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Abstract
As the number of moving objects increases, the challenges for achieving operational goals w.r.t. the mobility in many domains
that are critical to economy and safety emerge dramatically. In domains such as air traffic management, this dictates a shift
of operations’ paradigm from location based, as it is today, to trajectory based, where trajectories are turned into “first-
class citizens”. Additionally, the increasing amount of data from heterogenous and disparate data sources implies the need
for advanced analysis methods that require exploiting spatio-temporal mobility data in appropriate forms and at varying
levels of abstraction. All these call for an in-principle way for organising integrated views of mobility data, with trajectories
playing the main role. In this paper, we propose an ontology for modelling semantic trajectories, integrating spatio-temporal
information regardingmobility of objects, at multiple, interlinked levels of abstraction. Our work builds upon a comprehensive
framework that identifies fundamental spatio-temporal data types and specific conversions among these types. We validate the
ontological specifications towards satisfying the needs of visual analysis tasks in the complex air traffic management domain,
using real-world data.

1 Introduction

Many tasks in critical domains w.r.t. economy and safety
raise challenges related to the advanced analysis of mobility
data. Flow and traffic management in the aviation domain
constitutes examples of such tasks. Mobility data typically
refer to surveillance data that provide positional informa-
tion of the moving object at different timestamps. However,
mobility data need to be associated with other heterogeneous
data sources, such as descriptive information of the moving
object, as well as contextual information.

Challenging problems include effective information pro-
vision for situation awareness, identification of recurrent
patterns of behaviour, and decision-making at different scales
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and levels of abstraction, as well as the prediction of moving
objects’ behaviour under specific circumstances. These chal-
lenges are significant as the number of moving objects and
their complexity increase.Addressing these challenges aimat
reducing factors of uncertainty regardingoperations, enhance
punctuality of activities, advance planning efficiency, and
reduce operational costs.

To address these challenges, a paradigm shift of operations
is proposed from location based, as it is today, to trajectory
based. In this way, trajectories are turned into “first-class
citizens”. Thus, mobility of objects, decisionmaking, assess-
ment of situations, and planning of operations revolve around
the notion of trajectory. Consequently, it is vital to revisit the
representation of trajectories, in order to satisfy the require-
ments of exploratory analysis tasks that require the synergy
between humans and computational tasks.

Our approach is based on two principles:

– First, trajectories should reveal objects’ behaviour in
explicit terms, at different levels of abstraction consid-
ering their geometric, contextual, and analysis-specific
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features. In thisway, analysis tasks can retrieve data about
trajectories at any (required) level of abstraction.

– Second, representations of trajectories need to integrate
spatial events into temporal sequences. At the same time,
events need to be associated with geographical contexts
and be aggregated into spatial time series. As a result,
data transformations can be supported that enable analy-
sis tasks to identify behavioural modes and patterns.

Ultimately, our objective is to specify an ontology for
modelling semantic trajectories, integrating spatio-temporal
information regarding mobility of objects at multiple, inter-
linked levels of abstraction. The ontology should support
appropriate data transformations, as needed by visual anal-
ysis tasks that are exploratory by nature. Visual analytics
impose specific requirements to support the combination of
human and computational data processing by means of inter-
active visual interfaces. In turn, this enables the analysis of
spatio-temporal [7] andmobility data [5], aswell as informed
decision-making [8].

Existing models and ontologies for the representation of
semantic trajectories do not provide the flexibility needed to
represent semantic trajectories and associated data and events
at multiple levels of abstraction. They usually specify mod-
els for representing trajectories at different levels (from raw
to semantic), associating trajectories with a specific kind of
information at each level. In caseswhere abstractions (mainly
aggregations of geometric information) are supported, these
are limited to specific types of abstraction and to a restricted
number of levels. Consequently, switching between levels of
abstraction as needed by exploratory analysis tasks is limited.
This imposes limitations to exploratory data analysis tasks,
in particular for visual analytics.

Motivated by the above limitations, this work makes the
following specific contributions:

(a) We revisit fundamental data types for visual analysis
tasks revolving around the notion of semantic trajectory,
specifying conversions among these types of data. Thus,
we provide an in-principle, comprehensive framework
for specifying trajectories’ constituents, and for validat-
ing ontological specifications towards the provision of
appropriately transformed data to analysis tasks.

(b) We revisit the notion of “semantic trajectory” as a
meaningful sequence of trajectory parts at any level of
abstraction. By being meaningful, a semantic trajectory
is associated with human-interpretable and machine-
processable information, revealing objects’ behaviour in
explicit terms. By dealing withmultiple levels of abstrac-
tion, we support analysis of moving objects’ behaviour
at any appropriate scale.

(c) We validate the ontology bymeans of enhanced SPARQL
queries, using real-world data from the air trafficmanage-

ment domain, in concrete cases of importance for flow
management.

The paper is organised as follows: Sect. 2 specifies the
requirements for an ontology for the representation of seman-
tic trajectories. Section 3 reviews the limitations of existing
proposals for representing semantic trajectories. Section 4
provides background information about the flow manage-
ment cases of the air traffic management domain, and Sect. 5
presents the datAcron ontology for the representation of
semantic trajectories. Section 6 presents how data trans-
formations are supported by the ontological specifications,
supporting visual analytics tasks for the purposes of flow
management cases. The paper concludes with discussion
remarks and plans for future work in Sect. 7.

2 Semantic Trajectories: Requirements and
Fundamental Types of Information

Our main goal is to specify an ontology that provides a com-
prehensive semantic model for the representation of trajecto-
ries. In turn, this facilitates the integration of spatio-temporal
information regarding mobility of objects at multiple, inter-
linked levels of abstraction, and support for appropriate data
transformations, as needed by visual analysis tasks.

Towards this objective, first we specify the requirements
for the representation of semantic trajectories, and then
we revisit a comprehensive framework comprising the fun-
damental types of spatio-temporal mobility data and data
transformations/conversions, with a clear focus on visual
analytics.

2.1 Requirements for the Representation of
Semantic Trajectories

Towards a comprehensive semantic model of trajectories that
integrates mobility data, we aim at representing all these
features that are necessary for the representation of seman-
tic trajectories. This includes geometric, geographical, and
application-specific information [34].

As reported in [34], geometric information concerns the
evolution of moving object location during a time interval.
The temporal sequence of raw data specifying the mov-
ing object spatio-temporal positions reported from sensing
devices (surveillance data) defines a raw trajectory [21].
Using geometric information, we may answer queries like
“Return objects which were located in a region”. How-
ever, geometric information may be specified at varying
levels of aggregation, revealing representations regarding the
behaviour of a moving object, which can be useful for var-
ious tasks. For instance, a trajectory may be represented as
a line rather than as a sequence of positions. Such a rep-
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resentation may ease computations that reveal patterns of
movement, or computations regarding spatial relations with
other geometries. Alternatively, a trajectory can be repre-
sented as a temporal sequence of lines representing trajectory
segments, each one of special interest on its own (e.g. each
one crossing a specific region of interest, or correspond-
ing to a specific phase of movement), or as a sequence of
aggregated raw positions with high concentration in spatio-
temporal regions or points of interest.

The reader may have noticed that in explaining the sig-
nificance of specifying a trajectory at multiple levels of
geometric abstraction, we “associated” geometric informa-
tionwith geographical (e.g. special areas or points of interest)
and application-specific (e.g. phases of movement) informa-
tion. This further supports the usefulness of having multiple
levels of geometric abstractions, serving different purposes
towards representing and analysing the behaviour of mov-
ing objects. Having these geometric abstractions, we may
answer queries such as “Return objects that crossed the spa-
tial region X during the time interval [tbegin, tend ]”, “Return
objects whose trajectories crossed spatial regions that prop-
erly include region X during the time interval [tbegin, tend ]”,
or “Return objects whose trajectories include an aggregation
of positions close to a specific point of interest”.

Different levels of geometric abstraction provide alterna-
tive constituents for structuring trajectories. According to
[21], a structured trajectory consists of a sequence of tra-
jectory parts that can be either raw positions reported from
a sensing devise, aggregations of raw positions referred as
nodes, or trajectory segments.

A trajectory segment is a trajectory itself, which may be
part of a whole trajectory. A node provides an aggregation
of raw positions. Segments and nodes aggregate informa-
tion that may instantiate a behaviour pattern. For example,
a sequence of raw positions may instantiate a “turn” or a
“stop” event. These aggregations can be represented by a
single node or segment, associated with an event type (e.g.
“turn” or “stop”, respectively), and to the corresponding set
of raw positions.

Segments of trajectories and nodes can be defined with
different objectives depending on the application and tar-
get analysis and are thus associated with application-specific
information. As defined in [21], a maximal sequence of
raw data that comply with a given pattern defines an
episode. In this work, we consider events as a general-
isation of episodes. Events represent specific or abstract
happenings and are associated with trajectory parts, pro-
viding application-specific information that is relevant to
the trajectory. As a consequence, queries such as “Return
objectswhose trajectories contributed to congestion events in
a specific spatial-temporal region”, or “Return objects whose
trajectories comprise a segment that is associatedwith a high-
speed event” can be answered.

Geographical features allow turning the geometric infor-
mation representing the spatial path into a geographical trace
[34] which is meaningful for humans and computational
processing tasks. This requires associating trajectory parts
to (types of) geographical regions: shops/spots/buildings of
different kinds, regions of special interest (e.g. touristic,
commercial or industrial), etc. Generalising geographical
features, we can draw semantic associations between trajec-
tory parts, supporting further the abstraction of trajectories
(e.g. any trajectory crossing many shops can be a “shop-
ping trajectory”, irrespectively the kind of shops crossed.
More specific types of shopping trajectories may indicate
specific types of shops). In this work, we view geograph-
ical features to be a specific type of contextual features.
These comprise features of the moving objects, as well as
features of moving objects’ environment, considering that
these features are associated with objects’ movement. These
may include weather attributes, space configuration features,
as well as aggregated data about co-occurring trajectories—
i.e. traffic. This enables answering not only queries such as
“Return trajectories that crossed region X”, but also queries
such as “Return trajectories that crossed any region with spe-
cific weather conditions [specified as conditions in weather
attributes]”.

