
J Data Semant (2017) 6:199–219
DOI 10.1007/s13740-017-0082-y

ORIGINAL ARTICLE

Efficient Analytical Queries on Semantic Web Data Cubes

Lorena Etcheverry1 · Alejandro A. Vaisman2

Received: 2 September 2017 / Accepted: 13 October 2017 / Published online: 27 October 2017
© Springer-Verlag GmbH Germany 2017

Abstract The amount of multidimensional data published
on the Semantic Web (SW) is constantly increasing, due
to initiatives such as Open Data and Open Government
Data, among others. Models, languages, and tools, that allow
obtaining valuable information efficiently, are thus required.
Multidimensional data are typically represented as data cubes
and exploited using online analytical processing (OLAP)
techniques. The RDF Data Cube Vocabulary, also denoted
QB, is the current W3C standard to represent statistical data
on the SW. Given that QB does not include key features
needed for OLAP analysis, in previous work we have pro-
posed an extension, denoted QB4OLAP, to overcome this
problem without the need of modifying already published
data. Once data cubes are appropriately represented on the
SW, we need mechanisms to analyze them. However, in the
current state-of-the-art, writing efficient analytical queries
over SW data cubes demands a deep knowledge of stan-
dards like RDF and SPARQL. These skills are unlikely to be
found in typical analytical users. Further, OLAP languages
like MDX are far from being easily understood by the final
user. The lack of friendly tools to exploit multidimensional
data on the SW is a barrier that needs to be broken to promote
the publication of such data. This is the problem we address
in this paper. Our approach is based on allowing analytical
users to write queries using what they know best: OLAP
operations over data cubes, without dealing with SW techni-

B Lorena Etcheverry
lorenae@fing.edu.uy

Alejandro A. Vaisman
avaisman@itba.edu.ar

1 Instituto de Computación, Facultad de Ingeniería, UdelaR,
Ave Julio Herrera y Reissig 565, Montevideo, Uruguay

2 Instituto Tecnológico de Buenos Aires, 25 de Mayo 457,
Buenos Aires, Argentina

calities. For this, we devised CQL (standing for Cube Query
Language), a simple, high-level query language that operates
over data cubes. Taking advantage of structuralmetadata pro-
vided byQB4OLAP,we translate CQLqueries into SPARQL
ones. Then, we propose query improvement strategies to pro-
duce efficient SPARQL queries, adapting general-purpose
SPARQL query optimization techniques. We evaluate our
implementation using the Star Schema benchmark, showing
that our proposal outperforms others. The QB4OLAP toolkit,
a web application that allows exploring and querying (using
CQL) SW data cubes, completes our contributions.

Keywords Multidimensional Data Modeling · OLAP ·
Linked Open Data · Semantic Web

1 Introduction

Data warehouses (DW) integrate multiple data sources for
analysis and decision support, representing data using the
multidimensional (MD) model. This model organizes data
in MD data cubes, where hierarchical dimensions represent
the perspectives that characterize facts. The latter are usually
associated with quantitative data, also known as measures.
Data cube measures can be aggregated, disaggregated, and
filtered using dimensions, and this process is called online
analytical processing (OLAP).

DW and OLAP had been typically used as techniques
for data analysis within organizations, based on high-quality
internal data, and mostly using commercial tools with pro-
prietary formats. However, initiatives such as Open Data1

and Open Government Data2 are encouraging organizations

1 http://okfn.org/opendata/.
2 http://opengovdata.org/.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13740-017-0082-y&domain=pdf
http://orcid.org/0000-0001-8121-8076
http://okfn.org/opendata/
http://opengovdata.org/

200 L. Etcheverry, A. A. Vaisman

to publish and share MD data on the web. In addition, the
Linked Data (LD) paradigm promotes a set of best practices
for publishing and interlinking structured data on the web,
using standards, like RDF3, and SPARQL.4 At the time of
writing this paper, the amount of open data available as LD is
approximately 90 billion triples in over 3,300 data sets, most
of them freely accessible via SPARQL query endpoints.5

However, LD recommendations focus on the representation
of relational data, but they are insufficient to represent other
data models, in particular MD data.

In this new context, the business intelligence (BI) com-
munity faces several challenges. First, there is a need for
instruments to represent MD data and metadata (e.g., dimen-
sional structure, which is essential to adequately interpret and
reuse data) using Semantic Web (SW) standards. Second, it
is necessary to provide mechanisms to analyze SW data á
la OLAP. Regarding the first challenge, the RDF Data Cube
Vocabulary [1] (QB) is the currentW3C standard to represent
statistical data following LD principles. There are already a
considerable number of data sets published using QB. How-
ever, this vocabulary does not include key features needed
for OLAP analysis, like dimensional hierarchies and aggre-
gate functions. To address this problem, in previous work,
we have proposed a new vocabulary called QB4OLAP [2,3],
which extends QB in order to overcome these limitations.
QB4OLAP also allows reusing data already published inQB,
just by adding the neededMDschema semantics, and the cor-
responding data instances.

The work we present in this paper is aimed at tackling the
second challenge above. To this end, we propose a high-level
query language for OLAP, denoted CQL, where the main
data type is the data cube. Our approach is based on a clear
separation between the conceptual and the logical levels, a
feature that is not common in traditional OLAP systems,
where popular OLAP query and analysis languages, such
as MDX,6 operate at the logical level and require, in order
to be able to write queries, the user’s deep understanding
of how data are actually stored [4]. To achieve this separa-
tion, we start defining a data model for MD data cubes, and
an algebra (which is a subset of the so-called Cube Alge-
bra proposed in [4]), composed of a collection of operators,
with a clearly defined semantics. This algebra will be the
basis of our high-level OLAP query language, denoted CQL
(standing for Cube Query Language), and is composed of a
collection of operations that manipulate a data cube, which
is the only kind of object that the user will be aware of. The
user will thus write her queries at the conceptual level using
CQL, and we provide mechanisms to translate these queries

3 https://w3.org/RDF/.
4 http://w3.org/TR/sparql11-query/.
5 http://stats.lod2.eu/.
6 http://microsoft.com/msj/0899/mdx/mdx.aspx.

into SPARQL ones, over the QB4OLAP-based RDF repre-
sentation (at the logical level). The main advantage of this
approach is that it allows users to perform OLAP queries
directly over QB4OLAP cubes on the SW, without dealing
with RDF or SPARQL technicalities. Note that, in general,
OLAP users know how to manipulate a data cube through
the typical roll-up, drill-down, and slice-dice operations, but
it is unlikely that they would be familiar with SPARQL or
the SW. Also, SPARQL optimization tips and best practices
could be incorporated into the CQL to SPARQL transla-
tion process, to produce efficient queries, not an easy task
for an average user. On the other hand, SW users know
SPARQL and RDF very well, but the cube metaphor may
help them to perform analytical queries easier and more
intuitively than operating directly over the RDF represen-
tation.

More concretely, as our first contribution, we present a
data model for OLAP and propose an algebra and a high-
level query language based on it, namely CQL, where the
main data type is the data cube. The semantics of the alge-
bra operators is clearly defined using the notion of a lattice
of cuboids, which is used for query processing and rewrit-
ing.

The core of this paper is about automatically produc-
ing an efficient SPARQL implementation of high-level
CQL queries over QB4OLAP data cubes. Thus, as our sec-
ond and main contribution we: (1) present a high-level
heuristic query simplification strategy for CQL; (2) pro-
pose algorithms to automatically translate CQL queries into
equivalent SPARQL ones over QB4OLAP data cubes; (3)
propose a heuristic-based strategy to improve the perfor-
mance of the SPARQL queries produced in (2); (4) introduce
a benchmark, based on TPC-H and the Star Schema bench-
mark, to evaluate the performance of SPARQL queries; we
show that the proposed improvement procedure substan-
tially speeds up the query evaluation process, and outper-
forms other proposals; (5) present QB4OLAP toolkit, a web
application that allows exploring and querying QB4OLAP
cubes.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the running example we will use in this
work. Section 3 briefly sketches the QB4OLAP vocabu-
lary. Section 4 presents our approach to querying QB4OLAP
data cubes. In Sect. 5 we concisely present our imple-
mentation, while Sect. 6 reports our experimental results.
Section 7 discusses related work. We conclude in Sect. 8.

Remark 1 Our proposal for querying QB4OLAP data cubes
has been previously briefly sketched in [5], while in this
paper we develop those ideas in-depth, and provide a detailed
experimental study, not included in previous work.

123

https://w3.org/RDF/
http://w3.org/TR/sparql11-query/
http://stats.lod2.eu/
http://microsoft.com/msj/0899/mdx/mdx.aspx

Efficient Analytical Queries on Semantic Web Data Cubes 201

Fig. 1 Conceptual schema of the asylum applications cube

2 Running Example

Throughout this paper we use an example based on statisti-
cal data about asylum applications to the European Union,
provided by Eurostat.7 This data set contains information
about the number of asylum applicants per month, age, sex,
citizenship, application type, and country that receives the
application. It is published in the Eurostat LD dataspace,8

using the QB vocabulary. QB data sets are composed of a
set of observations representing data instances according to
a data structure definition, which describes the schema of
the data cube. We enriched the original data set in order to
enhance the analysis possibilities. Making use of the features
of QB4OLAP, we were able to reuse the published observa-
tions, so we only created new dimensions, and represented
them using QB4OLAP structural metadata.

Figure 1 shows the resulting conceptual schema of the
data cube, using the MultiDim notation [6]. The asy-

lum_applications fact contains a measure (#applications) that
represents the number of applications. This measure can be
analyzed according to six analysis dimensions: sex of the
applicant, age which organizes applicants according to their
age group, time which represents the time of the application
and consists of two levels (month and year), application_type
that tells if the applicant is a first-time applicant or a returning
one, and a geographical dimension that organizes countries
into continents (Geography hierarchy) or according to its gov-
ernment type (Government hierarchy). This geographical
dimension participates in the cube with two different roles:
the citizenship of the asylum applicant, and the destination

country of the application. To create these hierarchies, we
enriched the existent data set with DBpedia9 data, retrieving,
for each country, its government type, and the continent it
belongs to.

7 http://ec.europa.eu/eurostat/web/products-datasets/-/
migr_asyappctzm.
8 http://eurostat.linked-statistics.org/.
9 http://dbpedia.org.

As an example, Table 1 shows some observations in tabu-
lar format . The first row lists the dimensions in the cube, and
the second row lists the dimension level that corresponds to
the observations.

Over the new cube, depicted in Fig. 1, we can pose queries
like “Total asylum applications by year,” or “Total asylum
applications by year submitted by Asian citizens to France
or United Kingdom, where this number is higher than 5,000,”
which we discuss later in this paper.

3 The QB4OLAP Vocabulary

In QB, the schema of a data set is specified by means
of the data structure definition (DSD), an instance of the
class qb:DataStructureDefinition. This specification is
formed by components, which represent dimensions, mea-
sures, and attributes. Observations (in OLAP terminology,
fact instances) represent points in a MD data space indexed
by dimensions. These points are modeled using instances of
the class qb:Observation and are organized in data sets,
defined as instances of the class qb:DataSet, where each
data set is associated with a DSD that describes the structure
of a cube. Finally, each observation is linked to a member in
each dimension of the corresponding DSD via instances of
the class qb:DimensionProperty; analogously, each obser-
vation is associated with measure values via instances of the
class qb:MeasureProperty.

