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Abstract
Natural language processing techniques often aim at automatically extracting semantics from texts. However, they usually
need some available semantic knowledge contained in dictionaries and resources such asWordNet, Wikipedia, and FrameNet.
In this respect, there is a large literature about the creation of novel semantic resources as well as attempts to integrate
existing ones. In this context, we here focus on common-sense knowledge, which shows to have interesting characteristics as
well as challenging issues such as ambiguity, vagueness, and inconsistency. In this paper, we make use of a large-scale and
crowdsourced common-sense knowledge base, i.e., ConceptNet, to qualitatively evaluate its role in the perception of semantic
association among words. We then propose an unsupervised method to disambiguate and integrate ConceptNet instances into
WordNet, demonstrating how the enriched resource improves the recognition of semantic association. Finally, we describe
a novel approach to label semantically associated words by exploiting the functional and behavioral information usually
contained in common sense, demonstrating how this enhances the explanation (and the use) of relatedness and similarity with
non-numeric information.

Keywords Common-sense knowledge · Semantic association · Semantic resources · Semantic labeling · Human perception ·
Relatedness and similarity · Automatic classification

1 Introduction

One of the dreams of artificial intelligence (AI) is the inte-
gration of conceptual and behavioral knowledge in machines
so as to bridge the gap between humans and computers in
solving problems. In particular, natural language represents
a fundamental channel and type of data which provides many
challenges for AI systems. Understanding language is for
computers one of the hardest tasks due to the huge space
of complexity underlying languages features, from lexical
ambiguities to sentence- and discourse-level modeling of
meaning.

Lexical semantic resources are nowadays the key for most
intelligent and advanced processing of language. The reason
relies on the paradox that semantic extraction often needs
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existing semantics as input knowledge. However, there exists
plenty of types of semantics that can be encoded in knowl-
edge bases, each one answering specific needs or supporting
specific language processing tasks, such as computational
lexicons (e.g., [22,24]), frames (e.g., [10]), common-sense
knowledge (e.g., [21,31]), geometric approaches (e.g., [8,
12]), and probabilistic models (e.g., [1,17]).

In this paper, we investigate the role and the impact of
common-sense knowledge in the context of semantic associa-
tion between lexicalized concepts. Semantic associationmay
be seen as the most generic semantic connection between
words which can in turn subsume simple relatedness (e.g.,
baby vs cradle), rather than similarity (e.g., smart vs intelli-
gent). In detail, the aim of this contribution is threefold:

1. to discover how humans rely on common sense for
assessing semantic association between highly associ-
ated words (taken frommanually annotated resources) at
different levels of analysis;

2. to propose a collaborative filtering-based approach to
align common-sense facts to WordNet, a well-known
electronic dictionary of word senses, evaluating the
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resulting enrichment on a semantic association classi-
fication experiment;

3. to propose a common sense-based method to automati-
cally label semantically associated words with semantic
explanations which can better identify the origin of the
association.

This paper extends and integrates preliminary works on
different aspects such as the perception of similarity with
lexical entities [26] and the disambiguation of ConceptNet
instances [4]. In particular:

– we integrated and used the cognitive experiment in [26]
as a way to motivate the need of CSK in a computational
approach to measure and label semantic association. Fur-
ther experiments have been made and all experimental
data are now released;

– we extended the work presented in [4] for the alignment
of ConceptNet instances to WordNet synsets and revis-
ited as a collaborative filtering approach, simplifying its
description;

– we propose a newmethod for the labeling of semantically
associated words that improves state-of-the-art systems
in identifying the origin of the association;

This paper also represents a significant work of integration
of individual modules to form a unique and novel scientific
contribution.

2 Research Questions

While Introduction reports the general context and idea
behind the work, in this section we detail the three specific
research questions addressed by our contribution.

2.1 Understanding the Role of CSK for Assessing
Semantic Association

Themain characteristic ofCSKwith respect to classic seman-
tic resources such as WordNet [22] and BabelNet [24] is
the kind of represented information. While WordNet-like
resources are usually focused on the definition of concepts
in terms of descriptions (or glosses) and taxonomical struc-
tures, CSKs also contain world knowledge about functional
and behavioral facts. In light of this, we formulated the fol-
lowing research question:

[RQ1] Is functional/behavioural information (which
is often the kind of information contained in CSK)
relevant in the perception of meaning and semantic
association? And if so, how?

We tried to answer this question through a cognitive exper-
iment where 4 participants were asked to evaluate the
semantic association between 24 cases of lexicalized concept
pairs with respect to taxonomic/encyclopedic (i.e., com-
putational lexicons data) rather than functional/behavioural
information (i.e., common-sense knowledge). In particular,
we found that functional / behavioural facts strongly influ-
ence the perception of meaning even when dealing with
textual data.

2.2 Integrating CSK into Computational Lexicons

From the results of the cognitive experiment, we then focused
our attention to the integration of CSK into WordNet to
test whether common-sense facts may improve an automatic
approach to classify semantic association. The research ques-
tion may be summed up as follows:

[RQ2] Is it possible to integrate CSK into Word-
Net? And if so, to what extent? Does such integration
improve the accuracy of a semantic association classi-
fier?

We present an approach inspired by a collaborative-filtering
method that allowed us to disambiguate and inject around
600,000 common-sense facts into WordNet synsets. This
knowledge has been used in a supervised scenario to demon-
strate the improvement of the accuracy levels in the classifi-
cation of semantic association between words.

2.3 Labeling Semantic Association with CSK

Finally, we started from the concept of distributional seman-
tics (DS), which represents a recent and successful approach
in computational linguistics to seemeanings of words as dis-
tributional profiles over linguistic contexts and to compute
semantic association scores by making comparisons over
such distributional information. DS, originally inspired by
the distributional hypothesis [14], has been demonstrated to
be very practical and useful, but it has also shown to have
intrinsic limitations in the way it deals with the explanation
of the nature of semantic association, which can be further
used to address formal semantics aspects such as composi-
tionality, quantification, and inference. In light of this, we
formulated the following research question:

[RQ3] May the use of common-sense knowledge help
label and explain semantic association?

We tried to answer this question by proposing a novelmethod
for aligning words on the basis of common-sense facts
that improves standard techniques for automatic labeling of
semantically associated words.
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3 Assessing Common-Sense Semantic
Association

In this section, we present the first contribution of the paper
which aims at understanding the role of conceptual rather
than behavioral/functional features in the perception of the
similarity between words through a cognitive experiment.
This part represents the answer for research question RQ1.

3.1 Definitions

Before going through the details of the experiment, we
here define the meaning of two aspects which are central
in this work: conceptual/encyclopedic rather than behav-
ioral/functional information that can be ascribed to entities.
Entities can be either objects, living entities, and abstract
concepts.

– Conceptual A conceptual or encyclopedic information is
a semantic factwhichdefineswhat a concept is. Examples
are physical properties such as color, shape, form, and
size, but also distinctive properties, components, loca-
tions, etc.

– Functional A behavioral or functional information is a
semantic fact which is related to actions. Examples are
what one can do with an entity, what an entity may do,
motivations, prerequisites, goals, expectations, etc.

This vision is directly inspired by studies in cognitive
science, mainly derived by the concept of affordances, intro-
duced by Gibson in 1977 [13], discussing about the existing
link between the perceptual aspect of objects and their use in
the real world.

3.2 Setting of the Cognitive Experiments

The aim of the following experiments is the understanding of
the degree of importance of the above-defined conceptual and
functional features in the perception of semantic association
between lexicalized concepts. While there exists a large (and
different) literature about “perception” and “association” in
the physical world, we here describe a study related to the
processing of natural language, and in particular on single
lexicalized concepts.