Events aggregate different types of features. An event pat-
tern may comprise contextual features (e.g. crossing a spatial
region, or a regionwith a specificweather condition), features
of moving objects (e.g. reaching highest possible altitude),
geometric and geographical features, and/or other events
regarding the mobility of the object (e.g. moving in low-
speed or descending). Events may be low level—associated
with basic behaviour—or complex—associated with com-
plex patterns of behaviour.

A trajectory part may be associated with any event that
co-occurs with it spatially and/or temporally. For example,
badweather conditions or traffic regulations associatedwith a
spatial regionmay co-occurwith a trajectory crossing it (thus,
related spatially) during a time period (related temporally).

A semantic trajectory is a meaningful sequence of
trajectory parts. By being meaningful, a semantic trajec-
tory is associated with contextual information and related
events, towards revealing objects’ deliberative or accidental
behaviour in explicit terms, thus contributing to under-
standing the rationale for that behaviour and providing
comprehensive information about the occurring behaviour.

Given the above definition, a semantic trajectory can be
specified at different levels of abstraction, depending on
the geometric features, contextual features, and associated
events. Abstraction may happen by means of aggregation,
generalisation, or both. In doing so, we may retrieve seman-
tically associated trajectories, based on the semantic features
they aggregate and information to which they are associated.
For instance, we may retrieve “trajectories crossing sensitive
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Fig. 1 Conversions between
different representations

areas and associated to suspicious events”. Such trajectories
may be represented at varying aggregation levels. They may
cross areas with different types of sensitivity, and they may
be associated with different types of suspicious events.

We conjecture that abstractions of a single trajectory
should be interlinked, so that any application is able to
get any information that is necessary for its purposes,
being able to move in a continuum between specialised/ba-
sic information and generalised/aggregated information,
through querying and applying data transformations. This
supports, for instance, delving into the details regarding a
trajectory part associated with a complex event of type “sus-
picious behaviour”, by inspecting geometrical, contextual
and application-specific features at the appropriate level of
detail.

2.2 Fundamental Data Types and data
Transformations for Visual Analytics

Given our aim to represent trajectories towards supporting
data-driven approaches to challenging problems in critical
domains, this section presents generic spatio-temporal data
transformations to serve analysis goals on mobility data.

As mentioned in [6], there are three fundamental types of
spatio-temporal data associated with mobility: trajectories of
moving objects, spatial event data, and spatial time series.

Individual trajectories provide information on the move-
ment of individual objects. Aggregated traffic data are spatial
time series describing how many moving objects were
present in different spatial locations and/or howmany objects
moved from one location to another during different time
intervals. The time series may also include aggregate char-
acteristics of the movement, such as the average speed and
travel time. Time series describing the presence of objects are
associated with distinct locations, and time series describing
aggregatedmoves (often calledfluxes or flows) are associated
with directed links between pairs of locations. In both cases,
spatial time series are represented as chronologically ordered
sequences of values of time-variant thematic attributes asso-
ciated with spatial locations or spatial entities (for example
regions of special interest).

Spatial events emerge at spatial locations and exist for a
period of time. Spatial events are described by their spatial
regions, existence times, and contextual features. Eventsmay
occur irrespectively of trajectories, but somehow be related
to trajectories (e.g. weather events, regulations imposed in a
spatio-temporal region), or may be derived from trajectories
(e.g. a turn of a moving object, short distance between a pair
of objects, or large number of moving objects in a spatio-
temporal region).

Based on these types of spatio-temporal data and follow-
ing the approach of [22], the fundamental types of queries
can be seen as transformations combining three basic com-
ponents: (a) space (where), (b) time (when), (c) object or
event (what). These components can be used in three basic
types of queries:

– Retrieve the trajectories/events in a region for a time
period (when&where → what).

– Retrieve the region occupied by a trajectory/event or set
of trajectories/events, at a given time instant or period
(when&what → where).

– Retrieve the time periods that a non-empty set of tra-
jectories/events appear in a specific location or area (i.e.
where&what → when).

Exploiting these fundamental data types and queries, we
aim to support the generic transformations depicted in Fig. 1
[6], in support of visual analytics tasks. Briefly, as shown in
Fig. 1, trajectories integrate spatial events (transformation I),
while these events, similarly to trajectories, may be aggre-
gated to spatial time series. These may be either place based,
i.e. associated with a specific spatial region (transformation
III), or link based, such as flows of trajectories between pairs
of spatial regions (transformation II). Projections of spatial
time series may result to spatially referenced time series or
to spatial situations (transformations VI). These transforma-
tions impose specific requirements to representations, so as
to answer queries regarding trajectories, aggregations of fea-
tures and events.

More specifically, the left part of the diagram in Fig. 1
shows the tight relationships between spatial events and
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trajectories. In fact, trajectories comprise parts that are asso-
ciated with spatial events. Even in raw trajectories, each
record represents the presence of an object at a specific loca-
tion at some instant in time. As it is further shown in Fig. 1,
trajectories are obtained by integrating spatial events. In the
simplest case, for each moving object, all (raw) position
records are linked in a chronological sequence. Recipro-
cally, trajectories can be transformed to spatial events either
by full disintegration back into the constituent events or by
extraction of particular events of interest such as sharp turns,
entering/exiting a region, and crossing a waypoint. Spatial
events that are close in space and time can be united intomore
complex spatial events. For example, a spatio-temporal con-
centration ofmanymoving objects entering/crossing a spatial
region during a small time windowmay be treated as a single
event of traffic congestion.

Spatial time series can be obtained from spatial events
or trajectories through spatio-temporal aggregation. For
instance, spatial regions specify spatial compartments, and
time can be divided into intervals called time windows. For
each spatial compartment and timewindow, the spatial events
or moving objects that appear in the compartment during the
associated time window are binned together and counted.
The result is a place-based time series in which temporal
sequences of aggregate values are associated with the spatial
compartments. From such spatial time series, in turn, it is
possible to extract more complex spatial events, for example
events of high traffic density and high demand for a specific
spatial region and for specific temporal intervals.

Trajectories can also be aggregated into link-based time
series: for each pair of spatial compartments and for a spe-
cific time window, the objects that moved from the first to the
second compartment during this time interval (specifying a
link between compartments during that period) are counted.
Aggregated characteristics of their movement may be calcu-
lated.

Discrete place-based and link-based spatial time series can
be viewed in two complementaryways.On the one hand, they
consist of temporally ordered sequences of (aggregated) val-
ues associated with individual places or links, i.e. local time
series. On the other hand, a spatial time series is a temporally
ordered sequence of the distribution of spatial events, mov-
ing objects, or collective moves (flows) of objects over the
whole space of interest, together with the spatial variation
of various aggregate characteristics. These distributions are
called spatial situations [5].

Based on the requirements for the representation of
semantic trajectories specified in the first part of this section,
and the framework of fundamental types of mobility data and
conversions between them, presented in the second part of
this section, we proceed to propose a model for the represen-
tation of semantic trajectories, which aims at (a) supporting
the representation of semantic trajectories at multiple, inter-

linked levels of abstraction, (b) structuring trajectories by
means of different types of trajectory parts, (c) associating
events at varying levels of abstraction with trajectory parts,
(d) supporting the transformations needed for visual analysis
tasks.

3 RelatedWork

Existing approaches for the representation of trajectories
either (a) use plain textual annotations instead of seman-
tic associations to features of interest [3,11,12], having
limitations towards machine-processable information for
the purposes of mobility analysis tasks; (b) constrain the
types of events that can be used for structuring a trajec-
tory [3,11,23,29,34]; or (c) make specific assumptions about
the constituents of trajectories [12,14,16,19,23,29,33], thus
providing limitations to the specification of trajectories at
varying levels of abstraction according to needs.

To a greater extent than previous proposals, we aim to sup-
port the representation of trajectories at multiple, interlinked
levels of detail.

More specifically, although authors in [14] provide a rich
set of constructs for the representation of semantic trajec-
tories, these are specified as sequences of episodes, each
associated with raw trajectory data, and optionally, with a
spatio-temporal model of movement. Beyond representing
trajectories only as sequences of episodes, there is no fine
association between abstract models of movement and raw
data, providing limitations to analysis tasks that need both of
them in association. On the other hand, [12,23,29] and [33]
provide a two-levels analysis where semantic trajectories are
lists of semantic subtrajectories, and each subtrajectory is a
list of spatial points. Authors in [16], based on the two-levels
analysis of trajectory models, introduce an ontological pat-
tern for the specification of trajectories.

Regarding events and episodes,most of the proposedmod-
els are based on the “stop-move” model [23,30,34], or they
are connected to features at specific levels of abstraction:
in [12], events—mostly related to the environment rather
than to the trajectory itself—are connected to points. This
may lead to ambiguities as far as the association of events
to trajectories crossing the same points is concerned, espe-
cially for the events concerning the trajectory itself rather
than the environment. In [14], episodes concern things hap-
pening in the trajectory itself and may be associated with
specific models of movement. However, it is not clear how
multiple models of a single trajectory—each at a different
level of analysis—connected to a single episode, are associ-
ated. Contextual information in [23] concerns entities from
dbpedia and the OpeNER Linked Dataset, while in [14] is
related to movement models, episodes, or semantic trajec-
tories, which is quite generic as a model. In [29,33] and
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[16], fixes and states represent basic behavioural features
of the moving object. These may also represent contextual
features and are associated with trajectory points, or in [29]
they specify domain-specific features. Finally, in [12] envi-
ronment attributes are associated with points only and can
only be assigned specific values.

As noted in the previous section, the specification of tra-
jectories at various layers, from raw to semantic, depending
on the information associated with trajectories (as it is done
in [34]) is orthogonal to the goal of providing specifications
of trajectories at multiple levels of abstraction. A different
approach to that is proposed in [20], where trajectories are
associated with qualitative descriptions of movement, at dif-
ferent aggregation levels, much like the distinction between
low-level and complex events made above. However, trajec-
tories are specified as sequences of segments associated with
at least two key points providing quantitative information
on movement, with no association to any type of events or
activities.

This lack of flexibility to specify semantic trajectories at
multiple levels of abstraction regarding geometric and con-
textual information, as well as events, and the lack of the
capability to link these specifications so as to be able to
switch between abstractions flexibly, is a common feature
among previous efforts. In addition to that, to the best of our
knowledge, there is no work that considers the requirements
of analysis tasks in structuring trajectories, so as to support
fundamental types of data and transformations between them.

