
J Data Semant (2016) 5:141–163
DOI 10.1007/s13740-016-0066-3

ORIGINAL ARTICLE

τOWL: A Systematic Approach to Temporal Versioning
of Semantic Web Ontologies

Abir Zekri1 · Zouhaier Brahmia1 · Fabio Grandi2 · Rafik Bouaziz1

Received: 31 July 2015 / Revised: 11 April 2016 / Accepted: 30 May 2016 / Published online: 10 June 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract The W3C OWL 2 recommendation is an ontol-
ogy language for the Semantic Web. It allows defining both
schema (i.e., entities, axioms, and expressions) and instances
(i.e., individuals) of ontologies. However, OWL 2 lacks
explicit support for time-varying schema or for time-varying
instances. Hence, knowledge engineers or maintainers of
semantics-basedWeb resources have to use adhoc techniques
to specifyOWL2 time-varying ontologies. In this paper, for a
disciplined and systematic approach to the temporalmanage-
ment of Semantic Web ontologies, we propose the adoption
of a framework called temporal OWL 2 (τOWL), which is
inspired by the τXSchema framework defined for XML data.
In away similar towhat happens in τXSchema, τOWLallows
creating a temporal OWL 2 ontology from a conventional
(i.e., non-temporal) OWL 2 ontology and a set of logical
and physical annotations. Logical annotations identify which
elements of the ontology can vary over time; physical annota-
tions specify how the time-varying aspects are represented in
the OWL 2 document. Using annotations to integrate tempo-
ral aspects in the traditional Semantic Web, our framework
(1) guarantees logical and physical data independence for
temporal schemas and (2) provides a low-impact solution,
since it requires neither modifications of existing Semantic

B Zouhaier Brahmia
zouhaier.brahmia@fsegs.rnu.tn

Abir Zekri
abir.zekri@fsegs.rnu.tn

Fabio Grandi
fabio.grandi@unibo.it

Rafik Bouaziz
raf.bouaziz@fsegs.rnu.tn

1 University of Sfax, Sfax, Tunisia

2 Alma Mater Studiorum, Università di Bologna, Bologna, Italy

Web ontologies, nor extensions to the OWL 2 recommen-
dation and Semantic Web standards. Moreover, since the
conventional schema and annotation documents could evolve
over time to respond to new applications’ requirements,
τOWL supports temporal schema versioning by allowing
changing these components and by keeping track of their
evolution through the conventional schema versions and
annotation document versions, respectively. Two complete
sets of operations are proposed for changing the conventional
schema and annotation documents; to complete the figure, a
set of operations is also introduced for updating temporal
schema which must be changed consequently each time one
of the mentioned components evolves over time. To show the
feasibility of our approach, a prototype tool, named τOWL-
Manager, is presented.

Keywords SemanticWeb ·Ontology ·OWL2 · τXSchema ·
Logical annotations · Physical annotations · Conventional
schema · Temporal schema · Temporal ontology · Temporal
database · XML Schema · XML · Schema change · Schema
versioning

1 Introduction

Due to the dynamic nature of the Web [3], ontologies
[19] that are used on the Web—like other Web application
components, such as Web databases and Web pages—
evolve over time to reflect and model changes occurring in
the real world. Furthermore, several Semantic Web-based
applications (like e-commerce, e-government, and e-health
applications) require keeping track of ontology evolution
and versioning with respect to time, to represent, store, and
retrieve time-varying ontologies.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13740-016-0066-3&domain=pdf

142 A. Zekri et al.

Unfortunately, while there is a sustained interest for tem-
poral and evolution aspects in the research community [16],
existing Semantic Web [4] standards and the state-of-the-art
ontology editors, and knowledge representation tools do not
provide any built-in support for managing temporal ontolo-
gies. In particular, the W3C OWL 2 recommendation [35]
lacks explicit support for time-varying ontologies, at both
schema and instance levels. Thus, knowledge engineers or
maintainers of semantics-based Web resources must use ad
hoc techniques when there is a need, for example, to spec-
ify an OWL 2 ontology schema for time-varying ontology
instances. In the rest of the paper, we define as Knowl-
edge Base Administrator (KBA) a knowledge engineer or,
more in general, the person in charge of the maintenance of
semantics-based Web resources.