The QB4OLAP10 vocabulary extends QB to represent the
most common features of the MDmodel. In this way, we can
represent a dimension schema as composed of hierarchies
of aggregation levels. We can also represent the allowed
aggregate functions, rollup relationships (i.e., the parent–
child relationships between dimension level members), and
descriptive attributes of dimension levels. QB4OLAP allows
operating over observations already published using QB,
without the need of rewriting them. This is relevant since
in a typical MD model, observations are the largest part of
the data, while dimensions are usually orders of magnitude
smaller. In this sectionwe sketch the key aspects of the vocab-
ulary and refer the reader to [7,8] for details and a thorough
comparison between QB and QB4OLAP.

InQB4OLAP, facts represent relationshipsbetween dimen-
sion levels, and observations (fact instances) map level
members to measure values. Thus, QB4OLAP represents
the structure of a data set in terms of dimension lev-
els and measures, instead of dimensions and measures
(which is the case of QB), allowing us to specify data
cubes at different granularity levels in the cube dimen-
sions. Accordingly, the schema of a cube in QB4OLAP is
defined, like in QB, via a DSD, but in terms of dimen-

10 http://purl.org/qb4olap/cubes.

123

http://ec.europa.eu/eurostat/web/products-datasets/-/migr_asyappctzm
http://ec.europa.eu/eurostat/web/products-datasets/-/migr_asyappctzm
http://eurostat.linked-statistics.org/
http://dbpedia.org
http://purl.org/qb4olap/cubes

202 L. Etcheverry, A. A. Vaisman

Table 1 Tabular representation of sample observations in the asylum applications datacube

Sex Age Time Application type Citizenship Destination Measures

Sex Age Month Application type Country Country #applications

F 18 to 34 201409, September 2014 New applicant SY, Syria DE, Germany 425

M 18 to 34 201409, September 2014 New applicant SY, Syria DE, Germany 1680

M 18 to 34 201409, September 2014 New applicant SY, Syria FR, France 95

sc:migr asyapp
qb:component

qb:com
ponen

tqb:
com

pon
ent

qb
:co

mp
on
en
t

qb:componentqb:component
qb:component

sdmxm:obsValue
qb:measure

qb4o:sum
qb4o:aggre

gateFunctio
n

pr:age
qb4o:level

sdmxd:refPeriod
qb4o:level

pr:sex
qb4o:level

pr:geo
qb4o:level

pr:citizen
qb4o:level

pr:asyl app
qb4o:level

Fig. 2 QB4OLAP representation of Asylum applications data cube
schema

sion levels. The class qb4o:LevelProperty is introduced
to represent this. QB4OLAP also introduces the class
qb4o:AggregateFunction to represent the aggregate func-
tions that should be applied to summarize measure values.
The property qb4o:aggregateFunction associates mea-
sures with aggregate functions in the DSD. Figure 2 shows
an excerpt of the QB4OLAP representation of the Asylum
applications data cube schema. In the figure, empty circles
represent blank nodes. The node labeled sc:migr_asyapp

represents the DSD of the cube.
Dimension hierarchies and levels are first-class citizens

in a MD model for OLAP. Therefore, QB4OLAP focuses
on their representation, and several classes and properties
are introduced for that. Dimension level attributes are rep-
resented using class qb4o:LevelAttribute, and linked to
qb4o:LevelProperty via qb4o:hasAttribute property.
The class qb4o:Hierarchy represents dimension hierar-
chies, and the relationship between dimensions and hierar-
chies is represented via qb4o:hasHierarchy property and
its inverse qb4o:inDimension. To support the fact that a
level may belong to different hierarchies, and each level
may have a different set of parent levels, the concept of
qb4o:HierarchyStep is introduced. This represents the
reification of the parent–child relationship between two lev-
els. Hierarchy steps are implemented as blank nodes, and
each hierarchy step is linked to its component levels using
the properties qb4o:childLevel and qb4o:parentLevel,
respectively. It is also associated with the hierarchy it
belongs to, through the property qb4o:inHierarchy. Also,

the property qb4o:pcCardinality represents the cardi-
nality of the relationships between level members in this
step.

In earlier versions of QB4OLAP, the rollup relationships
(in what follows, RUPs) between levels were represented,
at the instance level, using the property skos:broader.
Although this solution is enough for most kinds of MD hier-
archies, it does not suffice to represent, at the instance level,
dimensions with more than one RUP relationships (or func-
tions) between the same pair of levels, usually denoted as
parallel dependent hierarchies [6]. As an example, consider
a geographical dimension with two levels: Employee and
City. These levels participate in two hierarchies: one that
represents the city where the employee lives (say, LivesIn),
and another that represents the city where the employee
works (WorksIn). It is easy to see that an employee may
live and work in different cities; in order to represent this at
the instance level, we need to define two different RDF prop-
erties, one for each RUP. Therefore, in QB4OLAP version
1.3 we introduced a mechanism to associate each hierarchy
step with a user-defined property that implements the RUP at
the instance level. These properties are instances of the class
qb4o:RollupProperty and are linked to each hierarchy step
via the property qb4o:rollup.

To conclude this section, Fig. 3 showsan excerpt of theCit-
izenship dimension schema represented using QB4OLAP.
Again, empty circles represent blank nodes. We also include
a sample dimension instance on the right hand side of the
figure. We can see that the property qb4o:memberOf is
used to tell that Asia (citDim:AS) is a member of the dimen-
sion level Continent. Note the relationship between schema
and instance. For example, the property sc:contName

is declared to be an attribute of the Continent level
(sc:continent), and it is used to link a member of this
level (Asia represented by the node citDim:AS), with the
literal that represents its name. This example also shows
how RUPs are defined in the schema and used in the
instances. For example sc:inContinent is stated as the
implementation of the RUP between the levels Coun-
try and Continent, and it is used at the instance level
to link members of these levels. B presents a complete
QB4OLAP representation of the Asylum applications data
cube.

123

Efficient Analytical Queries on Semantic Web Data Cubes 203

sc:citDim

sc:citGeoHier

qb
4o:

has
Hie

rar
chy

sc:citGovHier

qb4o:hasHierarchy

qb4o:inHierarchy
sc:continent

qb4o:parentLevel
sc:contName

qb4o:hasAttribute

sc:inContinent

qb4o
:rollu

p

citDim:AS

qb4o:m
emberOf

Asia
sc:contName

pr:citizen

qb4o:childLevel

sc:counName

qb4o:hasAttribute

citizen:SY
qb4o:memberOf

sc
:in

C
on

ti
ne

nt

Syria
sc:counName

qb4o:inHierarchy

qb4
o:c

hild
Lev

el

sc:govType
qb4o:parentLevel

sc:govName
qb4o:hasAttribute

sc:hasGovType

qb4o:rollup

dbp:Unitary state
qb4o:memberOf

sc
:h
as
G
ov

T
yp

e

Unitary state
sc:govName

Fig. 3 Citizenship dimension: schema and sample instance

4 Querying QB4OLAP Cubes

We are now ready to get into the details of our approach
for exploiting data cubes on the SW, basically, enabling ana-
lytical queries. The rationale of our approach is based on
the definition of a clear separation between the conceptual
and the logical levels, which, strangely, is not common in
traditional OLAP. On the contrary, popular OLAP query and
analysis languages, such asMDX, operate at the logical level
and require, as we commented in Sect. 1, the user’s deep
understanding of how data are actually stored in order to be
able to write queries. Further, even thoughMDX is a popular
language among OLAP experts, is far from being intuitive,
and it would be a barrier for less technical users, who would
like to manipulate a data cube to dive into the data. Thus,
we follow an approach aimed at promoting the data analysis
directly on the SW, and, for that, we want to allow analytical
users to focus on querying QB4OLAP cubes using the oper-
ations they know well, for example, roll-up or drill-down, to
aggregate or dissagregate data, respectively, minimizing the
need of dealing with technical aspects. Our hypothesis is that
most users are hardly aware of SWmodels and languages, but
will easily capture the idea of languages dealing with cube
operations. In addition, we consider, as explained, that MDX
is too technical for our ultimate goal explained above. Thus,
we propose a high-level language, denoted CQL, based on
an algebra for OLAP, whose only data type is the data cube.

Figure 4 shows the query processing pipeline. The process
startswith aCQLquery that is first simplified (as explained in
Sect. 4.2). This stage aims at rewriting the query to eliminate
unnecessary operations, or operations written in a sequence
that is probably not the best one.11 The second step translates
the simplified CQL query into a single SPARQL expression,
following a naïve approach (Sect. 4.3). Finally, we apply

11 We remark that in a self-service BI environment [9] users may not
be experts, even to write queries in simple languages like CQL.

(1) Simplify
CQL query

(2) Translate
CQL to SPARQL

(3) Improve
SPARQL query

input: CQL
query

output 1:
SPARQL query

output 2:
Improved

SPARQL query

Fig. 4 Query processing pipeline

SPARQLoptimization heuristics to improve the performance
of the naïve queries (Sect. 4.4).

4.1 The CQL language

CQL follows the ideas introduced by Ciferri et al. [4], where
a clear separation between the conceptual and the logical
levels is made, allowing users to manipulate cubes regardless
of their underlying representation. In that paper, an algebra,
denoted Cube Algebra, is sketched. CQL is a subset of such
algebra, andwe chose it because it includes themost common
OLAP operations.

We next define a formal data model for cubes and define
OLAP operations in CQL over this model. The model is
based on the one proposed by Hurtado et al. [10], although
we choose a differentway to present it, which allows to define
the semantics of the operations in a clean and elegant way.
Due to space limitations, in the following we only present
the main ideas to make this paper self-contained. We refer
the reader to [7] for details.

Definition 1 (Dimension schema). A dimension schema is
a tuple 〈d,L,→,H〉 where: (a) d is the name of the dimen-
sion; (b) L is a set of pairs 〈l,Al〉, called levels, where l
identifies a level in L, and Al = 〈a1, . . . , an〉 is a tuple of
level attributes. Each attribute ai has a domain Dom(ai); (c)
“→” is a partial order over the levels inL, with a unique bot-

123

204 L. Etcheverry, A. A. Vaisman

tom level and a unique top level (All); (d) H is a set of pairs
〈hn, Lh〉, called hierarchies, where hn identifies the hierar-
chy, Lh is a set of levels such that Lh ⊆ L, and there is at
least one path between the bottom level in d, and the top level
All composed of all the levels in Lh . ��
Definition 2 (Dimension instance). Given a dimension
schema 〈d,L,→,H〉, a dimension instance Id is a tuple
〈〈d,L,→,H〉, Tl ,R〉where: (a) Tl is a finite set of tuples of
the form 〈v1, v2, . . . , vn〉, such that ∀l, L = 〈l, 〈a1, . . . , an〉〉
∈ L, and ∀i, i = 1, . . . , n, vi ∈ Dom(ai); (b) R is a finite

set of relations, called rollup, denoted RU P
L j
Li

, Li , L j ∈ L ,
where Li → L j ∈ ‘→’, ��
Definition 3 (Cube schema). Assume that there is a setA of
aggregate functions (at this time we consider the typical SQL
functions Sum,Count,Avg,Max, Min, A cube schema is
a tuple 〈Cn,D,M,F〉where: (a)Cn is the name of the cube;
(b) D is a finite set of dimension schemas (cf. Def. Defini-
tion 1); (c)M is a finite set of attributes, where eachm ∈ M,
called measure, has domain Dom(m); (d) F : M → A is a
function that maps measures in M to an aggregate function
in A. ��

To define a cube instance we need to introduce the notion
of cuboid.