Specifically, considering data transformations for analy-
sis tasks, apart from the structural transformations between
or within the different types of spatio-temporal data spec-
ified in Sect. 2, there exist transformations that change the
scale, or level of detail, whichmay be beneficial for particular
tasks. For example, Chu et al. [13] transform trajectories into
sequences of traversed map regions (e.g.streets) and apply
text mining methods for discovery of ”topics”, i.e. combina-
tions of regions that have a high probability of co-occurrence
in one trip. The extraction of ”topics” is done for different
time intervals. By investigating the temporal evolution of the
topics, it is possible to understand where objects travel in
different times of the day and days of the week. Al-Dohuki
et al. [1] transform trajectories into texts consisting of region
names and text labels denoting speeds (low, medium, and
high). Furthermore, a discrete representation of aggregated
movements betweenplaces canbe treated as a graph, towhich
graph analysismethods can be applied [15,18].As such, these
various transformations enable the comprehensive analysis
of traffic data frommultiple complementary perspectives [9].

To the best of our knowledge, the ontology presented
in this paper for the specification of semantic trajectories,
namely the datAcron ontology, is the first one to provide the
flexibility needed to represent trajectories at multiple, inter-
linked levels of abstractions. Furthermore, and to a greater

extent than other models and ontologies proposed, it is val-
idated in the context of data transformations needed by
analysis tasks, in highly complex problem cases in the avia-
tion domain.

The datAcron ontology has been succinctly presented in
[25,28]. Here we delve into the details of the specifications,
while, also to a greater extent and detail than all previous
publications, we show in detail how the datAcron ontology
supports a wide range of generic data transformations that
are required by analysis tasks, supporting the provision of
information at various levels of analysis and form.

4 The FlowManagement Domain

To be able to show concrete examples of specifications and
examples of exploiting data, in this section we provide basic
background information and specify the types of entities and
data required in data analysis scenarios from the air traffic
management (ATM) domain, concerning flow management
(FM). Itmust be clarified that the datAcron ontology has been
designed and implemented as a generic ontology to satisfy
needs for the representation of trajectories across domains,
supporting a wide range of generic data transformations that
are required by analysis tasks.

Flow management (FM) has been chosen, because it pro-
vides some of the most explorative scenarios in the aviation
domain, requiring data transformations that meet and go
beyond themost common needs for exploiting trajectory data
in other domains. In addition to this, FM is an extremely
important service for airlines to operate in a safe and effi-
cient way, complementary to air traffic control (ATC). The
objective of FM is to ensure an optimum flow of air traffic.
In brief, its objectives include (a) detecting cases where air
traffic demand at times exceeds the available capacity of the
ATC system and (b) imposing flight regulations to resolve
these demand-capacity imbalances.

In demand-capacity imbalance situations, the expected
number of flights in some part of the airspace, called sector,
exceeds the prescribed sector capacity, i.e. the capability of
the air traffic controllers responsible for this sector to handle
flights safely: this results to the occurrence of hotspots. Reg-
ulations change the departure times of someflights in order to
prevent sector overload. This results in flight delays and thus
increased costs of operations. These delays can also result in
creating new hot spots at other times and/or in other sectors,
with cascading effects to the whole system. The capability
to predict the emergence of hot spots well in advance could
be used to improve flight planning, decisions on active sec-
tor configurations used (specified below), and it can improve
assessment of regulations that should be imposed to reduce
the occurrences of hot spots, resulting in fewer and smaller
delays. However, it is currently not clear how to achieve these
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goals. This ismainly due to the existing factors of uncertainty,
and thus to the lowpredictability of the actual operations (e.g.
of actual trajectories and events) taking place at specific time
instants. Hence, it is necessary to analyse available historical
data to identify patterns of human experts’ decision-making,
revealing expert knowledge (e.g. features, rules and criteria)
likely to be used in different circumstances.

As the general mission of visual analytics is to provide
techniques and tools supporting human understanding of
data, comprehension of the phenomena reflected in the data
and analytical reasoning, the exploration of the complex his-
torical data relevant to the FM cases is an appropriate task
for visual analytics.

4.1 The FlowManagement Entities

In the following, we provide a comprehensive list of the FM
entities, along with details.

– Flight plans provide specifications of plannedor intended
trajectories consisting of spatio-temporal events, such as
of flying over specific waypoints (i.e. fixed coordinates
among which airways are set). Flight plans also specify
information concerning estimated take-off time, and, in
case of delay caused by a regulation, the calculated take-
off time of the flight.

– Air blocks are static airspace volumes defined by geome-
tries specifying spatial 2D projections of the airspace
volume, and lower and upper flight levels.

– Sectors are static spatial 3D objects comprising other sec-
tors or airspace volumes that are defined by air blocks.
Each sector is managed by a specific number of air traffic
controllers (typically two, executive and planning con-
trollers).

– Sector configurations are alternative divisions of airspace
into sectors. Sectors constitute the minimum unit that
an air traffic controller operates. The number of sectors
dividing the airspace may vary in different times, allow-
ing to operate the airspace with the appropriate number
of controllers according to demand conditions, ensuring
safety of operations in low cost.

– Opening schemes or active configurations are the sec-
tor configurations actually deployed in a given airspace,
associatedwith time intervals of their validity. The sched-
ule of active sector configurations is continuously refined
as getting closer to operation time, when the available
information about flight plans (and thus, demand) is pro-
gressively refined. This introduces an uncertainty factor
to the planning of operations.

– Capacities are referring to sectors: for each sector at a
specific time instant, the capacity value of that sector
may either be undefined (if the sector is not active at that
time instant) or specify the upper limit of the number

Fig. 2 Configurations of sectors in the Spanish airspace. Colours are
for distinguishing between sectors. Illustrations have been created using
the V-Analytics platform [5] (Colour figure online)

of flights crossing that sector in a time period with pre-
specified duration (typically 1h). The capacity of a sector
is the same at any time instant at which it is active.

– Predicted weather is a spatial time series of multiple
predicted weather attributes referring to 3D locations
(longitude, latitude, altitude).

Figure 2 illustrates two alternative sector configurations
in the Spanish airspace.

The FM monitoring process computes periodically (typi-
cally every 20min) the foreseen demand for each sector, by
counting the expected number of flights in the sector dur-
ing the next period (typically 1h, to match the definition of
capacity). If a potential demand versus capacity imbalance
is detected for a specific sector, a regulation may be applied
to adjust the demand values to the available capacity for that
sector.

A regulation is a special type of event that occurs as a
measure that a network manager takes to solve an excess of
capacity. The attributes of any regulation include the location
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(sector), start and end times, and reason codes (e.g. ”C” for
regulations due to demand-capacity imbalances, or ”W” for
regulations due to weather conditions).

Regulations imposed to sectors usually result in delays
imposed to flights crossing that area. Delayed flights may
cause hot spots (and thus, new regulations) to other sec-
tors in the airspace, etc. This introduces an additional factor
of unpredictability to operations. Therefore, we need to
understand such cascading effects and provide the ability
to stakeholders to plan the occurrence of regulations well in
advance, reducing uncertainty.

On the other hand, ideally, sector configurations should
be chosen so that the demand in each sector does not exceed
the sector capacity, thus not imposing the need to regulate
flights, while making efficient use of resources. In reality,
demand-capacity imbalances happen quite often for a set
of reasons (deviations of actual flights from flight plans,
weather conditions, strikes, etc.), causing flight regulations
and delays, contributing to unpredictability of operations. In
search for models that might support enhanced pre-tactical
planning, we need to understand how configuration choices
are made by airspace managers, and how trajectories are
planned by airspace users, allowing better management of
demand-capacity imbalances and assessment of regulations
at the pre-tactical stage of operations.

Towards supporting mobility analytics to address the FM
specific challenges and to achieve the operational goals, it
is clear that in this domain we need to exploit information
about trajectories at multiple levels of detail: raw trajectories
should be represented, and these should be linked to segments
of trajectories that are spatially included into airspace com-
partments: such compartments of interest are sectors, which
howevermay be active (i.e. be part of an active configuration)
or not. Given that different sectors are “constructed” from
the same air blocks, we can specify trajectories as series of
segments crossing air blocks, which are then aggregated—
depending on the aggregation of air blocks into sectors—on
series of segments crossing active sectors. As an “intermedi-
ate” level of representation between trajectories as series of
raw positional data and as series of trajectory segments, we
can specify trajectory nodes associated with events of impor-
tance, and thus with spatial and temporal contextual features
(e.g. entering/exiting an air block). Trajectory parts may be
associated to events and features regarding weather condi-
tions, regulations, traffic, etc. Contextual features and events
can be specified at varying levels of generalisation, support-
ing semantic associations between trajectories and their parts
(e.g. trajectory segments crossing air blocks regulated due to
any reason, or trajectory segments crossing air blocks regu-
lated due to weather conditions or traffic).

Specific FM cases, specifying analysis targets, data sets,
and data transformations needed are detailed in Sect. 6.

5 The datAcron Ontology

The datAcron ontology1 was developed by group consensus
over a period of 12months following a data-driven approach
according to the HCOMEmethodology [17]. It is aSIN (D)

ontology, according to the description language notation for
the expressiveness of ontologies, and has been designed to
be used as a core ontology towards integrating data from
heterogeneous data sources of surveillance and contextual
data, in association with recognised (low-level and high-
level) events, towards supporting analysis tasks exploiting
semantic trajectories.

Following the HCOME methodology, the following spe-
cific phases of engineering have been followed:

Specification of aim, scope, requirements, and identifi-
cation of collaborators: in this initial phase, we had to be
acquainted with terminology regarding semantic trajectories
and with analysis goals related to mobility data in several
scenarios in two critical domains: air traffic management
and maritime situation awareness. Analysis goals in other
domains were considered through experience of groupmem-
bers and by studying the literature. Thus, we had to identify
the data requirements of analysis tasks and specify the queries
to be answered from the ontology. The fundamental data
types specified in Sect. 2.2 provide the basic framework for
representing and exploiting mobility data through transfor-
mations.