According to what precedes, we think that if we would
like to handle ontology evolution over time in an efficient
manner and to allow historical queries to be executed on
time-varying ontologies, management tools with a built-in
temporal support are needed. For that purpose, we propose
in this paper a framework, called τOWL, for managing tem-
poral SemanticWeb ontologies, through the use of a temporal
OWL 2 extension. In fact, we want to introduce with τOWL
a principled and systematic approach to the temporal exten-
sion of OWL 2, similar to that Snodgrass and colleagues
did with their τXSchema [9,30] to XML and XML Schema
[32]. τXSchema is a powerful framework (i.e., a data model
equipped with a suite of tools) for managing temporal XML
documents, well known in the database research commu-
nity and, in particular, in the field of temporal XML [10].
To complete the framework and extend its functionalities,
τXSchema has also been augmented by defining necessary
schema change operations [5].

Being defined as a τXSchema-like framework, τOWL
allows creating a temporal OWL 2 ontology from a con-
ventional (i.e., non-temporal) OWL 2 ontology specification
and a set of logical (or temporal) and physical annotations.
Logical annotations identify which components of the ontol-
ogy can vary over time; physical annotations specify how
the time-varying aspects are represented in the OWL 2 docu-
ment.Byusing temporal schemaand annotations to introduce
temporal aspects in the conventional Semantic Web, our
framework (1) guarantees logical and physical data inde-
pendence [8] for temporal ontologies and (2) provides a
low-impact solution, since it requires neither modifications
of existing Semantic Web documents, nor extensions to the
OWL 2 recommendation and Semantic Web standards. In
general, by Semantic Web (OWL 2 or RDF) document, we
denote an OWL 2 or RDF file containing either the speci-
fication of an ontology schema, either the specification of a
collection of ontology instances, or both.

In its first formulation [40], τOWLwas defined as an envi-
ronment for themanagement of ontologieswith time-varying

instances conforming to a common (time-invariant) schema.
However, since ontology structural definitions are also evolv-
ing over time to reflect changes in real-world applications
[28] and keeping a fully fledged history of ontology changes
(i.e., changes affecting ontology instances and/or ontology
schema) is a very required feature for advanced Semantic
Web applications, the τOWL framework has been extended
in Zekri et al. [41,42,44] to also support schema version-
ing [7] that is the most powerful technique for performing
schema changes, consistently propagating their effects on
underlying instances, and guaranteeing the maintenance of a
complete history of schema and instances. In this context, we
further illustrate our approach formanaging temporal schema
versioning in τOWL and its implementation in a prototype
tool. In particular, we (1) describe the process of creating and
evolving temporal ontologies in τOWL, (2) introduce schema
change operations supported by τOWL, which help KBAs in
defining and changing (conventional and temporal) ontology
schema, and (3) show their user-friendly deployment through
a prototype tool, named τOWL-Manager, which allows con-
structing and updating temporal ontologies.

The remainder of the paper is organized as follows.
Section 2 motivates the need for an efficient management of
time-varying Semantic Web ontologies. Section 3 describes
the τOWL framework that we propose for extending the
SemanticWeb to temporal aspects: the architecture of τOWL
is presented, details on its components and support tools
are given, and the prototype system τOWL-Manager, which
implements this framework, is introduced. Section 4 pro-
poses our approach for temporal schema versioning in
τOWL: the schema versioning process, schema change oper-
ations acting on conventional and temporal ontology schema,
and the schema versioning support in τOWL-Manager. Sec-
tion 5 discusses related work. Section 6 provides a summary
of the paper and some remarks about our future work.

2 Motivation

In this section, we present a motivating example that shows
the limitation of the OWL 2 language for explicitly support-
ing time-varying ontologies.

GoodRelations1 is a standardized ontology for
e-commerce, used to publish details on products sold online.
For example, Best Buy Co., Inc.2 is publishing RDF descrip-
tions of their products (consumer electronics, personal com-
puters, entertainment software, etc.), on the Web of Linked
Data, using the GoodRelations ontology. A fragment of the
GoodRelations RDF document of games sold by “Best Buy”

1 http://www.heppnetz.de/ontologies/goodrelations/v1. [retrieved:
April, 2016].
2 http://www.bestbuy.com/ [retrieved: April, 2016].