In particular,wedesigned the test as a comparisonbetween
two types of semantically correlated word pairs, the first
one involving conceptual-related words and the other one
with words linked by functional aspects. For example, let
us consider the word pairs A = (cloud, sky) and B =
(cloud, rain). While A contains two different concepts
which are only highly correlated semantically, word pair B
clearly entails an action between the two concepts. To gener-
alize, let us consider thewords a, b, and cwith the conceptual

word pair a-b and the functional word pair a-c. The user was
asked tomark themost semantically associatedword (among
b and c) to associate with a, and so the most correlated word
pairs. The users were not aware of the goal of the test and
of the above-mentioned difference between the selected con-
ceptual vs functional word pairs.

At this point, our experiment required the participants to
choose those word pairs they felt to be more correlated. Any
significant trend in the results may be taken as an empiric evi-
dence of how the semantic association between lexicalized
concepts is influenced by conceptual rather than functional
features, in a controlled dataset with comparable scores of
generic semantic association, as currently approached by
standard numeric evaluations of relatedness.

The experiment has been presented to 4 participants,
having different ages and professions, without cognitive/
linguistic disorders. Words have been given to the partic-
ipants without any disambiguation, since this process is
embodied in the human cognition and it has been left to the
participants to autonomously decided the sense to associate
with the words under comparison.

To let the empirical results of the experiment more accu-
rate and reliable as possible, we put particular attention to
the choice of the word pairs, according to the following
principles (which are similarly defined in the MRC Psycho-
linguistic norms [33]):

– Conceptual granularity If we think at the words object
and thing, we probably do not have enough information to
make significant comparisons due to their large and unde-
fined conceptual boundaries. The same happens in cases
when two words represent very specific concepts such as
lactose and amino acid. The word pairs of the proposed
test have been selected by considering this constraint (and
so they include words which are not too specific nor too
general). This principle could be considered similar to
the one proposed by [33] called familiarity.

– ConcretenessWords may have direct links with concrete
objects such as “table” and “dog”. In other cases, words
such as “justice” and “thought” represent abstract con-
cepts. Since the literature does not present studies on
the impact of concreteness/abstract on the perception of
concepts and their similarity through text processing, we
decided to focus our analysis on concrete concepts only.
This principle is intended as in [33].

– Semantic coherenceAnother criterion used for the selec-
tion of the words has been the level of semantic asso-
ciation between the word pairs under comparison. To
better analyze whether the functional aspect plays a sig-
nificant role in the perception of semantic association,
we extracted conceptual and functional word pairs with
similar scores of semantic association. We wanted to be
sure that the users selection of one among the two was
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influenced only by the nature of the association (con-
ceptual rather than functional), and not by its strength.
Without this constraint, a case with a highly related word
pair A and a poorly related word pair B would have
been likely to produce A-centered user preferences only.
Contrariwise, by having similar semantic correlations
in both A and B, the users preference can principally
reflect the perception of the association. In light of this,
we used a latent semantic space calculated over almost
1 million of documents coming from the collection of
literary text contained in the project Gutenberg page.1

The selected word pairs that the participants were asked
to compare had the property of having a very close
semantic relatedness score (i.e., less than 0.1 of differ-
ence in a [0,1] range). This means that each conceptual
a − b pair with each functional a − c pair in the con-
trolled dataset is complaint with the following constraint:
|relatedness(a, b) − relatedness(a, c)| < 0.1.

Finally, we then considered distinct degrees of importance
of the functional aspect. Our assumption is that the relative
importance of the functional link between two concepts has
a direct link with its perceived association value (and thus
with the preferences of the participants in contrast to the
conceptual word pairs). For this reason, we added a final
criterion for the selection of the dataset:

– Increasing level of the functional aspect To estimate the
importance of the functional aspect that relates two lexi-
calized concepts, we analyzed the number of actions (or
verbs) in which they are usually involved with. For each
word pair (a, b), we counted the number K of existing
verbs connecting a with b and the number N of verbs
involving only a. Then, we calculated the ratio K/N as
an approximation of the relevance of word b within the
whole functional roles played by a. For example, consid-
ering the functional word pairs salt-water, nail-polish,
and ring-finger, they have a functional ratio of 0.0032

0.01013 and 0.06254 respectively, thus representing three
different degrees of importance of the functional aspects.
To complete the controlled dataset, we selected and clus-
tered word pairs according to these values, forming three
groups: low, medium, and high scores of the functional
ratio. This additional constraint has been introduced to
measure the linear impact of the functional link in the
perception of semantic association.

1 http://promo.net/pg/.
2 For the verbs “to put”, “to add” and “to get”,
3 For the verbs “to apply” and “to use”,
4 For the verbs “to put” and “to wear”,

The selection process started from the identification of
all word senses in WordNet having a depth in the taxonomy
between 4 and 12, discarding top-level and bottom-level con-
cepts such as entity and limousine (conceptual granularity
criterion). Then, we iterated the following procedure: (1)
random selection of a word sense Sa ; (2) retrieval of pairs
<< Sa, Sb >,< Sa, Sc > having similar scores of semantic
association (semantic coherence criterion); (3) computation
of their functional score (functional aspect criterion); (4)
manual validation of the resulting pairs according to the con-
creteness criterion.

3.3 Results

The results of the association experiment are shown in Table
1 along with all the choices made by the participants in the
test.

The need of functional features for capturing humanlike
perceived meaning of the concepts is made evident by the
proposed experiment, as these aspects resulted to play an
important role for the assessment of semantic association. In
particular, some concepts have shown a stronger associative
perceptive relation with respect to others ones in those cases
they were linked by significant functional features.

In addition to this, the experiment indicates a correlation
between the obtained association scores and the exclusive
verbal phrases connecting the concepts, i.e., the higher the
calculated functional level, the higher the obtained functional
preferences.We tried to approximate this concept by looking
at noun–verb co-occurrences, but this should deserve further
work in future research.

Finally, the fact that low-functional and medium-
functional word pairs show minor preferences with respect
to high-functional pairs is in line with what stated by [7], i.e.,
words that have a functionality-based relationshipmayhave a
more complex visual component that makes such correlation
weaker.

A functional type of semantic knowledge can be typically
found in common sense-based resources such asConceptNet.
For this reason, we proposed a first method for integrating
ConceptNet into WordNet in order to improve a classic nat-
ural language processing task: the evaluation of semantic
relatedness. The next sections will detail this further contri-
bution.

4 Measuring Semantic Association Through
CSK Integration

In this section, we answer to the research question RQ2.
In particular, we propose a novel approach for the align-
ment of linguistic and common-sense semantics based on
the exploitation of their intrinsic characteristics: While the
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Table 1 Results on the word pairs association experiment with 24 dif-
ferent cases (8 low-functional level, 8 medium-functional level, and 8
high-functional level). The last column represents the percentage of the
times participants have chosen the functional word pair (BF) rather than

the conceptual one (CE) in the test, according to each functional level.
Each case has been presented to 4 people (answers A1, A2, A3 and A4
in the table)

BF level CE word pair BF word pair A1 A2 A3 A4 BF preference (%)

