricultural by a dataset) and dis-
covering correlations between different datasets describing
the same geographical area (e.g., how many farms in Crete,
according to GeoNames, lie in areas that are identified as
agricultural areas by CLC). Since geospatial datasets are pro-
duced in many ways (e.g., contributed by users, produced by
experts using surveys, satellite images, aerial photographs,
etc.) such overviews and comparisons are meaningful and
interesting for specialists. An example of user-contributed
data is GeoNames. In this dataset, users provide information
about points on a map and a two level schema, with vari-
ous classes, is used to characterize these geographic features
with broad terms (e.g., administrative division, waterbody,
road) or more specific terms (e.g., village, lake, tunnel). On
the other hand, specialists, such as geographers and cartog-
raphers, have compiled information originated from aerial
photographs, topographic maps, satellite images, etc. to cre-
ate the CLC dataset, that provides information about the land
cover in European countries using a more targeted schema
with broader terms (e.g., urban fabric, agricultural area, etc.).
Despite the fact that these two datasets contain different
kinds of information, the comparison between them can
help to evaluate the consistency between these datasets in
order to validate the provided information. For example, a
useful query would be to discover the kind of geographic
features, according to GeoNames, that are contained in areas
of CLC with specific land use. It is expected that urban areas
should contain more features identified as roads, buildings,

123

Evaluating Geospatial RDF Stores Using the Benchmark Geographica 2 205

Table 5 Queries of the macro-benchmark

Query Description

Geocoding

G1 Geocode left side of roads (from Census)

G2 Geocode right side of roads (from Census)

Reverse geocoding

RG1 Find the closest populated place (from GeoNames)

RG2 Find the closest motorway (from OSM)

Map search and browsing

MSB1 Find the coordinates of a given POI based on thematic criteria (from GeoNames)

MSB2 Find other POI in a given bounding box around these coordinates (from GeoNames)

MSB3 Find roads in a given bounding box around these coordinates (from OSM)

Rapid mapping for fire monitoring

RM1 Find the land cover of areas inside a given bounding box (from CLC)

RM2 Find primary roads inside a given bounding box (from OSM)

RM3 Find municipality boundaries inside a given bounding box (from GAG)

RM4 Find detected hotspots inside a given bounding box (from Hotspots)

RM5 Find coniferous forests inside a given bounding box which are on fire (from CLC and Hotspots)

RM6 Find road segments inside a given bounding box which may be damaged by fire (from OSM and Hotspots)

Computing statistics of geospatial datasets

CS1 Compute how many instances of each CLC class exist in a municipality (from CLC)

CS2 Compute how many instances of each GeoNames class exist in a municipality (from GeoNames)

CS3 Compute how many instances of each GeoNames class exist in areas characterized as

“Continuous Urban Fabric” according to CLC (from GeoNames and CLC)

bus/metro stations, etc., while agricultural areas should con-
tain more geographic features identified as farms, irrigated
fields, plantations, etc. In project TELEIOS we investigated
such a scenario in collaboration with the German Aerospace
Center (DLR).

DLR used the knowledge discovery and data mining
framework for satellite images presented in [40] to iden-
tify semantic classes of geographic features (e.g., parking
area, port, etc.) in radar images from the archive of the
TerraSAR-X satellite. Since the knowledge discovery and
data mining framework relies on semi-supervised machine
learning techniques, the comparison of the DLR classifica-
tionwith classifications of other datasets can prove important
for the training phase of these techniques but also for evalu-
ating the effectiveness of the framework.

This scenario is composed of three queries that represent
two main query categories that were useful in the DLR use
case of the project TELEIOS. The first category (first level
statistics) computes statistics about one dataset (e.g., com-
pute the distribution of CLC classes in a city). The second
category (second level statistics) helps to investigate pos-
sible correlations between datasets by computing statistics
that involve two datasets (e.g., compute how many instances
of each GeoNames class lie in areas characterized as “con-
tinuous urban fabric” by CLC). Such queries are usually

applied for a specific area (e.g., a city, a country). A list of
the minimum bounding rectangles of all Greek municipali-
ties have been created and for each iteration of this scenario
the queries are applied to a randomly selected bounding rect-
angle. The main characteristic of these queries is that they
compute aggregations over spatial selections of a dataset and
spatial joins between two datasets. The results of the queries
can later be visualized (e.g., on a chart) to provide insights
on the correlations of these datasets. Since the classifica-
tion that was produced using the techniques developed by
DLR is not freely available, we decided to use the publicly
available dataset GeoNames to keep our experiments easily
reproducible. This scenario, also, compares GeoNames with
information from CLC which is also publicly available.

5.2 SyntheticWorkload

The synthetic workload of Geographica 2 relies on a gen-
erator that produces synthetic datasets of various sizes and
instantiates query templates that can produce queries with
varying thematic and spatial selectivity. In this way, the
evaluation of geospatial RDF stores can be performed in
a controlled environment in order to measure their perfor-
mance with great precision. The synthetic generator is a

123

206 T. Ioannidis et al.

component of Geographica 2 and is distributed freely as
open-source software.

5.2.1 Datasets

The workload generator produces synthetic datasets of arbi-
trary size that resemble features on amap. As inVESPA [12],
the produced datasets model the following geographic fea-
tures: country states, land ownership, roads
and points of interest. For each dataset, we devel-
oped a minimal ontology that follows a general version of
the schema of OSM and uses GeoSPARQL ontologies and
vocabularies. In Fig. 2a, the developed ontology for repre-
senting points of interest is presented. As in [2,19], every
feature (i.e., point of interest) is assigned a number of the-
matic tags each of which consists of a key-value pair of
strings. Each feature is tagged with key 1, every other fea-
ture with key 2, every fourth feature with key 4, etc. up to
key 2k, k ∈ N. This taggingmakes it possible to select differ-
ent parts of the entire dataset in a uniform way, and perform
queries of various thematic selectivities. For example, if we
selected all points of interest tagged with key 1, we would
retrieve all available points of interest, ifwe selected all points
of interest tagged with key 2, we would retrieve half of them,
etc.

Every feature has a spatial extent that is modeled using the
GeoSPARQL vocabulary. The spatial extent of the land own-
ership dataset constitutes a uniform grid of n × n hexagons.
The land ownership dataset forms the basis for the spatial
extent of all generated datasets since the size of each dataset
is given relatively to the number n. By modifying the num-
ber of hexagons along an axis, datasets of arbitrary size can
be produced. As we will see in the following section, this
enabled us to adjust the selectivity of the spatial predicates
appearing in queries in a uniform way too.

As in [12], the generated land ownership dataset con-
sists of n2 features with hexagonal spatial extent, where each
hexagon is placed uniformly on a n × n grid. The cardinal-
ity of the land ownerships is n2. The generated state dataset
consists of (n3)2 featureswith hexagonal spatial extent, where
each hexagon is placed uniformly on a n

3 × n
3 grid. The car-

dinality of the state geometries is (n3)2. The generated road
dataset consists of n features with sloping line geometries.
Half of the line geometries are roughly horizontal and the
other half are roughly vertical. Each line consists of n

2 + 1
line segments. The cardinality of the road geometries is n.
The generated point of interest dataset consists of n2 fea-
tures with point geometries which are uniformly placed on n
sloping, evenly spaced, parallel lines. The cardinality of the
point of interest geometries is n2. In Fig. 2b, a sample of the
generated geometries is presented. Large blue hexagons rep-
resent country states, land ownerships are depicted as small

red hexagons, horizontal and vertical gray sloping lines map
to roads and tiny green circles represent points of interest.

5.2.2 Queries

The syntheticworkload generator produces SPARQLqueries
corresponding to spatial selection and spatial joins using the
two query templates presented in Table 6.

The query template, presented in Table 6a, used for pro-
ducing SPARQL queries corresponding to spatial selections
is identical to the query template used in [2,19]. In this query
template, parameter THEMA is one of the values used when
assigning tags to a feature and parameter GEOM is the WKT
serialization of a rectangle. As in [2], we define the thematic
selectivity of a query as the fraction of the total features of a
dataset that are tagged with a key equal to THEMA. For exam-
ple, by altering the value of THEMA from 1 to 2, the thematic
selectivity of the query is reduced by selecting half the nodes
it previously did. We define the spatial selectivity of a query
as the fraction of the total features for which the topological
relations defined by parameter FUNCTION holds between
each of them and the rectangle defined by parameter GEOM.
By modifying the value of the parameter namespace ns we
specify the dataset and the corresponding type of geomet-
ric information that is examined by an instance of the query
template.

The query template, presented in Table 6b, used for
producing SPARQL queries corresponding to spatial joins
involves twodatasets identified by the values of the parameter
namespaces ns1 and ns2. In this query template, parame-
ters THEMA1 and THEMA2 control the thematic selectivity
of the query. The value of parameter FUNCTION defines the
topological relation that must hold between instances of the
two datasets that are involved in an instance of the query tem-
plate. Parameter FUNCTION can be instantiated with every
function defined in the Geometry Topology Extension com-
ponent of GeoSPARQL. In our experiments, as described in
Sect. 6.3.2, geof:sfIntersects, geof:sfTouches,
geof:sfWithin were used. For example, by instantiat-
ing the query template (b) with the values poi for ns1,
state for ns2, 1 for THEMA1, 2 for THEMA2 and
geof:sfWithin forFUNCTION,weget aSPARQLquery
that asks for all generated points of interest that are inside
half of the generated states.

These query templates allow us to generate SPARQL
queries with great diversity regarding their spatial and
thematic selectivity, thus stressing the optimizers of the
geospatial RDF stores that we test and evaluating their effec-
tiveness in identifying efficient query plans.

123

Evaluating Geospatial RDF Stores Using the Benchmark Geographica 2 207

Fig. 2 Synthetic dataset

(a) Ontology for Points of Interest (b) Visualization of the geometric part

of the synthetic dataset

Table 6 Query templates for
generating SPARQL queries
corresponding to (a) spatial
selections and (b) spatial joins

(a)

SELECT ?s
WHERE {
?s ns:hasGeometry/ns:asWKT ?g.
?s c:hasTag/ns:hasKey "THEMA".
FILTER(FUNCTION(?g, "GEOM"))}

(b)

SELECT ?s1 ?s2
WHERE {
?s1 ns1:hasGeometry/ns1:asWKT ?g1.
?s1 ns1:hasTag/ns1:hasKey "THEMA1".
?s2 ns2:hasGeometry/ns2:asWKT ?g2.
?s2 ns2:hasTag/ns2:hasKey "THEMA2".
FILTER(FUNCTION(?g1, ?g2))}

5.3 ScalabilityWorkload

Scalability has been an important metric regarding the eval-
uation of various kinds of systems, such as multiprocessor,
network, database and distributed systems [41–48]. In the
context of this paper, the scalability experiment aims at
discovering the limits of the systems under test as the num-
ber of triples in the dataset increase. Each system is tested
against six increasingly bigger, proper subsets of the ref-
erence dataset. For each system–dataset combination, we
measure (i) the repository size on disk, (ii) the bulk load-
ing time taking into consideration the limitations of loading
methods of each system and (iii) the response time in three
queries which represent a spatial selection, a heavy spatial
joinwith high spatial selectivity and a lighter spatial joinwith
lower spatial selectivity.

5.3.1 Datasets

Reference Dataset Characteristics. The reference dataset
created has an approximate size of 500 million triples. The
OSM data concern the following list of countries: Wales,
Scotland, Greece, Northern Ireland, England andGermany.
The feature classes selected are: buildings, landuse, natural,
places, points of interest, railways, roads, traffic, transport,
water and waterways. CLC-2012 is the 2012 version of the
CLCdataset presented earlier. Its data covers the 33European
Environment Agency member countries and six cooperating
countries.

Table 7 Scalability workload: reference dataset sources

Datasets Country Triples (M) Size (MB)

OSM Wales 6.56 1206

Scotland 15.78 2913

Greece 15.22 2877

N. Ireland 15.27 3240

England 104.21 18,965

Germany 326.48 59,002

CLC-2012 39 countries 16.60 11,283

Totals 483.52 99,486

The reference dataset has been assembled in the follow-
ing order: OSM (Wales, Scotland, Greece, Northern Ireland,
England, Germany), CLC-2012. Table 7 presents the order
and size of each part of the data comprising the reference
dataset.