Definition 4 (Cuboid instance). Given: (a) A cube schema
〈Cn,D, M,F〉, where |D| = r and |M| = p, (b) A dimen-
sion instance Idi for each di ∈ D, i = 1, . . . , r ; and (c)
A set of levels VCb = {L1, L2, . . . , L D} where L j ∈ L j

in di , i = 1, . . . , r , such that not two levels belong to
the same dimension, a cuboid instance is a partial function
Cb : TL1×· · ·×TL D → Dom(m1)×· · ·×Dom(mM), where
mk ∈ M,∀k, k = 1, . . . , p. The elements in the domain of
Cb are called cells (whose content are elements in the range
of Cb), and VCb is called the level set of the cuboid. ��

We can now define a lattice of cuboids referring to the
same cube schema, provided that we define an order between
cuboids. We do this next.

Definition 5 (Adjacent Cuboids). Two cuboids Cb1 and
Cb2, that refer to the same cube schema, are adjacent if their
corresponding level sets VCb1 and VCb2 differ in exactly one
level, i.e., |VCb1 − VCb2 | = |VCb2 − VCb1 | = 1. ��
Definition 6 (Order between adjacent cuboids). Given
two adjacent cuboidsCb1 andCb2, such that VCb1 −VCb2 =
{Lc} and VCb2 − VCb1 = {Lr }, and Lr and Lc are lev-
els in a dimension dk such that Lc → Lr ; then, we
define the order Cb1
 Cb2 between both cuboids. More-
over, for each pair of adjacent cuboids Cb1
 Cb2, each
cell c = (c1, . . . , ck−1, ck, ck+1, . . . , cn, m1, m2, . . . m p) ∈
Cb2 can be obtained from the cells in Cb1 as follows.

Let (c1, . . . , ck−1, bk1, ck+1, . . . , cn, m1,1, m2,1, . . . m p,1),

(c1, . . . , ck−1, bk2, ck+1, . . . , cn, m1,2,m2,2, . . . , m p,2), . . . ,

(c1, . . . , ck−1, bkq , ck+1, . . . , cn, m1,q , m2,q , . . . m p,q) be
all the cells in Cb1 where (bki , ck) ∈ RU P Lr

Lc
, i =

1 . . . q. Measures in c ∈ Cb2 are computed as mi =
AGGi (mi,1, . . . , mi, j), j = 1..q, where AGGi is the aggre-
gate function related to mi . ��

A Cube Instance is the lattice of all cuboids that share the
same cube schema, defined over the
 order relation above.
The bottom of this lattice is the original cube, and the top is
the cuboid with just the All level for all the dimensions in the
cube. IfCbi andCb j are two cuboids in the lattice, such that
there is a path from Cbi to Cb j , we say that Cbi
∗ Cb j .

Now, we are ready to give a precise semantics for the
operations in the OLAP algebra that will be the basis for
CQL (see [7] for details).

TheRoll- up operation summarizes data to a higher level
along a dimension hierarchy; that is, it receives a cuboidCb1
in a cube instance, and a level L in dimension D, and returns
another cuboid Cb2 in the same instance, such that Cb1
∗
Cb2, L ∈ VCb2 , and VCb2 − VCb1 = {L}. The Drill- down
operation does the inverse, i.e., it receives a cuboid Cb1,
and a level L in a dimension D, and returns a cuboid Cb2
such that Cb2
∗ Cb1, and VCb2 − VCb1 = {L}. Note that
the cuboids resulting from a Roll- up or Drill- down on
a dimension D are always reachable from the bottom of the
cube instance. Thus, a Drill- down over a dimension D to
a level L can be obtained performing a Roll- up over d from
the bottomcuboid up to L . SinceRoll- up andDrill- down
only imply a navigation across a lattice (and do not modify
it), we call them Instance Preserving Operations (IPO).

TheDice operation selects the cells in a cube that satisfy a
boolean conditionφ. It is analogous to the selection operation
in the relational algebra. The condition φ is expressed over
level member attributes, and/or measure values.

The Slice operation removes one of the dimensions or
measures in the cube. It is analogous to the projection oper-
ation in relational algebra. In the case of eliminating a
dimension, it is required that, before slicing, the dimension
contains a single element at the instance level [11]. If this
condition is not satisfied, a Roll- up to the All level must be
applied over this dimension before removing it.

We denote operations Dice and Slice as Instance Gen-
erating Operations (IGO), since they induce a new lattice
(because they reduce the number of cells in the cuboid, or
reduce the dimensionality of the cube, respectively), whose
bottom cuboid is the result of the corresponding operation.
Again, see [7] for details.

In the remainder, we will make use of the following prop-
erties. For the sake of space, we omit the proofs.

123

Efficient Analytical Queries on Semantic Web Data Cubes 205

Property 1 (Roll- up/Drill- down commutativity) A
sequence of two consecutiveRoll- up (Drill- down) oper-
ations over different dimensions is commutative. ��
Property 2 (Roll- up/Drill- down composition) A
sequence of consecutive Roll- up and Drill- down opera-
tions over the same dimension D is equivalent to a Roll- up
from the bottom level of D, to the level reached by the last
operation in the sequence. ��
Property 3 (Roll- up/Drill- down identity) The applica-
tion of the Roll- up or Drill- down operation over a
dimension D from a level L to itself is equivalent to not
applying the operation at all. ��
Property 4 (Slicing Roll- up and Drill- down) Perform-
ing a Slice operation over a dimension D after a sequence of
Roll- up and Drill- down operations over D is equivalent
to apply only the Slice operation. ��

A CQL query is a sequence of OLAP operations defined
above, where the input cuboid of an operation is the output
cuboid produced by the previous one. We assume that the
input cuboid for the first operation in the sequence is the
bottom cuboid of a certain cube instance.

4.1.1 CQL by Example

We now present the syntax of a CQL expression by means
of an example. Consider Query 1 below.

Query 1: Total asylum applications submitted by African citizens to
France in 2013, (by sex, time, age, and citizenship country)

Example 1 (CQLquery)The followingCQLquery produces
a cuboid that answers Query 1. For clarity, intermediate
results are stored in variables Ci , although this is not manda-
tory.
$C1:=ROLLUP(migr_asyapp, timeDim, year);
$C2:=ROLLUP($C1,citizenshipDim,continent);
$C3:=DICE($C2,(citizenshipDim|continent|contName =

"Africa"));
$C4:=DICE($C3,(destinationDim|geo|counName = "France" AND

timeDim|year|yearNum = 2013));
$C5:=DRILLDOWN($C4,citizenshipDim,citizenship);
$C6:=SLICE($C5,asylappDim);
$C7:=SLICE($C6,destinationDim);

First, a Roll- up operation aggregates measures up to
the Year level in the Time dimension. To keep only the cells
that correspond to African citizens, a Roll- up is performed
over the Citizenship dimension, up to the Continent level;
then a Dice operation keeps cells corresponding to members
of this level, that satisfy the condition over the contName

attribute. Another Dice operator restricts the results to cells
that correspond to France and to the year 2013. Then, a
Drill- down is applied to go back to the Citizenship level
(the applicant’s country). Finally, dimensionsApplication Type

and Destination are sliced out since we do not want them in
the result. We remark that the user only deals with the ele-
ments of the MD model (e.g., cubes, dimensions), and not
the unfriendly (for non-experts) technical issues concerning
MDX, SPARQL, RDF, etc. Also note the use of the notation
dimension|level|attribute in the Dice expressions. ��

4.1.2 Well-Formed CQL Queries

We define well-formed CQL queries as follows.

Definition 7 (Well-formed CQL query). A well-formed
CQL query satisfies the following conditions: (i) There is
at most one Slice operation over each dimension D or mea-
sure M; (ii) Every Drill- down operation over a dimension
D is preceded by at least one Roll- up over the same dimen-
sion; (iii) There is no Dice operation mentioning conditions
overmeasure values, in-between aRoll- up and/or aDrill-
down. ��

The reason why we prevent Dice operations includ-
ing conditions over measure values in-between a Roll- up
and/or Drill- down is that we want to avoid storing addi-
tional information, in particular the computation trace. We
illustrate this situation with the following example.

Example 2 (Condition (iii) in Definition 7) Consider the
query:

Query 2: Total asylum applications per month by sex, time, age, citi-
zenship, destination, and application type, only for years where the total
amount of applications is less than 100.

The CQL program below produces the answer to Query
2, although it is not well-formed. We next explain why.
$C1:=ROLLUP(migr_asyapp, timeDim, year);
$C2:=DICE($C1, obsValue < 100);
$C3:=DRILLDOWN($C2,timeDim, month);

First, a Roll- up aggregates measures up to the Year level
on the Time dimension. Thus, the measure now contains the
aggregated values, not the original ones. A Dice operation
is then applied to keep cells that satisfy the restriction over
the aggregated measure value. However, since we want the
results at the Month level, we would need to keep track of the
cells in the cuboid at the Month level, that roll up to the years
that satisfy the Dice condition at the Year level. Condition
(iii) in Definition 7 prevents this. ��

To summarize, the following patterns define valid CQL
queries, using regular expression notation. Dicel and Dicem

denote Dice operations applied only over level attribute or
measure values, respectively.

P1: (Slice∗|Dice∗|Roll- up∗
)
+

P2: (Slice∗|Roll- up+|Drill- down+| Dice+
l)

+

P3: (Slice∗|Roll- up+|Drill- down+|Dice ∗
l)

+
Dice+

m

123

206 L. Etcheverry, A. A. Vaisman

4.2 CQL Simplification Process

As we have already mentioned, CQL is aimed at being used
by non-experts. Thus, although well-formed CQL queries
may include unnecessary operations that should be elimi-
nated. Further, operations can be reordered to reduce the size
of the cuboid as early as possible. Based on the properties
defined in Sect. 4.1, we define the following set of rewriting
rules. Between brackets we indicate the properties in which
the rules are founded.

Rule 1 Remove all the Roll- up or Drill- down opera-
tions with the same start and target levels (Property 3).

Rule 2 Find sequences of Roll- up and/or Drill- down
operations over the same dimension D, with no Dicel oper-
ation in-between, where l is a level in D. Find the last level
lD in the sequence. If lD is not the bottom level of D (call
this level lb D), replace the sequence with a single Roll- up
from lb D to lD . Otherwise, remove all the operations in the
group (Properties 1 and 2).

Rule 3 If there is a Slice operation over a dimension D,
and no Dice operation that mentions level members of D,
move the Slice operation to the beginning of the query; oth-
erwise move it to the end.

Rule 4 If there is a Slice operation over a measure M , and
no Dice operation that mentions M , move the Slice to the
beginning of the query; otherwise move it to the end.

Rule 5 If there is a Slice operation over a dimension D, a
sequence of Roll- up and Drill- down operations over D,
and no Dice operation that mentions levels of D, remove all
the Roll- up and Drill- down operations, and keep only
the Slice operation (Property 4).

Let qin and qout be the CQL query before and after the
simplification process, respectively. Then, qout satisfies the
following properties (proofs omitted).

Property 5 If there is no Dice operation in qin , there is at
most oneRoll- up, and noDrill- down operation, for each
Dimension d in qout .

Property 6 Slice operations are either at the beginning or at
the end of qout , but not in the middle.

We now present an example of the simplification process,
where we apply the rules above.