Low Salt Sugar Salt Water CE CE CE CE 28

Table Chair Table Food BF CE CE CE

Beach Island Beach Holiday BF CE BF BF

Book Text Book Knowledge BF CE CE BF

Cloud Sky Cloud Rain CE BF BF CE

Wine Liquor Wine Bottle CE CE CE CE

Bed Couch Bed Hospital CE CE CE CE

Story Topic Story Kid BF CE CE CE

Medium Bread Pasta Bread Kitchen BF CE BF CE 41

Car Vehicle Car Horne CE CE CE BF

Band Singer Band Music CE BF BF BF

Feet Hands Feet Stairs BF BF BF BF

Flowers Leaves Flowers Apes CE BF CE CE

Mouse Cat Mouse Cheese BF CE BF CE

Insect Bee Insect Plant CE CE CE CE

Nail Polish Finger Polish CE CE CE CE

High Mouth Tooth Mouth Voice BF BF BF BF 91

Eye Nose Eye Tear BF BF BF BF

Ring Necklace Ring Finger BF BF BF BF

Door Gate Door Handle BF BF CE BF

Bottle Glass Bottle Cap CE BF BF CE

Broom Rag Broom Dust BF BF BF BF

Scissors Knife Scissors Paper BF BF BF BF

Bomb Dynamite Bomb Blast BF BF BF BF

former represents a reliable (but strict in terms of semantic
scope) knowledge, the latter contains an incredible wide but
ambiguous set of semantic information. In light of this, we
assigned the role of hinge to WordNet, which guides a trusty,
multiple, and simultaneous retrieval of data fromConceptNet
which are then intersected with themselves through a set of
mechanisms to produce automatically disambiguated knowl-
edge. ConceptNet [30] is a semantic graph that has been
directly created from theOpenMindCommonSense5 project
developed by MIT, which collected unstructured common-
sense knowledgeby askingpeople to contribute over theWeb.

4.1 Basic Idea

The idea of the proposed enrichment approach relies on a fun-
damental principle, which makes it novel and more robust
with respect to the state of the art. Indeed, our extension
is not based on a similarity computation between words

5 http://commons.media.mit.edu/.

for the estimation of correct alignments. On the contrary, it
aims at enriching WordNet with semantics containing direct
relations and words overlapping, preventing associations of
semantic knowledge on the unique basis of similarity scores
(whichmay be also dependent on algorithms, similaritymea-
sures, and training corpora). This point makes this proposal
completely different from what proposed by [6], where the
authors created word sense profiles to compare with Con-
ceptNet terms using semantic similarity metrics. Section 5
further describes and deepens this type of non-numeric simi-
larity calculation. Finally, graph-based alignments of lexical
resources such asBabelNet [25] cannot bedirectly appliedon
ConceptNet due to the specificity of themethod on the nature
of the Wikipedia resource and its features (internal links,
categories, inter-language links, disambiguation pages, and
redirect pages). ConceptNet instead presents a much weaker
set of contextual features to be used for the semantic align-
ment.
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4.2 Definitions

Let us consider a WordNet word sense

Si =< Ti , gi , Ei >

where Ti is the set of synonym terms t1, t2, ..., tk , while gi
and Ei represent its gloss and the available examples, respec-
tively. Each word sense represents a meaning ascribed to the
terms in Ti in a specific context (described by gi and Ei ).
Then, for each sense Si we consider a set of semantic prop-
erties

Pwordnet (Si )

coming from the structure around Si in WordNet. For exam-
ple, hypernym(Si ) represents the direct hypernym word
sense, while meronyms(Si ) is the set of senses which com-
pose (in terms of amade-of relation) the concept represented
by Si . The above-mentioned complete set of semantic prop-
erties Pwordnet (Si ) of a sense Si contains a set of pairs

< rel − word >

where rel is the relation of Si with the other senses (e.g.,
is-a) and word is one of the lemmas of such linked senses.
For example, given the word sense Scat#1 :

Scat#1 : cat, true cat (feline mammal usually having
thick soft fur and no ability to roar: domestic cats;
wildcats),

a resulting < rel − word > pair that comes from hyper-
nym(Scat ) will be:

< is A − f eline >

since f eline is a lemma of the hypernym word sense
S f eline, f elid#1 :

S f eline, f elid#1 : feline, felid (any of various lithe-
bodied roundheaded fissiped mammals, many with
retractile claws).

Note that in case of multiple synonym words in the related
synsets, there will be multiple< rel −word > pairs. Then,
ConceptNet can be seen as a large set of semantic triples of
the form

N Pi − relk − N Pj

where N Pi and N Pj are simply non-disambiguated noun
phrases, whereas relk is one of the semantic relationships in
ConceptNet.

4.3 Method

The solution for aligning ConceptNet triples with WordNet
synsets is described in this section. Initially, for each synset
Si , we compute the set of all candidate semantic ConceptNet
triples

Pconceptnet (Si )

as the union of the triples that contain at least one of the terms
in Ti . The inner cycle iterates over the candidate triples to
identify those that can enrich the synset under consideration.
We proposed 4 mechanisms to align each ConceptNet triple
ck (of the form N P − rel − N P) to each synset Si . The first
one, i.e., gloss-based, can be viewed as a baseline approach
that only considers a matching ConceptNet term within a
WordNet synset gloss.
Gloss-based (baseline) [Condition: If a lemma of an N P
of the triple ck is contained in the lemmatized gloss gi of
the synset Si ]. This would mean that ConceptNet contains a
relation between a term in Ti and a term in the description
gi , making explicit some semantics contained in the gloss.
Note that the systematic inclusion of related-to relations with
all the terms in the gloss gi would carry to many incorrect
enrichments, so this mechanism is necessary to identify only
correct alignments.
Structure-based [Condition: If a lemmaof an N P of ck is also
contained in Pwordnet ]. By traversing theWordNet structure,
it is possible to link words of related synsets to Si by exploit-
ing existing semantics in ConceptNet.
Gloss2-based [Condition: If a lemma of an N P of ck is con-
tained in the lemmatized glosses of the most probable synset
associated with the words in gi ]. The word sense disam-
biguation algorithm used for disambiguating the text of gi
is a simple match between the words in the triple with the
words in the glosses. In case of empty intersections, the most
frequent sense is selected.
Collaborative Filtering. After taking all the hypernyms of Si ,
we queriedConceptNetwith their lemmas obtaining different
sets of triples (one for each hypernym lemma). [Condition: If
the final part ∗−rel−word of the triple ck is also contained
in one of these sets]. We associate ck with Si .

The idea is to intersect different sets of ambiguous
common-sense knowledge tomake a sort of hypernym-based
collaborative filtering of the triples. For example, let Si be

Sburn,burning : pain that feels hot as if it were on fire

and the two candidate ConceptNet triples

c1 = burning − relatedto − su f f er

and

c2 = burn − relatedto − melt .
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Once retrieved

hypernyms(Sburn,burning) = {pain, hurting}
from WordNet, we query ConceptNet with both pain and
hurting, obtaining two resulting sets

Pconceptnet (pain)

and

Pconceptnet (hurting).

Given that the end of the candidate triple c1 is con-
tained in Pconceptnet (pain), the triple is added to synset
Sburn,burning . On the contrary, the triple c2 is not added to
Sburn,burning since relatedto−melt is not contained neither
in Pconceptnet (pain) and Pconceptnet (hurting).

4.4 Results and Evaluation

The proposed method is able to link (and disambiguate) a
total of 98,122 individual ConceptNet instances to 102,055
WordNet synsets. Note that a single ConceptNet instance
is sometimes mapped to more than one synset (e.g., the
semantic relation hasproperty-red has been added tomultiple
synsets such as [pomegranate, ...] and [pepper, ...]). There-
fore, the total number ofConceptNet-to-WordNet alignments
is 582,467.Note thatweonly kept those instanceswhichwere
not present inWordNet (i.e., we removed redundant relations
from the output).

To have an idea of the complementary nature of WordNet
and ConceptNet, Figs. 1 and 2 show the result of the pro-
posed automatic alignment on two examples: 1) the extracted
knowledge related to what can be a part of the concept car

Fig. 1 Example of resulting WordNet+ConceptNet alignment on a standard lexical type of knowledge (partOf relation on the concept car)
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Fig. 2 Example of resultingWordNet+ConceptNet alignment on a common-sense type of lexical knowledge (capable relation on the concept hurt)

(standard lexical knowledge), and 2) the extraction of what
can hurt (common-sense type of knowledge).