ReferenceDatasetRequirements.For the scalability exper-
iment we needed to design a reference dataset from which
we could create six datasets of increasing size. This reference
dataset had to satisfy the following requirements: (1) contain
real-life data, (2) be realistically big for the given infras-
tructure, (3) contain features of multiple types of geometries
(points, lines, polygons), (4) have an as homogeneous feature
class distribution as possible among the six datasets, mean-
ing (4a) avoid having fewer feature classes in the smaller
datasets so that thematic filtering and by extension spatial
filtering would behave in a predictable and unbiased manner
and (4b) guarantee that as datasets become bigger, a similar

123

208 T. Ioannidis et al.

Table 8 Scalability datasets
basic characteristics

Dataset # of features # of points # of lines # of polygons

10K 1135 587 0 900

100K 12,166 6623 4239 2531

1M 118,161 46,781 45,238 29,200

10M 1,038,739 317,865 328,630 427,842

100M 10,259,959 904,677 2,058,386 7,553,440

500M 48,623,878 5,520,767 15,771,932 23,390,220

Table 9 Value distribution of lgo:has_code in scalability datasets

lgo:has_code lgo:has_fclass 10K 100K 1M 10M 100M 500M

1001 city 1 1 7 14 84 232

(used in SC2, SC3)

5601 railway_station 15 284 284 669 1194 8449

5621 bus_stop 4 4416 4416 22,337 35,555 503,455

5622 bus_station 36 46 46 98 425 2647

5641 taxi 7 43 43 217 886 5798

5661 ferry_terminal 4 18 18 153 583 1508

5601,5621,5622,5641,5661 66 4,807 4,807 23,488 38,643 521,857

(used in SC3)

(5001-5999) - {5260} transportation 66 4875 11,412 264,199 1978,632 16,151,652

(used in SC2) except parking

assortment of feature classes will be present, but with more
instances per class, (5) if possible, include data with highly
complex geometries to stress even more the store’s geospa-
tial capabilities, (6) the different data sources must have an
overlapping spatial extent in order for spatial comparisons to
be meaningful.

Reference dataset design and creation Requirements (1),
(2), (3) were met by a subset of the OSM dataset since it
is big enough, with real-life data and has features with all
the main types of geometries. Requirement (5) was met by
the CORINELandCover 2012 (CLC-2012)36 dataset since it
contains very detailed geometries such as burned forest areas.
The spatial extent of the OSM countries selected fall well
within the spatial extent of the CLC-2012 dataset, therefore
requirement (6) was satisfied. In order to meet requirement
(4), we had to also take into account that the OSMdataset has
the same feature classes per country, each data file describes
one feature class per country and that these files differ greatly
in size. Therefore, in order to satisfy (4b) we had to use the
OSM dataset first and the CLC-2012 second, and for OSM
we needed to start from countries with smaller number of
triples. In order to satisfy (4a)we had to sort the files of each
country based on their file size in ascending order before
concatenating them.

36 https://land.copernicus.eu/pan-european/corine-land-cover/clc-
2012.

Scalabilityworkload characteristics.By selecting six sub-
sets containing 10K, 100K, 1M, 10M, 100M and 500M
triples of the reference dataset, we created the corre-
sponding six scalability datasets which were used in the
scalability benchmark. The basic characteristics of the
datasets (e.g., features and geometries) are described in
Table 8. The property http://data.linkedeodata.eu/ontology#
has_code (lgo:has_code) was used for thematic filtering in
scalability join queries and Table 9 shows the distribution of
this property’s values and the value ranges used.

5.3.2 Queries

To find an appropriate set of queries we took into con-
sideration multiple factors, such as: (i) the performance of
the systems under test with the smaller workloads was pre-
sented in previous sections, which showed that only few
stores can perform well with spatial joins (see Sect. 6), (ii)
spatial joins are extremely heavy when it involves polygons,
(iii) the datasets from 10M triples onward contain a very
high number of polygon geometries, (iv) thematic selectiv-
ity should be used only if necessary and without breaking
the expected load scaling as datasets got bigger, (v) queries
should provide some narrative and avoid useless Cartesian
products between unrelated geometries.

Factors (i), (ii), (iii) led to the decision of introducing
thematic selectivity in the spatial join query to have some

123

https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012
https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012
http://data.linkedeodata.eu/ontology#has_code
http://data.linkedeodata.eu/ontology#has_code

Evaluating Geospatial RDF Stores Using the Benchmark Geographica 2 209

Table 10 Queries of the
scalability benchmark

Query Description

SC1 Find all geometries that intersect with the given polygon

SC2 Find all transportation-related features (except parkings) within
a city

SC3 Find all bus stops, bus stations, railway stations, taxis and ferry
terminals within a city

stores that could successfully run it. Factor (v) led to the
decision of having a fixed thematic selectivity of the first
part of the join to the feature class city (lgd:has_code
1001). Factor (iv) obliged us to find an appropriate feature
class range for the thematic selectivity of the second part
of the join, which was the group of feature classes that rep-
resent transportation (lgd:has_code 5001-5999) with
the exception of ’parking’ which had a high number of
instances. Even this thematic selectivity proved high enough
to create difficulties to some RDF stores and we provided
an additional lighter variant of the join query by limiting
the thematic selectivity of the second part of the join to
the following list of feature classes: railway_station (5601),
bus_stop (5621), bus_station (5622), taxi stands (5641) and
ferry_terminals (5661). These two join queries are SC2 and
SC3, respectively, and Table 9 presents a quantitative view
of the expected number of spatial operations for each join
query and each dataset.

SC1 query is a spatial selection that uses a polygon lit-
eral to filter geometries both from OSM and CLC-2012
datasets. Major cities of countries of the OSM dataset such
asAthens, Thessaloniki,Munich, London, Edinburgh, Belfast
and Cardiff were used as the polygon’s vertices, thus assert-
ing that it covers areas from all countries of the selected
OSM dataset and areas from an augmented set of countries
of the CLC-2012 dataset that include France, Italy, Austria,
Belgium, etc.

The queries used for this test are listed in Table 10.

5.3.3 Systems

For this test, we choose the following three systems to partic-
ipate: Strabon, GraphDB and RDF4J. Each of these systems
has: (a) adequate support of GeoSPARQL, (b) is a good
representative of a different design flavor of RDF store,
and (c) is actively supported by the corresponding team.
Strabon is a hybrid system using Sesame RDF framework
and PostgreSQL RDBMS extended with PostGIS geospa-
tial capabilities. RDF4J is an RDF Framework that supports
GeoSPARQL. GraphDB is an RDF Store based on RDF4J
which it extends with specialized libraries for its geospatial
capabilities, among other things. As mentioned previously,
our intention was to include the latest beta version of Open-
Link Virtuoso which is a well-established RDF Store but as

explained in Section 4.2 our preliminary evaluation results
showed that we shouldwait for a stable release that will cover
bigger part of the features that are evaluated in our bench-
mark.

6 Benchmark Results

This section presents the results of running Geographica
against six geospatial RDF stores. As mentioned earlier, we
test the open-source systems Strabon v3.2.9, uSeekM v1.2.1,
Parliament v2.7.4, a proprietary RDF store, called here Sys-
tem X, GraphDB v8.6.1 and RDF4J v2.4.3.

6.1 Experimental Setup

This section describes the setup of the experiments used to
evaluate the selected triple stores. Themachine that was used
to run the benchmark is equipped with two Intel Xeon E5620
processors with 12 MB L3 cache running at 2.4 GHz, 32 GB
of RAM and a RAID-5 disk array that consists of four disks,
4 x 1.5 TB. Each disk has 32 MB of cache and its rota-
tional speed is 7200 rpm. The experiments of Geographica
have been performed on an Ubuntu 12.04 installation, how-
ever SystemX is not officially supported on Ubuntu systems.
Alternatively, System X comes with its own Linux distribu-
tion that also provides a dedicated volumemanager and a file
system. Therefore, this distribution was used for System X
experiments. Also, System X supports parallelism in query
execution. Thus, SystemXwas tested in two differentmodes;
a mode where queries are executed in a single process (indi-
cated as “Ser.” in tables and figures) and a mode (indicated
as “Par.” in tables and figures) where the parallel query fea-
ture of System X is used. This way, we can assess about how
much parallelism can speed up query evaluation.

Each query in the micro, synthetic and scalability bench-
marks was run three times on cold and warm caches. For
warm caches, each query ran once before measuring the
response time, in order to warm up the caches. We measured
the response time of each query by measuring the elapsed
time from submitting the query until a complete iteration over
the results had been completed. The response time of each
query was measured and the median of each measurement is
reported. The experiments of the macro-benchmark have a

123

210 T. Ioannidis et al.

slightly different setup, each scenario ran many times (with
different initialization each time, as described in Sect. 5.1.3)
for one hour without cleaning the caches and the average
time for a complete execution of all queries of each sce-
nario are reported. The time limit for real-world and synthetic
benchmarks was set to one hour for all queries, while for the
scalability benchmark queries it was set to twenty four hours.

Strabon and uSeekM utilize PostgreSQL enhanced with
PostGIS as a spatially enabled relational back-end. For these
systems, an instance of PostgreSQL 9.2 with PostGIS 2.0
was used. Because the default settings of PostgreSQL are
rather conservative, it was tuned to make better use of
the system resources. First, the system configuration file
sysctl.conf was edited to increase the amount of avail-
able shared memory (e.g., increasing the kernel parameter
kernel.shmmax) and the maximum number of files that
can be opened (e.g., increasing the file system parame-
ter fs.file-max). Second, the PostgreSQL configuration file
postgresql.conf was edited. PostgreSQL was enabled
to exploit the increased shared memory. Also, we would
like to avoid resource intensive operations, like Write-
Ahead Logging checkpoints. Thus, by editing parameters
like, checkpoint_segments, and wall_level we
force such operations to happen less frequently and con-
sume less resources than usual. Finally, some parameters
were edited so that the query evaluation planner produces
better query evaluation plans by avoiding genetic query opti-
mization techniques,merging sub-queries into upper queries,
and reordering joins. A detailed report of the configuration
parameters used is given on the web site of the benchmark.

For every dataset of Geographica, a unique property is
used to connect geometries with their serialization (e.g.,
CLC we use the property clc:asWKT), and this property is
defined as a subproperty of the property geo:asWKT that is
defined by GeoSPARQL. Parliament is able to identify and
index a triple that represents the serialization of a geomet-
ric object only when the property geo:asWKT is used. As a
result, the RDFS reasoning capabilities of Parliament have to
be enabled so that it performs forward chaining during data
loading and indexes the geometry using the spatial index as
well. Strabon, uSeekM, System X, GraphDB and RDF4J do
not perform any reasoning on the input data. Specifically for
RDF4J the Lucene index option had been enabled since it
was explicitly and unreservedly suggested as a geospatial
optimization in the official documentation. However, further
tests revealed that the Lucene spatial index increased costs in
the repository size and load time do not provide any substan-
tial benefit inmost scenarios but instead deteriorate the query
response times. Support questions confirmed that this is prob-
ably a performance issue,3738 therefore RDF4J was tested in

37 https://github.com/eclipse/rdf4j/issues/1281.
38 https://github.com/eclipse/rdf4j/issues/1160.

two different modes; Onewith the Lucene Sail enabled (indi-
cated as “Lucene enabled” in tables) and one with no Lucene
Sail. TheRDF4J results for both experimentationmodes have
been included in all tables but only the non-Lucene indexed
results were included in figures and charts, since they were
the best ones. We also encountered technical issues connect-
ing with the GraphDB Free runtime to GraphDB repositories
which had the GeoSPARQL plugin enabled, thus we had to
disable the plugin for all tests. In thismode no geospatial data
is indexed and no GeoSPARQL predicates are handled but
only queries with GeoSPARQL functions which are always
enabled.

6.2 Real-WorldWorkload

6.2.1 Dataset Storage

This section discusses the time required by each system to
store and index the datasets of the real-world workload, as
shown in Table 11. Also, Table 12 reports the size in MB of
the repositories created by each RDF store.

Strabon uses a storing scheme which is called “per-
predicate” scheme. This scheme creates a relational table, in
the underlyingDBMS, for every unique predicate in the input
data. These tables are called predicate tables and store pairs
of subject and object that are associated with a specific pred-
icate. This storing scheme may lead to the creation of many
predicate tables and consequently high storing times, if the
input data contains a lot of predicates. Apart from incremen-
tal loading methods, Strabon provides a bulk loader which
produces CSV files that emulate this “per-predicate” scheme
and copies them into PostgreSQL. The Strabon bulk loader
merges in a single relational table,which is called triple table,
triples containing predicates that are rarely used in the input
data. Thus, the number of created predicate tables is reduced
together with the required storing time. The storing times of
Strabon are, still, affected by the number of predicates used
in a dataset. The real-world dataset contains various differ-
ent datasets that also contain a lot of predicates. So, Strabon
needsmore time than uSeekM to store the real-world dataset.

uSeekM needs slightly less time than Strabon to store the
real-world dataset, because it is based on the native repos-
itory of Sesame which is known to be the most efficient
implementation of Sesame for average sized datasets. This
happens because uSeekM stores geometry literals in PostGIS
which is more time-consuming than storing data in the native
repository of Sesame. If the input data does not contain any
geometry literals, then uSeekM is entirely based on the native
repository of Sesame and achieves much better storing times.
Because the Census dataset contains much more geometry
literals than the rest real-world datasets and it uses much less
predicates, uSeekM needs more time to store it than Strabon.