Knowledge acquisition, development, and ontology main-
tenance: The development of the datAcron ontology has
been driven by ontologies related to our objectives: DUL,
SimpleFeature, NASA Sweet and SSN, as well as schemes
and specifications regarding data from different data sources.
These ontologies served as top ontologies, whose specifi-
cations are further refined to the specification of datAcron
and domain-specific classes/properties. Standard ontology
development and maintenance tasks (e.g. improvisation, ver-
sioning, documentation) together with consultation from
experts on data analysis and domain-specific tasks took
place. It must be pointed out that following a data-driven
approach, the major goal was to provide “interfaces” with
computational and analysis tasks that either provide data to
populate the ontology, or fetch data to be exploited for analy-
sis purposes. Thus, ontological specifications should support
ontology population and querying in adequate and lossless
ways, i.e. annotating, representing, and associatingdata using
the appropriate terms, adequately, and without losing any
valuable bit of information that would affect analysis results.

Exploitation and Validation: during this phase, the onto-
logical specifications have been validated in (a) populating
the ontology by means of RDF generators and in (b) pro-
viding data in appropriate forms for data analysis tasks.

1 http://ai-group.ds.unipi.gr/datacron_ontology/.
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Fig. 3 The main concepts and
relations of the proposed
ontology

Refinements of ontological specifications proposed during
this phase, or changes in the required features to be exploited,
had to be incorporated in the ontology.

It must be pointed out that these phases happened itera-
tively, e.g. the specification of a new data source providing
any kind of features in different forms, trigger the first phase,
with potential consequent activities in the other phases.

5.1 Core Vocabulary and Overall Structure

As explained in Sect. 2.1 and illustrated in Fig. 3, a trajec-
tory (Trajectory) can be segmented to several trajectory
parts (TrajectoryParts). Each trajectory part can be a
trajectory segment, a trajectory node, or a position provided
by a raw surveillance data source. Segments and nodes can be
further analysed iteratively to other, less abstract trajectory
parts.

The generic pattern of specifying structured trajectories is
presented in Sect. 5.2.

Trajectories and trajectory parts can be associated with
geometric and contextual information, as well as with events
represented by the class dul:Event. As already pointed
out, events are important happenings associated with the
mobility of objects. These may occur in the environment of
moving objects and affect their mobility, or may be derived
from trajectories. Ontology patterns for associating contex-
tual information and events to trajectory parts are presented
in Sect. 5.2.

5.2 Patterns for the Representation of Semantic
Trajectories

Figure 4 illustrates the generic pattern of structured trajecto-
ries. The main concept in this pattern is the Trajectory,

which is a subclass of spatio-temporal structured entities
represented by the class ST_StructuredEntity. This,
being a subclass of dul:Region represents a region in a
dimensional space and time, used as a value for a quality of an
entity (e.g. a storm covering an area), while it also represents
(structured) trajectories and their parts. A structured trajec-
tory, as well as any of its parts of type TrajectoryPart,
can be a temporal sequence of TrajectoryPart entities.

Direct subclasses of Trajectory are the

– IntendedTrajectory: planned trajectories speci-
fied by an dul:InformationEntity. These are
different from actual trajectories, since they may not
be realised. They specify the intention of a moving
object. A specific example from the FM domain is a
FlightPlan,

– ActualTrajectory: trajectories constructed from
actual positioning data2 and associated with low-level
events representing important trajectory changes (e.g.
turns, increase/decrease of speed, change of altitude etc),

– RegulatedTrajectory: trajectories that have been
modified by an operational event, such as a regulation,

– RawTrajectory: trajectories constructed by the raw
unprocessed sequence of positional data of moving
objects.
An ActualTrajectory can be further distinguished
to a ClosedTrajectory (i.e. a trajectory that has
reached its destination) and to an OpenTrajectory
(i.e. a trajectory in progress).
The TrajectoryPart class is further refined to the
following subclasses:

2 In datAcron, we construct actual trajectories after compression of the
raw data. In general, different applications may have different require-
ments in aggregating raw data.
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Fig. 4 The pattern of structured
trajectories. Domain-specific
concepts in grey

– Segment: associated with a spatial region and a time
proper interval.

– Node: associated with a point in space and a time instant,
or time interval. The latter holds in case the node aggre-
gates several raw positions. A Node can be the result of a
data processing component computing aggregations and
abstractions of raw positional data.

– RawPosition represents the raw (unprocessed) posi-
tional data. Each raw position instance is associated with
a point in space and a time instant.

A specific trajectory, as well as any of its trajectory parts,
being instances of dul:Region can be associated with its
parts via the dul:hasPart property or via the subproper-
ties hasInitial, hasLast which indicate the first and
last part of theST_StructuredEntity, respectively. For
instance, a trajectory may comprise a sequence of trajec-
tory segments (e.g. segments within sectors), who on their
own turn comprise other segments (e.g. segments within air
blocks), nodes (e.g. entering or exiting any airspace com-
partment), raw positions, and so on. The temporal sequence
of structured entities is specified by means of the prop-
erty dul:precedes. Trajectories related via the property
dul:precedes represent subsequent trajectories of a spe-
cific object, and thus, we can keep a long history of its
movement. It must be noted that this combination of prop-
erties supports sharing trajectory parts between trajectories
even of the same object with no ambiguity: for instance, a
trajectory node or segment can be shared between the actual
and the intended trajectory of an aircraft, without mixing the
trajectories.

Each structured entity (i.e. trajectory or trajectory part) can
be associated with a specific geometry (sf:Geometry),
representing a point or region of occurrence, and a temporal
entity (dul:TimeInterval) specifying a time interval
of occurrence. The geometries of structured entities can be
serialised intoWell-Known-Text (WKT) and asserted as val-
ues to the data property hasWKT, which is subproperty of
geosparql:hasSerialization.

Trajectories and trajectory parts can be associated with
events and contextual features of importance. Specifically,
events canbe associatedwith anyST_StructuredEntity
(i.e. with any trajectory and trajectory part), via the prop-
erty occurs. This is illustrated in Fig. 5. An event
can be associated with other events via the properties
dul:hasConstituent or dul:hasPart. This is the
case for high-level (complex) events (e.g. hot spot occur-
rence in the FM domain) associated with other high-level
(e.g. regulation imposed to a sector and events signifying
individual flights entering a sector) or low-level events. An
event may involve participants (associated via the prop-
erty dul:hasParticipant) and it holds for a specific
TimeInterval specified by the property
dul:hasTimeInterval. An event can be a:

– LowLevel event, in case its detection requires data from
a single trajectory: for instance, a TopOfClimb is such
an event.

– HighLevel event, in case its detection requires contex-
tual data and maybe data from multiple trajectories. For
example, events of type EnterSector involve infor-
mation about sectors crossed by a trajectory. As another
example, the occurrence of hot spots requires data about
sectors and multiple trajectories.
Orthogonal to the classification between low-level and
high-level events, we also have the following classes of
events:

– Operational event, if it is issued by operators, affect-
ing regions or groups of entities for a specific time
interval. For example, a regulation (Regulation) is
applied on a sector and remains active for a time inter-
val, and indirectly affects all the trajectories crossing the
sector.

– Environmental event, if it happens in the environ-
ment and affects themobility ofmoving objects. Extreme
weather conditions are such events.

It must be noted that associating events to trajectory parts sat-
isfies the requirement to associate events at varying levels of
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Fig. 5 The pattern of
trajectories linked with events.
Domain-specific concepts in
grey

trajectory aggregation. For instance, a low-level event asso-
ciated with a node (e.g. a “turn” event) is associated with any
trajectory part (e.g. trajectory segment) that comprises that
node. Also, each trajectory part may be associated with mul-
tiple events, and thus, provide rich information about objects’
behaviour. For example, a low-level “turn” event associated
with a node may co-occur with a low-level “descend” event
associated with a trajectory segment comprising that node.
In addition to that, the trajectory segment can be further
associated with other types of events (e.g. events of type
“CrossingSector”).

In addition to events, trajectory parts can be linked to con-
textual information. Such information may concern static
aspects of the environment (e.g. airports, airspaces, etc),
dynamic aspects (e.g. changing sector configurations, open-
ing schemes, forecasts of weather conditions). The pattern
for linking trajectory parts with contextual information is
illustrated in Fig. 6. Without loss of generality, subsequent
paragraphs and Fig. 6 provide examples of associating tra-
jectories to contextual entities of interest for the FM cases.

In general, each TrajectoryPart can be associ-
ated with entities of type ssn:FeatureOfInterest,
providing contextual information. For example, given the
importance of weather conditions in the FM domain, each
TrajectoryPart can be associated with entities of type
WeatherCondition, which is defined as a subclass of
ssn:FeatureOfInterest. This represents any entity
whose properties are being estimated or calculated in the
course of an observation.

Additionally, as in many domains where specific regions
and places are of importance, airspace regions are of major
importance in the FM domain. In general, structured entities
can be linked to spatial regions (instances of dul:Region)

of particular interest through the properties within and
dul:nearTo. Also, although any trajectory part can be
associated with an entity, the departure and destination of
a trajectory can be considered as contextual information,
linked to trajectories via the propertieshasDeparture and
hasDestination, respectively. These properties range to
the class dul:Physical-Place. These in the case of the
aviation domain, can be further refined to domain-specific
classes such as Airport or Heliport.

Finally, an IntendedTrajectory is associated via
the property reportsTrajectory with an entity of type
dul:InformationEntity, specifying the details of the
intended trajectory. For example, flight plans in the FM
domain provide information on the intended trajectory and,
in case a regulation has affected the trajectory, report the
regulated intended trajectory.

5.3 Examples

As a concrete and simple example of a trajectory specified
at multiple levels of abstraction, Fig. 7 shows the represen-
tation of a trajectory crossing an airspace compartment: the
trajectory is represented both as a geometry projected in two
dimensions, and as a temporal sequence of trajectory seg-
ments, which are indicated in different colour, depending
on whether each segment occurs within the compartment or
not. This structure results through a topological link discov-
ery process where the trajectory geometry is used as a first
indication of the potential fact that the trajectory crosses the
air compartment (filtering step). This is further verified by
exploiting the raw trajectory positional data and identifying
the trajectory segments that spatially occur within the com-
partment. Additional information to trajectory segments is
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Fig. 6 The pattern of
trajectories linked with
contextual information.
Domain-specific concepts in
grey

Fig. 7 A simple example of
representing a trajectory
crossing an airspace
compartment

provided by associated events that are not shown in the fig-
ure, to keep it simple.Hence, beyond the representation of the
trajectory as a sequence of trajectory segments, at a second
level of abstraction, the trajectory is represented as a tem-
poral sequence of semantic nodes, each one signifying an
important event occurring across the trajectory. For instance,
trajectory nodesH, L,M, andK are associatedwith entry/exit
events, representing the relation of raw positions with the
airspace compartment. Trajectory segments and nodes are
further associated with positional raw data.