Table 2 shows an analytical overview of the resulting
WordNet enrichment according to the usedmechanisms. The
baseline method was able to infer less than 40% of the total
extracted alignments.

In order to obtain a first and indicative evaluation of the
approach, we manually annotated a set of 505 randomly
picked individual synset enrichments. In detail, given a ran-
dom synset Si which has been enriched with at least one
ConceptNet triple ck =< N P − rel − N P >, we verified
the semantic correctness of ck when added to the meaning
expressed by Si , considering the synonymwords in Ti aswell
as its gloss gi and examples Ei . Table 2 shows the results.

Relation # correct # incorrect Accuracy (%)

related-to 121 22 84.62
is-a 99 17 85.34
at-location 39 5 88.84
capable-of 36 1 97.29
has-property 29 2 93.55
antonym 27 4 87.10
derived-from 25 1 96.15
... ... ... ...
Total 446 59 88.31

The manual validation revealed a high accuracy of the
automatic enrichment. While the total accuracy is 88.31%
(note that higher levels of accuracy are generally difficult
to reach even by inter-annotation agreements), the extension
seems to be highly accurate for relations such as capable-
of and has-property. On the contrary, is-a and related-to
relations have shown a lower performance (around 85%).
However, this is in line with the type of used resources:

Table 2 Overview of the WordNet-to-ConceptNet alignments accord-
ing to the used mechanisms

Mechanism # of alignments

Gloss-based (baseline) 222,544

Structure-based 109,212

Gloss2-based 19,769

Collaborative filtering 230,942

Thebaselinemethodwas able to infer less than40%of the total extracted
alignments

On the one hand, WordNet represents a quite complete tax-
onomical structure of lexical entities; on the other hand,
ConceptNet contains a very large semantic basis related to
objects behaviors and properties. Finally, related-to relations
are more easily identifiable through statistical analysis of co-
occurrences in large corpora and advanced topic modeling
built on top of LSA [8], LDA [1] and others. ExtendingWord-
Net with non-disambiguated common-sense knowledge may
by challenging, also considering the very limited contextual
information at disposal. However, such an alignment is fea-
sible due to the few presence of common-sense knowledge
related to very specific word senses (e.g., the term ”cat” is
very improbable to have common-sense facts related to the
unfrequent word sense Scat#8:

Scat#8: A method of examining body organs by scan-
ning themwithX rays andusinga computer to construct
a series of cross-sectional scans along a single axis.

4.5 Impact of the Integration

The leading idea of the paper is to constructively criticize
the way semantic similarity or relatedness is calculated and
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Table 3 Correlation table of the six participants (from P1 to P6) similarity scores

P1 P2 P3 P4 P5 P6

P1 1 0.3849 0.6671 0.5573 0.5105 −0.0395

P2 0.3849 1 0.3416 0.4650 0.1404 0.1804

P3 0.6671 0.3416 1 0.3783 0.5743 −0.0167

P4 0.5573 0.4650 0.3783 1 0.3572 0.0263

P5 0.5105 0.1404 0.5743 0.3572 1 0.0089

P6 −0.0395 0.1804 −0.0167 0.0263 0.0089 1

Avg 0.4161 0.3025 0.3889 0.3569 0.3183 0.0319 0.3024

The average correlation value resulted to be 0.3024, demonstrating the high human disagreement in assessing similarity through numbers (and as
a consequence, the low significance of evaluations of the automatic approach through regression tests)

used in its numerical form (both as human perception and as
automatic estimation).

In the first place, we asked the participants to guess scores
of similarity and relatedness for already-annotatedword pairs
contained in the SimLex-999 corpus. Six people participated
at the test, having no information about the topics and the
goals of the analysis. In detail, they have been asked to score
the perceived similarity of terms in 50 randomly selected
word pairs, using the range [0,10]. Table 3 gives an overview
of the results, demonstrating how, generally, people signif-
icantly disagree in assessing similarity by using numbers.
This is because numbers do not encode meaning while sub-
jective and unstable perceptions of it. Thus, regression tests
are not reflecting our intention of evaluation, while clustering
ranges of scores into bins for classification seemed to us the
best choice.

To validate this assumption, we then further discretized
the obtained scores into two bins (as in the later classification
task described in the following sections). Pairs with a value
lower than 5.01 have been labeled as non-similar or lowly
similar, whereas the others with the label quite similar or
highly similar). We then computed the Fleiss’ kappa score
[29], finding a significant agreement of 0.419, which can be
considered as a good degree of aligned classification over
that which would be expected by chance. This, alone, is in
contrast to the low correlation values obtained through their
original numeric form.

However, we thought that discretizing values which have
been acquired through numerical assessments could poten-
tially capture different behaviors w.r.t. direct requests for
categorical labels. In this respect, we asked the same par-
ticipants6 to re-annotate the same word pairs using a binary
decision (non-similar/lowly similar or quite similar/highly
similar). What we found is that the agreement on such
second-stage evaluation with direct categorical assessments
reached a Fleiss’ kappa of 0.616. This can be interpreted as a

6 Note that this has been done after 6 months since their first annotation
task, without having knowledge about partial results of the work.

better perception and ease of decision over categories against
numerical judgments.

In light of these experiments, the next sections will
describe a supervised scenario for the automatic classifica-
tion of semantic similarity of inputword pairs. In the first test,
we only used WordNet and ConceptNet separately, without
enrichment. Then, we experimented with their conjunctive
use (without common-sense disambiguation) andfinallywith
a novel proposed integration method.

4.5.1 Methodology

To validate the impact of CSK in our computational experi-
ments, wemade use of a simple methodology which replaces
target words with available semantic information. The idea
is to evaluate the informativeness of the semantic features by
testing their discriminatory power in a supervised setting. In
otherwords, we asked a standardmachine learningmethod to
learn from semantically associated words which are the rel-
evant features and if they can generalize over unseen word
pairs.

4.5.2 Description of the Experiment

The experiment starts from the transformation of a word-
word-score similarity dataset into a context-based dataset in
which the words are replaced by sets of semantic information
taken from ConceptNet. The aim is to understand whether
common-sense knowledge may represent a useful basis for
capturing the similarity between words, and if it may outper-
form systems based on linguistic resources such asWordNet.

4.5.3 Data

We used two similarity datasets: SimLex-999 [16] and MEN
[3]. The former contains one thousand word pairs that
were manually annotated with similarity scores. The inter-
annotation agreement was 0.67 (Spearman correlation). The
MEN dataset contains 3,000 pairs of randomly selected

123



48 A. Ruggeri et al.

words scored on a [0,50]-normalized semantic relatedness
scale via ratings obtained by crowdsourcing on the Amazon
Mechanical Turk.

As described in Section 4.5.1, we leveraged (1) Wordnet,
(2) ConceptNet (3) their union, and (4) our proposed inte-
gration (through disambiguation and alignment) to build the
sets of semantic features to replace to the words of each pair.