123

http://www.heppnetz.de/ontologies/goodrelations/v1
http://www.bestbuy.com/

τOWL: A Systematic Approach to Temporal... 143

…
<gr:Offering rdf:ID="Offering_9223752">
<gr:hasPriceSpecification>
<gr:UnitPriceSpecification rdf:ID="UnitPriceSpecification_9223752_1">
<gr:hasCurrency>USD</gr:hasCurrency>
<gr:hasCurrencyValue>29.99</gr:hasCurrencyValue>
<gr:priceType>SRP</gr:priceType>
…

</gr:UnitPriceSpecification>
</gr:hasPriceSpecification>
…

</gr:Offering>
…

Fig. 1 Fragment of games GoodRelations RDF document on June 15, 2015

is shown in Fig. 1. It provides, according to the GoodRela-
tions ontology, some details of a game offering having the ID
“9223752”: the currency (USD), the currency value (29.99),
and the price type (SRP, for special reduction price).

Assume that information about that offering was added
on June 15, 2015. On July 08, 2015, the KBA of “Best Buy”
modified the currency value from “29.99” to “27.25” and the
price type from “SRP” to “SP (for sale price)”. Thus, the cor-
responding fragment of the GoodRelations RDF document
was revised to that shown in Fig. 2.

In many Semantic Web-based applications, the history of
ontology changes is a fundamental requirement, since such
a history allows recovering past ontology versions, tracking
changes over time, and evaluating temporal queries [14]. A
τOWL time-varying Semantic Web document records the
evolution of a Semantic Web document over time by storing
all versions of the document in away similar to that originally
proposed for τXSchema [9].

Suppose that the KBA of “Best Buy” would like to keep
track of the changes performed on the GoodRelations RDF
information by storing both versions of Figs. 1 and 2 in a
single (temporal) RDF document. As a result, Fig. 3 shows
a fragment of a time-varying Semantic Web document that
captures the history of the specified details of the offering
“9223752”.

In this example, the KBA uses valid-time to capture the
history of information. To timestamp the entities which can
evolve over time, he/she uses the following optional tags:
hasCurrencyValueValidityStartTime and hasCurrency-

ValueValidityEndTime, for recording the currency value
evolution, and priceTypeValidityStartTime and price-
TypeValidityEndTime, for keeping the price-type history.
These are optional data properties which can be added to
a temporal entity. The domain of hasCurrencyValueValidi-
tyEndTime or priceTypeValidityEndTime includes the value
“now” [5]; the entity that has “now” as the value of its valid-
ity end time property represents the current entity until some
change occurs.

Assume that the extract of the GoodRelations ontology
presented in Fig. 4 contains the conventional schema for the
GoodRelations RDF document presented in both Figs. 1 and
2. The conventional schema is the schema for an individ-
ual version, which allows updating and querying individual
versions.

The problem is that the time-varying ontology (see
Fig. 3) does not conform to the conventional schema (see
Fig. 4). Thus, to resolve this problem, the KBA needs
a different ontology schema that can describe the struc-
ture of the time-varying ontology document. This new
schema should specify, for example, timestamps associ-
ated to entities, time dimensions involved, and how the
entities vary over time. Moreover, notice that this exam-
ple involves the representation and management of an
ontology with time-varying instances all conforming to a
common (time-invariant) schema. The management of a
time-varying schema and the support of schema versioning
is a further complication that will also be addressed in this
paper.

…
<gr:Offering rdf:ID="Offering_9223752">
<gr:hasPriceSpecification>
<gr:UnitPriceSpecification rdf:ID="UnitPriceSpecification_9223752_1">
<gr:hasCurrency>USD</gr:hasCurrency>
<gr:hasCurrencyValue>27.25</gr:hasCurrencyValue>
<gr:priceType>SP</gr:priceType>
…

</gr:UnitPriceSpecification>
</gr:hasPriceSpecification>
…

</gr:Offering>
…

Fig. 2 Fragment of games GoodRelations RDF document on July 08, 2015

123

144 A. Zekri et al.

…
<gr:Offering rdf:ID="Offering_9223752">
<gr:hasPriceSpecification>
<gr:UnitPriceSpecification rdf:ID="UnitPriceSpecification_9223752_1">
<gr:hasCurrency>USD</gr:hasCurrency>
<versionedHasCurrencyValue>
<hasCurrencyValueVersion>
<hasCurrencyValueValidityStartTime>2015-06-15</hasCurrencyValueValidityStartTime>
<hasCurrencyValueValidityEndTime>2015-07-07</hasCurrencyValueValidityEndTime>
<gr:hasCurrencyValue>29.99</gr:hasCurrencyValue>