As a further more elaborated example, Fig. 8 shows an
example of associating trajectories with information about
events and contextual information. The twomaps in the upper
part show the trajectories of the flights performed between
Paris Orly and Lisbon (left) and between London Heathrow
and Madrid (right) during April 2016. Information about

crossing sectors in which various types of regulations were
applied has been attached to the points of the trajectories,
denoting the regulation reason codes. In the map, the trajec-
tories are represented by segmented lines; the segments are
coloured according to the regulation reasons of their starting
points. For the segments that were not in regulated sectors,
the regulation reason code is empty. These segments are rep-
resented by thin dashed lines. The two images in the middle
represent the segments of the trajectories between London
and Madrid that were going through regulated sectors. On
the left is a space-time cube with a geographical map lying
in the base and the vertical dimension representing time. The
time axis is oriented upward. The segments are positioned
in the cube according to their geographical coordinates and
time stamps.We can see that thereweremany flights between
London and Madrid that crossed sectors with regulations in
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Fig. 8 Examples of trajectories
enriched with information about
crossing sectors in which
regulations were applied

action (precisely, 196 out of 228), and this mostly happened
over the Bay of Biscay an the northwest of France. In the first
3days, the regulation reason code for these parts of the flights
was mostly “R” (ATC Routeing), and the most frequent rea-
son in the remaining days was “C” (ATC Capacity due to
hot spots). On the right, the same segments are shown in a
3D view where the vertical dimension represents the flight
altitude. The two images at the bottom represent the same

information as above, together with the remaining segments
of the trajectories.

6 Data Transformations for Visual Analytics

This section aims to show how data transformations are
supported by the proposed ontology. Towards this goal, we
exploit data and consider the specific needs of visual anal-
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ysis tasks in two major FM cases: case FM01, aiming to
the discovery of patterns of regulations, and case FM02,
aiming to the analysis of hot spots occurrences. Cases spec-
ify real-world scenarios with specific analysis objectives
and data needs. Appropriate visualisations show data-driven
exploratory analysis results towards identifying patterns of
behaviour and supporting decision-making.

It must be noted that the FM cases provide the data and
analysis goals to show the capacities of the ontology: this, as
already pointed out, does not mean that the datAcron ontol-
ogy has been constructed for the sole purposes of these cases.

6.1 Data Sets

To explore the capacities of the ontology to support visual
analysis tasks we exploit the following data sets:

– CFMU regulations: this data set provides historical data
of regulations applied by the control flow management
unit (CFMU) on sectors in the European airspace, during
April 2016.

– Sector Configuration: this data set describes the structure
of sector configurations for specificperiods of timewithin
April 2016.

– Flight Plans: this data set contains the submitted flight
plans prior to the take off for the flights operated during
April 2016, to/from airports worldwide. However, only
a few flights have destination/origin a non-European air-
port.

– Entry/Exit points: this data set is derived from the com-
bination of sector configurations and flight plans. A
spatio-temporal link discovery task [24] interpolates the
altitude, latitude, longitude and time an aircraft enters/ex-
its each air block (and sector). Having these entry/exit
points we can specify trajectories as sequences of trajec-
tory segments, each one topologically being “within” a
crossed airspace compartment (shown in Fig. 7).

– NOAA grib binary files: this data set is a collection of
96 binary files reporting 3-h weather forecasts, starting
from April 1st, to April 24th, 2016.

These data sets are provided by heterogeneous (and often
voluminous) data sources. We have introduced the RDF-Gen
[26,27] method which converts data into triples with low
latency, w.r.t. a given ontology (in our case, the datAcron
ontology). The main idea of RDF-Gen is to use a SPARQL-
like triple template for each data source and to convert raw
data from the source to RDF triples. RDF-Gen templates
allow the use of custom functions for cleaning and converting
data values, generating URIs, and generating triples populat-
ing the ontology. This ontology population task by means of
the appropriate RDF generator templates, as already pointed
in the introductory part of Sect. 5, is an ontology validation

task performed during ontology development. However, we
do not delve into the details of this process here.

Among the data sets listed, the flight plans data set is the
most voluminous. Specifically, this data set reports 958,288
flight plans (please recall that flight plan updates are pos-
sible, and flight plans can report at most three trajectory
types), which are converted to 1,548,628,183 triples. The
link discovery task for interpolating entry/exit positions for
air blocks and constructing the corresponding trajectory seg-
ments for each trajectory generates 283,906,720 additional
triples, resulting to a total of 1,832,534,903 triples.

6.2 datAcron Namespaces for Functions

Data transformations cannot be fully supported by standard
SPARQL1.1queries, sincemost of the queries involve spatial
and temporal functions.Wehave extended standardSPARQL
1.1 with the following namespaces regarding functions:

– SPARQL_functions.converters: these include functions
for converting given values to a specific format, e.g.
the conversion of latitude, longitude, altitude, and time
values into a single string representation for each 4D
point. An important function in this namespace is the
getWeatherAVG(), which given the name of a weather
variable, a geometry, an altitude range and a timestamp,
retrieves the average value for theweather variablewithin
the airspace volume defined from the geometry and the
altitude range.

– SPARQL_functions.distance: these are various distance
functions between geometries. For cases where high
performance is preferred over accuracy, the GeoEllip-
ticDistance() function (based on Vincenty’s formulae
[31]) can be used in the computations. For all the cases
where accuracy is important, this namespace provides
the function geodesicDistance() which is implemented
on top of geographicLib.3 This function computes the
distance between the centroids of given geometries in
meters, and provides accuracy up to 10−9m.

– SPARQL_functions.spatial: these are functions imple-
menting all the OGC topological relations between pairs
of geometries. Each function accepts WKT representa-
tions of geometries as arguments and returns Boolean
true if the topological relation holds or false otherwise.

– SPARQL_functions.temporal: these are functions imple-
menting all the temporal relations described in Allen’s
interval algebra [2]. Each function returns true if the cor-
responding temporal relation holds, or false otherwise.
For example, the function during_sf() returns true if the
temporal interval defined by the first two arguments (start

3 Publicly available online at https://geographiclib.sourceforge.io/.
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and end time instants), is during, starts or finishes within
the interval specified by the third and fourth arguments.

6.3 Validation Setup

We have implemented a SPARQL 1.1 endpoint, on top of
which we have developed procedures for producing the
required time series spanning within specific time periods.
These procedures take as input a shifting time window dura-
tion and a time step for shifting the time window, instantiate
query parameters (e.g. parameters concerning the time win-
dow), and pose the queries. Placeholders of parameters in the
queries are identified by “$”. The implemented SPARQL 1.1
endpoint provides a list of predefined queries for data trans-
formation and visual analytics. Thus, a user or a system can
submit one of those queries, specify the parameters for each
query, and retrieve the results in a tabular form.

For instance, in cases where we need to generate time
series of counts of entities, the corresponding procedure uses
a parameterised SPARQL query, where the time period of
interest, the time window, and the time step for shifting the
window are parameters to be instantiated. The procedure
builds a sequence of queries for subsequent time windows
of a given duration. The starting points of subsequent win-
dows differ by a number of minutes equal to the time step
specified.

Specifically, given a time stepΔt , a time window duration
wd and a period [T imeStart, T imeEnd], the ith query of
n iterations, where n = (T imeEnd−wd−T imeStart)

Δt , concerns
the time interval [T imeStart + i ∗ Δt, T imeStart + wd +
(i ∗ Δt)].

6.4 Pre-processing Steps and Auxiliary Structures

To increase the efficiency of query answering,4 we pre-
compute intermediate results and store these in auxiliary
structures. Thismethod is by analogy to the spatial data bases
which rely on specialised indices (i.e. spatial indices such as
R-Tree) to improve query answering performance. This is an
additional way of exploiting data fetched via the SPARQL
endpoint. Further more, the auxiliary structures (in addition
to custommade functions) overcome limitations of SPARQL
(i.e. such as iterative queries), and in the same time simplify
the SPARQLqueries used in the end (e.g. to increase the com-
putational efficiency of query answering, no nested queries
are used for the use cases) without affecting the validation of
ontological specifications.

As already specified above, the link discovery process seg-
ments a trajectory to those parts that are within air blocks,
by computing the spatio-temporal entry/exit points per tra-

4 Optimising the efficiency of query answering is beyond the scope of
this work, and we study this elsewhere [32].

jectory and air block. Given that sectors comprise air blocks
we can represent trajectories at different aggregation levels,
depending on whether we are focusing on air blocks or sec-
tors, according to the ontology specifications. The additional
triples computed by the link discovery process are of the form
(?x :within ?y.) representing trajectory segments?x
that occur spatially in air blocks ?y.

To further increase efficiency we use an in-memory
HashMap relating sectors with sets of airblocks. For the
cases where a sector comprises another sector, we asso-
ciate the former with the set of airblocks composing
the latter. The HashMap is constructed using the query:
PREFIX : <http ://www.datacron -project.

eu/datAcron#>
PREFIX dul: <http ://www.

ontologydesignpatterns.org/ont/dul/
DUL.owl#>

PREFIX sp: <java:SPARQL_functions.
spatial.>

SELECT ?s ?airblock_wkt (str(? lower) as
?lowerLevel)

(str(? upper) as ?upperLevel) WHERE {
?s dul:hasPart+ ?airblock .
?airblock :hasGeometry ?g ;

:hasLowerLevel ?lower ;
:hasUpperLevel ?upper .

BIND(sp:getGeom (?g) as ?airblock_wkt
) .

}

where (?s dul:hasPart+ ?airblock.) traverses the
property path built from one or more occurrences of
dul:hasPart, specifying the structure of sectors in terms
of constituent air blocks and sectors. The above query reports
the URIs of sectors, as well as the air block projection geom-
etry in WKT and the lower/upper flight levels for each air
block that a sector comprises.