4.5.4 Running Example

Let us consider the pair rice-bean. ConceptNet returns the
following set of semantic information for the term rice:

[hasproperty-edible, isa-starch, memberof-oryza,
atlocation-refrigerator, usedfor-survival, atlocation-
atgrocerystore, isa-food, relatedto-grain,madeof-sake,
isa-grain, isa-traditionally, receivesaction-eatfromdish,
isa-often, usedfor-cook, relatedto-kimchi, atlocation-
pantry, atlocation-ricecrisp, isa-domesticateplant,
relatedto-sidedish, atlocation-supermarket,
receivesaction-stir, isa-staplefoodinorient, hasproperty-
cookbeforeitbeeat,madeof-ricegrain, partof-cultivaterice,
receivesaction-eat, derivedfrom-rice, isa-cereal,
relatedto-white, hasproperty-white, isa-vegetable
hascontext-cook, relatedto-whitegrain, relatedto-food]

Then, the semantic information for the word bean are:

[usedfor-fillbeanbagchair, atlocation-infield, atlocation-
can, usedfor-nutrition, usedfor-cook, memberof-
leguminosae, usedfor-makefurniture, usedfor-grow,
atlocation-foodstore, isa-legume, usedfor-count,
hasproperty-easytogrow, partof-bean, receivesaction-
eat atlocation-cookpot, isa-vegetableorpersonbrain,
atlocation-beansoup, isa-domesticateplant, atlocation-
soup, atlocation-pantry, usedfor-plant, isa-vegetable,
atlocation-container, usedfor-supplyprotein, atlocation-
jar, atlocation-atgrocerystore, usedfor-useasmarker,
atlocation-field, derivedfrom-beanball, atlocation-coffee,
usedfor-fillbag, relatedto-food receivesaction-
grindinthis, usedfor-beanandgarlicsauce, atlocation-
beancan, usedfor-makebeanbag]

Finally, the intersection produces the following set (seman-
tic intersection, marked in bold in the previous individual
instances):

<semantic intersection> = [atlocation-atgrocerystore,
isa-vegetable, isa-domesticateplant, atlocation-pantry,
relatedto-food, usedfor-cook, receivesaction-eat]

Then, for each non-empty intersection, we created one
instance of the type:

<semantic intersection>, <similarity score>

building a standard term-document matrix, where the term is
a semantic termwithin the set of semantic intersections (e.g.,
usedfor-cook) and the document dimension represents the
instances (i.e., the semantic intersection of the features of the
word pairs) of the original dataset. After this preprocessing
phase, the score attribute is

– non-similar class - range in the dataset [0, (max / 2)]
– similar class - range in the dataset ((max / 2), max]

where max represents the maximum score in the annotated
similarity dataset (10 for SimLex-999, 50 for MEN).

We decided to keep the task simple to only evaluate the
importance of the functional aspects, without adding com-
plexity or erroneously capturing other dynamics (related to
the applied ML algorithm, for example). However, since
instances with a score close to (max/2) could be consid-
ered difficult cases (e.g., the word pair <afraid, anxious>
has a score of 5.07 in the [0,10] range, so it would be
marked as similar, while <toe, finger> as non-similar
with a score of 4.68), we also experimented a three-bins
classification:

– non-similar class - range in the dataset [0, (max / 3)]
– borderline class - range in the dataset ((max / 3), (2 *
max / 3)]

– similar class - range in the dataset ((2 * max / 3), max]

then removing the borderline instances. In this case, the
results were in line with those of Tables 7, 5, and 6 described
in the next section, even if all values were higher of (on aver-
age) 0.05 points in precision, recall, and F-measure.

4.5.5 Results

The splitting of the data into two clusters allowed us to
experiment a classic supervised classification system, where
a machine learning tool (a support vector machine, in our
case) has been used to learn a binary model for automati-
cally classifying similar and non-similar word pairs.

The result of the experiments is shown in Tables 4, 5 and
6 for precision, recall, and F-measure, respectively. Notice-
ably, the use of ConceptNet alone sometimes produced better
values than with Wordnet, demonstrating the potentiality
of CSK even if not structured and disambiguated as in
WordNet.

Note that with ConceptNet, similar word pairs are gener-
ally easier to identify with respect to non-similar ones. On
the other side, WordNet resulted to have a high precision but
a very low recall for similar word pairs (Table 7).

Finally, the tables report a clear superiority of the machine
learning task when applied on the proposed integration of the
two semantic resources WordNet and ConceptNet (marked
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Table 4 Precision values of the
experiment with ConceptNet,
WordNet, their combination
(marked with the + operator),
and the proposed integration
(marked with the * operator)
between the two resources

Class Pr. (CN) Pr. (WN) Pr. (WN+CN) Pr. (WN*CN)

non-similar (MEN) 0.594 0.512 0.596 0.612

similar (MEN) 0.590 0.904 0.591 0.814

Weighted total (MEN) 0.592 0.712 0.594 0.715

non-similar (SimLex) 0.610 0.579 0.598 0.650

similar (SimLex) 0.492 0.772 0.479 0.686

Weighted total (SimLex) 0.558 0.664 0.545 0.666

Bold indicate the highest (total) accuracy reached by the compared methods (columns). The proposed method
(last column) reaches the best accuracy levels in all cases (Precision/Recall/F-Measure for both the two used
datasets)

Table 5 Recall values of the
experiment with ConceptNet,
WordNet, their combination
(marked with the + operator),
and the proposed integration
(marked with the * operator)
between the two resources

Class Re. (CN) Re. (WN) Re. (WN+CN) Re. (WN*CN)

non-similar (MEN) 0.539 0.990 0.537 0.893

similar (MEN) 0.643 0.087 0.648 0.452

Weighted total (MEN) 0.592 0.532 0.593 0.669

non-similar (SimLex) 0.543 0.977 0.522 0.848

similar (SimLex) 0.560 0.100 0.556 0.422

Weighted total (SimLex) 0.551 0.590 0.536 0.660

Bold indicate the highest (total) accuracy reached by the compared methods (columns). The proposed method
(last column) reaches the best accuracy levels in all cases (Precision/Recall/F-Measure for both the two used
datasets)

Table 6 F-Measure values of
the experiment with
ConceptNet, WordNet, their
combination (marked with the +
operator), and the proposed
integration (marked with the *
operator) between the two
resources

Class FM (CN) FM (WN) FM (WN+CN) FM (WN*CN)

non-similar (MEN) 0.565 0.675 0.565 0.726

similar (MEN) 0.616 0.159 0.618 0.581

Weighted total (MEN) 0.591 0.413 0.592 0.653

non-similar (SimLex) 0.574 0.727 0.557 0.736

similar (SimLex) 0.524 0.177 0.514 0.522

Weighted total (SimLex) 0.552 0.484 0.538 0.642

Bold indicate the highest (total) accuracy reached by the compared methods (columns). The proposed method
(last column) reaches the best accuracy levels in all cases (Precision/Recall/F-Measure for both the two used
datasets)

Table 7 General view on precision, recall, and F-measure of the pro-
posed integration approach

Class Precision Recall F-measure

non-similar (MEN) 0.612 0.893 0.726

similar (MEN) 0.814 0.452 0.581

Weighted total (MEN) 0.715 0.669 0.653

non-similar (SimLex) 0.650 0.848 0.736

similar (SimLex) 0.686 0.422 0.522

Weighted total (SimLex) 0.666 0.660 0.642

Bold indicate the highest (total) accuracy reached by the compared
methods (columns). The proposed method (last column) reaches the
best accuracy levels in all cases (Precision/Recall/F-Measure for both
the two used datasets)

with WN*CN in the tables). Note that the simple union
(marked with WN+CN in the tables) between WordNet and
ConceptNet features did not carry to any increase in per-

formance. This is due to the high ambiguity of the terms
in ConceptNet. We can conclude from this that ConceptNet
may not by directly usable as is. Overall, these experiments
demonstrate the need as well as the successful disambigua-
tion process with its impact on the automatic calculation of
semantic similarity between lexical entities.