</hasCurrencyValueVersion>
<hasCurrencyValueVersion>
<hasCurrencyValueValidityStartTime>2015-07-08</hasCurrencyValueValidityStartTime>
<hasCurrencyValueValidityEndTime>now</hasCurrencyValueValidityEndTime>
<gr:hasCurrencyValue>27.25</gr:hasCurrencyValue>

</hasCurrencyValueVersion>
</versionedHasCurrencyValue>
<versionedPriceType>
<priceTypeVersion>
<priceTypeValidityStartTime>2015-06-15</priceTypeValidityStartTime>
<priceTypeValidityEndTime>2015-07-07</priceTypeValidityEndTime>
<gr:priceType>SRP</gr:priceType>

</priceTypeVersion>
<priceTypeVersion>
<priceTypeValidityStartTime>2015-07-08</priceTypeValidityStartTime>
<priceTypeValidityEndTime>now</priceTypeValidityEndTime>
<gr:priceType>SP</gr:priceType>

</priceTypeVersion>
</versionedPriceTypepriceType>
…

</gr:UnitPriceSpecification>
</gr:hasPriceSpecification>
…

</gr:Offering>
…

Fig. 3 Fragment of the time-varying games GoodRelations RDF document

<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:gr="http://purl.org/goodrelations/v1#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
…
<owl:Class rdf:about="http://purl.org/goodrelations/v1#Offering">
<owl:ObjectProperty rdf:about="http://purl.org/goodrelations/v1#hasPriceSpecification">
<rdfs:range rdf:resource="http://purl.org/goodrelations/v1#PriceSpecification"/>
…
<rdfs:domain>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<rdf:Description rdf:about="http://purl.org/goodrelations/v1#Offering"/>
<rdf:Description rdf:about="http://schema.org/Offer"/>

</owl:unionOf>
</owl:Class>

</rdfs:domain>
<rdfs:isDefinedBy rdf:resource="http://purl.org/goodrelations/v1"/>

</owl:ObjectProperty>
…

</owl:Class>
…

</rdf:RDF>

Fig. 4 RDF/XML extract from the OWL 2 GoodRelations ontology

3 The τOWL Framework

In this section,we present in a detailedway our τOWLframe-
work. First, we provide the goals of this framework. Then,
we describe its architecture. Next, we τOWL-Manager, a
prototype tool which implements τOWL and allows creat-

ing and updating temporal ontologies. Finally, we resume
our running example, introduced in the previous section,
to illustrate the functioning of τOWL while providing
some screenshots which demonstrate the use of τOWL-
Manager for managing temporal ontologies of the same
example.

123

τOWL: A Systematic Approach to Temporal... 145

3.1 Goals

There are several goals which can be fulfilledwhen augment-
ing theOWL2 language to support time-varying instances. In
particular, our τOWL proposal is a principled and systematic
approach aimed at satisfying the following seven require-
ments:

(1) facilitating the management of time for KBAs;
(2) supporting both valid time and transaction time;
(3) supporting (temporal) versioning of OWL 2 instances;
(4) keeping compatibility with existing OWL 2 W3C rec-

ommendations, and editors, and not requiring any
changes to them;

(5) supporting existing applications that are already using
OWL 2 ontologies;

(6) providing OWL 2 data independence, so that changes
at the logical level are isolated from those performed at
the physical level, and vice versa;

(7) accommodating a variety of physical representations for
time-varying OWL 2 instances.

3.2 Architecture

In the following, we describe the architecture of τOWL and
the embedded tools used for managing both τOWL schema
and τOWL instances. Since τOWL is a τXSchema-like
framework, we were inspired by the τXSchema architecture
and tools while defining those of τOWL. The new frame-
work allows a KBA to create a temporal OWL 2 schema
for temporal OWL 2 instances from a conventional OWL 2
schema, logical annotations, and physical annotations. Since
it is a τXSchema-like framework, τOWL use the follow-
ing two principles: (1) separation between the conventional
schema and the temporal schema, and also between the con-
ventional instances and the temporal instances and (2) use
of logical and physical annotations to specify temporal and
physical aspects, respectively, at schema level.