Furthermore, the ontology is populated with triples stat-
ing regulations imposed on sectors (i.e. regulation events)
for specific time intervals, with a potential cancellation time
per regulation. The duration of a regulation is the time inter-
val between the starting time and the earliest time instant
between regulation cancellation (if it is specified) and end-
ing time.

Aswewill see in subsequent sections,we need to associate
sets of regulations and affected sectors to temporal intervals.
The temporal interval of any set of regulations is the union
of individual regulation’s intervals I1 ∪ · · · ∪ In . In some
cases, we need pairs of sectors (S1, S2) that are affected by
temporally overlapping regulations R1, . . . , Rn . We say that
two regulations Rκ , Rλ are temporally overlapping if Iκ ∩
Iλ �= ∅.

Being interested in pairs of sectors affected by temporally
overlapping regulations, as a pre-processing step, we retrieve
the necessary data regarding sectors and regulations imposed
on sectors from the ontology and pre-compute the pairs
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Fig. 9 Query to retrieve sectors
affected by temporally
overlapping regulations

of sectors affected by temporally overlapping regulations,
together with the respective temporal intervals of all regula-
tions per pair of sectors. This results to triples of the form
(?sectorX associatedByOverlappingRegulat
ionWith ?sectorY.). To further increase the query
answering performance in many cases, this relation among
sectors is also stored in an in-memory IntervalTree, s.t. given
a time interval Qκ , we can effectively retrieve the pairs of sec-
tors affected by regulations whose temporal interval overlaps
with Qκ . The query behind this process is shown in Fig. 9.

6.5 Visual Analytics EnhancedVia Data
Transformations

Subsequently, we show how ontology specifications sup-
port the full range of data transformations needed for visual
analysis tasks, considering the needs of the flow manage-
ment cases. Representative visualisations obtained during the
visual analysis process are presented and discussed in detail.

6.5.1 Discovering Patterns of Events: FM01 Case

This case, as described by its title, aims at providing an
understanding of the occurrence of events, considering reg-
ulations. Recall that a regulation is a particular type of event
that applies to airspace sectors and affects the trajectories
crossing these sectors. Imposing regulations to trajectories
(resulting to regulated trajectories), however,may necessitate
the application of regulations to other sectors of the airspace.

In this case, we validate the ontology specifications in
three exploratory cases towards (a) discovering daily or
weekly patterns of events of specific type (i.e. regulations
with a particular reason code imposed on individual sectors),
(b) understanding how trajectories crossing pairs of sectors,
thus providing links between sectors, affect events related
to these sectors (i.e. regulations imposed on these sectors),
and (c) understanding how contextual features (in this case,
weather conditions) affect the occurrence of events (here,
regulations) and their impact on trajectories.

FM01 requires the following transformations that are
presented in detail in subsequent paragraphs: (a) at first a
spatial events to spatial time series transformation, and then,
(b) transforming trajectories to spatial time series (place
based and link based), and transforming link-based spa-
tial time series to place-based spatial time series. Finally,
it requires (c) transforming trajectories into time series of
spatial events, enriched with additional information (e.g.
weather attributes).

(a) Spatial events to spatial time series: Discovering reg-
ular temporal patterns of regulations.

Although this case does not involve trajectories, it is
important as a first step towards the FM01 objective: we
need to generate spatial time series of counts of regulations
of a particular type (i.e. with a particular reason code; e.g.
code ”C” for regulations due to the occurrence of hot spots)
per sector and time windows of a chosen duration. Among
these time series, we aim to find time series with high peri-
odicity with regard to the daily and weekly time cycles. The
transformation demonstrated in this case is the aggregation
of spatial events (in this case, regulations) into spatial time
series (aggregation III in Fig. 1).

To find out whether there are sectors where regulations
occur regularly in time, we compute time series of regulation
counts by sectors anddays. Theparameterised query is shown
in Fig. 10.

Here, parameters that must be instantiated are:
$regulation$ (regulation type), $sector$ (sector
name), $StartDate$ (time period start), $EndDate$
(time period end). The time series of regulation counts within
the specified period are produced by executing the query for
each consecutive time window.

In Fig. 11, the resulting time series are represented in a
line plot. The image on the left presents a linear view of time.
The horizontal axis represents the time span of the data, i.e.
1month. The time series per sector are shown one below
another. We can observe time series with frequent occur-
rences of regulations and time series with less frequent but
quite regular occurrences. On the right, a periodic view of the
time series is illustratedwhere each time series is divided into
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Fig. 10 Query to retrieve the
time series of regulation counts
by sector

Fig. 11 Time series of regulation counts by sectors and days; left: linear view (per sector); right: periodic view (sector, per week)

Fig. 12 Query to get the
geometries of regulated
intended trajectories

weekly pieces shown one below another. Only the time series
for a single sector is visible in the current view port. This time
series has high periodicity: regulations occurred on all Fri-
days and Mondays and all Saturdays, except the last one.

(b) Trajectories to spatial time series (place and link
based): Discovering interdependencies between sectors.

In this case, trajectories are exploited at different levels of
aggregation to get time series of link events (interdependen-
cies) between sectors, considering the regulations imposed
to sectors.

As a first step towards discovering interdependencies
between sectors, we need to find “patterns between regulated
sectors”: such patterns concern regulations in some sectors
that often lead to regulations in other sectors. Therefore,
given any pair of sectors S1 and S2 affected by temporally
overlapping regulations, we need to find whether a regula-

tion applied in S1 (or S2) affects the time where trajectories
cross S2 (resp. S1), causing a new regulation in S2 (resp. S1).
Therefore, as a first step, we need to count the number of
flights’ trajectories in both directions.

In the first intermediate step, we exploit the in-memory
pre-computed IntervalTree: for the time interval each tra-
jectory lasts, let that be d, we query the IntervalTree and
retrieve the pairs of sectors affected by temporally overlap-
ping regulations whose temporal interval overlaps with d.
After verifying that each sector in a pair is crossed by the tra-
jectory (i.e. a link between these sectors exists), we increase
an integer counting the trajectories crossing the pair.

In more detail, the process first retrieves the geometries
of regulated intended trajectories, as they have been reported
by flight plans, using the query in Fig. 12.
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Then, for each regulated intended trajectory, we retrieve
the constituent spatio-temporal positions. We compute the
time interval dwhere the trajectory occurs (i.e. the difference
between the timestamps of the first and last spatio-temporal
trajectory position), and we use d to query the intervalTree
for pairs of regulated sectors whose regulations’ temporal
interval overlaps with the trajectory interval. We filter out
pairs with at least one sector not crossed by the trajectory
(i.e. no trajectory segment is within that sector), and for the
remaining pairs we verify that each sector is crossed by the
trajectory (i.e. by checking whether there is a trajectory seg-
ment within each sector of the pair), and the corresponding
counter of the pair is increased by one.

The SPARQL queries supporting the above process are as
follows:
1. Select the intended trajectories of regulated flight plans
and the time interval in which they occur:
SELECT DISTINCT ?ti ?wkt ?timeStart ?

timeEnd WHERE {
?fp :reportsTrajectory ?ti ;

:reportsTrajectory [ a :
RegulatedTrajectory] .

?ti a :IntendedTrajectory ;
dul:hasStart ?s ; dul:hasEnd ?e .

?ti dul:hasGeometry /: hasWKT ?wkt .
?s :hasTemporalFeature /: TimeStart ?

timeStart .
?e :hasTemporalFeature /: TimeStart ?

timeEnd .
}

2. Select the spatio-temporal positions of the trajectories:
SELECT DISTINCT ?ti ?position ?time

WHERE {
?fp :reportsTrajectory ?ti ;

:reportsTrajectory [ a :
RegulatedTrajectory] .

?ti a :IntendedTrajectory .
?ti dul:hasPart+ ?p . ?p a :

RawPosition.
?p :hasGeometry/: hasWKT ?position .
?p :hasTemporalFeature /: TimeStart ?

time .
}

The complete query is as follows:

SELECT DISTINCT ?ti ?timeStart ?timeEnd
WHERE {

?fp :reportsTrajectory ?ti ;
:reportsTrajectory

[ a :RegulatedTrajectory] .
?ti a :IntendedTrajectory .
?ti dul:hasStart ?Start ;

dul:hasEnd ?End ;
dul:hasPart+ ?Part1 ;
dul:hasPart+ ?Part2 .

?Part1 :within ?Airblock1 .
?Part2 :within ?Airblock2 .
?Sector1 dul:hasPart+ ?Airblock1 .
?Sector2 dul:hasPart+ ?Airblock2 .
?Sector1 :

associatedByOverlappingRegulationWith
?Sector2 .

?Start :hasTemporalFeature /:
TimeStart ?timeStart .

?End :hasTemporalFeature /: TimeStart
?timeEnd .

?Regulation1 a [rdfs: subClassOf :
FM_Regulation ].

?Regulation1 dul:hasRegion ?Sector1
;
dul:hasTimeInterval ?t1 .

?Regulation2 a [rdfs: subClassOf :
FM_Regulation ].

?Regulation2 dul:hasRegion ?Sector2
;
dul:hasTimeInterval ?t2 .

?t1 :TimeStart ?start1 ; :TimeEnd ?
end1 .

?t2 :TimeStart ?start2 ; :TimeEnd ?
end2 .