5 Labeling Semantic Association with CSK

In this section, we answer to the research question RQ3.
In particular, we present a method that revisits the clas-
sic numeric nature of computing semantic association, as
originally approached in [32]. In contrast to the work of
Vyas and Pantel, our approach does not simply find explana-
tions of similarity by traversing paths connecting concepts
in existing lexical resources rather than finding recurring
syntactic dependencies and terms in corpora, whereas by
modeling a generic semantic association between concepts
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as a twofold interaction between conceptual and (enabled)
functional (or common sense-like) features. To this end, the
resulting alignment of the previous section provides an input
for the following module. The motivation behind this contri-
bution derives from what stated in [9], i.e., people explain
similarity using semantically related bundles of features
rather than referring to, or interconnecting similar concepts.
In addition to this, the explanations of [32] are not compa-
rable with those of our system as they were found through
a method based on predefined input queries with a random
choice of the number ofwords. Instead, our proposal does not
need any input parameters, as it solely relies on a reasoning
process over the whole knowledge base.

First, we give an overview of the paradigm and the defi-
nition of what we call explanation and semantic association
labeling (SAL). Then, we illustrate our experimentation on
ConceptNet and the similarity dataset SimLex (which we
already used in the previous section). This allowed to create
an additional semantic knowledge base that enriches the sim-
ilarity dataset with conceptual features that aim at explaining
the reasons behind the similarity numeric values.

5.1 Basic Idea

The proposed approach aims at giving a semantic explana-
tion of the semantic association between two lexical entities
using a semantic knowledge as support. Given two wordsw1

andw2, what is usually done by standard methods is to com-
pare theirword semantic profiles, i.e., contextual lexical item
sets. For example, given the word cat and dog, their profiles
can share terms such as pet, fur, and claws. These word pro-
files can be extracted from co-occurrences in large corpora
and/or in available resources (using relations such as syn-
onyms, hypernyms, andmeronyms).On the contrary, our idea
is to replace blind lexical overlappings by a meaningful and
coherent matching of semantic information, as explained in
methodology Section 4.5.1. Being bound to ConceptNet, we
used the following semantic relations as conceptual infor-
mation (also called properties in this section):

{partOf, madeOf, hasA, definedAs, hasProperty}

Then, we used the following relations as f unctional infor-
mation (simply called functions from now on):

{capableOf, usedFor, hasPrerequisite, motivatedBy-
Goal, desires, causes}

5.2 Definitions

5.2.1 Word Explanation (WE)

Thefirst step is the extraction of individualword explanations
for both w1 and w2. A word explanation is a relation-based

model which correlates conceptual properties to functions.
Generally speaking, the idea is that the functions of a concept
are directly correlated with its properties. In a sense, our
assumption is that:

there is a strong relationship (or interaction) between
a conceptual property and some function of the object.

In our case, given a word w and a semantic relation r , we
use a semantic resource K B to extract all the words that
show the semantic instance r − w. For example, if r = has
and w = f ur , the query would be has − f ur , and the
result will contain the set of words having that semantic
information in K B, for example {cat, bear , ...}. Then, we
obtain all semantics related to such retrieved terms, building
a matrix which correlates the conceptual properties to the
functional features (by using pointwise mutual information,
as later described). For example, the property of having claws
usually correlates with the fact of climbing trees.

The set of matrices M =< M1,M2, ...,M|r | > (one for
each semantic relation provided by K B) represent the seman-
tic explanation e of a single word w, i.e., all conceptual-
to-functional interactions related to the semantics around a
single word w (from different perspectives, by considering
all types of semantic relations in K B). For instance, the anal-
ysis of the words bear and cat may lead to explanations that
associate different f unctional features to the property of
having claws (e.g., climbing trees for a cat, killing people for
a bear). Figure 3 shows two examples of such relation-based
explanation.

Anticipating the details of the next step, in case of a seman-
tic comparison between the words cat and bear, the claws
property will be not used as an element of similarity, because
of their differentmeanings in terms of enabled behavior. This
point represents a radical novelty with respect to state-of-the-
art approaches which only considers lexical and statistical
overlappingswithout taking into account their actual context-
based meaning.

5.2.2 Semantic Association Labeling (SAL)

For each relation r in K B, we then obtain the relative
explanations for the words w1 and w2, namely e1 and e2,
respectively. At this point, we make a comparison of e1 and
e2 by aligning the vectors of the relative sets ofmatricesMw1
and Mw2 (i.e., each vector of the matrices of e1 is aligned to
zero or some vector of the matrices of e2 if they represent the
same property). In case of a non-empty alignment (i.e., e1
and e2 share some identical property), the two conceptual
property vectors are compared in terms of their f unctional
features. Again, in case the vectors share identical functions,
the numeric product of their weight represents a score (and
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Fig. 3 Example of
relation-based explanations for
the word eyes (cats, dogs, etc.,
have eyes; read, see, etc., have
the prerequisite of having eyes).
The matrices represent the
correlation between properties
and functionalities of these
resulting words

Fig. 4 Scheme of the semantic
association labeling (SAL)
process, which correlates matrix
rows (property vectors) of the
explanations of the two words
under comparison

thus the importance) of a single semantic association label-
ing (SAL) instance. Figure 4 illustrates this process.

In words, the idea is summed up with the following con-
ceptualization:

a SAL instance that links a row row1 of one rx -matrix
in e1 and a row row2 of one matrix ry in e2 would
mean that everything that is related with w1 through
the relation rx has a property p with an overlapping
f unctional distribution with the same conceptual
property p of what is related with word w2 through
the relation ry .

For example, ifw1 = cat ,w2 = tree, rx = partO f , and
ry = usedFor , one SAL instance contains the conceptual
property p = claws, since claws are parts of a cat and they
are used for climbing. In a sense, this instance explains an
aspect of the semantic association between cats and trees in
terms of a conceptual property (the claws), saying that cats
can climb the trees through this conceptual aspect.

Considering the entire set of relations r in K B, the SAL
of two input words w1 and w2 is the r -based sets of SAL
instances which represent the direct matching between iden-
tical properties and their functional aspects.

5.3 Data

In this paper, we used the dataset named SimLex-999 [16],
which contains one thousand word pairs that have been man-
ually annotated with similarity scores. The inter-annotation
agreement is 0.67 (Spearman correlation), highlighting the
complexity of the task (and somehowunderlining themotiva-
tions of this proposal). SimLex-999 also includes word pairs
of another dataset,WordSim-353 [11], that contains a mix of
relatedness- and similarity-based items.

5.4 Algorithm

In this section, for the purpose of reproducibility, we present
the details of the algorithm for the extraction of explanations
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Algorithm 1: Main method to return the final SAL
output.
Data: word w1, word w2, semantic resource K B
Result: A set of SAL instances, given two input words and a

semantic resource (ConceptNet in our case).
R = set of relations in KB;
result = empty set of relation-based SAL instances;
for each relation r in R do

Explanation e1 = getExplanation(w1, K B, r);
Explanation e2 = getExplanation(w2, K B, r);
SemanticAssociationLabeling SALr = getSAL(e1, e2);
result.add(r, SALr );

end
return result;

Algorithm 2: Method getExplanation for extract-
ing explanations from an input word and a semantic
resource.
Data: word w, relation r , semantic resource K B
Result: A set of explanations for a given word.
contextwords = query(K B, r, w);
for each word cw in contextwords do

cwsemantics = query(KB, cw);
cwCE = selectCESemantics(cwsemantics );
cwBF = selectBFSemantics(cwsemantics );
updateCoOccurrence(cwCE , cwBF );

end
return the PMI values calculated over the co-occurrences;

and the final SAL between the input words. The pseudo-code
of the entire approach is shown in Algorithms 1, 2, and 3.