Figure 5 shows the architecture of τOWL. Notice that, in
this figure, rectangular boxes represent documents, hexago-
nal boxes represent tools, solid arrows denote input/output
data flows, dotted arrows link documents to namespaces and
dashed arrows stand for “references” relationships. More-
over, the meaning of the color and the border pattern of
rectangular boxes is as follows: pink box with bold border
for documents created/added by the KBA (7, 9, 10, 11, and
12), blue boxwith dotted border for documents automatically
generated by the system (8, 13, 14, and 15), green box with
dashed border for predefined documents making part of the
framework (2, 3, 4, 5, and 6), and white box with thin border
for reference documents created by the W3C (0 and 1).

The KBA starts by creating the conventional schema (box
7), which is anOWL2 ontology that models the concepts of a

particular domain and the relations between these concepts,
without any temporal aspect. To each conventional schema
corresponds a set of conventional (i.e., non-temporal) OWL
2 instances (box 12). Any change to the conventional schema
is propagated to its corresponding instances. Notice that our
approach deals with OWL 2 ontologies with an RDF/XML
syntax [33], which is, according to the OWL 2 specification
document [36], the only syntax that must mandatorily be
supported by OWL 2 tools.

After that, the KBA augments the conventional schema
with logical and physical annotations, which allow him/her
to express, in an explicit way, all requirements dealing with
the representation and the management of temporal aspects
associated to the components of the conventional schema, as
described in the following.

Logical annotations [30] allow the KBA to specify (1)
whether a conventional schema component varies over valid
time and/or transaction time, (2) whether its lifetime is
described as a continuous state or a single event, (3) whether
the componentmay appear at certain times (andnot at others),
and (4) whether its content changes. If no logical annotations
are provided, the default logical annotation is that anything
can change. However, once the conventional schema is anno-
tated, components that are not described as time-varying are
static and, thus, they must have the same value across every
instance document (box 12).

Physical annotations [30] allow the KBA to specify the
timestamp representation options chosen, such as where the
timestamps are placed and their kind (i.e., valid time or trans-
action time) and the kind of representation adopted. The
location of timestamps is largely independent of which com-
ponents vary over time. Timestamps can be located either on
time-varying components (as specified by the logical anno-
tations) or somewhere above such components. Two OWL
2 documents with the same logical information will look
very different if we change the location of their physical
timestamps. Changing an aspect of even one timestamp can
make a big difference in the representation. τOWL supplies
a default set of physical annotations, which is to timestamp
the root element with valid and transaction times. However,
explicitly defining them can lead to more compact represen-
tations [30].

To improve conceptual clarity and also to enable a more
efficient implementation, we adopt a “separation of con-
cerns” principle in our approach: since the entities, the
axioms and the expressions of an OWL 2 ontology evolve
over time independently, we distinguish between three sep-
arate types of annotations to be defined and to be associated
to a conventional schema: the entity annotations (box 9), the
axiom annotations (box 10), and the expression annotations
(box 11).

Entity annotations describe the logical and physical char-
acteristics associated to the components of an OWL 2

123

146 A. Zekri et al.

Fig. 5 τOWL architecture

ontology: classes, relations, and properties. They indicate, for
example, the temporal formats of these components, which
could be valid time, transaction time, bi-temporal, or snap-
shot (by default). The schema for the logical and physical
entity annotations is given by EntASchema (box 4). Axiom
annotations and expression annotations describe the logical
and physical aspects of axioms and expressions defined on
classes or on properties. The schema for the logical and phys-
ical axiom annotations is given by AxiASchema (box 5), and
the schema for the logical and physical expression annota-
tions is given by ExpASchema (box 6).

Notice that EntASchema, AxiASchema, and Exp-
ASchema, which all contain both logical and physical anno-
tations, are XML Schemas [32]. The annotations associated
to the same conventional schema can evolve independently.
Any change to one of the three sets of annotations does not
affect the two other sets.

Finally, when the KBA finishes annotating the conven-
tional schema and asks the system to save his/her work, this
latter creates the temporal schema (box 8) to provide the
linking information between the conventional schema and
its corresponding logical and physical annotations. The tem-
poral schema is a standard XML document, which ties the
conventional schema, the entity annotations, the axiom anno-
tations, and the expression annotations together. In the τOWL
framework, the temporal schema is the logical equivalent of
the conventional OWL 2 schema in a non-temporal context.