123

https://github.com/eclipse/rdf4j/issues/1281
https://github.com/eclipse/rdf4j/issues/1160

Evaluating Geospatial RDF Stores Using the Benchmark Geographica 2 211

Table 11 Storing times (s) Workload Strabon uSeekM Parliament System X GraphDB RDF4J
Lucene enabled

Real world 220 214 250 531 91 82 198

Census 1255 1675 1085 895 358 785 3819

Synthetic 221 406 462 270 118 160 250

Table 12 Repository sizes
(MB)

Workload Strabon uSeekM Parliament System X GraphDB RDF4J
Lucene enabled

Real world 1181 997 1508 2591 696 625 1220

Census 5221 2952 4087 6598 1765 2199 6235

Synthetic 1271 1211 1763 17088 513 632 763

Parliament is slower than uSeekM and Strabon at storing
the real-world workload datasets, as it requires more time
to perform forward chaining on the input dataset in order to
index its geometry literals, as described in Sect. 6.1. How-
ever, this overhead becomes less important in the case of the
Census dataset and Parliament needs less time to store it than
Strabon and uSeekM.

System X provides two bulk loading methods. The first,
which is based on SQL operations inside its underlying
RDBMS, is designed to provide fast loading but does not
support large literals. The second uses a Java API and sup-
ports large literals but needs more time to store a dataset.
For storing the real-world workload the Java bulk loading
methodwas used, because of themany large literals that some
datasets contain. For example, the CLC dataset contains the
longest literal that has size 9.3 MBs. Thus, System X needs
at least twice more time than the other RDF stores to store
and index data from the real-world workload. The Census
dataset does not contain big literals, so the SQL bulk loader
of System X was used to store it and easily outperformed
Strabon, uSeekM and Parliament.

GraphDB has several load methods of which two can be
considered as bulk loaders since they are designed for offline
loading of datasets, directly serializing RDF data into the
internal indexes. LoadRDF is fast but as load data variety
grows a small degradation occurs because of page splits and
tree rebalancing. PreLoad is ultra-fast with no speed degra-
dation, because of its two-phase load design, which allows
it to first process in memory all RDF data creating multiple
GraphDB repository images and later on sorting and merg-
ing these into the final repository image. Both tools have the
optionof enablingparallelmultithreadedoperation. Fromour
preliminary tests it was clear that PreLoadwas the fastest tool
of the two in all datasets but the smallest ones. Therefore the
tool of choice was PreLoad tool for all workloads with the
parallel option enabled. In the real-world dataset which is
the smallest, it recorded the second best time very close to

RDF4J’s and in all other datasets it outperformed most of the
other systems by a factor greater than x2.

RDF4J has a single method for loading data and it records
the best time for the real-world dataset and the second best
for the census dataset. With the Lucene index enabled it
performs better than uSeekM, Parliament, System X and
Strabon’s bulk loader. However, for the bigger census dataset
the Lucene indexing cost becomes very high and thus RDF4J
needs more than double the time compared to uSeekMwhich
is the second slowest system.

Regarding storage space, System X is the most demand-
ing RDF store while GraphDB and RDF4J are again themost
efficient ones. SystemXrequires a lot of storage spacemainly
for semantic indexes and also big literals (e.g., for the CLC
dataset), that are stored as BLOB (binary large object) in its
internal RDBMS. RDF4J statement indexes are B-trees with
4-letter composite index keys in various combinations (S =
statement, P = predicate, O = object, C = context). By default
there are two main indices SPOC, POSC and we enabled the
context COSP index only for datasets with multiple graphs,
such as the real-world dataset. RDF4J with the Lucene spa-
tial indexing has high storage requirements for the real-world
and census datasets which have the most complex geome-
tries. With the Lucene indexing disabled, RDF4J needs the
least storage space for the real-world dataset and is the second
best for the Census dataset. uSeekM stores most of the data
into the native store of Sesame which does not require a lot
of storage space and only triples with spatial literal are stored
into PostgreSQL. So, it needs less space. For GraphDB there
are two main statement indices POS and PSO, the context
index CPSO which was enabled for datasets with multiple
graphs. The GeoSPARQL plugin was not enabled, which
helped allocating the least amount of space. Strabon and Par-
liament have average space requirements. Strabon stores all
data in PostgreSQLwhile Parliament uses customized binary

123

212 T. Ioannidis et al.

files to store triples and indexes and it uses a Berkley DB39

file to implement the resource dictionary.

6.2.2 Micro-benchmark

The query response times of the micro-benchmark with cold
caches are shown in Table 13 and the corresponding results
with warm caches are shown in Table 14. The two tables
are very similar in terms of how the systems are performing
hence we do not discuss these tables separately below.

Non-topological construct functions First, the results of
evaluating the queries with non-topological functions are
reported. Computing the area of polygons (Query Q6) was
tested only in uSeekM, Strabon, System X and GraphDB
since Parliament and RDF4J do not offer such functional-
ity. For this class of queries, GraphDB and RDF4J are the
fastest systems followed closely by uSeekMwhich does very
well in geof:buffer() calculations. uSeekM does not
utilize PostgreSQL for evaluating these queries, but it is
faster because it uses the native store of Sesame which is
known to be more efficient, for small datasets, than Sesame
implementations on top of an RDBMS, like Strabon. Stra-
bon performance is average while Parliament and System
X perform the worse. Parliament needs three or four times
more time to evaluate the non-topological functions. Finally,
System X, when it runs in serial mode, needs considerably
more time to evaluate non-topological queries. System X
stores spatial literals in lexical form instead of a dedicated
binary geometric type. This means that each time a spatial
function is evaluated, the spatial literals must be transformed
from lexical to geometry form. This causes a great over-
head, especially for the real-worldworkload that use complex
geometries. However, when System X runs in parallel mode
this overhead is distributed among all available processors
and System X evaluates these queries up to sixteen times
faster.

We also observe that none of the RDF stores exploits
the warm caches when evaluating non-topological functions.
This is because the non-topological functions used in this set
of queries are computationally intensive (especially when
complex geometries are used) and the time spent in the CPU
dominates I/O time.

Spatial selections In the case of spatial selections, Stra-
bon and uSeekM have similar response times while Strabon
is the fastest system in most cases. Both systems choose to
start the query evaluation process by evaluating the spatial
part of a query in PostGIS using the spatial index that is avail-
able. uSeekM continues by evaluating the rest of the query
using the native store of Sesame. This adds a small over-
head compared to Strabon which evaluates the whole query

39 http://www.oracle.com/us/products/database/berkeley-db/
overview/index.html.

in PostgreSQL and utilizes a unified dictionary encoding
scheme for both thematic and spatial information. GraphDB
has an average performance which is expected since it does
not use its spatial indexing capabilities while RDF4J and Par-
liament are at the low end of the list. RDF4J performs very
well in queries that deal with points and lines, average with
polygon equality test and very low for all other operations
with polygons. Parliament, depending on the query, it may
need even three orders of magnitude more time that Strabon
and uSeekM to evaluate a spatial selection. This happens
because the query optimizer of Parliament does not take into
consideration filters containing GeoSPARQL functions, so it
evaluates the spatial predicate exhaustively over the results
of the thematic part of the query. System X is optimized
for relatively simple spatial literals, while the tested spa-
tial selections receive as parameter quite complex polygons
and linestrings. For example, the WKT serialization of some
polygons are even 10 KB long. Thus, System X returned
an error or raised an exception (written as “long string” in
Tables 13, 14) for most of the spatial selection queries and it
responded to only Query Q12 which uses a small linestring
and queries Q14 and Q15 which filter using points.

Let us now consider queries Q14 and Q15, that are seman-
tically equivalent, but they are evaluated in different ways.
Both ask for points that have a given distance from a given
point. However, QueryQ14 creates the buffer of a given point
with radius r and asks for points which are within this buffer,
while Query Q15 asks for points that lie within distance less
than r from the given point. uSeekM and Parliament eval-
uate both queries by starting with the thematic part of the
query and then they evaluate exhaustively the spatial opera-
tions without using the spatial index. GraphDB follows the
same path since it does not have a spatial index. Query Q14 is
evaluated slower, than Query 15, by these systems, because
calculating the distance between two points is much cheaper
than computing the buffer of a point and evaluating the cor-
responding point-in-polygon operation. Strabon follows a
similar process for responding to Query Q15. However, for
query Q14, Strabon calculates the buffer of the given poly-
gon, and uses it to probe the spatial index for discovering
points that lie inside the constructed polygon. This choice is
a good one and the response time of query Q14 is the same as
the one of query Q15. Finally, SystemX evaluates query Q14
with a similar process to Strabon, and regarding query Q15
it is the only system that uses an internal distance function
that is able to perform index search instead of evaluating the
distance filter over all intermediate results. So, it achieves
similar times for both queries Q14 and Q15. For these selec-
tion queries, parallelism does not have significant impact on
response times, that are very low independently of whether
parallelism is being used or not.

Spatial Joins. In the case of spatial joins, uSeekM, Par-
liament, GraphDB and RDF4J are able to evaluate only

123

http://www.oracle.com/us/products/database/berkeley-db/overview/index.html
http://www.oracle.com/us/products/database/berkeley-db/overview/index.html

Evaluating Geospatial RDF Stores Using the Benchmark Geographica 2 213

Ta
bl
e
13

R
es
po

ns
e
tim

es
(c
ol
d)
—

re
al
-w

or
ld

w
or
kl
oa
d

Ty
pe

Q
ue
ry

C
ol
d
ca
ch
es

(s
)