Example 3 (CQL simplification)

Query 3: Total asylum applications per year (by sex, time, age, destina-
tion, and application type)

The following CQL expression answers Query 3.
$C1:=ROLLUP(migr_asyapp, timeDim, year);
$C2:=ROLLUP($C1,destinationDim,government);
$C3:=ROLLUP($C2,citizenshipDim,continent);
$C4:=DRILLDOWN($C3,destinationDim,country);
$C5:=SLICE($C4,citizenshipDim);

The application of Rule 2 to $C2 and $C4 replaces them
with a singleRoll- upondimensionDestination, from level
Country to itself, so it can be removed, according to Rule
1. By Rule 3, operation $C5 can be moved to the beginning
of the query. Finally, by Rule 5, we can remove $C3, as
operation $C5 performs a Slice over the same dimension.
The result of the process is:

$C1:= SLICE (migr_asyapp,citizenshipDim);
$C2:= ROLLUP ($C1, timeDim, year); ��

4.3 CQL to SPARQL Translation

The next step in the process is the translation of queries
in CQL (which are expressed at the conceptual level), into
SPARQL expressions over QB4OLAP cubes (expressed at
the logical level). Our translation algorithms produce an
SPARQL implementation of the CQL operators. For this,
we use the QB4OLAP representation of the formal model
defined in Sect. 4.1, and the semantics of the operators
defined in terms of this formal model. Recall that a cube
instance CB is the lattice of all possible cuboids that adhere
to a cube schema, and
 is the partial order between adja-
cent cuboids inCB. Definitions 5 and 6 provide amechanism
to compute the cells of adjacent cuboids. Therefore, starting
from the bottomcuboid in the lattice (the one composed of the
bottom levels in each dimension), all the cuboids that form
the cube instance can be computed incrementally. Thus, to
compute the Roll- up operation over an input cuboid CBin,
it suffices to start at Cbin, and navigate the cube lattice visit-
ing adjacent cubes that differ only in the level associated to
dimension D, until we reach a cuboidCbout, that contains the
desired level in dimension D (note that this path is unique,
by definition).

We do not materialize intermediate results. Instead, we
directly compute the target cuboid via a SPARQL query that
navigates the dimension hierarchies up to the desired level,
aggregating measure values using the aggregate functions
declared in the QB4OLAP schema. Note that this is a direct
implementation of Definition 5 using SPARQL over a data
cube represented using QB4OLAP. Due to space limitations
we do not present the translation algorithms (which can be
found in [7]), but we present the ideas behind the implemen-
tation of each CQL operator using SPARQL 1.1, by means
of an example.

Let us consider Query 4 below, and the CQL query that
expresses it.

Query 4: Total asylum applications per year submitted by Asian citizens
to France or United Kingdom, where applications count > 5000 (by sex,
time, age, citizenship country, and destination country)

$C1:=ROLLUP(migr_asyapp, citizenshipDim,continent);
$C2:=ROLLUP($C1, timeDim, year);
$C3:=DICE($C2,(citizenshipDim|continent|contName="Asia"));

123

Efficient Analytical Queries on Semantic Web Data Cubes 207

$C4:=DICE($C3,(obsValue > 5000 AND
(destinationDim|country|counName = "France")

OR
(destinationDim|country|counName

="United Kingdom")));

Example 4 (CQL to SPARQL translation) The query below,
produced by our translation algorithms, implements Query
4. It contains a subquery, where aggregated values are com-
puted, and an outer query where the FILTER conditions that
implement the Dice operations are applied.

1 SELECT ?plm1 ?plm2 ?lm3 ?lm4 ?lm5 ?lm6 ?ag1
2 WHERE {
3 { SELECT ?plm1 ?plm2 ?lm3 ?lm4 ?lm5 ?lm6
4 (SUM(xsd:integer(?m1)) as ?ag1)
5 FROM loc-ins:migr_asyapp_clean
6 FROM loc-sch:migr_asyappQB4O13
7 WHERE { ?o a qb:Observation .
8 ?o qb:dataSet data:migr_asyapp .
9 ?o sdmxm:obsValue ?m1 .

10 ?o pr:citizen ?lm1 .
11 ?lm1 qb4o:memberOf pr:citizen .
12 ?lm1 sc:inContinent ?plm1 .
13 ?plm1 qb4o:memberOf sc:continent .
14 ?o sdmxd:refPeriod ?lm2 .
15 ?lm2 qb4o:memberOf sdmxd:refPeriod .
16 ?lm2 sc:inYear ?plm2 .
17 ?plm2 qb4o:memberOf sc:year .
18 ?o pr:geo ?lm3 .
19 ?o pr:sex ?lm4 .
20 ?o pr:age ?lm5 .
21 ?o pr:asyl_app ?lm6 .
22 ?plm1 sc:contName ?plm11 .
23 ?lm3 sc:counName ?lm31 .
24 FILTER (?plm11 = "Asia" &&
25 (?lm31 = "France" ||
26 ?lm31 = "United Kingdom"))}
27 GROUP BY ?plm1 ?plm2 ?lm3 ?lm4 ?lm5 ?lm6
28 } FILTER (?ag1 > 5000) }

Lines 10 through 13 implement the first Rollup (C1). Vari-
able ?lm1 will be instantiated with each member of the
Country level in the Citizen dimension hierarchy, related to
an observation ?o (lines 10 and 11). Then, we navigate the
hierarchy up to the level Continent, using the rollup prop-
erty sc:inContinent (lines 12 and 13). The variable ?plm1
will contain the continent corresponding to the country that
instantiates ?lm1. It is placed in the SELECT clause of the
inner query (line 3), in the GROUP BY clause of the inner
query (line 27), and in the result of the outer query (line 1).
Analogously, the navigation that corresponds to the Rollup
in C2 is performed in lines 14 through 17. Lines 18 to 21 will
instantiate the level members of the remaining dimensions
in the cube, which are also added to the GROUP BY clause,
and to the SELECT clause of the inner and outer query. Line
9 retrieves the value of the measure in each observation, and
the SUM aggregate function computes ?xg1 in line 4. The
aggregated value is added to the result of the outer query
(line 1). In this case, measure values are converted to integer
before applying the SUM function due to format restrictions
of Eurostat data. Finally, to implement the Dice operation in
statement C3, we need to obtain the name of each continent
(line 22) and then use a FILTER clause to keep only the cells
that correspond to “Asia” (line 24). The Dice operation in

statement C4 is split as follows: the restriction on country
names is implemented adding lines 25 and 26 to the FILTER
clause (country names are retrieved in line 23), while the
restriction on the measure values must be performed after
the aggregation, and is implemented by the FILTER clause
of the outer query (line 28). ��

4.4 SPARQL Queries Improvement

We have shown a naïve procedure to automatically pro-
duce SPARQL queries that implement CQL queries over
QB4OLAP. To improve the performance of such queries,
we adapted three existing techniques to the characteristics
of MD data in general, taking into account particularities of
QB4OLAP representation.

First, we adapted to our setting the heuristics proposed
by Loizou et al.[12] to improve the performance of SPARQL
queries.Wenext indicate the heuristics, and howweuse some
of them.

H1-Minimize optional graph patterns This heuristic is
based on the fact that the introduction of OPTIONAL clauses
leads to PSPACE-completeness of the SPARQL evaluation
problem [13]. Since the SPARQL queries we produce do not
include the OPTIONAL operator, we do not use this rule.

H2-Use named graphs to localize SPARQL graph pat-
terns This heuristic is based on the correlation between
the performance of a query and the number of triples it is
evaluated against. We apply this heuristic as follows. We
organize QB4OLAP data into two named graphs, namely:
(a) A schema graph, which stores the schema and dimension
members; (b) An instance graph, which stores only obser-
vations. Normally, the size of the instance graph will be
considerably bigger than the schema graph.With this organi-
zationwe can ensure a bound on the number of graph patterns
over the instance graph, which will be at most 2+|D|+|M|,
where D is the set of dimensions, and M the set of measures.

H3-Reduce intermediate resultsThis heuristic proposes to
reduce intermediate results, replacing connected triple pat-
ternswith path expressions. This kind of patterns do not occur
in our queries, and therefore, this heuristic cannot be applied.
This is due to the fact that QB4OLAP proposes to use a dif-
ferent predicate to represent each RUP relationship between
level members, instead of using, as in QB, a single predicate
like skos:narrower. We give an example of this in B.

H4-Reduce the impact of cartesian products This only
applies when rows in the result differ in at most one value. In
those cases, it is suggested to collapse sets of almost identical
rows into a single one, and to use aggregate functions. Since
in the result of an OLAP query, each row represents exactly
one point in the space (i.e., there is no redundancy), this
heuristic cannot be applied to our problem.

H5-Rewriting FILTER clauses. Proposes to transform
FILTER clauses with disjunction (||) of equality constraints,

123

208 L. Etcheverry, A. A. Vaisman

using either the UNION of patterns, or a VALUES expression. In
Example 5we show these transformations. Since the reported
results are not conclusive on which of these strategies leads
to better performant queries, we decided to evaluate both of
them (see Sect. 6).

Example 5 (Rewriting FILTER clauses) The queries below
show how FILTER clauses with disjunction of equality con-
straints can be replaced using H5.

1 SELECT ?x
2 WHERE {
3 ?x <predicate> ?y .
4 FILTER (?y = value1 || ?y = value2)}
5 #rewriting FILTER using UNION
6 SELECT ?x
7 WHERE {
8 { ?x <predicate> value1 }
9 UNION

10 { ?x <predicate> value2 } }
11 #rewriting FILTER using VALUES
12 SELECT ?x
13 WHERE {
14 ?x <predicate> ?y .
15 VALUES ?y (value1 value2)}

��
As our second strategy, we considered the recommenda-

tions in [14], namely: (i) split conjunctive FILTER equality
constraints into a cascade of FILTER equality constraints; (ii)
replace a FILTER equality constraint that compares a variable
and a constant, with a graph pattern. The first recommenda-
tionmay help the query processor to push FILTER constraints
down in the query tree, while the second one allows the query
processor to use indexes to select the patterns that match the
criteria.

Example 6 (Improving FILTERs) Below, we give an exam-
ple of the second strategy.

1 SELECT ?x
2 WHERE { ?x ?y ?z .
3 FILTER (?y = <predicate> && ?z > value1)}
4 #splitting FILTER conjunction
5 SELECT ?x
6 WHERE { ?x ?y ?z .
7 FILTER (?y = <predicate>)
8 FILTER (?z > value1)}
9 #replace FILTER equality constraints with a BGP

10 SELECT ?x
11 WHERE { ?x <predicate> ?z.
12 FILTER (?z > value1)}

The query in Lines 1 to 3 asks for the values of ?x that
are associated via <predicate>, with values greater that
“value1.” We then rewrite the query applying the strategies
mentioned above, i.e., splitting and rewriting. ��

The next example shows the result of applying the above
two strategies to the query in Example 4.

Example 7 (SPARQL queries improvement) The applica-
tion of H2 organizes graph patterns in the inner query in
two GRAPH clauses: one that corresponds to patterns in the
instancegraph (lines 8 to15), and another in the schemagraph

(lines 16 to 26). Applying H5, the FILTER clause on coun-
try names is replaced by a VALUES clause (line 25). Finally,
using the second strategy, FILTER clauses are split, and the
one on continent name is replaced by a graph pattern (line
20).

1 SELECT ?plm1 ?plm2 ?lm3 ?lm4 ?lm5 ?lm6 ?xg1
2 WHERE {
3 {SELECT ?plm1 ?plm2 ?lm3 ?lm4 ?lm5 ?lm6
4 (SUM(xsd:integer(?m1)) as ?xg1)
5 FROM NAMED loc-ins:migr_asyapp_clean
6 FROM NAMED loc-sch:migr_asyappQB4O13
7 WHERE {
8 {GRAPH loc-ins:migr_asyapp_clean
9 {?o a qb:Observation .