This document contains sub-elements that associate a series
of the conventional schema definitions with entity annota-
tions, axiom annotations, and expression annotations, along
with the time span duringwhich the associationwas in effect.
The schema for the temporal schema document is the XML
Schema Definition document TSSchema (box 3).

To complete the figure in our temporal context, after
creating the temporal schema, the system creates a tempo-
ral document (box 14) to link each conventional ontology
instance document (box 12), which is valid to a conven-
tional ontology schema (box7), to its corresponding temporal
ontology schema (box 8), and more precisely to its cor-
responding logical and physical annotations (which are
referenced by the temporal schema). A temporal document
is a standard XML document that maintains the evolu-
tion of a non-temporal ontology instance document over
time, by recording all of the versions (or temporal slices)
of the document with their corresponding timestamps and
by specifying the temporal schema associated to these ver-
sions. This document contains sub-elements that associate
a series of the conventional ontology instance documents
with logical and physical annotations (on entities, axioms,
and expressions), along with the time span during which
the association was in effect. Thus, the temporal docu-
ment is very important for making easy the support of
temporal queries working on past versions or dealing with
changes between versions. The schema for the temporal doc-

123

τOWL: A Systematic Approach to Temporal... 147

ument is the XML Schema Definition document TDSchema
(box 2).

Notice that, whereas TDSchema (box 2), TSSchema
(box 3), EntASchema (box 4), AxiASchema (box 5), and
ExpASchema (box 6) have been developed by us; OWL 2
(box 0) and XML Schema (box 1) correspond to the stan-
dards endorsed by the W3C.

In a similar way to what happens in the τXSchema frame-
work, the temporal schema document (box 8) is processed
by the temporal schema validator tool to ensure that the log-
ical and physical entity annotations, axiom annotations, and
expression annotations are (1) valid with respect to their
corresponding schemas (i.e., EntASchema, AxiASchema,
and ExpASchema, respectively) and (2) consistent with the
conventional schema. The temporal schema validator tool
reports whether the temporal schema document is valid or
invalid.

Once all the annotations are found to be consistent, the
representational schema generator tool generates the repre-
sentational schema (box 13) from the temporal schema (i.e.,
from the conventional schema and the logical and physical
annotations); it is the result of transforming the conventional
schema according to the requirements expressed through the
different annotations. The representational schema becomes
the schema for temporal instances (box 15). Temporal
instances could be created in four ways: (1) automati-
cally from the temporal document (box 14) [i.e., from
non-temporal ontology instances (box 12) and the tempo-
ral ontology schema (box 8)], using the temporal instances
generator tool (such an operation is called “squash” in
the original τXSchema approach); (2) automatically from
instances stored in a knowledge base, i.e., as the result of a
“temporal query” or a “temporal view”; and (3) automatically
from a third-party tool; (4) manually (i.e., temporal instances
are directly inserted by the KBA into the τOWL repository).
Moreover, temporal instances are validated against the repre-
sentational schema through the temporal instances validator
tool, which reports whether the temporal instances document
(box 15) is valid or invalid.

3.3 τOWL-Manager

τOWL-Manager is a prototype system which implements
our τOWL approach and shows its feasibility. In particular,
τOWL-Manager is a Java (JDK 1.7) application, devel-
oped in the Integrated Development Environment (IDE)
“Eclipse Helios”, using (1) the OWL Application Program-
ming Interface (API) [22],which is a JavaAPI and a reference
implementation, for creating andmanipulating OWL ontolo-
gies, and (2) the Java Document Object Model (JDOM) API
for creating and manipulating XML files. The first released
version of τOWL-Manager, described in Zekri et al. [43],
allowed KBAs to manage temporal ontology instance doc-

uments in the τOWL framework. The current version of
τOWL-Manager, presented in this paper, also allows the cre-
ation and maintenance of ontology schemata, adding support
of ontology schema versioning to the implementation of the
τOWL framework. In particular, updating an instance doc-
ument gives rise (1) to the creation of a new version of this
document with its corresponding transaction timestamp, and
(2) to an update of the temporal document to integrate the
new version in the τOWL environment. Moreover, in the
current τOWL-Manager release, changing a conventional
ontology schema and/or an ontology annotation document
implies (1) the creation of a new version of this conventional
schema and/or this annotation document with its correspond-
ing transaction timestamp, (2) an update of the temporal
ontology schema to integrate the new schema version in the
τOWL environment, (3) an update of the ontology instances
underlying the modified schema to adapt them to the new
schema version (change propagation), and (4) the update
of the temporal document to integrate the new document
instance version in the τOWL environment (implicitly con-
necting the new version of the ontology instance document to
the new ontology schema version). More details on τOWL-
Manager and on its use for managing temporal ontologies
will be showed in Sects. 3.4 and 4.4.