St
ra
bo
n

uS
ee
kM

Pa
rl
ia
m
en
t

Sy
st
em

X
G
ra
ph
D
B

R
D
F4

J
Pa
ra
lle

l
Se

ri
al

L
uc
en
e
en
ab
le
d

N
on
-t
op
ol
og
ic
al
co
ns
tr
uc
tf
un
ct
io
ns

Q
1

42
.3
3

38
.1
1

15
2.
71

62
.5
8

29
3.
85

29
.6
8

37
.2
4

37
.3
4

Q
2

22
.4
8

21
.4
7

90
.2
3

44
.0
2

20
4.
65

14
.5
5

18
.4
1

18
.7
5

Q
3

29
.4
8

27
.0
6

98
.5
6

45
.8
6

21
3.
47

19
.4
2

24
.5
7

24
.5
6

Q
4

7.
65

3.
22

23
.1
6

19
.6
2

30
9.
00

3.
20

3.
32

3.
48

Q
5

14
.6
8

4.
17

21
.6
3

23
.6
0

23
6.
60

7.
45

4.
52

4.
64

Q
6

23
.8
2

19
.5
8

–
39
.8
7

19
9.
25

13
.5
3

–
–

Sp
at
ia
ls
el
ec
tio

ns
Q
7

0.
36

1.
22

2.
42

L
on
g
st
ri
ng

L
on
g
st
ri
ng

5.
33

3.
64

3.
97

Q
8

0.
42

0.
57

7.
69

L
on
g
st
ri
ng

L
on
g
st
ri
ng

2.
04

1.
76

1.
78

Q
9

0.
83

1.
27

35
.0
3

L
on
g
st
ri
ng

L
on
g
st
ri
ng

28
.2
8

40
.4
6

40
.6
0

Q
10

0.
73

1.
51

76
.8
5

L
on
g
st
ri
ng

L
on
g
st
ri
ng

22
.2
4

25
.4
0

25
.2
4

Q
11

2.
66

2.
96

19
5.
87

L
on
g
st
ri
ng

L
on
g
st
ri
ng

11
4.
29

16
4.
48

16
4.
84

Q
12

0.
79

0.
55

2.
39

8.
87

6.
07

1.
02

0.
65

0.
67

Q
13

0.
82

0.
89

63
.1
4

L
on
g
st
ri
ng

L
on
g
st
ri
ng

49
.6
7

72
.8
9

72
.2
0

Q
14

0.
50

2.
29

24
.3
4

13
.3
3

11
.3
5

4.
13

1.
85

1.
90

Q
15

0.
50

0.
99

3.
44

10
.2
4

10
.2
7

0.
93

0.
44

0.
48

Q
16

2.
79

5.
52

63
.2
0

L
on
g
st
ri
ng

L
on
g
st
ri
ng

50
.6
1

72
.8
6

72
.3
4

Q
17

3.
06

1.
60

35
.8
9

L
on
g
st
ri
ng

L
on
g
st
ri
ng

28
.3
1

40
.4
1

40
.0
6

Sp
at
ia
lj
oi
ns

Q
18

4.
52

22
33
.7
3

28
80
.2
0

>
1
h

14
.5
1

94
2.
89

28
94
.5
6

28
85
.7
2

Q
19

12
72
.5
4

>
1
h

>
1
h

>
1
h

>
1
h

>
1
h

>
1
h

>
1
h

Q
20

11
5.
93

>
1
h

>
1
h

>
1
h

39
6.
29

>
1
h

>
1
h

>
1
h

Q
21

11
3.
26

>
1
h

>
1
h

>
1
h

40
9.
54

>
1
h

>
1
h

>
1
h

Q
22

26
.3
3

>
1
h

>
1
h

In
te
rn
al
er
ro
r

In
te
rn
al
er
ro
r

>
1
h

>
1
h

>
1
h

Q
23

26
.2
9

>
1
h

>
1
h

In
te
rn
al
er
ro
r

In
te
rn
al
er
ro
r

>
1
h

>
1
h

>
1
h

Q
24

26
.6
6

>
1
h

>
1
h

In
te
rn
al
er
ro
r

In
te
rn
al
er
ro
r

>
1
h

>
1
h

>
1
h

Q
25

34
2.
87

>
1
h

>
1
h

>
1
h

16
29
.4
5

>
1
h

>
1
h

>
1
h

Q
26

34
3.
30

53
4.
61

20
40
.0
0

90
9.
18

>
1
h

46
6.
86

32
6.
22

32
4.
79

Q
27

34
3.
72

>
1
h

>
1
h

In
te
rn
al
er
ro
r

>
1
h

>
1
h

>
1
h

>
1
h

A
gg
re
ga
te
fu
nc
tio

ns
Q
28

3.
56

–
–

–
–

–
–

–

Q
29

25
8.
35

–
–

–
–

–
–

–

123

214 T. Ioannidis et al.

Ta
bl
e
14

R
es
po

ns
e
tim

es
(w

ar
m
)—

re
al
-w

or
ld

w
or
kl
oa
d

Ty
pe

Q
ue
ry

W
ar
m

ca
ch
es

(s
)

St
ra
bo
n

uS
ee
kM

Pa
rl
ia
m
en
t

Sy
st
em

X
G
ra
ph
D
B

R
D
F4

J
Pa
ra
lle

l
Se

ri
al

L
uc
en
e
en
ab
le
d

N
on
-t
op
ol
og
ic
al
co
ns
tr
uc
tf
un
ct
io
ns

Q
1

41
.3
6

36
.2
5

13
2.
67

57
.4
5

29
6.
96

27
.3
6

36
.9
3

37
.2
0

Q
2

21
.0
6

19
.3
5

70
.6
2

35
.3
5

18
7.
71

13
.2
6

17
.8
0

17
.9
6

Q
3

27
.7
3

24
.1
3

79
.4
0

38
.2
5

20
6.
70

18
.1
7

23
.9
4

24
.1
1

Q
4

7.
00

3.
08

19
.6
7

19
.7
6

33
4.
93

2.
15

3.
11

3.
12

Q
5

13
.7
8

5.
00

19
.5
8

17
.4
1

23
3.
53

6.
66

4.
45

4.
47

Q
6

21
.0
6

18
.3
5

–
31
.5
8

16
0.
40

12
.6
7

–
–

Sp
at
ia
ls
el
ec
tio

ns
Q
7

0.
01

0.
02

1.
36

L
on
g
st
ri
ng

L
on
g
st
ri
ng

4.
66

3.
49

3.
46

Q
8

0.
06

0.
05

5.
84

L
on
g
st
ri
ng

L
on
g
st
ri
ng

1.
64

1.
56

1.
55

Q
9

0.
16

0.
05

34
.0
9

L
on
g
st
ri
ng

L
on
g
st
ri
ng

27
.9
5

41
.0
7

40
.7
7

Q
10

0.
13

0.
10

57
.1
8

L
on
g
st
ri
ng

L
on
g
st
ri
ng

21
.2
4

24
.3
2

24
.1
4

Q
11

2.
03

1.
29

17
5.
98

L
on
g
st
ri
ng

L
on
g
st
ri
ng

11
4.
95

16
4.
78

16
3.
44

Q
12

0.
38

0.
03

1.
20

4.
02

3.
99

0.
67

0.
57

0.
57

Q
13

0.
13

0.
04

59
.6
0

L
on
g
st
ri
ng

L
on
g
st
ri
ng

49
.6
5

72
.5
9

71
.9
2

Q
14

0.
03

1.
63

19
.9
7

4.
12

4.
03

3.
11

1.
69

1.
68

Q
15

0.
12

0.
30

0.
56

3.
94

3.
97

0.
30

0.
26

0.
26

Q
16

2.
19

1.
96

59
.8
5

L
on
g
st
ri
ng

L
on
g
st
ri
ng

49
.6
8

72
.6
3

71
.9
7

Q
17

2.
62

0.
86

34
.3
9

L
on
g
st
ri
ng

L
on
g
st
ri
ng

27
.6
6

40
.2
8

39
.9
3

Sp
at
ia
lj
oi
ns

Q
18

3.
98

25
04
.2
4

28
75
.0
2

>
1
h

11
.5
3

90
3.
33

29
72
.2
7

29
69
.0
7

Q
19

12
84
.6
2

>
1
h

>
1
h

>
1
h

>
1
h

>
1
h

>
1
h

>
1
h

Q
20

10
5.
39

>
1
h

>
1
h

>
1
h

36
5.
01

>
1
h

>
1
h

>
1
h

Q
21

10
7.
76

>
1
h

>
1
h

>
1
h

36
4.
32

>
1
h

>
1
h

>
1
h

Q
22

25
.2
0

>
1
h

>
1
h

In
te
rn
al
er
ro
r

In
te
rn
al
er
ro
r

>
1
h

>
1
h

>
1
h

Q
23

25
.0
1

>
1
h

>
1
h

In
te
rn
al
er
ro
r

In
te
rn
al
er
ro
r

>
1
h

>
1
h

>
1
h

Q
24

25
.3
7

>
1
h

>
1
h

In
te
rn
al
er
ro
r

In
te
rn
al
er
ro
r

>
1
h

>
1
h

>
1
h

Q
25

34
1.
04

>
1
h

>
1
h

>
1
h

15
77
.8
9

>
1
h

>
1
h

>
1
h

Q
26

34
1.
28

53
4.
15

20
30
.4
2

95
5.
21

>
1
h

46
5.
35

32
5.
69

32
4.
04

Q
27

34
2.
06

>
1
h

>
1
h

In
te
rn
al
er
ro
r

>
1
h

>
1
h

>
1
h

>
1
h

A
gg
re
ga
te
fu
nc
tio

ns
Q
28

2.
92

–
–

–
–

–
–

–

Q
29

25
8.
00

–
–

–
–

–
–

–

123

Evaluating Geospatial RDF Stores Using the Benchmark Geographica 2 215

queries Q18 and Q26 given the time limit of 1 h. Par-
liament, GraphDB and RDF4J do not take into account
GeoSPARQL extension functions during the optimization of
a query, resulting in query process that evaluate separately
the graph patterns corresponding to different graphs, com-
pute the Cartesian product between them, and then apply the
spatial predicate to the result of the Cartesian product. This
strategy is very costly, thus they are not able to respond to
most of the spatial joins within the time limit. uSeekM, also,
does not utilizePostGIS for evaluating spatial joins. Similarly
to Parliament, it applies the spatial predicate to the result of
the Cartesian product of the graph patterns. Strabon avoids
evaluating Cartesian products by identifying graph patterns
that are related only through the spatial predicate and pushes
the evaluation of the spatial join in PostGIS, thus resulting in
very good response times. Strabon has the best performance
in all queries with the exception of Q26. In Q26 RDF4J per-
forms the best mainly because the GAG graph is small and
the thematic selectivity of the query is high. In Q18 the the-
matic selectivity is high while the spatial selectivity very low
resulting in a similar performance with Parliament’s. System
X also uses its native RDBMS to evaluate spatial joins and,
when running in serial mode, it avoids Cartesian products.
But, because of implementation limitations (e.g., the over-
head of transforming complex geometries from strings into
geometry types) it needs more time than Strabon and it also
has some time outs. System X did not responded to Queries
Q22,Q23,Q24 andQ27because of an internal exception. It is
interesting that when running in parallel mode, the optimizer
of System X prefers to ignore the spatial index and compute
a Cartesian product for evaluating most of the spatial joins.
These query execution methods, even if they run in paral-
lel mode, lead to higher response times, than the respective
methods of serial mode, and time outs.

Aggregate functions Finally, spatial aggregations are
tested only in Strabon since it is the only system that supports
such functions. Query Q28 which computes the minimum
bounding box that contains all geometries of theGAGdataset
is much faster than Query Q29 which computes the union
of the same geometries since the former operation is much
cheaper than the latter one which is computationally expen-
sive.

A general comment about RDF4J is that in the micro-
benchmark the Lucene index did not make any difference in
the query response times.

6.2.3 Macro-benchmark

The results of the macro-benchmark are shown in Table 15.
In this table, the average time needed for a complete iteration
of all queries of each scenario is reported.

The “Geocoding” scenario includes only thematic queries
that retrieve geographic information. Thus, uSeekM evalu-

ates the whole queries in the native Sesame store achieving
very fast response times. RDF4J performs second best and
GraphDB which is also based on RDF4J follows close by.
System X also has very fast response times both in serial
and parallel mode and it is the fourth fastest RDF store for
this scenario. RDF4J with the Lucene index performs aver-
age because it is not used in these queries. Strabon uses its
underlying RDBMS and has slower response times, while
Parliament is the slowest RDF store in this scenario.

The “Reverse Geocoding” scenario has two queries which
use the function distance to sort retrieved geometries and
select the first result that is closest to a given point. GraphDB
performs the best in this scenario and is followed closely by
RDF4J, uSeekM and RDF4J with Lucene. Parliament also
has a fast response in this scenario, but it is 3 to 4 times slower
than the systems of the first group. On the other hand, System
X and Strabon, which are based on an internal RDBMS, need
at least an order ofmagnitudemore time to respond to awhole
iteration of this scenario.

In order to respond to these nearest-neighbor queries of
this scenario, all RDF stores compute the distance of every
retrieved geometry from the given point, then they sort
these values in ascending order and select the first geom-
etry that corresponds to the minimum distance. Strabon,
especially, inserts every value computed by the function
distance into the respective dictionary encoding table.
As more nearest-neighbor queries are posed, this dictionary
table is getting bigger and bigger and the performance of
Strabon is deteriorating. So, its average iteration time is very
high in this scenario. On the contrary, the other systems dis-
card the intermediate distance values, so they achieve faster
response times.

The “Map Search and Browsing” scenario has one the-
matic query and two spatial selection queries. As described
in Sect. 6.2.2, uSeekM and Strabon are efficient in evaluat-
ing spatial selections and they have good performance in this
scenario as well, followed closely by GraphDB. RDF4J per-
formance in both modes is average while System X (in serial
mode) performs the worst in this scenario because of Query
MSB3, which asks for complex geometries (linestrings) and
gives a lot of results. System X needs, on average, 120 sec-
onds to respond to Query MSB3. In parallel mode the same
query needs only around 14 seconds, so the average per-
formance of System X improves. Strabon and Parliament
spend most of the time in evaluating this query, as well. On
the contrary, uSeekM spends more time in evaluating query
MSB1, because it generates the Cartesian product between
two triples. But, it has very fast response times so it is still
the faster system in this scenario.

The “Rapid Mapping for Fire Monitoring” scenario is the
most demanding one. It comprises three spatial selections
queries, but also two complex queries which include spatial
joins and construct new geometries (boundary and intersec-

123

216 T. Ioannidis et al.

Table 15 Average iteration times—macro-scenarios (s)

Scenario Strabon uSeekM Parliament SystemX GraphDB RDF4J
Par. Ser. Lucene enabled

Geocoding 29.40 0.05 63.26 3.04 7.71 1.51 1.37 10.25

Reverse geocoding 65 0.77 2.6 15.07 15.16 0.60 0.73 0.85

Map search and browsing 0.9 0.6 22.2 22.14 124.49 1.03 4.09 4.80

Rapid mapping for fire monitoring 207.4 – – – – – – –

Computing statistics of geospatial datasets 4.55 0.4 63.49 22.68 19.40 17.04 20.43 21.99

tion). Only Strabon could serve this scenario since all other
stores exceeded the time limit of one hour during evaluat-
ing queries of this scenario. Parliament, uSeekM, GraphDB
and RDF4J timed out while evaluating Query RM6, and Sys-
tem X while evaluating queries RM4 and RM6. These two
queries are also the most time-consuming for Strabon as well
because they produce many results.