Given two inputwordsw1 andw2, and a semantic resource
K B, the system creates a set of SALr instances, one for
each type of relation r among the whole set R of relations
in K B. Each SALr instance is the result of a comparison
between the two explanations of the two words according to
a specific target semantic relation r . In detail, we query the
semantic resource K B with the relation-word pair r −w. At
this point, we query K B with each of these words and collect
the co-occurrence values between conceptual and functional
information. In particular, we build a matrix M of nr = |P|
rows andnc = |F | columns,where P and F are, respectively,
the set of property features and the set of functional features,
and where each value Mi, j contains the co-occurrence of the
property pi with the functionality f j (with 0 < i < |P|, and
0 < j < |F |).

Once the matrix of co-occurrences M is calculated, it is
then transformed in a PMI-based matrix where each value
Mi, j is replaced with:

M ′
i, j = Pi, j

Pi ∗ Pj

where Pi, j is the probability of having a nonzero co-
occurrence value for the property pi and the functionality f j

Algorithm 3:Method getSAL for comparing explana-
tions of two words, returning a SAL instance.
Data: Explanation e1, Explanation e2
Result: A SAL instance.
p − vectors1 = getPMIValues(e1);
p − vectors2 = getPMIValues(e2);
for each CE property vector pw1 (of property p) in
p − vectors1 do

if p − vectors2 has CE property vector pw2 of the same
CE property p then

matchingBF = match(pw1, pw2);
if matchingBF is not empty then

instance.add(p, matchingBF )
end

end
end
return the instance;

(that is, Mi, j > 0) in the semantics of the input word, while
Pi and Pj are the individual probability to find the property
pi and the functionality f j , respectively. The utility of M ′
is to capture the strength of the associations between prop-
erties and functionalities also considering their individual
frequency. Each horizontal vector of a matrix Mr represents
a word explanation, i.e., how a property is related to some
functionalities with respect to the considered semantic infor-
mation related to r − w. Finally, we align the explanations
of w1 with the ones of w2. Given a property vector of M ′

w1,
if the property is also contained in M ′

w2, we calculate their
matching functionalities. If the matching is not empty, we
add the SALr instance in the final result. At the end of the
process, the whole SAL output of the two input words w1

and w2 will be the set of SALr instances obtained for all the
relations r in R.

5.5 Results

In this section, we present a running example to show the
richness of a SAL process compared with a standard model
for labeling semantic association based on co-occurrences
or knowledge base intersections. In particular, we selected a
set of word pairs from a manually annotated dataset with a
various degree of similarity from the used similarity dataset.
The goal was twofold to evaluate the ability to identify the
key semantic points (SAL instances) of annotatedword pairs.
Figure 5 shows some examples of SAL instances, while the
complete set of SAL-enriched word pairs for the SimLex
dataset will be released, creating a newbenchmark for further
computational studies on these topics.

In order to evaluate the ability of the proposed system
to also identify plausible semantic association explanations
even in case of dissimilar word pairs (i.e., the 239 noun word
pairs scored with a value lower than 3.3 in the SimLex-999
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Fig. 5 Examples of SAL
instances with different types of
semantic relations. The first
white blocks on the left helps
read the instances, e.g., “what is
related to both singer and actor
has the properties fun, entertain,
etc. and it is a part of the
concept theater”

Table 8 The 8 word pairs that
have been resulted to be the
most difficult to explain (in
terms of their similarity) by the
8 participants in the test

Word pair Relation A Relation B Similarity SAL manual validat. Accuracy

Loop Belt RelatedTo RelatedTo 3.1 5 out of 9 items

Car Elevator RelatedTo RelatedTo 1.03 18 out of 22 items

Diet Apple RelatedTo RelatedTo 1.18 6 out of 7 items

Water Salt HasA HasA 1.3 27 out of 30 items

Foot Head PartOf PartOf 2.3 5 out of 6 items

Room Bed HasA HasA 2.35 16 out of 30 items

Motor Boat RelatedTo RelatedTo 2.57 17 out of 18 items

Friend Teacher IsA IsA 2.62 8 out of 9 items

Avg Acc. 77.33%

dataset), we conducted a two-phase experiment with 8 par-
ticipants, asking

1. to mark the word pairs with a degree of complexity
(low, medium, high) in terms of explanation of similarity.
Specifically, they were asked to think how difficult was
to think at labels explaining the similarity between the
two terms in the pair;

2. we selected those (8) cases that received the highest num-
ber of high-marks and asked again the same participants
to manually evaluate the automatically extracted SALs
for such difficult cases.

Table 8 shows the 8 word pairs which seemed to be the
most difficult to explain by the participants. The automati-
cally extracted labels have been manually marked as simply

correct or incorrect. The results show that more than 3 out
of 4 times the presented labels have been recognized as right
semantic explanations (77.33% of correct marks). By hav-
ing additional lexical knowledge at disposal, even in case
of unrelated words, it is possible to imagine novel ways to
put forward automatic reasoning approaches in tasks such as
WSD and IR where finding semantic links or lexical overlap
is fundamental (see Section 5.6).

5.6 Further Considerations

We presented the SAL process as a way to build real-time
and context-based semantic knowledge that can enhance any
possible consequent natural language processing task. In the
case of semantic similarity, we were able to create additional
semantic information regarding the comparison of two lexi-
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cal items. Under a more general point of view, the proposed
method can be applied on several other scenarios. We list
here some of possible extension of our proposal, to pave the
way for further research directions:

– In the context of word sense disambiguation, an
explanation-based similarity may constitute a novel kind
of approach where words in a specific context could
match with word senses through the use of correlation
between semantic explanations rather than overlapping
of word profiles (or vectors).

– In the information retrieval field (IR), complex queries
may be seen as sets of shared explanations among the
keywords in the query, possibly improving both precision
and recall. In other words, instead of treating a query as a
bag of words, it can be transformed into the explanations
obtained by the proposed semantic similarity reasoning.
For example, let us consider the 3-keyword query wolf
dog behaviors. The word dog should not be considered in
the role of a pet, so results concerning pets (and so related
to cats and parrots, for example) are out of the scope of
the query. In a sense, the aim of the proposed method
would be the removal of unnecessary senses related to
the used words by shifting the analysis from a lexical to
a semantic resource-based basis of correlations.

– Syntactic parsing is a procedure that often requires
semantic information. A semantic reasoning approach
could alleviate ambiguity problems at syntactic level
by using explanations. For example, major problems
for syntactic parsing are prepositional-phrase and verbal
attachments.

– Finally, this model could also help improve the state of
the art on natural language generation (NLG), and sum-
marization, since similarity reasoning can output lexical
items which can be also not correlated with the used
words in general, but that can play a requested role in
a specific linguistic construction.

– The proposed approach could put the basis of a novel
research methodology concerning textual entailment
(TE). Actually, we think that the complexity of the task
of understanding whether a lexical entity entails another
lexical entity can be only solved at a semantic level rather
than at vector-based level.

6 RelatedWork

This section is intended to introduce the necessary back-
ground knowledge and the state of the art with respect to the
theories and the ideas discussed in this work: (1) the notion
ofmeaning and semantic similaritywith the relative connec-
tions with the proposed approach; (2) the difference between

encyclopedic and common-sense semantic resources; and (3)
ontology learning and integration of semantic resources.

6.1 Semantic Similarity andMeaning

As already mentioned in Introduction, research on compu-
tational linguistics is often focused on the calculation of
similarity scores between texts at different granularities (e.g.,
word, sentence, discourse) [20].

Although many measures have been proposed in the lit-
erature, this work is related to some cognitive theories such
as the one of the affordances by James Gibson [13]. Accord-
ing to this theory, which refers to the perception of physical
objects but that can be revisited in virtual or abstract situa-
tions, the element of a domain (e.g., objects in the physical
world rather than lexical items in natural language) gives
clues about specific actions ormeanings. Still, actions change
the type of perception of an object, which models itself to fit
with the context of use. The Gestalt theory [18] contains dif-
ferent notions about the perception of meaning according to
interaction and context. In particular, the core of the model
is the complementarity between the figure and the ground.
In the linguistic case, a word can be seen as the figure while
the context as the ground making light on its specific sense.