10 ?o qb:dataSet data:migr_asyapp .
11 ?o sdmxm:obsValue ?m1 .
12 ?o pr:citizen ?lm1 .
13 ?o sdmxd:refPeriod ?lm2 .
14 ?o pr:geo ?lm3 . ?o pr:sex ?lm4 .
15 ?o pr:age ?lm5 . ?o pr:asyl_app ?lm6 .}}.
16 {GRAPH loc-sch:migr_asyappQB4O13
17 {?lm1 qb4o:memberOf pr:citizen .
18 ?lm1 sc:inContinent ?plm1 .
19 ?plm1 qb4o:memberOf sc:continent .
20 ?plm1 sc:contName "Asia" .
21 ?lm2 qb4o:memberOf sdmxd:refPeriod .
22 ?lm2 sc:inYear ?plm2 .
23 ?plm2 qb4o:memberOf sc:year .
24 ?lm3 sc:counName ?lm31 .
25 VALUES ?lm31 {"France"@en "United Kingdom"@en}
26 }}}
27 GROUP BY ?plm1 ?plm2 ?lm3 ?lm4 ?lm5 ?lm6
28 } FILTER (?xg1 > 5000) }

��
Our third, and final, strategy is based on the work of

Stocker et. al [15]. This optimization is based on graph pat-
tern selectivity. The idea behind this approach is to reduce
intermediate results by first applying the most selective pat-
terns. This requires to keep estimates on the selectivity of
each pattern. In our case, we take advantage ofMDdata char-
acteristics to estimate the selectivity of patterns beforehand:
Since typically, RUP relationships between level members
are functions, each level member has exactly one parent on
the level immediately above. Thus, for each pair of levels Li

and L j such that Li → L j in a hierarchy H, |Li | ≥ |L j |.
Moreover, in most cases |Li | > |L j | holds. Based on the
above, we define alternative ordering criteria (OC) for the
graph patterns.

– Ordering Criterion 1 (OC1)-For each dimension appear-
ing in the query, apply first the patterns that correspond
to higher levels.

– Ordering Criterion 2 (OC2)-For each dimension, apply
OC1. Then, reorder dimensions as follows: first consider
dimensions with conditions that fix a certain member,
then dimensions with conditions that restrain to a range
of members, and then the other dimensions.

– Ordering Criterion 3 (OC3)-For each dimension apply
OC1. Then, reorder dimensions according to OC2. If
more than one dimension satisfy any of the criteria in
OC2, then use the number of members in the highest

123

Efficient Analytical Queries on Semantic Web Data Cubes 209

level reached for each dimension to decide the relative
order between these dimensions. For example: If dimen-
sion A and dimension B fix members a and b at levels
lA and lB respectively, and |lA| ≥ |lB |, then dimension
A goes before dimension B.

Example 8 (Reordering triple patterns) We show the result
of applying OC2 to reorder the triple patterns on the schema
graph from Example 7.

1 GRAPH loc-sch:migr_asyappQB4O13 {
2 ?plm1 sc:contName "Asia" .
3 ?plm1 qb4o:memberOf sc:continent .
4 ?lm1 sc:inContinent ?plm1 .
5 ?lm1 qb4o:memberOf pr:citizen .
6 ?lm3 sc:counName ?lm31 .
7 VALUES ?lm31 {"France"@en "United Kingdom"@en}
8 ?plm2 qb4o:memberOf sc:year .
9 ?lm2 sc:inYear ?plm2 .

10 ?lm2 qb4o:memberOf sdmxd:refPeriod .}

Triples in lines 2 through 5 correspond to the Citizenship

dimension, lines 6 and 7 correspond toDestination dimension,
and lines 8 through 10 correspond to the Time dimension. For
each dimension, the graph patterns are ordered from higher
levels in the hierarchy to lower ones. Then, the relative posi-
tion of each dimension in the query is altered with respect
to the naive query. The Citizenship dimension is considered
first since a member of the dimension is fixed to “Asia.”
Then we consider the Destination dimension because there
is a restriction on members of this dimension (“France” or
“United Kingdom”). ��

We end this section with some remarks on the complexity
of the generated SPARQL queries. It has been proved that
the evaluation of a SPARQL 1.0 query is NP-complete for
the AND-FILTER-UNION fragment of the language [13].
Moreover, the evaluation of queries that only contain AND
and UNION operators is already NP-complete, as proved
in [16]. Perez et. al [13] also proved that the main source
of complexity in SPARQL 1.0 queries is the introduction
of the OPTIONAL, that leads to PSPACE-completeness of
the evaluation problem. The SPARQL queries we produce,
both naïve and improved, avoid the OPTIONAL operator but
make an intensive use of two functionalities incorporated
in SPARQL 1.1: The computation of aggregates (GROUP
BY clauses), and subqueries. To the best of our knowledge
there are still no theoretical results on the complexity of such
queries, and a study of this issue is beyond the scope of this
work.

5 Implementation

The QB4OLAP toolkit is a web application that implements
our approach, allowing to explore and query QB4OLAP
cubes. It is composed of two modules. The Explorer module
enables the user to navigate the cube schema, and visualize
dimension instances stored in a SPARQL endpoint. Figure 5
presents a screenshot of this module.

Fig. 5 QB4OLAP toolkit: Explorer module

123

210 L. Etcheverry, A. A. Vaisman

Fig. 6 QB4OLAP toolkit: Querying module

The Querying module implements the querying process-
ing pipeline presented in Fig. 4. The user first writes a
CQL query. Then, the application simplifies this CQL query
and displays the result to the user, who can choose to generate
either a naïve SPARQL query or an improved one. The query
produced is presented to the user and executed. Results are
presented in tabular format. Figure 6 presents a screenshot
of this module.

TheQB4OLAP toolkit has been entirely developed in Java
Script over the Node.js platform using Express. Handlebars,
jQuery, and D3.js are used to implement the front-end. Vir-
tuoso Open Source version 7 is used for RDF storage and
SPARQL back-end. The communication with Virtuoso is
implemented via HTTP and using JSON format to exchange
data. Figure 7 presents the technology stack of QB4OLAP
toolkit.

The QB4OLAP toolkit is available online.12 We also pro-
vide example queries that the user will edit and run. Source
code is available at GitHub.13

6 Evaluation

Wenow report and discuss experimental results. Our primary
goal is to show that, with our proposal, OLAP users can write
complex analytical queries in an algebra that is familiar to
them, manipulating just what they know well: data cubes,
regardless of how they are physically stored. For what we are

12 https://www.fing.edu.uy/inco/grupos/csi/apps/qb4olap/.
13 https://github.com/lorenae/qb4olap-tools.

Fig. 7 QB4OLAP toolkit: technology stack

interested in this paper, OLAP users should be able to query
cubes on the SW,without having to deal with technical issues
such as QB4OLAP, RDF, or SPARQL, and still obtain good
query performance.

Our evaluation goal is thus twofold: On the one hand, we
want to compare our approach against other one(s) that are
aimed at querying OLAP cubes on the web. On the other
hand, we look for the best possible combinations of query
optimization strategies. For the first goal, we compare our
approach against the one by Kämpgen et al. [17,18], who
propose a mechanism for implementing some OLAP oper-
ations over extended QB cubes using SPARQL queries (see

123

https://www.fing.edu.uy/inco/grupos/csi/apps/qb4olap/
https://github.com/lorenae/qb4olap-tools

Efficient Analytical Queries on Semantic Web Data Cubes 211

Fig. 8 Conceptual schema of
the SSB-QB4OLAP cube

Sect. 7 for details). To evaluate their approach, they adapted
the Star Schema benchmark (SSB) [19], and produced the
SSB-QB benchmark, which consists of: (i) a representation
of the SSB cube schema and dimension instances using QB
and other related vocabularies; (ii) a representation of SSB
facts as QB observations; (iii) a set of thirteen SPARQL
queries over these data. These queries are equivalent to SSB
queries and aim at representing the most common types of
star schema queries in an OLAP setting. Based on this work,
we built the SSB-QB4OLAP benchmark, which consists of:
(i) A representation of the SSB cube schema and dimension
instances using QB4OLAP; (ii) The same observations as in
SSB-QB; (iii) a set of thirteen CQL queries that are equiv-
alent to the SSB-QB queries (and also to the SSB queries).
Thus, the SSB-QB4OLAP benchmark allows us to compare
our approach against [17]. It also allows us to measure the
impact of our improvement strategies, in order to address
our second goal. For this, we translated the CQL queries into
SPARQL using the naïve approach and explore which com-
bination of strategies yields the best query results, based on
several metrics.

Next, we introduce the SSB-QB4OLAP benchmark
(Sect. 6.1), describe the experimental setup and experiments
(Sect. 6.2), and discuss the results (Sect. 6.3). The complete

experimental environment is available for download as a vir-
tual machine at the benchmark site.14

6.1 The SSB-QB4OLAP Benchmark

SSB-QB4OLAP data represents SSB data cube at Scale
1 and is organized in three sets of triples that represent: (1)
facts (observations); (2) the cube schema; and (3) the dimen-
sion instances (i.e., level members, attribute values, and RUP
relationships). The set of observations, as in SSB-QB, con-
sists of about 132,000,000 triples, representing 6,000,000
line orders. The cube schema is represented in QB4OLAP,
consists of about 250 triples, and corresponds to the concep-
tual schema presented in Fig. 8. Each line order contains five
measures (quantity, discount, extended price, revenue,
and supply cost), which can be analyzed along four dimen-
sions: Time, Part, Customer, and Supplier. Finally, a set
of about 2,800,000 triples represents levelmembers, attribute
values, and rollup relationships. Table 2 shows the number
of members in each level. Data are available for querying at
our endpoint.15

14 https://github.com/lorenae/ssb-qb4olap.
15 https://www.fing.edu.uy/inco/grupos/csi/sparql.

123

https://github.com/lorenae/ssb-qb4olap
https://www.fing.edu.uy/inco/grupos/csi/sparql

212 L. Etcheverry, A. A. Vaisman

Table 2 SSB-QB4OLAP dataset statistics

Dim. Level #members Dim. Level #members

Time Time 2556 Part Part 2000000

Week 371 Brand 1000

Month 84 Cat. 25

Year 7 Manuf. 5

Custom. Custom. 30000 Supp. Supplier 2000

City 250 City 250

Nation 25 Nation 25

Region 5 Region 5

SSB-QB4OLAP queries Queries are organized in four
so-called query flights, which represent different types of
usual star schemaqueries (functional coverage), and to access
varying fractions of the set of line orders (selectivity cov-
erage). The first query flight (QF1) is composed of three
queries (Q1-Q3) that impose restrictions on only one dimen-
sion, and quantify the revenue increase that would have
resulted from eliminating certain company-wide discounts
in a range of products in a certain year. The three queries in
the second query flight (QF2) (Q4-Q6) impose restrictions
on two dimensions and compare revenue for some product
classes, for suppliers in a certain region, grouped by more
restrictive product classes, along all years. The third query
flight (QF3) has four queries (Q7-Q10) that impose restric-
tions on three dimensions and aims at providing revenue
volume for line order transactions by customer nation, sup-
plier nation, and year within a given region, in a certain time
period. The fourth query flight (QF4) has three queries
(Q11-Q13) and restrictions over four dimensions. It repre-
sents a “what if” sequence of operations analyzing the profit
for customers and suppliers from America on specific prod-
uct classes over all years.