Finally, the “Computing Statistics of Geospatial Datasets”
scenario tests computing aggregations over simple spatial
selections or spatial joins of geospatial datasets. In this sce-
nario uSeekM is the fastest system that needs, on average, less
than a second to respond to all three queries of this scenario.
The second fastest system is Strabon that needs about 5 sec-
onds to respond to a full iteration of this scenario. GraphDB,
RDF4J and System X have an average performance. Parlia-
ment is the slowest store which spends the most of the time
in evaluating Query CS1, while for the rest of the systems
Query CS2 which contains a spatial join is the most time-
consuming. Finally, System X has similar performance both
in parallel and serial mode.

6.3 SyntheticWorkload

Let us now discuss experiments that were run using a syn-
theticworkload that was produced by the generator presented
in Sect. 5. A dataset was generated by setting n = 512 and
k = 9, where n is the number used for defining the car-
dinalities of the generated geometries, and k is the number
used for defining the cardinalities of the generated tag values.
This dataset produced using the synthetic generator contains
262144 land ownership instances, 28, 900 states, 512 roads
and 262, 144 points of interest. All features are tagged with
key 1, every other feature with key 2, etc. up to key 512. The
resulting dataset consists of 3,880,224 triples and its size is
745 MB.

6.3.1 Dataset Storage

Table 11 presents the time required by each system to store
and index the synthetic dataset and Table 12 presents the
required storage space.

The synthetic dataset has fewer predicates and more
geometries than the real-world one. GraphDB is the fastest
system because of the parallel multi-threaded operation of
the PreLoad tool and because the GeoSPARQL plugin was
disabled. RDF4J performs very well and is placed second.
With the additional cost of Lucene spatial indexing, it still
performs close to Strabon’s time and that is because the syn-
thetic dataset is relatively small. uSeekM requires more time
than Strabon for storing the dataset, since it stores it in a
Sesame native store and then it stores triples with geometric
information in PostGIS as well. This overhead is significant
compared to the total time required for storing the dataset, but
leads to better response times of uSeekM in case of evaluating
a querywith low spatial selectivity, as discussed in Sect. 6.3.2
(see Fig. 3a–h). As already explained in Sect. 6.2.1, Parlia-
ment needs more time to store the synthetic dataset as well
as the real-world dataset because it performs forward chain-
ing on the input data. The synthetic dataset does not contain
any huge literals so we were able to use the SQL bulk loader
of System X to store this data. As in the case of the Census
dataset, the SQL bulk loader achieves much better storage
times than the Java API used to store the real-world work-
load dataset.

Regarding storage space, GraphDB requires the least
space because it uses the two basic indexes POS and PSO
and the GeoSPARQL plugin was disabled. RDF4J is a little
more demanding because it uses by default themore complex
SPOC, POSC indexes. Also, the SQL bulk loader of System
X and the bulk loader of Strabon, which also utilizes SQL
operations to load data, achieve similar fast storage. Stra-
bon, uSeekM and Parliament increase their storage demands
to cater for the increase in number of facts and geometries.
System X has the highest storage demands because of the
semantic indexes and big literals.

123

Evaluating Geospatial RDF Stores Using the Benchmark Geographica 2 217

6.3.2 Queries

We used the query template presented in Table 6a in order to
produce SPARQLqueries corresponding to spatial selections
that ask for landownershipswhich intersect a given rectangle,
and points of interest that are within a given rectangle. The
given rectangle is generated in such a way that the spatial
predicate of the query holds for 0.01%, 10%, 25%, 50%,
75% of all the features of the respective dataset. In addition,
the query template was instantiated using the extreme values
1 and 512 of the parameter THEMA for selecting either all or
approximately 0.02% of the total features of a dataset. The
response time of each system for responding to this query
template is presented in Fig. 3a–h.

We implemented the query template presented in Table 6b
in order to produce SPARQLqueries corresponding to spatial
joins that ask for land ownerships that intersect a state, touch-
ing states and points of interest that are located inside a state.
We also implemented this query template using all combi-
nations of the extreme values 1 and 512 for the parameters
THEMA1 and THEMA2.

The response time of each system executing template is
presented in Fig. 4a–b.

Spatial selections By examining Fig. 3a–h, we observe
that Strabon has very good performance overall in spatial
selections. uSeekM has low response times when few fea-
tures satisfy the spatial predicate but when more features
satisfy the spatial predicate the response time increases. Par-
liament has very high response times inmost cases regardless
of the spatial or thematic selectivity of the queries. In most
cases, System X has average performance when running in
parallel mode and it is the second fastest RDF store after
Strabon. When running in serial mode System X has worse
performance. GraphDB has the second best performance
after Strabon and scores the best times in the low thematic
selectivity queries. It has low sensitivity with spatial selec-
tivity of the queries. These two features are also shared by
RDF4J which scores very high in the “512 tag” group of
queries and is insensitive to query spatial selectivity changes,
but in the “1 tag” group of queries scores low, being better
than Parliament and serial mode System X.

Strabon uses PostgreSQL (extendedwith PostGIS) to exe-
cute a SPARQL query. PostGIS has been enhanced with
spatial selectivity estimation capabilities, from versions 2.x
onward. As a result, when a query selects only few geome-
tries, PostgreSQL always starts with execution of the spatial
predicate using the spatial index, thus resulting in few inter-
mediate results and good response times. While the spatial
selectivity increases and more geometries satisfy the spa-
tial predicate, the optimizer of PostgreSQL chooses different
query executionmethods. For example, when the value of the
parameter THEMA is 1 (Fig. 3a, c, e, g) and the value of the
parameter GEOM is such that all geometries satisfy the spatial

predicate, PostgreSQL ignores the spatial index and performs
a sequential scan on the table storing the geometries for eval-
uating the spatial predicate. Similarly, when the value of the
parameter THEMA is 512 (Fig. 3b, d, f, h) and the value of the
parameter GEOM is such that all geometries satisfy the spatial
predicate, PostgreSQL starts with the execution of the the-
matic selection that produces few intermediate results since
only 0.02% of the features satisfy the thematic predicate,
resulting in good query response times.

Regarding uSeekM, its performance is not affected by
the thematic selectivity of the query. For spatial selections,
uSeekM always starts with the spatial predicate in PostGIS
and then continues the query execution in the native Sesame
store. As a result, regardless of the thematic selectivity, the
response time of uSeekM is low when few features satisfy
the spatial predicate and increases when the number of fea-
tures with geometries that satisfy the given spatial predicate
increases.

Regarding Parliament, its performance is not affected by
the thematic or by the spatial selectivity of a query. Parliament
always starts by executing the non-spatial part of a query and
then executes the thematic filter and the spatial predicate
exhaustively on the intermediate results. Thus, the thematic
and spatial selectivity of a query do not affect its response
time.

SystemX, like Strabon, is capable of estimating the selec-
tivity of both the spatial and the thematic part of a query
and to select correct query execution paths. Especially when
it runs in parallel mode, System X has fast response times
when it starts by executing thematic filters (Fig. 3b, d, f,
h) and outperforms uSeekM and Parliament, which select
wrong query execution paths. However, its response times
get higher when it starts with executing spatial predicates
(Fig. 3a, c, e, g), even if this choice is correct, and results
get mixed. This means that System X, which stores geome-
tries in lexical form and uses an internal function to execute
spatial predicates, is slower in executing spatial predicates
that uSeekM and Strabon, which utilize PostGIS. Also, the
performance of System X in parallel mode compared to its
performance in serial mode improves more when it starts by
executing the thematic part of a query than when it starts
with the spatial part. This indicates that filtering operations
on actual lexical values are better parallelized by System X
than filtering on spatial values.

In [2], similar experiments have been performed for eval-
uating the performance of Strabon in spatial selection queries
where spatial and thematic selectivity of queries can be con-
trolled. In these experiments, only point geometries were
used and an older version of Strabon was tested. This older
version of Strabon utilized a PostGIS version prior to 2.x
which lacks the capability to estimate the spatial selectiv-
ity of a query. Experimental results described in [2] showed
that the absence of dynamic estimation of spatial selectivity

123

218 T. Ioannidis et al.

Fig. 3 Response
times—synthetic workload
(selections)

Strabon
uSeekM

Parliament
System X (Par.)

System X (Ser.)
GraphDB

RDF4J

10-1

100

101

102

103

 0% 20% 40% 60% 80% 100%
re

sp
on

se
 ti

m
e

[s
ec

]
% of Nodes in query region

(a)

Intersects

tag 1, cold caches

10-1

100

101

102

103

 0% 20% 40% 60% 80% 100%

re
sp

on
se

 ti
m

e
[s

ec
]

% of Nodes in query region

(b)

Intersects

tag 512, cold caches

10-1

100

101

102

103

 0% 20% 40% 60% 80% 100%

re
sp

on
se

 ti
m

e
[s

ec
]

% of Nodes in query region

(c)

Within

tag 1, cold caches

10-1

100

101

102

103

 0% 20% 40% 60% 80% 100%

re
sp

on
se

 ti
m

e
[s

ec
]

% of Nodes in query region

(d)

Within

tag 512, cold caches

10-2

10-1

100

101

102

 0% 20% 40% 60% 80% 100%

re
sp

on
se

 ti
m

e
[s

ec
]

% of Nodes in query region

(e)

Intersects

tag 1, warm caches

10-2

10-1

100

101

102

 0% 20% 40% 60% 80% 100%

re
sp

on
se

 ti
m

e
[s

ec
]

% of Nodes in query region

(f)

Intersects

tag 512, warm caches

10-2

10-1

100

101

102

103

 0% 20% 40% 60% 80% 100%

re
sp

on
se

 ti
m

e
[s

ec
]

% of Nodes in query region

(g)

Within

tag 1, warm caches

10-2

10-1

100

101

102

 0% 20% 40% 60% 80% 100%

re
sp

on
se

 ti
m

e
[s

ec
]

% of Nodes in query region

(h)

Within

tag 512, warm caches

123

Evaluating Geospatial RDF Stores Using the Benchmark Geographica 2 219

Strabon
uSeekM

Parliament
System X (Par.)

System X (Ser.)
GraphDB

RDF4J

10-1

100

101

102

103

104

1-1
1-512

512-1
512-512

1-1
1-512

512-1
512-512

re
sp

on
se

 ti
m

e
[s

ec
]

warm cachescold caches

(a) Intersects

10-1

100

101

102

103

104

1-1
1-512

512-1
512-512

1-1
1-512

512-1
512-512

re
sp

on
se

 ti
m

e
[s

ec
]

warm cachescold caches

(b) Touches

10-2

10-1

100

101

102

103

104

1-1
1-512

512-1
512-512

1-1
1-512

512-1
512-512

re
sp

on
se

 ti
m

e
[s

ec
]

warm cachescold caches

(c) Within

Fig. 4 Response times—synthetic workload (joins)

can lead to wrong query execution paths and increase the
response time of a system. This happens because the system
is not able to correctly select the part (thematic or spatial) of
the query that produces less intermediate results. The impor-
tance of dynamic estimation of spatial selectivity becomes
more obvious in experiments of Geographica where Strabon
and, in many cases, System X outperform uSeekM because
they are able to select correct query execution paths. For
example, in cases where the thematic selectivity of a query
is low while the spatial selectivity increases (Fig. 3b, d, f, h)
both Strabon and System X begin the query execution with
the thematic part of the query and achieve lower response
times than uSeekM that always executes first the spatial part
of a query.

Spatial joins In the case of spatial joins (Fig. 4a, b), Stra-
bon is the fastest system in most cases and the only one
that responded to every query within the time limit of one
hour. uSeekM, System X, GraphDB and RDF4J executed
most of the spatial joins, given the one hour time limit,
but they needed more time than Strabon. Finally, Parliament
responded, within the time limit, the spatial joins only when
parameters THEMA1 and THEMA2 are equal to 512.

Strabon relies on the optimizer of PostgreSQLwhich takes
into account the thematic selectivity of the queries and selects
good query paths, thus Strabon is the only system that is able
to respond to the spatial joins given the one hour timeout
when the parameters THEMA1 and THEMA2 are equal to 1.