FILTER(
tmp:overlaps (?timeStart , ?timeEnd

,
tmp:minDate (?start1 ,? start2),

tmp:maxDate (?end1 ,?end2))
&&

(? Sector1 !=? Sector2))
}

The results are shown visually in Fig. 13. During April
2016, a total of 8,254 links emerged between regulated sec-
tors. The largest number of flights that moved between two
sectors was 2,716. The geographical map (Fig. 13, top left)
shows that there were quite many (precisely, 140) local links
between sectors that differed in the vertical positions but had
the same or overlapping horizontal positions. These links are
represented on the maps by circles drawn around the sector
centroid positions. The remaining links are represented by
curved lines connecting the sector centroids. The line widths
and the opacity levels are proportional to the flight counts.
Specifically, Fig. 13 shows the following results. Top left:
the links between regulated sectors that occurred during the
month are represented by curved lines with the widths pro-
portional to the counts of the flights that moved from one
regulated sector to another. The circles represent the links
connecting sectors that differ in the vertical positions but
have the same or overlapping horizontal positions. Top right:
histograms of the link duration in minutes (the maximum is
960min) and the dates when the links occurred (the largest
number was on April 2). The bars are divided into segments
coloured according to the counts of the trajectories involved
in the links; the colour legend is shown above the histograms.
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Fig. 13 Interdependencies between sectors considering trajectories providing links between sectors

Bottom left: the links are represented by points in a radial
coordinate system where the angle and the distance from the
centre represent the time of the day and the link duration,
respectively [4,10]. The circular grid lines are drawn with
the interval of 60min. Bottom right: a density map shows
the distribution of the points in the radial coordinate sys-
tem. The densest areas correspond to the link start times
around 5-6 o’clock in the morning and duration from 1.5
to 4h and to the start times around 8-9 o’clock and duration
2–3h.

Towards getting re-occurring links between sectors
affectedby temporally overlapping regulation events, accord-

ing to the flows of flights from one sector to the other, we
compute time series of links existence: for each pair of sec-
tors (S1, S2) with temporally overlapping regulations and for
which links exist, we need to compute time series with the
number of trajectories crossing S1 and S2 for each time win-
dow. Time series withmultiple peakswould signify interrela-
tionships between sectors that we want to discover. Here tra-
jectories are aggregated into flows between places (sectors)
resulting in linked-based spatial time series (aggregation II in
Fig. 1).

The temporal window, as specified above, shifts with a
pre-specified time step Δt :
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Fig. 14 Links re-occurrence at the timescale of days

SELECT (count (DISTINCT ?tr) as ?cntr)
WHERE {

?tr a :IntendedTrajectory ;
dul:hasPart+ ?segment1 ;
dul:hasPart+ ?segment2 .

?segment1 :within ?airbl1 ;
:hasTemporalFeature ?t1 .

?segment2 :within ?airbl2 ;
:hasTemporalFeature ?t2 .

?t1 :TimeStart ?time1 .
?t2 :TimeStart ?time2 .
$Sector1$ dul:hasPart+ ?airbl1 .
$Sector2$ dul:hasPart+ ?airbl2 .
$Sector1$ :

associatedByOverlappingRegulationWith
$Sector2$ .

FILTER(tmp:during_sf (?time1 ,?
time1 ,$t+k*Δt$ ,$t+wd+k*Δt$)
&&
tmp:during_sf (?time2 ,?time2 ,$t

+k*Δt$ ,$t+wd+k*Δt$) )
}

This query concerns a particular pair of sectors associ-
ated with temporally overlapping regulations, instantiating
the query parameters $Sector1$, $Sector2$. Also,
[t+k*Δt, t+wd+k*Δt] is the kth sliding timewindow of dura-
tion wd within the specified time period.

Figure 14 demonstrates visual exploration of link re-
occurrences basedon thequery results. For eachpair of linked
sectors, all links have been aggregated in a single link, for
which a time series of link occurrences was computed. Here,
link re-occurrence is explored at the timescale of days. The
aggregated links are represented on a map by curves with
the line widths proportional to the number of days in which
the links re-occurred, ranging from 1 to 18. On the right,
only the links that re-occurred in 9 or more days are shown;
the links with the maximal re-occurrence are highlighted in
black. There were 4664 sector pairs in total, of which 3,156
(67.7%) re-occurred only once and further 745 pairs (16%)
re-occurred twice. The maximal number of different days
in which links re-occurred was 18, which was attained by 2
links, and 57 links (1.2%) re-occurred in 9 or more days.

Finally, we can aggregate links by sector pairs and time
windows into spatial time series. This is a transformation
from spatial time series (place based) to spatial time series
(link based) not shown as a direct transformation in Fig. 1.

To obtain a spatial time series of links, the following
query aggregates for each pair of sectors associated by tem-
porally overlapping regulations, the trajectories intended—
according to the flight plans specified—to cross both of them.
The number of such trajectories is computed per time win-
dow of a given duration.
SELECT (COUNT(DISTINCT ?t) as ?count)

WHERE {
?t dul:hasPart ?segment1 ;

dul:hasPart ?segment2 .
?segment1 :within ?airblock1 .
?sector1 dul:hasPart+ ?airblock1

.
?segment2 :within ?airblock2 .
?sector2 dul:hasPart+ ?airblock2

.
?r a [rdfs: subClassOf :

FM_Regulation ].
?r dul:hasRegion ?sector1 .
?r dul:hasTimeInterval ?time .
?time :TimeStart ?ts ; :TimeEnd ?

te .
?sector1 :

associatedByOverlappingRegulationWith
?sector2 .

FILTER(? sector1 !=? sector2) .
FILTER(tmp:during_sf (?ts ,?te ,$t+k

*Δt$ ,$t+wd+k*Δt$))
}

In Figs. 15 and 16, we aggregated the number of trajec-
tories by the links and daily time intervals. The time graph
in Fig. 15 shows the time series of the number of trajecto-
ries between regulated sectors. The black vertical lines mark
Mondays. We see that the Saturday of April 2 was excep-
tional regarding both the values attained and the number of
area pairs with high values. However, the following Satur-
days of April 9 and 16 also had quite many area pairs with
high values.
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Fig. 15 A time graph shows the
daily aggregates of the counts of
the flights that took place during
the existence of the links
between regulated sectors. The
aggregates have been initially
obtained for the pairs of linked
sectors and then further
aggregated by areas

To see whether the spatial patterns were similar on dif-
ferent Saturdays and, more generally, whether there was
periodic repetition of similar spatial patterns on the same
days of the week in different weeks, we have created an ani-
matedmap display with 4map panels labelled t, t+7, t+14,
and t + 21, where t is the currently chosen day in the ani-
mation. This visualisation enables convenient comparison of
the spatial situations on Saturdays, Sundays, Mondays, and
so on.

The upper and lower images in Fig. 16 show the situations
on Saturdays andMondays, respectively. It can be noted that,
in general, the spatial patterns on the same days of differ-
ent weeks were not very similar. April 2 and 9 (Saturdays)
had similar diagonal patterns with multiple links oriented
along the line between the Canary Islands and the northeast
of France, whereas the Saturdays of the following 2weeks
had similar link patterns between the British Islands on the
one side and France and Spain on the other side. On April
11, 18, and 25 (Mondays), there were similar star-like pat-
terns, with many links oriented in different directions having
starts or ends in the same area. OnApril 11 and 18, the “stars”
appeared around the same area over theNetherlands,whereas
on April 25 the “star” moved to Belgium, southwest of the
previous location.

(c) Trajectories to spatial events, enriched with contextual
information: Discovering dependencies between weather
conditions and regulations.

In this case, we need to find for each event (here, reg-
ulation of type :ATC_WeatherRegulation, i.e. with
reason code “W”) that affects a sector S, and for each trajec-
tory that intends to cross that sector, the contextual features
of interest (here, predicted weather conditions) at the time
the trajectory is going to cross the sector. The objective is to

reveal the rationale for the occurrence of events and under-
stand how trajectories are being affected. As an example, we
shall explore the relationships between the flight regulations
issued due to windy weather and the wind parameters avail-
able in the weather data. The data set contains data about 162
regulations with the reason code “W”. The descriptions of 37
such regulations include the keyword “wind”. We selected
2days in which the regulations due to wind were applied not
within airports but in sectors crossed on the fly. These days
were 16 and 18 April 2016. We extracted the corresponding
intended trajectories of the flights and enriched them with
wind parameters extracted from the weather data. There are
14 wind attributes with non-null values describing the u- and
v-components of thewind, i.e. the west–east and south–north
components.

Specifically, we first retrieve the intended trajectories that
have been regulated, and compute the temporal interval. This
query has already been specified above.

For each such trajectory and the corresponding tempo-
ral interval, we retrieve the sectors affected by regulations
identified by reason code “W” (i.e. bad weather condi-
tions), and which temporally overlap with the interval
of the trajectory. Each trajectory that is crossing an air-
block of a regulated sector by reason code “W” is added
in the result set, enriched with values of weather vari-
ables. For example, the following query will enrich each
position of the trajectory :tr_20160416_125062_m1 with
values of the “u-component_of_wind_isobaric” and “v-
component_of_wind_isobaric” weather variables (Fig. 17).

Generalising, a query for associating trajectories regu-
lated due to weather with weather attributes is as follows:
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Fig. 16 Comparison of the
spatial patterns of the
regulations-related flights on
Saturdays, starting from April 2
(top), and Mondays, starting
from April 4 (bottom)
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Fig. 17 Query to retrieve the
weather conditions at each
position of a given trajectory

SELECT DISTINCT ?ti
?wkt (str(?alt) as ?altitude) (tmp:

dateTime2unixTime(?time) as ?
unixtime)

(conv:getWeatherAVG (?wkt ,?altitude ,?
unixtime ,
"u-component_of_wind_isobaric")

as ?u_comp_wind)
(conv:getWeatherAVG (?wkt ,?altitude ,?

unixtime ,
"v-component_of_wind_isobaric")

as ?v_comp_wind)
WHERE {

?fp :reportsTrajectory ?ti ;
:reportsTrajectory [ a :

RegulatedTrajectory] .
?ti a :IntendedTrajectory ;

dul:hasStart ?s ; dul:hasEnd ?
e ;

dul:hasPart+ ?segment ; dul:
hasPart+ ?p .

?s :hasTemporalFeature /: TimeStart
?timeStart .

?e :hasTemporalFeature /: TimeStart
?timeEnd .

?p a :RawPosition ;
:hasGeometry ?pg ;
:hasTemporalFeature /: TimeStart

?pt .
?g :hasWKT ?wkt ; :hasAltitude ?

alt .
?segment a :TrajectorySegment ; :

within ?airblock .
?sector dul:hasPart ?airblock .
?regulation a :

ATC_WeatherRegulation .
?regulation dul:hasRegion ?sector

;
dul:hasTimeInterval ?

regulationTInterval .
?regulationTInterval :TimeStart ?

start ; :TimeEnd ?end .
FILTER(tmp:overlaps (?timeStart , ?

timeEnd ,
tmp:minDate (?start1 ,? start2),

tmp:maxDate (?end1 ,?end2))
)

}

It must be noted that the execution of this query takes
too much time for a typical SPARQL endpoint. On the other
hand, breaking down the query to a set of smaller queries,
replacing ?ti with each trajectory that satisfies the tempo-
ral criteria described above, we can achieve a considerable

improvement in the overall performance. In addition to that,
the auxiliary structures maintain in-memory information that
is frequently requested, and thus, it can be accessed much
faster this way, rather than through the SPARQL endpoint.