6.2 Experimental Setup and Results

We ran our evaluation on an Ubuntu Server 14.04.1 LTS,
a single Intel(R) Xeon(R) E5620 @2.40GHz with 4 cores
and 8 hardware threads, 32GB RAM, and 500GB for local
data storage.We useVirtuosoOpen source (V 07.20.3214) as
RDF store. BIBM tool16 was used to perform TPC-H power
tests, and in each test suit, a mix of 13 queries was used with
scale 1 and 2 client streams. We also ran a test suit using the
querymix from SSB-QB.Wemeasured the average response
time for each query and the followingTPC-Hmetrics for each
querymix:TPC-H Power,whichmeasures thequeryprocess-
ing power in queries per hour (QphH); TPC-H Throughput
(QphH), the total number of queries executed over the length

16 http://sourceforge.net/projects/bibm/.

Table 3 Strategies used to improve queries performance

S1: Use named graphs to reduce the search space [12]

S2: Replace FILTER equality constraints that compare a variable and a
constant with BGPs [14]

S3: Split FILTER clauses with CONJUNCTION of constraints into a
cascade of FILTER clauses with atomic constraints [14]

S4: Replace FILTER clauses with DISJUNCTION of equality con-
straints using UNION or VALUES [12]

S5: Reorder triple patterns applying most restrictive patterns for each
dimension first (using criteria OC1, OC2, or OC3)

of themeasurement interval; and TPC-H Composite, the geo-
metric mean of the previous metrics, that reflects the query
processing power when queries are submitted in a single
stream, and the query throughput for queries submitted by
multiple concurrent users [20].

6.2.1 Evaluation of the Improvement Strategies

We measured the impact on performance of the improve-
ment strategies presented in Sect. 4.4, in order to find out
which combination of strategies results more beneficial. The
strategies are summarized in Table 3.

For each of the 13 queries in the benchmark, Table 4 indi-
cates which strategies in Table 3 can be applied to them. The
combination of all possible strategies defines a space from
which we chose a subset, based on the applicability of the
strategies to the different queries. Thus, we devised a space
of evaluation scenarios (ES), where each scenario represents
the application of a sequence of improvement strategies to
the naïve SPARQL queries. Figure 9 shows the space of eval-
uation scenarios as a tree. Each node represents an ES, and
labels on edges represent the improvement strategy applied
to transform a parent ES into a child ES. We can see that
S1 and S2 were chosen to belong to all evaluation scenarios,
since they apply to most queries (as we can see in Table 4).
Then we consider the cases of applying S3 (ES3) or not.
For S4 we consider both flavors: either replacing FILTER
conjunction with UNION or VALUES clauses. Finally, we
consider the triples reordering strategy (S5) using each of the
ordering criteria discussed in Sect. 4.4. As an example, ES11
is the result of applying improvement strategies S1, S2, S4
(VALUES) and S5 (OC1), to naïve SPARQL queries.

Table 5 reports the results for the naïve approach and all
the evaluation scenarios. ES7 andES11 are the scenarioswith
better performance. Figure 10 reports the average execution
time for each query at the best improvement scenarios.

6.2.2 Comparison with SSB-QB

We also wanted to compare the queries produced by our
naïve approach, and the best and worst cases of the improved

123

http://sourceforge.net/projects/bibm/

Efficient Analytical Queries on Semantic Web Data Cubes 213

Table 4 Applicability of each
improvement strategy to
SSB-QB4OLAP queries

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13

S1 � � � � � � � � � � � � �
S2 � � � � � � � � � � �
S3 � � � � � � � � � �
S4 � � � �
S5 � � � � � � � � � � � � �

Näıve

ES1

ES2

ES3

ES6

ES14 ES15 ES16

ES7

ES17 ES18 ES19

ES4

ES8 ES9 ES10

ES5

ES11 ES12 ES13

S1
S2

S3

S4
un
io
n

S5
O
C
1 S5

O
C
2

S5
O
C
3

S4
values

S5
O
C
1 S5

O
C
2

S5
O
C
3

S4
union

S5
O
C
1

S5
O
C
2

S5
O
C
3

S4 values

S5
O
C
1 S5

O
C
2

S5
O
C
3

Fig. 9 Improvement Strategies Evaluation Scenarios

queries, against the SSB-QB queries. Thus, we implemented
SSB-QB in our experimental setting and ran the queries.
Table 6 shows the results obtained for each TPC-H metric,
and Fig. 11 presents a detailed comparison on the execu-
tion time for each query. We compare SSB-QB best case (the
minimum execution time) against the naïve SSB-QB4OLAP
worst case (the maximum execution time).

6.3 Discussion

Regarding the improvement scenarios, results show that, for
the TPC-H Composite metric, scenario ES11 outperforms
the other ones, with a 10X improvement with respect to the
naïve scenario (see Table 5), and a 10X speedup in the execu-
tion time for the query mix. The second best scenario is ES7,
with a 9X improvement on TPC-H Composite with respect
to the naïve scenario and a 9X speedup. However, the aver-
age execution time per query is similar in both scenarios,
except for queries Q7 (where ES7 outperforms ES11) and
Q12 (where ES11 outperforms ES7). Both scenarios apply
S1, S2, and S4 (with VALUES splitting of FILTER conditions),

Table 5 TPC-H metrics: improvement evaluation

Power
(QpH)

Throughput
(QpH)

Composite
(QpH)

Interval
(sec)

Naïve 63.8 75.6 69.5 1237.6

ES1 253.1 293.3 272.4 319.2

ES2 402.4 361.2 381.2 259.1

ES3 326.7 353.9 340.0 264.5

ES6 354.5 108.3 196.0 864.2

ES14 217.3 148.9 179.9 628.7

ES15 257.4 198.7 226.2 471.0

ES16 415.5 254.0 324.9 368.4

ES7 706.8 561.9 630.2 166.6

ES17 427.2 368.4 396.7 254.1

ES18 427.6 339.4 381.0 275.8

ES19 456.6 379.6 416.4 246.6

ES4 375.8 215.9 284.9 433.4

ES8 253.6 171.5 208.6 545.7

ES9 227.0 146.5 182.4 638.8

ES10 214.7 148.0 178.2 632.6

ES5 490.8 418.6 453.3 223.6

ES11 693.1 750.1 721.0 124.8

ES12 472.4 368.9 417.5 253.7

ES13 380.2 327.2 352.7 286.1

but ES7 applies S3, while ES11 applies S5withOC1 reorder-
ing (Fig. 9).

Regarding the impact of each improvement strategy
(Table 5), strategies S1 and S2 combined yield a 5.5X
improvement with respect to naïve queries. However, we
cannot be conclusive on the impact of strategy S3. Note that
the pairs of scenarios (ES6,ES4) and (ES7,ES5) only differ
on the application of this strategy. In the first case, the sce-
nario where S3 is applied performs worse (ES6), while in
the second case the scenario where S3 is applied performs
better (ES7). For S4, our results show that, replacing FILTER
disjunctive conditions with VALUES clauses, improves per-
formance (ES3 vs. ES7 and ES2 vs. ES5), while UNION

downgrades the performance (ES3 vs ES6 and ES2 vs. ES4).
Finally, we cannot be conclusive on the impact of reordering
graph patterns.

123

214 L. Etcheverry, A. A. Vaisman

Fig. 10 Naïve vs. improved
queries execution time

Table 6 TPC-H metrics comparison

Power (QpH) Throughput (QpH) Composite (QpH) Interval (sec)

SSB-QB [17] 69.9 17.2 34.7 5447.0

SSB-QB4OLAP Naïve 63.8 75.6 69.5 1237.6

SSB-QB4OLAP ES14 (worst case) 217.3 148.9 179.9 628.7

SSB-QB4OLAP ES11 (best case) 693.1 750.1 721.0 124.8

Comparing our approach with SSB-QB, although the val-
ues for TPC-H Power metric are very similar, values for
TPC-H composite show that even our naïve approach repre-
sents a 2X improvement with respect to SSB-QB (Table 6).
Considering our less improved scenario (ES14), we get a 5X
enhancement, and 20X if we consider our best improved sce-
nario (ES11). A detailed analysis on the execution time of
each query (see Fig. 11) shows that our approach outperforms
SSB-QB for Q1, Q4, Q7, Q11, and Q12.

We next further discuss the reasons why our naïve
approach performs better than the SSB-QB queries.

– SSB-QB queries include an ORDER BY clause to order
results, while our queries do not.

– As a consequence of the absence of level attributes, SSB-
QB queries use string comparison on IRIs to fix level

members, while we can use comparison over other data
types, like, for example, numeric values. It is well known
that string comparison is usually slower that integer com-
parison.

– The BGPs used to traverse hierarchies in SSB-QB may
not take advantage of Virtuoso indexes.

To illustrate the last point we first give some insight on
Virtuoso, and then present an example. The Virtuoso triple
store uses a relational database to store data. In particular,
all the triples are stored in a single table with four columns
named graph (G), subject (S), predicate (P), and object (O).
Two full and three partial indices are implemented:17

17 http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/
VirtRDFPerformanceTuning.

123

http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtRDFPerformanceTuning
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtRDFPerformanceTuning

Efficient Analytical Queries on Semantic Web Data Cubes 215

Fig. 11 SSB-QB and Naïve
queries execution time

– PSOG: primary key index
– POGS: bitmap index for lookups on object value.
– SP: partial index for cases where only S is specified.
– OP: partial index for cases where only O is specified.
– GS: partial index for cases where only G is specified.

Since the primary key is PSOG, data are physically
ordered on this criteria. Our strategy takes advantage of this
index, while SSB-QB does not. As an example, consider Q8
from SSB-QB4OLAP.

Q8:Revenue volume for lineorder transactions by customer city, supplier
city and year, for suppliers and clients within the USA, and transactions
issued between 1992 and 1997.

Figures 12 and 13 present the SPARQL representation of
Query 6.3 according to SSB-QB and to our naïve approach,
respectively. In particular, notice the BGPs that implement
the Roll- up operation over the Time dimension (lines 8–
12 in Fig. 12 and lines 8–13 in Fig. 13): Even though our
approach uses more BGPs, at the time of the evaluation of
each BGP, only the object of the triple is unknown, while in
SSB-QB, subjects are also unknown.

1 SELECT ?c_city ?s_city ?d_year
2 sum(?rdfh_lo_revenue) as ?lo_revenue
3 FROM <http://lod2.eu/schemas/rdfh-inst#ssb1_ttl_qb>
4 FROM <http://lod2.eu/schemas/rdfh#ssb1_ttl_dsd>
5 FROM <http://lod2.eu/schemas/rdfh#ssb1_ttl_levels>
6 WHERE {
7 ?obs qb:dataSet rdfh-inst:ds.
8 ?obs rdfh:lo_orderdate ?d_date.
9 ?d_yearmonthnum skos:narrower ?d_date.

10 ?d_yearmonth skos:narrower ?d_yearmonthnum.
11 ?d_year skos:narrower ?d_yearmonth.
12 rdfh:lo_orderdateYearLevel skos:member ?d_year.
13 ?obs rdfh:lo_custkey ?c_customer.
14 ?c_city skos:narrower ?c_customer.
15 ?c_nation skos:narrower ?c_city.
16 ?c_region skos:narrower ?c_nation.
17 rdfh:lo_custkeyRegionLevel skos:member ?c_region.
18 ?obs rdfh:lo_suppkey ?s_supplier.
19 ?s_city skos:narrower ?s_supplier.
20 ?s_nation skos:narrower ?s_city.
21 ?s_region skos:narrower ?s_nation.
22 rdfh:lo_suppkeyRegionLevel skos:member ?s_region.
23 ?obs rdfh:lo_revenue ?rdfh_lo_revenue.
24 FILTER(?c_nation = rdfh:lo_custkeyNationUNITED-STATES).
25 FILTER(?s_nation = rdfh:lo_suppkeyNationUNITED-STATES).
26 FILTER(
27 str(?d_year) >= "http://lod2.eu/schemas/rdfh#
28 and
29 str(?d_year) <= "http://lod2.eu/schemas/rdfh#
30).
31 }
32 GROUP BY ?d_year ?c_city ?s_city
33 ORDER BY ASC(?d_year) DESC(?lo_revenue)

Fig. 12 Query 8 (SSB-QB)

123

216 L. Etcheverry, A. A. Vaisman

1 SELECT ?plm2 ?plm3 ?plm5 (SUM(xsd:float(?m4)) as ?ag1)
2 FROM <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap>
3 FROM <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap>
4 WHERE {
5 ?o a qb:Observation .
6 ?o qb:dataSet rdfh-inst:ds .
7 ?o rdfh:lo_revenue ?m4 .
8 ?o rdfh:lo_orderdate ?lm1 .
9 ?lm1 qb4o:memberOf rdfh:lo_orderdate .