System X, running in parallel mode, did not respond
to any join, with parameters THEMA1 and THEMA2 equal
to 1, within the time limit of one hour. While, running
in serial mode an internal exception occurred when eval-
uating functions geof:sfIntersects (Fig. 4a) and
geof:sfWithin (Fig. 4b). Also, System X (running in
serial mode) needed more than one hour to evaluate the
joins with parameters THEMA1 equal to 512 and THEMA2
equal to 1 using functions geof:sfIntersects and
geof:Within. Regarding spatial joins, System X relied
on the estimated cardinality of the first variable of the spatial
predicate to decide whether to use the spatial index or not.
System X chooses to use the spatial index when the first spa-
tial variable has high cardinality (THEMA1=1), regardless
of the second spatial variable (consequently the parameter
THEMA1). Similarly, when the cardinality of the first spatial
variable is low (THEMA1=512) SystemX ignores the spatial
index, it computes the Cartesian product of the given triple

123

220 T. Ioannidis et al.

patterns and evaluates the spatial filter over the intermedi-
ate results. This strategy is not always effective because it
ignores the cardinality of the second spatial variable in plan-
ning the evaluation of a query. For example, in Fig. 4a, b
evaluating the spatial joins with parameters THEMA1=1 and
THEMA2=512 needs the same or less time than evaluating
the joins with parameters THEMA1=512 and THEMA2=512
even though the latter are more selective.

Finally, uSeekM, GraphDB, RDF4J and Parliament pro-
duce the Cartesian product between the graph patterns that
are joined through the spatial predicate, and evaluate the spa-
tial predicate afterward. This strategy is very costly, thus
Parliament is not able to respond to most spatial joins given
the one hour timeout and the other systems aremore than two
orders ofmagnitude slower than Strabon. However, in Fig. 4a
512-512 it is shown that uSeekM, GraphDB and RDF4J
outperform Strabon. Strabon stores all geometries in a single
table, so the evaluation of the spatial predicate Touches on
this table returns not only the geometries of states that touch
each other, but the touching geometries of land ownerships
as well. The touching geometries of land ownerships are dis-
carded later on, but this overhead proves to be more costly
than producing a Cartesian product and evaluating the spatial
predicate afterward.

6.4 ScalabilityWorkload

6.4.1 Dataset Storage

This section discusses the time required by each system to
store and index the datasets of the scalability workload, as
shown in Table 16. Also, Table 17 reports the size of the
repositories created by each RDF store. We also reveal weak
spots of each process and theworkarounds employed to over-
come them.

In order to load the data with Strabon we tried both the
default loader and the bulk loader and used the most appro-
priate one. The default Sesame based loader is efficient for
datasets of up to 100K triples but in the 1M triples the index-
ing costs of the PostgreSQL+PostGIS start becoming very
high resulting in a time similar to the slowest response by
RDF4Jwith Lucene indexing enabled and x7 slower than the
fastest response by RDF4J. Strabon’s bulk loader, which is a
tailor-made tool, has two issues that we had to take into con-
sideration. First, it has an initial overheadwhich is onlyworth
when loading files with more than one million triples. That is
why we choose not to use it for the two smaller datasets. The
sweet spot for switching between the two loaders is some-
where around 1M triples. Second, it requires a memory size
near the size of the dataset to load. The reason for this prob-
lem is that the RDF library used needs to parse the entire
input file in one step before storing it persistently. This situ-
ation did not allow the bulk loader to import the 500M triple

dataset and obliged us to use a server with 128 GB RAM in
order to perform the first stage of the import which creates a
set of CSV files. These files were afterward transferred back
to the reference server and we continued with the second step
which was importing the CSV files into PostGIS database.
The time 25.650, 00sec = 14.000sec + 11.250sec of the
two steps therefore is “dirty” and reported for completeness
purposes only.

The default loader of RDF4J could not support files with
more than approximately 15M-triples, therefore the 100M
and 500M triples datasets were split into 10M triples chunks
and in these cases the total amount of time needed to digest
all chucks is reported. It scores acceptable times up to the
10M triples dataset and from there on its performance rapidly
deteriorates. With Lucene spatial indexing the performance
is extremely high for datasets over 1M triple.

The two phase import design of GraphDB’s bulk loader,
the use of parallel thread execution and the very good choice
of default values for its highly parametric configuration
allowed it to load all datasets, but the smallest one, in a frac-
tion of the time compared to all other systems.

With respect to the resulting repository sizes, RDF4J
is the most efficient system for the two smallest datasets
and GraphDB is marginally better than RDF4J in the
larger ones. The small improvement over RDF4J is that
GraphDB uses POS and PSO indexes for statements and
the literal index while RDF4J has SPOC, POSC. Since the
GeoSPARQL plugin returned ambiguous results,40 it was
disabled and this contributed greatly to the efficient per-
formance times achieved, as the repositories are smaller.
Enabling the GeoSPARQL plugin increases the repository
size by an average of 40%. RDF4J with Lucene enabled has
the same storage requirements as Strabon which more than
double than GraphDB.

From Tables 16 and 17, it is clear that GraphDB is the
most scalable system in terms of the initial loading time of
datasets and the final repository size.

6.4.2 Queries

The results of the scalability benchmark are shown in Fig. 5
where the response time of each query is reported for both
cold and warm caches. RDF4J with Lucene spatial index-
ing was slower and only RDF4J standard mode results are
included. Strabon is clearly the fastest system in all dataset,
query and cache combinations but the smallest dataset with
cold caches where RDF4J is the fastest. RDF4J is also faster
than GraphDB in the most demanding SC2 spatial join query
where high thematic selectivity results in full table scan
to produce the result. The same holds to a lesser degree
for queries SC1 and SC3 but for the two smallest datasets.

40 https://jira.ontotext.com/browse/GRAP-143.

123

https://jira.ontotext.com/browse/GRAP-143

Evaluating Geospatial RDF Stores Using the Benchmark Geographica 2 221

Ta
bl
e
16

St
or
in
g
tim

es
(s
)

Sy
st
em

10
K
tr
ip
le
s

10
0K

tr
ip
le
s

1M
tr
ip
le
s

10
M

tr
ip
le
s

10
0M

tr
ip
le
s

50
0M

tr
ip
le
s

Si
ng
le
ch
un
k

Si
ng
le
ch
un
k

Si
ng
le
ch
un
k

Si
ng
le
ch
un
k

Si
ng
le
ch
un
k

10
M

ch
un
k

Si
ng
le
ch
un
k

10
M

ch
un
k

St
ra
bo
n

D
ef
au
lt
lo
ad
er

7,
00

s
19
,0
0
s

29
2,
00

s
–

–
–

–
–

B
ul
k
L
oa
de
r

–
–

73
,5
4
s

94
3,
74

s
1.
99
3,
00

s
–

25
.6
50
,0
0
s*

–

G
ra
ph
D
B

47
,1
0
s

4,
15

s
64
,5
9
s

15
7,
95

s
1.
51
5,
64

s
–

7.
17
3,
00

s
–

R
D
F4

J
1.
37

s
5.
01

s
43
.8
5
s

36
3.
64

s
X

42
52
.3
0
s

X
16
9,
06
3.
75
9
s

L
uc
en
e
en
ab
le
d

4,
73

s
23
,6
1
s

29
8,
91

s
2.
21
2,
38

s
X

19
.2
01
,3
4
s

X
35
7.
97
0,
89

s

Ta
bl
e
17

R
ep
os
ito

ry
si
ze
s
(M

B
,G

B
)

Sy
st
em

10
K
tr
ip
le
s

10
0K

tr
ip
le
s

1M
tr
ip
le
s

10
M

tr
ip
le
s

10
0M

tr
ip
le
s

50
0M

tr
ip
le
s

Si
ng
le
ch
un
k

Si
ng
le
ch
un
k

Si
ng
le
ch
un
k

Si
ng
le
ch
un
k

Si
ng
le
ch
un
k

10
M

ch
un
k

Si
ng
le
ch
un
k

10
M

ch
un
k

St
ra
bo
n

19
M
B

51
M
B

36
7
M
B

3.
1
G
B

28
G
B

–
13
4
G
B

–

G
ra
ph
D
B

16
M
B

25
M
B

13
2
M
B

1.
11

G
B

10
.9

G
B

–
54

G
B

–

R
D
F4

J
3.
1
M
B

14
M
B

13
5
M
B

1.
23

G
B

X
11
.8
2
G
B

X
59
.1
0
G
B

L
uc
en
e
en
ab
le
d

4.
6
M
B

35
M
B

37
8
M
B

3.
2
G
B

X
25

G
B

X
14
5
G
B

123

222 T. Ioannidis et al.

GraphDB on the other hand is much faster than RDF4J in the
moderate SC3 spatial join querywhich has a smaller thematic
selectivity and is clear that filters results on the thematic part
before proceeding with the evaluation of the spatial part. For
the 500M triples dataset, GraphDB did not complete query
SC2 in the 24 hour limit while RDF4J failed to complete
queries SC2 and SC3.

7 Evaluating the Performance of RDF Stores
with Limited Geospatial Capabilities

Apart from the RDF stores that we have already tested, there
are also some RDF stores that provide geospatial capabil-
ities only for points. Indexing and evaluating queries only
for simple geometry types (points) allows to use different
index and query evaluation methods than that for more com-
plex geometry types, like polygons and lines. For example,
points can be indexed using two B-trees or a point quadtree,
while polygons are usually indexed using an R-tree. In order
to find out if there is a performance trade-off between these
two approaches , this section evaluates the performance of
two RDF stores that provide limited geospatial capabilities
(support only points) and compare them with the geospa-
tial RDF stores which are tested in the previous sections.
For this purpose, Virtuoso v7.1 and a proprietary RDF store
(which we will call System Y) are used. Virtuoso and Sys-
temY support only point geometries. Thus, for the real-world
and synthetic workloads of Geographica 2, the parts of the
datasets that contains only point geometries are kept and only
the queries which handle point geometries are rerun in the
geospatial RDF stores Strabon, uSeekM, Parliament, System
X, GraphDB, RDF4J and the limited-functionality systems
Virtuoso and System Y.

7.1 Real-WorldWorkload

The real-world workload used in this case consists of only
the corresponding datasets from DBpedia and GeoNames.
Because Virtuoso and System Y do not provide any non-
topological function only spatial selections and spatial joins
were tested. Also, the macro-benchmark is not used in this
section, since all scenarios usemore complex geometry types
than points.

7.1.1 Dataset Storage

The storage times for the real-world workload are presented
in Table 18, and Table 19 presents the storage space required
in each case. For this subset of Geographica 2, we stored
only the corresponding datasets of DBpedia and GeoNames.
In this table, we observe that Virtuoso and System Y need
considerably less time to store and index the real datasets

than the other systems. They provide dedicated bulk load-
ers which achieve better storage times in comparison with
storage times of the full geospatial RDF stores which either
use Sesame, RDF4J and Jena Java API for loading data (e.g.,
uSeekM, GraphDB, Parliament) or they provide bulk load-
ers that perform complex processing of the input data (e.g.,
Strabon, System X).

The space needs of the two RDF stores with point geom-
etry functionality differ significantly. System Y allocates a
large amount of space, even more than the full geospatial
RDF stores. Virtuoso, on the other hand, needs little space
which, however, is almost twice as much as RDF4J and
uSeekM.

7.1.2 Queries

Given the spatial selections that are supported by Virtuoso
and System Y, queries Q14 and Q15 (spatial selections) have
been tested. As described in Sect. 6.2.2, these queries ask
for points that lie within a given distance from a given point,
but each query uses a different function. Also Query Q18
(spatial join) was tested which asks for pairs of points of
the datasets GeoNames and DBpedia that are equal. Virtuoso
does not offer functions to create a buffer. Instead, it provides
the functionsbif:st_within,bif:st_intersects,
and bif:st_contains which receive a third argument
that is a tolerance value for matching in units of linear dis-
tance. In order to emulate Query Q15 in Virtuoso, instead of
creating a buffer of the given point with radius r and asking
for points inside the buffer, we can ask for points inside the
given point with tolerance r .