In Fig. 18, the upper two images are map fragments show-
ing where the regulations due to the wind conditions were
applied on April 16 (left) and 18 (right). The intended flight
trajectories are represented by lines. The segments of the tra-
jectories that crossed the regulated sectors are marked in red,
and the remaining segments are represented by thin light blue
lines. We can see that the regulations happened in the region
of the Canary Islands, on the east of it on April 16 and on the
west on April 18. The 3D perspective view of the trajectories
(Fig. 18, middle) shows us that the flights were supposed to
cross the affected sectors in their climb or descent phases.

To investigate which of the wind attributes might lead to
the decision to issue the regulations,we explore the data using
the parallel coordinates plots, as in Fig. 18, bottom. The par-
allel horizontal axes correspond to the 14 wind attributes, the
upper 7 axes to the u-component attributes, and the lower 7
axes to the v-component. Each axis has its individual scale
from the minimal to the maximal value of the respective
attribute. The plots on the left and on the right correspond
to April 16 and 18, respectively. The background painting
represents the distributions of the attribute values in the tra-
jectory points that were beyond the regulated sectors. The
stripes correspond to the deciles of the distributions, i.e. the
interval covered by each stripe on each axis includes 10%
of values of the respective attributes. Lighter shades corre-
spond to the odd deciles (i.e. the first, third, fifth, seventh, and
ninth) and darker shades to the remaining even deciles. We
have applied a combination of filters to select only the points
located in the vicinity (specifically, within the radius of 350
km) of the flight origins and destinations. The red lines on
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Fig. 18 Exploration of the
relationships between the
regulations due to winds and the
wind parameters extracted from
weather data

top of the painting represent the value combinations in the
points that were in the regulated sectors.

When we compare the red lines with the background dis-
tribution, we see that none of the wind parameters reach
especially high or especially low values. The values of the
attributes u-maximum-wind and u-tropopause were quite
high (corresponding to the upper deciles of the background

distributions), whereas the values of the attributes describing
the v-component of the wind were relatively low. This indi-
cates that the wind blowing from the west was sometimes
quite strong and could be problematic to the ascending and
descending aircraft. Since such wind parameters were not
exceptional, judging from the background distribution, it can
be concluded that they are problematic only in the region of
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the Canary Islands, possibly, due to the specifics of the local
airports. This means that the weather parameters alone may
be insufficient for predicting the necessity of applying flight
regulations in this or that region.

6.6 Evolution of Events per Spatial Region: FM2 Case
for Detecting the Occurrence of Hot spots

In this case,wewant to support understanding of the rationale
for the choice of sector configurations, based on the expected
evolution of aggregated events, specifying the demand per
sector. In doing so, we first retrieve all sectors (active or not)
crossed by any trajectory, and then, we provide a time series
of the number of trajectories intended to cross any sector,
providing the evolution of demand per sector.

To compute the evolution of demand, we aggregate the
trajectories specified by flight plans into spatial time series
by sectors and time windows. Two time-dependent attributes
may be computed for any sector: entry count (how many
flights enter the sector during each time interval) or occu-
pancy (how many flights are present in that sector during
each time interval). These may be counted in overlapping
time windows, depending on the step used for shifting the
time window. As usually, to produce spatial time series we
use a timewindow of specific duration and a time step, which
specifies the time difference between the starting points of
two consecutive windows.

These FM02 cases require in the first place transform-
ing trajectories (as specified by flight plans) into time series
of spatial events and then transforming trajectories into spa-
tial time series of demands by aggregating them by (active)
sectors (aggregation II in Fig. 1).

(a) Trajectories into time series of spatial events.
This casefirst requires for a given intended trajectory spec-

ified by a flight plan, to retrieve the series of sectors S (active
and inactive) crossed by that trajectory, and the trajectory
segments crossing each sector in S. For example, the fol-
lowing query returns the sectors crossed by the trajectory of
a given flight plan, e.g. :flight_plan_AA51147955:
SELECT ?sector (min(? start) as ?

timeEnter) (max(?end) as ?timeExit)
WHERE {

:flight_plan_AA51147955 :
reportsTrajectory ?t .

?t a :IntendedTrajectory ;
dul:hasPart ?segment .

?segment a :Segment ;
:within ?airblock ;
:hasTemporalFeature ?time .

?time :TimeStart ?start ;
:TimeEnd ?end .

?sector dul:hasPart+ ?airblock .
} Group By ?sector
Order By ?timeEnter

Amore restricted version of the above query concerns the
active sectors during the time period of the flight defined by
the first and last node of the trajectory reported by the given
flight plan, according to the active sector configurations. The
query is as follows:
SELECT ?sector (min(? start) as ?

timeEnter) (max(?end) as ?timeExit)
WHERE {

:flight_plan_AA51147955 :
reportsTrajectory ?t .

?t a :IntendedTrajectory ; dul:
hasPart ?segment .

?segment a :Segment ; :within ?
airblock ;
:hasTemporalFeature ?time .

?time :TimeStart ?start ; :
TimeEnd ?end .

?sector dul:hasPart+ ?airblock .
?f a :FM_Configuration ; :

configurationOfAirspace ?
airspace ;
:hasTemporalFeature ?time.

?airspace dul:hasPart ?sector.
?time :TimeStart ?ts ; :TimeEnd ?

te.
FILTER(tmp:overlap (?start ,?end ,?

ts ,?te))
} Group By ?sector
Order By ?timeEnter

(b) Trajectories to spatial time series of demands.
Finally, we use the following query to compute per sector

and time window, the demand for that sector, i.e. the num-
ber of trajectories intended to cross that sector during the
corresponding period specified by the temporal window. As
usually, the time window shifts with a step of Δt minutes.
SELECT (count(DISTINCT ?tr) as ?demand)

WHERE
{

?flightPlan :reportsTrajectory ?tr .
?tr a :IntendedTrajectory ;

dul:hasPart ?segment .
?segment :within ?airblock ;

:hasTemporalFeature ?time .
$Sector$ dul:hasPart+ ?airblock .
:entersRegion :occurs ?segment .
?time :TimeStart ?s .
FILTER(tmp:during_sf (?s,?s,$t+k*Δt$

,$t+wd+k*Δt$))
}

As done above, we can restrict this query to the number
of trajectories crossing active sectors (i.e. considering the
periods in which each sector is active).
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Table 1 A synoptic view of FM cases and data transformations applied, together with the required levels of trajectory analysis

FM use case Transformation Trajectory level of analysis Interesting features

FM0l(a) Aggregation III (spatial events to
spatial time series)

No trajectories Transformation of regulations to time
series of aggregated regulation events

FM0l(b) Aggregation II (trajectories to
spatial time series (place and link
based)

Trajectories as geometries, as sequences
of positions and as sequences of
segments crossing air blocks

Trajectories are exploited at different
levels of analysis to get time series of
link events between sectors

FM0l(c) Transformations IV and VI
(trajectories to spatial events,
enriched with weather data)

Trajectories as sequences of segments
crossing air blocks and thus,
corresponding sectors

Here weather attributes related to
regulations affecting trajectories are
transformed into spatial time series
along trajectories and through
projections to spatial situations

FM02(a) Transformations IV (trajectories to
time series of spatial events)

Trajectories as sequences of segments
crossing air blocks and thus,
corresponding sectors

FM02(b) Aggregation II [trajectories to
spatial time series (place based)]

Trajectories as sequences of segments
crossing air blocks and thus,
corresponding sectors and the
aggregation of these segments per sector
and time window

SELECT (count(DISTINCT ?t) as ?demand)
WHERE

{
?f a :FM_Configuration ;

:configurationOfAirspace ?
airspace ;

:hasCapacity ?capacity ;
:hasTemporalFeature ?time .

?airspace dul:hasPart $Sector$ .
?sector dul:hasPart+ ?airblock .
?time :TimeStart ?ts ; :TimeEnd ?te.
?t a :IntendedTrajectory ;

dul:hasPart ?segment .
?segment :within ?airblock ;

:hasTemporalFeature ?tn .
?tn :TimeStart ?s ;

:TimeEnd ?e .
FILTER(myfn:overlaps (?s,?e,?ts ,?te)

&&
tmp:during_sf (?s,?s,$t+k*Δt$ ,$t+wd+

k*Δt$))
}

7 Concluding Remarks

This work contributes a generic ontology for the represen-
tation of semantic trajectories at varying levels of spatio-
temporal analysis to support analysis tasks, supporting our
understanding of movement phenomena and of significant
events that affect entities’ mobility: Trajectories can be seen
as temporal sequences of moving objects’ positional data,
aggregations of positional data signifyingmeaningful events,
as temporal sequences of trajectories segments, or as geome-
tries.

Delving into these specifications, we show how visual
analysis tasks can be supported by the different levels of tra-
jectory specifications, via appropriate data transformations at
query time. This happens via the use of SPARQLqueries exe-
cuted in the populated ontology for the purposes of concrete
and important real-world cases. Indeed, generic data trans-
formations, shown in the complex and highly exploratory air
traffic management domain, adapt available data to the anal-
ysis goals, or to specific requirements of the methods that the
analyst wants to apply.

Table 1 shows all the cases considered (1st column), and
for each case it specifies the data transformations applied
(2nd column), the levels of trajectory analysis required (3rd
column) and indications of interesting features as far as the
representation is concerned.

As future work, we aim to reuse this ontology in different
domains where trajectories play important role in analysis
of behaviour: either for traffic analysis in cities or for human
behaviour analysis in crowdedplaces (e.g. buildings, touristic
places, festivals, etc.), under normal or emergency circum-
stances, or even in domains where trajectories do not involve
spatio-temporal entities, but space-temporal entities, where
space is any n-dimensional space where information entities
(e.g. images) do exist.
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