10 ?lm1 schema:dateInMonth ?plm1 .
11 ?plm1 qb4o:memberOf schema:month .
12 ?plm1 schema:monthInYear ?plm2 .
13 ?plm2 qb4o:memberOf schema:year .
14 ?o rdfh:lo_custkey ?lm2 .
15 ?lm2 qb4o:memberOf rdfh:lo_custkey .
16 ?lm2 schema:inCity ?plm3 .
17 ?plm3 qb4o:memberOf schema:city .
18 ?plm3 schema:inNation ?plm4 .
19 ?plm4 qb4o:memberOf schema:nation .
20 ?o rdfh:lo_partkey ?lm3 .
21 ?o rdfh:lo_suppkey ?lm4 .
22 ?lm4 qb4o:memberOf rdfh:lo_suppkey .
23 ?lm4 schema:inCity ?plm5 .
24 ?plm5 qb4o:memberOf schema:city .
25 ?plm5 schema:inNation ?plm6 .
26 ?plm6 qb4o:memberOf schema:nation .
27 ?plm4 schema:nationName> ?plm41 .
28 ?plm6 schema:nationName> ?plm61 .
29 ?plm2 schema:yearNum ?plm21 .
30 FILTER (?plm41 = &&
31 ?plm61 = &&
32 ?plm21 >= 1992 && ?plm21 <= 1997)
33 }
34 GROUP BY ?plm2 ?plm3 ?plm5

Fig. 13 Query 8 (SSB-QB4OLAP naïve)

7 Related Work

We identify two major approaches in OLAP analysis of SW
data. The first one consists in extracting MD data from the
web, and loading them into traditional data management sys-
tems for OLAP analysis. This approach requires a local DW
to store the extracted data, a restriction that clashes with the
highly volatile and autonomous nature of web data sources.
Relevant to this line of research, are the works by Nebot and
Llavori [21] and Kämpgen and Harth [22]. We will discuss
here a different line of work, which explores data models and
tools that allow publishing and performingOLAP-like analy-
sis directly over the SW, representing MD data in RDF. This
is closely related with the concepts of self-service BI, which
aims at incorporating web data into the decision-making pro-
cess [9], and exploratory OLAP [23].

Ibrahimov et al. [24] present a framework for Exploratory
BIoverLinkedOpenData.Their goal is to semi-automatically
derive MD schemas and instances, from already published
Linked Data. This proposal uses the QB4OLAP vocabu-
lary to represent the discovered OLAP schemas, while the
VoID vocabulary is used to link the schema with available
SPARQL endpoints that can be used to populate it. Although
the envisioned framework should be able to answer MDX
queries, few details are provided on the translation process
from MDX queries to SPARQL queries over QB4OLAP.
Although expert OLAP users are likely to know MDX, in
a self-service BI environment most users are not so profi-
cient, in our opinion, we need a more intuitive language, that

can deal only with cubes, an intuitive data structure for most
analytical users.

Literature on MD data representation in RDF can be fur-
ther organized in two categories: (i) those that use specialized
RDF vocabularies to explicitly define the data cubes; and
(ii) those that implicitly define a data cube over existing
RDF data graphs. Our work follows the explicit approach
and extends the QB vocabulary to include the MD struc-
ture. Kämpgen et al. [17,18] also attempt to override the
lack of structure in QB defining an OLAP data model on top
of QB and other vocabularies. They use extensions to the
SKOS vocabulary18 to represent the hierarchical structure of
the dimensions. In this representation, levels can belong to
only one hierarchy, and level attributes are not supported.
In [17] the authors implement some OLAP operators over
those extended cubes, using SPARQL queries, restricted to
data cubes with only one hierarchy per dimension. They also
explore the use of RDF aggregate views to improve perfor-
mance. This approach requires specialized OLAP engines
for analytical queries over RDF data, instead of traditional
triple stores.

The WaRG project19 proposes an analytical model to
implicitly define data cubes over RDF graphs. The core
concepts are the analytical schema (AnS), a graph that rep-
resents an MD view over existing RDF data, following the
classical global-as-view data integration approach, and ana-
lytical queries (AnQ) over AnS, which can be implemented
as SPARQL BGPs [25,26]. Although they show how some
OLAP operations can be implemented as AnQs, key opera-
tions like Roll- up are just briefly sketched. Moreover, AnS
does not support the definition of complex dimension hier-
archies.

Regarding SPARQL query processing, many works study
the complexity of query evaluation [13,16]. In [27] the
authors focus on the static analysis of SPARQL queries,
in particular those that contain the OPTIONAL operator.
Tsialimanis et. al [28] propose a heuristic approach to the
optimization for SPARQL joins, based on the selectivity of
graph patterns. All of these are general-purpose studies. On
the contrary, we take advantage of the characteristics of our
data model (e.g., the OLAP operators, and the information
provided by QB4OLAP metadata) to define optimization
rules that may not apply to a more generic scenario.

Jakobsen et al. [29] study how to improve SPARQL
queries over QB4OLAP data cubes. To reduce the number
of joins (BGPs) needed to traverse hierarchies, they propose
to generate denormalized representations of instances called
star patterns and denormalized patterns, which resemble
relational representation strategies for MD data. The idea
behind this approach is to directly link facts (observations)

18 http://www.w3.org/2011/gld/wiki/ISO_Extensions_to_SKOS.
19 https://team.inria.fr/oak/projects/warg/.

123

http://www.w3.org/2011/gld/wiki/ISO_Extensions_to_SKOS
https://team.inria.fr/oak/projects/warg/

Efficient Analytical Queries on Semantic Web Data Cubes 217

with attribute values of related level members. Although
preliminary results show an improvement in queries perfor-
mance, this approach prevents level members from being
reused and referenced, breaking the Linked Data nature of
QB4OLAP data instances.

8 Conclusion

In this paper we proposed the use of a high-level language
(CQL) over data cubes, to express OLAP queries at a concep-
tual level. We showed that these queries can be automatically
translated into efficient SPARQL ones. For this, we first used
themetadata providedby theQB4OLAPvocabulary to obtain
a naïve translation of CQL programs to SPARQL queries,
and then,we adapted general-purpose SPARQLoptimization
techniques to theOLAP setting, to obtain better performance.
Our experiments over synthetic data (an adaptation of the
Star Schema TPC-H benchmark) showed that even the naïve
approach outperforms other proposals, and suggest the best
combinations of optimization strategies. An application to
explore SW cubes, write, and execute CQL queries, com-
pletes our contributions. We believe that these results can
encourage and promote the publication and sharing of MD
data on the SW. We plan to continue working in this direc-
tion, extending CQL (and the corresponding translations)
with other OLAP operations.

Acknowledgements Alejandro Vaisman was partially supported by
PICT-2014 Project 0787, from the Argentinian Scientific Agency.

A Prefixes used in this paper

Figure 14 shows the prefixes used in this paper.

B QB4OLAP Representation of the Asylum
Applications Data Cube

In this appendix we show how the Eurostat data cube in our
running example, looks like in QB4OLAP. Figure 15 shows
the cube schema. Note that the structure is defined in terms
of dimension levels, which represent the granularity of the
observations in the data set (i.e., these levels are the lowest
levels in the dimension hierarchies).

An observation (represented in QB4OLAP) correspond-
ing to the schema in Fig. 15 is shown below. It corresponds
to the first row of Table 1.

ds:M,SY,F,Y18-34,NASY_APP,DE,2014M09 a qb:Observation ;
pr:age age:Y18-34 ;
sdmxd:refPeriod time:2001409 ;
pr:sex sex:F ;
pr:geo geo:DE ;
pr:citizen citizen:SY ;
pr:asyl_app app:NASY_APP ;
sdmxm:obsValue 425 .

Dimensions are represented in QB4OLAP as follows.
We define the citizenship dimension sc:citDim of Fig. 1,
and the hierarchy sc:citGeoHier, also declaring lev-
els pr:citizen and sc:continent. Also, we associate
attributeswith levels, e.g.,sc:contNamewith sc:continent.

sc:migr_asyapp rdf:type qb:DataStructureDefinition ;
qb:component [qb:measure sdmxm:obsValue ;

qb4o:aggregateFunction qb4o:sum] ;
qb:component [qb4o:level pr:age ;

qb4o:cardinality qb4o:ManyToOne] ;
qb:component [qb4o:level sdmxd:refPeriod ;

qb4o:cardinality qb4o:ManyToOne] ;
qb:component [qb4o:level pr:sex ;

qb4o:cardinality qb4o:ManyToOne] ;
qb:component [qb4o:level pr:geo ;

qb4o:cardinality qb4o:ManyToOne] ;
qb:component [qb4o:level pr:citizen ;

qb4o:cardinality qb4o:ManyToOne] ;
qb:component [qb4o:level pr:asyl_app ;

qb4o:cardinality qb4o:ManyToOne] .

dt:migr_asyappctzm qb:structure sc:migr_asyappctzmQB4O;.

Fig. 15 Asylum Applications Data Cube

Fig. 14 RDF prefixes used in
this work

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX qb: <http://purl.org/linked-data/cube#>
PREFIX qb4o: <http://purl.org/qb4olap/cubes#>
PREFIX sdmxm: <http://purl.org/linked-data/sdmx/2009/measure#>
PREFIX sdmxd: <http://purl.org/linked-data/sdmx/2009/dimension#>
PREFIX pr: <http://eurostat.linked-statistics.org/property#>
PREFIX citizen: <http://eurostat.linked-statistics.org/dic/citizen#>
PREFIX geo: <http://eurostat.linked-statistics.org/dic/geo#>
PREFIX age: <http://eurostat.linked-statistics.org/dic/age#>
PREFIX sex: <http://eurostat.linked-statistics.org/dic/sex#>
PREFIX app: <http://eurostat.linked-statistics.org/dic/asyl_app#>
PREFIX dt: <http://eurostat.linked-statistics.org/data/>
PREFIX ds: <http://eurostat.linked-statistics.org/data/migr_asyappctzm#>
PREFIX loc-ins: <http://www.fing.edu.uy/cubes/instances/>
PREFIX loc-sch: <http://www.fing.edu.uy/cubes/schemas/>
PREFIX sc: <http://www.fing.edu.uy/cubes/schemas/migr_asyapp#>
PREFIX instances: <http://www.fing.edu.uy/cubes/instances/migr_asyapp>
PREFIX citDim: <http://www.fing.edu.uy/cubes/dims/migr_asyapp/citizen#>
PREFIX time: <http://purl.org/qb4olap/dimensions/time#201409>

123

218 L. Etcheverry, A. A. Vaisman

Finally, the rollups and hierarchy steps (i.e, parent–child rela-
tionships) are defined.