The response times of these queries are reported in Fig. 6.
Query Q14 has a complex filter clause (point inside a point
buffer) but if the point buffer is computed the spatial index
can be used to evaluate the query. Thus, the majority of RDF
stores that utilize the spatial index to evaluate this query
(Virtuoso, System Y, and Strabon) respond to it faster than
uSeekM, Parliament, System X serial, GraphDB and RDF4J
which do not use an index. System X parallel did not com-
plete the evaluation of Q14. Especially Virtuoso, which is not
burdened with the cost of evaluating a topological relation
over complex geometries (like a buffer of a point), achieves
the best response time. Query Q15 does not favor the use of
spatial index but its filter clause (distance between points)
is executed faster than the filter clause of query Q14 (point
inside point buffer). Thus, uSeekM, Parliament, GraphDB
andRDF4J need less time to respond to this query thanQuery
Q15. uSeekM needs the least time of all systems. Virtuoso
and System Y need slightly more time to respond to query
Q15 than Q14, because they do not use their spatial indexes.
In the case of spatial join (query Q18) Virtuoso has the fastest
response time while Strabon comes second. System X (in

123

Evaluating Geospatial RDF Stores Using the Benchmark Geographica 2 223

Strabon GraphDB RDF4J

10-1

100

101

102

103

104

105

106

10K 100K 1M 10M 100M 500M

re
sp

on
se

 ti
m

e
[s

ec
]

dataset [triples]

(a) SC1-cold

10-1

100

101

102

103

104

105

106

10K 100K 1M 10M 100M 500M

re
sp

on
se

 ti
m

e
[s

ec
]

dataset [triples]

(b) SC1-warm

10-1

100

101

102

103

104

105

106

10K 100K 1M 10M 100M 500M

re
sp

on
se

 ti
m

e
[s

ec
]

dataset [triples]

(c) SC2-cold

10-1

100

101

102

103

104

105

106

10K 100K 1M 10M 100M 500M

re
sp

on
se

 ti
m

e
[s

ec
]

dataset [triples]

(d) SC2-warm

10-1

100

101

102

103

104

105

106

10K 100K 1M 10M 100M 500M

re
sp

on
se

 ti
m

e
[s

ec
]

dataset [triples]

(e) SC3-cold

10-1

100

101

102

103

104

105

106

10K 100K 1M 10M 100M 500M

re
sp

on
se

 ti
m

e
[s

ec
]

dataset [triples]

(f) SC3-warm

Fig. 5 Response times—scalability workload

Table 18 Storing times (s). Real world: GeoNames, DBpedia. Synthetic: PointsOfInterest

Workload Strabon uSeekM Parliament System X GraphDB RDF4J Virtuoso System Y

Real world 65 45 36 68 62 26 9 8

Synthetic 496 771 874 418 116 306 63 31

Table 19 Repository sizes (MB). Real world: GeoNames, DBpedia. Synthetic: PointsOfInterest

Workload Strabon uSeekM Parliament System X GraphDB RDF4J Virtuoso System Y

Real world 338 124 238 534 220 122 213 657

Synthetic 2201 1871 2864 2865 733 1031 703 3084

123

224 T. Ioannidis et al.

Strabon
uSeekM
Parliament
System X (Par.)

System X (Ser.)
Virtuoso
System Y
GraphDB

RDF4J

10-3

10-2

10-1

100

101

102

103

Q14
Q15

Q18

re
sp

on
se

 ti
m

e
[s

ec
]

JoinsSelections

(a) Cold caches

10-3

10-2

10-1

100

101

102

103

Q14
Q15

Q18

re
sp

on
se

 ti
m

e
[s

ec
]

JoinsSelections

(b) Warm caches

Fig. 6 Response times, real-world workload

Table 20 Query template for synthetic queries of Virtuoso

SELECT ?s
WHERE {
?s ns:hasGeometry/ns:asWKT ?g.
?s c:hasTag/ns:hasKey "THEMA".
FILTER(FUNCTION(?g,
bif:st point(45, 45), "TOL"))}

parallel mode) needs more time than the one hour limit to
evaluate this join, as well as in the full micro-benchmark.

7.2 SyntheticWorkload

The syntheticworkloadused thegenerator,which is described
in Sect. 5.2.1, to generate a dataset and only the generated
points of interest were stored. Because only points were used
we chose to set the generator parameters n = 1024 and
k = 10 and generate a bigger dataset that contains about
seven million triples.

7.2.1 Dataset Storage

The corresponding storage times and allocated storage space
are shown in Tables 18 and 19. As well as for the real-world
workload, Virtuoso and System Y need less time to store
the dataset of the synthetic workload than the full geospatial
RDF stores. For the synthetic dataset which is bigger than the
real-world dataset, the low requirements in storage space of
Virtuoso, GraphDB and RDF4J are more emphasized. While
Virtuoso is slightlymore compact thanGraphDB, both stores
need about two times less space than uSeekM and three times
less space than the other RDF stores. On the other hand, Sys-
tem Y has higher space requirements than the full geospatial
RDF stores.

7.2.2 Queries

For this subset of Geographica 2 only spatial selections
using topological relation geof:sfWithin were exe-

cuted. Since functions in Virtuoso cannot receive a rectangle
as argument, the respective queries that were run by Virtu-
oso are produced by instantiating the template in Table 20.
The parameter TOL is the tolerance value that will be used
by Virtuoso for evaluating the topological relation defined
by parameter FUNCTION. So a circle is considered by
bif:st_within and the radius of the circle (defined by
the parameter TOL) is instantiated to achieve each time the
proper spatial selectivity.

The response times for these queries are presented in
Fig. 7. For high thematic selectivity tag=1, Virtuoso is the
fastest systemwhile Strabon comes second. For low thematic
selectivity tag=1024 GraphDB and Strabon are at the top.
Both System Y and Virtuoso executed all queries by start-
ing with the spatial part of the query and then continuing
with the thematic part and this is why their performance is
affected more by the spatial selectivity of the query than by
the thematic. For example, when the value of the parameter
THEMA is 1 (Fig. 7a, c) Virtuoso needs the shortest time
to evaluate the spatial selections. But when the value of the
parameter THEMA is 1024 (Fig. 7b, d) Virtuoso does not
exploit the fact that few points satisfy the thematic part of
the query and its response time increases while the spatial
selectivity is increased and more points satisfy the spatial
predicate. Thus, GraphDB and Strabon, which changes its
execution path if the spatial selectivity is increased, respond
to these queries faster.

7.3 Summary

This section compared the performance of RDF systems that
implement GeoSPARQLwith general purpose RDF systems
which provide limited spatial functionality. Regarding data
storage, Virtuoso and System Y provide the best bulk load-
ing capabilities while Virtuoso and GraphDB, have very low
space requirements. Regarding query evaluation Virtuoso,
Strabon and GraphDB have the best performance. Finally,
the query optimizers of Virtuoso and System Y do not take
into account the selectivity of a spatial predicate. However,
this does not lead to bad performance because of their fast

123

Evaluating Geospatial RDF Stores Using the Benchmark Geographica 2 225

Strabon
uSeekM

Parliament

System X (Par.)
System X (Ser.)

Virtuoso

System Y
GraphDB

RDF4J

10-1

100

101

102

103

 0% 20% 40% 60% 80% 100%

re
sp

on
se

 ti
m

e
[s

ec
]

% of Nodes in query region

(a)

Within

tag 1, cold caches

10-1

100

101

102

103

 0% 20% 40% 60% 80% 100%

re
sp

on
se

 ti
m

e
[s

ec
]

% of Nodes in query region

(b)

Within

tag 1024, cold caches

10-2

10-1

100

101

102

103

 0% 20% 40% 60% 80% 100%

re
sp

on
se

 ti
m

e
[s

ec
]

% of Nodes in query region

(c)

Within

tag 1, warm caches

10-2

10-1

100

101

102

103

 0% 20% 40% 60% 80% 100%

re
sp

on
se

 ti
m

e
[s

ec
]

% of Nodes in query region

(d)

Within

tag 1024, warm caches

Fig. 7 Response times—synthetic workload (selections)

searchmechanisms, even if the thematic selectivity of a query
is greater than the spatial.

8 Summary and FutureWork

In this section, we summarize the work presented in this
article, and discuss the limitations and future extensions of
our work.

8.1 Summary

This article presents a benchmark for evaluating geospatial
RDF stores. First, it presents a functional comparison of
well-known geospatial RDF stores. Then, it compares their
performance according to three workloads: the real-world,
the synthetic and the scalability workload.

The real-world workload is based on real data and is
separated into twoparts. Themicro-part tests geospatial oper-
ations in isolation and aims at stressing the spatial module of
RDF stores. A conclusion that can be drawn from this part
is that integration of a spatial module in most of the geospa-
tial RDF stores is not mature. Most of the poor performance

issues observed were either because the spatial index was not
properly utilized or due to inefficiencies of the spatial rela-
tion evaluation engine (e.g., not being optimized for complex
geometries).

The macro-part of the real-world workload evaluates the
performance of RDF stores in simulations of real application
scenarios. Various application scenarios were specified that
range from simple scenarios (e.g., “Geocoding,” “Reverse
Geocoding,” “Map Search and Browsing”) to more compli-
cated scenarios that serve domain expert needs (e.g., “Rapid
Mapping for Fire Monitoring,” “Computing Statistics of
Geospatial Datasets”). uSeekM has the best performance
for queries that consist of simple spatial operations (e.g.,
spatial selections), like “Geocoding,” “Reverse Geocoding,”
“Map Search and Browsing,” and “Computing Statistics”
of Geospatial Datasets. For more complex applications that
include both spatial joins or spatial aggregations, like “Rapid
Mapping for Fire Monitoring” Strabon is the only RDF
store that performed well. System X and Parliament per-
formed well only for some scenarios, e.g., “Geocoding”
and “Reverse Geocoding,” respectively, but they had always
worse performance than uSeekM or Strabon. So, every sce-
nario canbewell servedby at least oneRDFstore. Thismeans

123

226 T. Ioannidis et al.

that there are already implementations capable of being used
in real applications and bringing the merits of linked data in
the geospatial domain.

The synthetic workload uses synthetic data of arbitrary
size and queries with various thematic and spatial selectiv-
ities and tests whether spatial query processing is deeply
integrated in their query engines. The results of this work-
load highlight the importance of spatial statistics and using
them to select appropriate query execution paths. RDF stores
that do so manage to have a good performance for all combi-
nations of spatial and thematic selectivity, while other RDF
stores that do not take into consideration the spatial selectiv-
ity of a query and stick to only one type of execution path
(e.g., always execute the spatial part of a query and then the
thematic part) do not always achieve good performance.

The scalability workload is based on a set of increasingly
larger subsets of the union of two real-world datasets, OSM
and CORINE 2012. Three systems participated in this test
and they were selected based on being actively maintained
and being representative of each one of the different architec-
tures of the RDF stores identified, namely RDF frameworks
(RDF4J), NoSQL RDF stores (GraphDB) and hybrid RDF
stores with RDBMS as a back-end (Strabon). One spatial
selection query and two spatial join queries, a demanding
and a moderate one, were used to stress the systems against
datasets up to 500M triples. The infrastructure used was a
small system by today’s standards and helped each system
to show its limits early on. Strabon which belongs to the
hybrid architecture proved to be the most efficient one in
answering all queries but faced problems with its bulk loader
over 100M triples. GraphDB achieved exceptional perfor-
mance in bulk loading and storage size but, as RDF4J, was
not able to answer the three queries fast enough. Program-
matic operation for GraphDB’s stores with the GeoSPARQL
plugin enabledwas not possible because of runtime errors, so
a question remains about howwellGraphDBwould have per-
formed in queries using spatial predicates. Although RDF4J
was not able to manage more than 100M triples datasets with
geospatial data, it proved that it can be considered as the basis
for building more complete horizontally scalable geospatial
RDFstoreswhichwill provide abetter spatial indexingmech-
anism both performance and storage wise.

Finally, a comparison between RDF stores with limited
geospatial capabilities and geospatial RDF stores was per-
formed, trying to find out whether point-specific spatial
indexing schemes perform better than spatial indexes for
mixed geometries. RDF stores with limited geospatial capa-
bilities performed very well, especially at bulk loading and
at spatial selection queries. However, the difference in per-
formance from some geospatial RDF stores is not as high as
expected. For queries with a high selectivity spatial condi-
tion, some geospatial RDF stores perform better than stores
with point-only support.

8.2 Limitations and FutureWork

The real-world and synthetic workloads used in Geographica
are relatively small and they covered only a limited geo-
graphic extent, such as Greece or New York. However, as
the results of experimental evaluation showed, they were
enough to stress all systems that were evaluated. By adding
the scalability workload we raised considerably the size of
datasets to 500M triples with 100GB of geospatial data that
coveredmanyEuropean countries and contained highly com-
plex geometries. By replacing OWLIM with its successor
GraphDB and introducing RDF4J, the geospatial successor
of Sesame RDF framework, we included the newest devel-
opments in systems of this area.

In future work, we plan to include in the benchmark the
newest Virtuoso version which offers some GeoSPARQL
features; we have not been able to do it in this version due to
problems with the current implementation as we discussed
in Sect. 4.2.

Given that there are today institutions such as cartographic
agencies (e.g., Kadaster in the Netherlands41) that manage
TBs of geospatial data and make some of it available as
linked data, it is important to develop RDF stores that can
manage big linked geospatial data [49]. This is currently
done in the European project Extreme Earth42 that our group
coordinates. Extreme Earth studies big linked geospatial data
coming from the Earth observation program Copernicus43 of
the European Union.

Acknowledgements We would like to express our gratitude to the
development and support groups of all the systems that were included
in this work. We are grateful to people from the RDF4J project, the
Ontotext group for the GraphDB system, the OpenLink Software group
for Virtuoso Open-Source server, and the developers of System X who
provided insight and directions for achieving the best possible results
in our experiments.