As a matter of fact, words are organized in a lexicon as
a complex network of semantic relations which are basi-
cally subsumed within the Saussure’s paradigmatic (the axis
of combination) and syntagmatic (the axis of choice) axes
[28]. Some authors [5] have already suggested theoretical
and empirical taxonomies of semantic relations consisting
of some main families of relation (such as contrast, simi-
lars, class inclusion, and part-whole). As Murphy pointed
out [23], lexicon has become more central in linguistic the-
ories and, even if there is no widely accepted theory on its
internal semantic structure and how lexical information are
represented in it, the semantic relations amongwords are con-
sidered in the scholarly literature as relevant to the structure
of both lexical and conceptual information and it is generally
believed that relations among words determine meaning.

Distributional analysis of natural language, such as dis-
tributional (or vector-based) semantics, exploits Harris’s
distributional hypothesis (later summarized with Firth’s sen-
tence you shall knowawordby the company it keeps) and sees
a word meaning as a vector of numeric occurrences (i.e., fre-
quencies) in a set of linguistic contexts (documents, syntactic
dependencies, etc.). This approach provides a semantics of
similarity which relies on a geometrical representation of
the word meanings, and so in terms of vector space mod-
els (VSMs, [27]). This view has been recently gaining a
lot of interest and success, also due to the growing avail-
ability of large corpora from where to obtain statistically
significant lexical correlations. Data mining (DM) tech-
niques fully leveraging onVSMs and latent semantic analysis
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(LSA) [8] have been successfully applied on text since many
decades for information indexing and extraction tasks, using
matrix decompositions such as singular value decomposi-
tion (SVD) to reconstruct the latent structure behind the
above-mentioned distributional hypothesis, often producing
concept-like entities in the form of words clusters sharing
similar contexts. However, distributional approaches are usu-
ally good in finding lexical relatedness rather than similarity.

6.2 Semantic Resources: Computational Lexicons
and Common Sense

In the last 20 years, the artificial intelligence (AI) community
working on computational linguistics (CL) has been using
one knowledge base among all, i.e., WordNet [22]. In few
words, WordNet was a first answer to the most important
question in this area,which is the treatment of language ambi-
guity. Generally speaking, a word is a symbolic expression
that may refer to multiple meanings (polysemy), while dis-
tinct wordsmay share the samemeaning (synonymy). Syntax
reflects grammar rules which add complexity to the overall
communication medium, making CL one of the most chal-
lenging research areas in the AI field.

From a more detailed perspective, WordNet organizes
words in synsets, i.e., sets of words sharing a unique mean-
ing in specific contexts (synonyms), further described by
descriptions (glosses) and examples. Synsets are then struc-
tured in a taxonomy which incorporates the semantics of
generality/specificity of the referenced concepts. Although
extensively adopted, the limits of this resource are some-
times critical: (1) the top-down and general-purpose nature
at the basis of its construction lets asking about the actual
need of some underused meanings, and (2) most word sense
disambiguation approaches use WordNet glosses to under-
stand the link between an input word (and its context) and
the candidate synsets.

As a matter of fact, these tasks require an incredibly
rich semantic knowledge containing facts related to behav-
ioral rather than conceptual information, such as what an
object may or may not do or what may happen with it
after such actions. In light of this, an interesting source of
additional gloss-like information is represented by common-
sense knowledge (CSK), which may be described as a set of
shared and possibly general facts or views of theworld. Being
often crowdsourced, CSK represents a promising (although
often complex and uncoherent) type of information which
can serve complex tasks such as the ones mentioned above.
ConceptNet is one of the largest sources of CSK, collecting
and integrating data from many years since the beginning
of the MIT Open Mind Common Sense project.7 However,

7 http://media.mit.edu/research/groups/5994/open-mind-common-
sense.

Table 9 Some of the existing semantic relations in ConceptNet, with
example sentences in English

Relation Example sentence

MadeOf NP is made of NP.

DefinedAs NP is defined as NP.

HasA NP has NP.

HasProperty NP is AP.

UsedFor NP is used for VP.

CapableOf NP can VP.

HasPrerequisite NP–VP requires NP–VP.

MotivatedByGoal You would VP because you want VP.

terms in ConceptNet are not disambiguated, so it is difficult
to use due to its large amount of lexical ambiguities. Table 9
shows some of the semantic relations in ConceptNet.

Among the more unusual types of relationships (28 in
total), it contains information like “ObstructedBy” (i.e.,
referring to what would prevent it from happening) “and
CausesDesire” (i.e., what does it make you want to do).
In addition, it also has classic relationships like “is_a” and
“part_of ” as in most linguistic resources (see Table 9 for
examples of property-based and function-based semantic
relations in ConceptNet).

This paper presents amethod for the automatic enrichment
of WordNet with disambiguated semantics of ConceptNet
5. In particular, the proposed technique is able to disam-
biguate common-sense instances by linking them toWordNet
synsets.

6.3 Ontology Learning and Integration of Semantic
Resources

Ontology learning is one of the cornerstones of recent
research on computational linguistics, as it stands for any
automatic (or semi-automatic) techniques able to unravel
structured lexical-based semantic knowledge from raw or
semi-structured texts. The main inspirational work in the lit-
erature is the one by Hearst [15] for automatically extracting
hypernyms by using fixed lexico-syntactic patterns.

The most well-known paradigm for knowledge represen-
tation at the lexical level is the concept of word sense. Word
senses are the basis of computational lexicons such asWord-
Net [22] and its counterparts in other languages [2].Wordnets
usually contain human-readable concept definitions and rec-
ognize meanings in terms of paradigmatic relations such as
hyperonymy and meronymy that hold between them.

There exists a large literature on integrating different com-
putational lexiconswith other types of structured knowledge.
Among all, BabelNet [24] represents maybe the widest effort
of integration from different sources (e.g., Wikipedia, Word-
Net, OmegaWiki) and in a multilingual context. However, an
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unsolved issue remains the fine granularity of the word sense
inventory and its sparse coverage and actual usage.

This contribution is strictly related to the concept of
word sense and on the ideas of ontology learning and
resources integration. Specifically, it constructs novel com-
binations of lexical semantic relations my aligning different
computational lexicons at word sense level. However, it
avoids numeric computation of weights (as with the above-
mentioned DS) for building new semantic information. On
the contrary, it applies the general idea of collaborative fil-
tering for assessing the correctness of candidate alignments
between two different semantic resources.

7 Conclusions and FutureWorks

The aim of this paper was threefold: 1) We studied how
common-sense knowledge enables the perception of seman-
tic similarity in a cognitive experiment (Research Question
n.1); then, we proposed an integration between one of the
largest CSK resources (i.e., ConceptNet) into thewell-known
WordNet, demonstrating how the resulting resource can
improve the recognition of word similarity using two differ-
ent similarity datasets (Research Question n.2).; finally, we
highlighted the power of common sense for labeling seman-
tically associated words, in order to produce explanations
which can be further exploited to contextualize lexical com-
parisons (Research Question n.3).

We evaluated all three proposed modules, and we pub-
licly released the generated data (the semantic integration of
ConceptNet into WordNet, and the output of the semantic
association labeling process on the word pairs of the SimLex
similarity dataset).

In futurework,we aimat extending our idea to lexical enti-
ties of higher granularity (such as n-grams and sentences),
through other recently published annotated data such as the
Blue Norwegian Parrot dataset [19].
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