Dimension definition
sc:citDim a qb:DimensionProperty ;
rdfs:label "Applicant citizenship dimension"@en ;

qb4o:hasHierarchy sc:citGeoHier, sc:citGovHier .

Hierarchy definition
sc:citGeoHier a qb4o:Hierarchy ;
rdfs:label "Applicant citizenship Geo Hierarchy"@en ;
qb4o:inDimension sc:citDim ;
qb4o:hasLevel pr:citizen, sc:continent .

Base level
pr:citizen a qb4o:LevelProperty ;
rdfs:label "Country of citizenship"@en ;
qb4o:hasAttribute sc:counName.
sc:counName a qb4o:LevelAttribute ;
rdfs:label "Country name"@en ; rdfs:range xsd:string .

#Upper hierarchy levels
sc:continent a qb4o:LevelProperty ;
rdfs:label "Continent"@en ;
qb4o:hasAttribute sc:contName .
sc:contName a qb4o:LevelAttribute ;
rdfs:label "Continent name"@en ; rdfs:range xsd:string .

#rollup relationships
sc:inContinent a qb4o:RollupProperty .
sc:hasGovType a qb4o:RollupProperty .
#hierarchy step
_:ih1 a qb4o:HierarchyStep ;
qb4o:inHierarchy sc:citGeoHier ;
qb4o:childLevel pr:citizen ;
qb4o:parentLevel sc:continent ;
qb4o:pcCardinality qb4o:OneToMany ;
qb4o:rollup sc:inContinen t.

Level members are represented as instances of the class
qb4o:LevelMember and attached to the levels they belong
to via the property qb4o:memberOf, as shown next, using the
dimensionmembers for dimension sc:citDim, correspond-
ing to Syria. Note that, for attribute instances, we need to link
IRIs representing levelmembers,with literals, corresponding
to attribute values.

citizen:SY
qb4o:memberOf pr:citizen ;
sc:counName "Syria"@en ;
sc:inContinent citDim:AS ;
sc:hasGovType dbpedia:Unitary_state .

citDim:AS
qb4o:memberOf sc:continent ;
sc:contName "Asia" .

dbpedia:Unitary_state
qb4o:memberOf sc:governmentType ;
sc:govName "Unitary state"@en .

References

1. Cyganiak R, Reynolds D (2014) The RDF Data Cube
Vocabulary (W3C Recommendation). http://www.w3.org/TR/
vocab-data-cube/

2. Etcheverry L, Vaisman AA (2012) Enhancing OLAP analysis with
web cubes. In: Simperl E, Cimiano P, Polleres, A, Corcho Ó, Pre-
sutti V (eds), The Semantic Web: Research and Applications -
9th Extended Semantic Web Conference, ESWC 2012, Heraklion,
Crete, Greece,May 27-31, 2012. Proceedings, Vol. 7295 of Lecture
Notes in Computer Science, Springer, pp. 469–483

3. Etcheverry L, Vaisman AA (2012) QB4OLAP: A vocabulary for
OLAP cubes on the semantic web. In: Sequeda J, Harth A, Hartig
O (eds), Proceedings of the Third International Workshop on Con-
suming Linked Data, COLD 2012, Boston, MA, USA, November
12, 2012, Vol. 905 of CEUR Workshop Proceedings, CEUR-
WS.org

4. Ciferri C, Ciferri R, Gómez L, SchneiderM,VaismanAA, Zimányi
E (2013) Cube algebra: A generic user-centric model and query
language for OLAP cubes. IJDWM 9(2):39–65

5. Etcheverry L, Vaisman AA (2016) Querying semantic web data
cubes. In: Proceedings of the 10th Alberto Mendelzon Interna-
tional Workshop on Foundations of Data Management, Panama
City, Panama, May 8-10, 2016, CEUR-WS.org

6. Vaisman A, Zimányi E (2014) Data Warehouse Systems: Design
and Implementation. Springer, Berlin

7. Etcheverry L, and Gómez SA, Vaisman AA, Modeling and Query-
ing Data Cubes on the Semantic Web, CoRR arXiv:1512.06080

8. Vaisman AA (2015) Publishing OLAP cubes on the semantic web.
In: Business Intelligence - 5th European Summer School, eBISS
2015, Barcelona, Spain, July 5-10, 2015, Tutorial Lectures, pp.
32–61

9. Abelló A, Darmont J, Etcheverry L, Golfarelli M, Mazón J, Nau-
mann F, Pedersen TB, Rizzi S, Trujillo J, Vassiliadis P, Vossen
G (2013) Fusion cubes: towards self-service business intelligence.
IJDWM 9(2):66–88

10. Hurtado C, Gutiérrez C, Mendelzon A (2005) Capturing summa-
rizability with integrity constraints in OLAP. ACMTrans Database
Syst 30(3):854–886

11. Agrawal R, Gupta A, Sarawagi S (1997) Modeling multidi-
mensional databases. In: Proceedings of the 15th International
Conference onDataEngineering (ICDE’97), IEEEComputer Soci-
ety, Birmingham, UK, pp. 232–243

12. Loizou A, Angles R, Groth PT (2015) On the formulation of per-
formant SPARQL queries. J Web Sem 31:1–26

13. Pérez J, Arenas M, Gutierrez C (2009) Semantics and complexity
of SPARQL. ACM Trans Database Syst (TODS) 34(3):1–45

14. Vesse R (2014) SPARQL Optimization 101, Tuto-
rial at ApacheCon North America 2014. http://
events.linuxfoundation.org/sites/events/files/slides/
SPARQL%20Optimisation%20101%20Tutorial.pdf

15. Stocker M, Seaborne A, Bernstein A, Kiefer C, Reynolds D (2008)
SPARQL basic graph pattern optimization using selectivity esti-
mation. In: Proceedings of WWW, ACM, pp. 595–604

16. Schmidt M, Meier M, Lausen G (2010) Foundations of SPARQL
query optimization. In: Proceedings of ICDT, ACM, New York,
NY, pp. 4–33

17. Kämpgen B, Harth A (2013) No size fits all - running the Star
Schema Benchmark with SPARQL and RDF aggregate views. In:
Cimiano P, Corcho Ó, Presutti V, Hollink L, Rudolph S (eds), The
Semantic Web: Semantics and Big Data, 10th International Con-
ference, ESWC 2013, Montpellier, France, May 26-30, 2013. In:
Proceedings, Vol. 7882 of Lecture Notes in Computer Science,
Springer, pp. 290–304

18. Kämpgen B, O’Riain S, Harth A (2012) Interacting with statis-
tical linked data via OLAP operations. In: Simperl E, Norton B,
MladenicD,Valle ED, Fundulaki I, Passant A, TroncyR (eds), The
Semantic Web: ESWC 2012 Satellite Events-ESWC 2012 Satel-
lite Events, Heraklion, Crete, Greece, May 27-31, 2012. Revised
Selected Papers, Vol. 7540 of Lecture Notes in Computer Science,
Springer, pp. 87–101

19. Neil P O, Neil BO, ChenX (2009) Star SchemaBenchmark. http://
www.cs.umb.edu/~poneil/StarSchemaB.PDF

20. TPC.org, TPC-H Benchmark (2014). http://www.tpc.org/TPC_
Documents_Current_Versions/pdf/tpch2.17.1.pdf

21. Nebot V, Llavori RB (2012) Building data warehouses with seman-
tic web data. Decis Support Syst 52(4):853–868

123

http://www.w3.org/TR/vocab-data-cube/
http://www.w3.org/TR/vocab-data-cube/
http://arxiv.org/abs/1512.06080
http://events.linuxfoundation.org/sites/events/files/slides/SPARQL%20Optimisation%20101%20Tutorial.pdf
http://events.linuxfoundation.org/sites/events/files/slides/SPARQL%20Optimisation%20101%20Tutorial.pdf
http://events.linuxfoundation.org/sites/events/files/slides/SPARQL%20Optimisation%20101%20Tutorial.pdf
http://www.cs.umb.edu/~poneil/StarSchemaB.PDF
http://www.cs.umb.edu/~poneil/StarSchemaB.PDF
http://www.tpc.org/TPC_Documents_Current_Versions/pdf/tpch2.17.1.pdf
http://www.tpc.org/TPC_Documents_Current_Versions/pdf/tpch2.17.1.pdf

Efficient Analytical Queries on Semantic Web Data Cubes 219

22. Kämpgen B, Harth A (2011) Transforming statistical linked data
for use in OLAP systems. In: Proceedings of ICSS, Graz, Austria,
pp. 33–40

23. Abelló A, Romero O, Pedersen TB, Berlanga R, Nebot V, Aram-
buru MJ, Simitsis A (2015) Using semantic web technologies
for exploratory OLAP: a survey. IEEE Trans Knowl Data Eng
27(2):571–588

24. Ibragimov D, Hose K, Pedersen T B, Zimányi E (2014) Towards
exploratory OLAP over linked open data - A case study. In: Castel-
lanos M, Dayal U, Pedersen TB, Tatbul N (eds), Enabling Real-
Time Business Intelligence - International Workshops, BIRTE
2013, Riva del Garda, Italy, August 26, 2013, and BIRTE 2014,
Hangzhou, China, September 1, 2014, Revised Selected Papers,
Vol. 206 of Lecture Notes in Business Information Processing,
Springer, pp. 114–132

25. Colazzo D, Goasdoué F, Manolescu I, Roatiş A (2014) Rdf ana-
lytics: Lenses over semantic graphs. In: Proceedings of the 23rd
International Conference on World Wide Web, WWW ’14, ACM,
pp. 467–478

26. Azirani E A, Goasdoué F, Manolescu I, Roatis A (2015) Efficient
OLAP operations for RDF analytics. In: 31st IEEE International
Conference on Data Engineering Workshops, ICDE Workshops
2015, Seoul, South Korea, April 13-17, 2015, IEEE, pp. 71–76

27. Letelier A, Pérez J, Pichler R, Skritek S (2013) Static analysis and
optimization of semantic web queries. ACM TODS 38(4):25

28. Tsialiamanis P, Sidirourgos L, Fundulaki I, Christophides V, Boncz
P (2012) Heuristics-based query optimisation for SPARQL. In:
Proceedings of EDBT, ACM, pp. 324–335

29. JakobsenKA,AndersenAB,HoseK,PedersenTB (2015)Optimiz-
ingRDFdata cubes for efficient processing of analytical queries. In:
Hartig O, Sequeda J, Hogan A (eds), Proceedings of the 6th Inter-
national Workshop on Consuming Linked Data co-located with
14th International Semantic Web Conference (ISWC 2105), Beth-
lehem, Pennsylvania, US, October 12th, 2015., Vol. 1426 of CEUR
Workshop Proceedings, CEUR-WS.org

123

	Efficient Analytical Queries on Semantic Web Data Cubes
	Abstract
	1 Introduction
	2 Running Example
	3 The QB4OLAP Vocabulary
	4 Querying QB4OLAP Cubes
	4.1 The CQL language
	4.1.1 CQL by Example
	4.1.2 Well-Formed CQL Queries

	4.2 CQL Simplification Process
	4.3 CQL to SPARQL Translation
	4.4 SPARQL Queries Improvement

	5 Implementation
	6 Evaluation
	6.1 The SSB-QB4OLAP Benchmark
	6.2 Experimental Setup and Results
	6.2.1 Evaluation of the Improvement Strategies
	6.2.2 Comparison with SSB-QB

	6.3 Discussion

	7 Related Work
	8 Conclusion
	Acknowledgements
	A Prefixes used in this paper
	B QB4OLAP Representation of the Asylum Applications Data Cube
	References