References

1. Perry M, Herring J (2011) GeoSPARQL—a geographic query
language for RDF data; proposal for an OGC draft candidate stan-
dard 11-052r1, Open Geospatial Consortium Inc., 2011, Access
restricted to OGC members

2. Kyzirakos K, Karpathiotakis M, Koubarakis M (2012) Strabon: a
semantic geospatial DBMS. In: The semantic web—ISWC2012—
11th international semantic web conference, Boston, MA, USA,
November 11–15, 2012, proceedings, part I, 2012, pp 295–311

3. Bereta K, Smeros P, KoubarakisM (2013) Representing and query-
ing the valid time of triples for linked geospatial data. In: ESWC

4. Herring J (2011)OpenGIS implementation standard for geographic
information-simple feature access-part 1: common architecture.
OGC Doc 4(21):122–127

41 https://www.kadasterdata.nl/.
42 http://earthanalytics.eu/.
43 https://www.copernicus.eu/en.

123

https://www.kadasterdata.nl/
http://earthanalytics.eu/
https://www.copernicus.eu/en

Evaluating Geospatial RDF Stores Using the Benchmark Geographica 2 227

5. Portele C. Opengis geography markup language (GML) encoding
standard, OGC 07-036, OGC standard

6. Koubarakis M, Karpathiotakis M, Kyzirakos K, Nikolaou C,
Sioutis M (2012) Data models and query languages for linked
geospatial data. In: Reasoning web. Semantic technologies for
advanced query answering—8th international summer school
2012, Vienna, Austria, September 3–8, 2012. Proceedings, 2012,
pp 290–328

7. Koubarakis M, Nikolaou C, Bereta K, Stamoulis G, Papadakis G,
Pantazi D-A, Ioannidis T, Karalis N, Punjani D (2021) Geospatial
data science: a hands-on approach for building geospatial applica-
tions

8. Battle R, Kolas D (2012) Enabling the geospatial semantic web
with parliament and GeoSPARQL. Semant Web 3(4):355–370

9. Stonebraker M, Frew J, Gardels K, Meredith J (1993) The sequoia
2000 benchmark. In: Proceedings of the 1993 ACM SIGMOD
international conference on management of data, Washington, DC,
USA, May 26–28, 1993, pp 2–11

10. Patel JM, Yu J, Kabra N, Tufte K, Nag B, Burger J, Hall NE,
Ramasamy K, Lueder R, Ellmann CJ, Kupsch J, Guo S, DeWitt
DJ, Naughton JF (1997) Building a scaleable geo-spatial DBMS:
technology, implementation, and evaluation. In: SIGMOD 1997,
proceedings ACM SIGMOD international conference on man-
agement of data, May 13–15, 1997, Tucson, Arizona, USA, pp
336–347

11. Günther O, Picouet P, Saglio J, Scholl M, Oria V (1999) Bench-
marking spatial joins a la carte. Int J Geogr Inf Sci 13(7):639–655

12. Paton NW, Williams MH, Dietrich K, Liew O, Dinn A, Patrick
A (2000) VESPA: a benchmark for vector spatial databases.
In: Advances in databases, 17th British national conference on
databases, BNCOD 17, Exeter, UK, July 3–5, 2000. Proceedings,
pp 81–101

13. Ray S, Simion B, Brown AD (2011) Jackpine: a benchmark to
evaluate spatial database performance. In: Proceedings of the 27th
international conference on data engineering, ICDE 2011, April
11–16, 2011, Hannover, Germany, pp 1139–1150

14. Myllymaki J, Kaufman JH (2003) Dynamark: a benchmark for
dynamic spatial indexing. In: Mobile data management, 4th inter-
national conference, MDM 2003, Melbourne, Australia, January
21–24, 2003. Proceedings, pp 92–105

15. Kolas D (2008) A benchmark for spatial semantic web systems. In:
International workshop on scalable semantic web knowledge base
systems

16. Patroumpas K, Giannopoulos G, Athanasiou S (2014) Towards
geospatial semantic data management: strengths, weaknesses, and
challenges ahead. In: Proceedings of the 22nd ACM SIGSPATIAL
international conference on advances in geographic information
systems, Dallas/Fort Worth, TX, USA, November 4–7, 2014, pp
301–310

17. Garbis G, Kyzirakos K, Koubarakis M (2013) Geographica: a
benchmark for geospatial RDF stores. In: The semantic web—
ISWC2013—12th international semanticweb conference, Sydney,
NSW, Australia, October 21–25, 2013. Proceedings, Part II, pp
343–359

18. Kolas D, Self T (2007) Spatially-augmented knowledgebase. In:
The semantic web, 6th international semantic web conference,
2nd Asian semantic web conference, ISWC 2007 + ASWC 2007,
Busan, Korea, November 11–15, 2007, pp 792–801

19. Brodt A, Nicklas D, Mitschang B (2010) Deep integration of spa-
tial query processing into native RDF triple stores. In: 18th ACM
SIGSPATIAL international symposium on advances in geographic
information systems, ACM-GIS 2010, November 3–5, 2010, San
Jose, CA, USA. Proceedings, pp 33–42

20. Randell DA, Cui Z, Cohn AG (1992) A spatial logic based on
regions and connection. In: Proceedings of the 3rd international
conference on principles of knowledge representation and reason-

ing (KR’92). Cambridge, MA, USA, October 25–29, 1992, pp
165–176

21. Egenhofer MJ (1989) A formal definition of binary topological
relationships. In: Foundations of data organization and algorithms,
3rd international conference, FODO 1989, Paris, France, June 21–
23, 1989. Proceedings, pp 457–472

22. Perry MS A framework to support spatial, temporal and thematic
analytics over semantic web data

23. McKenneyM (2010) Geometric and thematic integration of spatial
data into maps. In: 2010 IEEE international conference on infor-
mation reuse & integration, IEEE, 2010, pp 201–206

24. Guo Y, Pan Z, Heflin J (2005) LUBM: a benchmark for OWL
knowledge base systems. J Web Semant 3(2–3):158–182

25. MeimarisM, PapastefanatosG (2006) The evogen benchmark suite
for evolving RDF data. In: MEPDaW/LDQ@ ESWC, pp 20–35

26. Schmidt M, Hornung T, Meier M, Pinkel C, Lausen G (2009)
Sp2bench: a SPARQL performance benchmark, semantic web
information management—a model-based. Perspective 2009:371–
393

27. Bizer C, Schultz A (2009) The Berlin SPARQL benchmark. Int. J.
Semant. Web Inf. Syst. 5(2):1–24

28. Morsey M, Lehmann J, Auer S, Ngomo AN (2011) Dbpedia
SPARQL benchmark—performance assessment with real queries
on real data. In: The semantic web—ISWC 2011—10th interna-
tional semantic web conference, Bonn, Germany, October 23–27,
2011. Proceedings, Part I, pp 454–469

29. Aluç G, Hartig O, Özsu MT, Daudjee K (2014) Diversified stress
testing of RDF data management systems. In: The semantic web—
ISWC2014—13th international semanticweb conference,Riva del
Garda, Italy, October 19–23, 2014. Proceedings, Part I, pp 197–212

30. Erling O, Averbuch A, Larriba-Pey J, Chafi H, Gubichev A, Prat A,
Pham M-D, Boncz P (2015) The ldbc social network benchmark:
interactive workload. In: Proceedings of the 2015 ACM SIGMOD
international conference on management of data. ACM, pp 619–
630

31. BaganG, Bonifati A, CiucanuR, Fletcher GH, LemayA,Advokaat
N (2016) gMark: schema-driven generation of graphs and queries.
IEEE Trans Knowl Data Eng 29(4):856–869

32. Bonifati A, Fletcher G, Hidders J, Iosup A (2018) A survey of
benchmarks for graph-processing systems. Graph Data Manag
2018:163–186

33. Bellini P, Nesi P (2018) Performance assessment of RDF graph
databases for smart city services. J Vis Lang Comput 45:24–38

34. Ramsey P. Postgis introduction and evaluation. Refractions
Research Inc

35. Finkel RA, Bentley JL (1974) Quad trees: a data structure for
retrieval on composite keys. Acta Inf. 4:1–9

36. Van LH, TakasuA (2015) An efficient distributed index for geospa-
tial databases. In: Database and expert systems applications—26th
international conference, DEXA 2015, Valencia, Spain, September
1-4, 2015. Proceedings, Part I, pp 28–42

37. Stolze K (2003) SQL/MM spatial—the standard to manage spatial
data in a relational database system. In: BTW2003, Datenbanksys-
teme für Business, Technologie und Web, Tagungsband der 10.
BTW-Konferenz, 26.–28. Februar 2003, Leipzig, pp 247–264

38. Stadler C, Lehmann J, Höffner K, Auer S (2012) Linkedgeodata:
a core for a web of spatial open data. Semant Web J 3(4):333–354

39. Koubarakis M, Kontoes C, Manegold S (2013) Real-time wildfire
monitoring using scientific database and linked data technologies.
In: Joint 2013 EDBT/ICDT conferences, EDBT ’13 proceedings,
Genoa, Italy, March 18–22, 2013, pp 649–660

40. Albani S, Lazzarini M, Koubarakis M, Taniskidou EK, Papadakis
G, Karkaletsis V, Giannakopoulos G. A pilot for big data exploita-
tion in the space and security domain

41. Hill MD (1990) What is scalability? ACM SIGARCH Comput
Arch News 18(4):18–21

123

228 T. Ioannidis et al.

42. Bondi AB (2000) Characteristics of scalability and their impact on
performance. Workshop Softw Perform 2000:195–203

43. Crockett A,Maarfi R, Ramaswamy S, Brown EL, RogersM (2005)
Understanding scalability issues for a distributed simulation envi-
ronment using intelligent coordinated entities. In: Proceedings of
the international conference on software engineering research and
practice, SERP 2005, Las Vegas, Nevada, USA, June 27–29, 2005,
Volume 2, pp 758–763

44. Garcia DF, Rodrigo G, Entrialgo J, Garcia J, Garcia M (2008)
Experimental evaluation of horizontal and vertical scalability of
cluster-based application servers for transactional workloads. In:
8th international conference on applied informatics and communi-
cations (AIC’08), pp 29–34

45. Appuswamy R, Gkantsidis C, Narayanan D, Hodson O, Rowstron
A (2013) Scale-up vs scale-out for hadoop: time to rethink? In:
Proceedings of the 4th annual symposium on cloud computing.
ACM, p 20

46. Cattell R (2011) Scalable SQL and NOSQL data stores. Acm Sig-
mod Rec 39(4):12–27

47. Hu H, Wen Y, Chua T-S, Li X (2014) Toward scalable systems for
big data analytics: a technology tutorial. IEEE Access 2:652–687

48. Hausenblas M, Slany W, Ayers D (2007) A performance and scal-
ability metric for virtual RDF graphs. In: Proceedings, 1

49. Koubarakis M, Bereta K, Papadakis G, Savva D, Stamoulis G
(2017) Big, linked geospatial data and its applications in earth
observation. IEEE Int Comput 21(4):87–91

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Evaluating Geospatial RDF Stores Using the Benchmark Geographica 2
	Abstract
	1 Introduction
	2 Background
	2.1 GeoSPARQL
	2.2 stRDF and stSPARQL
	2.3 Selection of features to test

	3 Related Work
	3.1 Benchmarks for SPARQL Query Processing
	3.2 Benchmarks for Geospatial Relational Databases
	3.3 Benchmarks for Geospatial RDF Stores
	3.4 Benchmarks distilled

	4 A Functional Comparison of Geospatial RDF Stores
	4.1 Geospatial RDF Stores that Conform to the GeoSPARQL Standard
	4.2 RDF Stores with Limited Geospatial Capabilities

	5 The Benchmark Geographica 2
	5.1 Real-World Workload
	5.1.1 Datasets
	5.1.2 Micro-benchmark
	5.1.3 Macro-benchmark

	5.2 Synthetic Workload
	5.2.1 Datasets
	5.2.2 Queries

	5.3 Scalability Workload
	5.3.1 Datasets
	5.3.2 Queries
	5.3.3 Systems

	6 Benchmark Results
	6.1 Experimental Setup
	6.2 Real-World Workload
	6.2.1 Dataset Storage
	6.2.2 Micro-benchmark
	6.2.3 Macro-benchmark

	6.3 Synthetic Workload
	6.3.1 Dataset Storage
	6.3.2 Queries

	6.4 Scalability Workload
	6.4.1 Dataset Storage
	6.4.2 Queries

	7 Evaluating the Performance of RDF Stores with Limited Geospatial Capabilities
	7.1 Real-World Workload
	7.1.1 Dataset Storage
	7.1.2 Queries

	7.2 Synthetic Workload
	7.2.1 Dataset Storage
	7.2.2 Queries

	7.3 Summary

	8 Summary and Future Work
	8.1 Summary
	8.2 Limitations and Future Work

	Acknowledgements
	References