3.4 Running Example

To show the functionalities of the proposed approach, we
continue our motivating example of Sect. 2, to show how
management of temporal ontology versions is dealt with in
the τOWL approach. On June 15, 2015, the KBA creates
a conventional ontology schema (box 7), named “Game-
SaleSchema_V1.owl” (as in Fig. 4), and a conventional
ontology document (box 12), named “GameSales_V1.rdf”
(as in Fig. 1), which is valid with respect to this schema.
Figure 6 shows the ontology instantiation which leads to the
creation of “GameSales_V1.rdf”, through the use of τOWL-
Manager. In fact, after choosing a conventional ontology
schema, the KBA can create and save its instances.

We assume also that the KBA defines a set of logi-
cal and physical annotations, associated to that conven-
tional schema; they are stored in an ontology annotation
document (boxes 9, 10, and 11) titled “GameSaleAnnota-
tions_V1.xml”, as shown in Fig. 7. Indeed, as to logical
annotations, he/she decides to make the content of the
“gr:hasCurrencyValue” data property and the content of the
“gr:priceType” data property varying in valid time (to keep
the history along valid time of the changes the currency value
and the price type of each offering undergoes). As to phys-
ical annotations, he/she chooses to add a transaction-time
physical timestamp to the “gr:UnitPriceSpecification” class
(i.e., whenever any data property (e.g., “gr:hasCurrency”,
“gr:hasCurrencyValue”, or “gr:priceType”) of an instance

123

148 A. Zekri et al.

Fig. 6 Populating the new conventional ontology

<?xml version=”1.0” encoding=”UTF-8”?>
<ontologyAnnotationSet>
<logicalAnnotations>
<item target=”/Offering/hasPriceSpecification/UnitPriceSpecification/hasCurrencyValue”>
<validTime kind=”state” content=”varying” existence=”constant”/>

</item>
<item target=”/Offering/hasPriceSpecification/UnitPriceSpecification/priceType”>
<validTime kind=”state” content=”varying” existence=”constant”/>

</item>
</logicalAnnotations>
<physicalAnnotations>
<stamp target=”/Offering/hasPriceSpecification/UnitPriceSpecification”
 dataInclusion=”expandedVersion”>
<stampkind timeDimension=”transactionTime” stampBounds=”extent”/>

</stamp>
</physicalAnnotations>

</ontologyAnnotationSet>

Fig. 7 Ontology annotation document on June 15, 2015

of the class “gr:UnitPriceSpecification” changes, the entire
“gr:UnitPriceSpecification” instance is repeated to repre-
sent a new temporal version). Figures 8 and 9 show the
specification of a logical annotation on the data property
“gr:hasCurrencyValue” and the specification of a physical
annotation on the class “gr:UnitPriceSpecification”, respec-
tively, through the use of τOWL-Manager.

After that, the system creates the temporal ontology
schema (box8) inFig. 10,which ties “GameSaleSchema_V1.
owl” and “GameSaleAnnotations_V1.xml” together; this
temporal schema is saved in an XML file titled “Game-
SaleTemporalSchema.xml”. Consequently, the system uses
the temporal ontology schema of Fig. 10 and the conven-
tional ontology document in Fig. 1 to create a temporal

document (box 14) as in Fig. 11, which lists both ver-
sions (i.e., temporal “slices”) of the conventional ontology
documents with their associated timestamps. The squashed
version (box 15) of this temporal document, which could be
generated by the Temporal Instances Generator, is provided
in Fig. 12.

On July 08, 2015, theKBAupdates the conventional ontol-
ogy document “GameSales_V1.rdf” as presented in Sect. 2
to produce a new conventional ontology document named
“GameSales_V2.rdf” (as in Fig. 2). Figures 13 and 14 show
how such an update is performed using τOWL-Manager:
first, the KBA chooses “GameSales_V1.rdf” as the ontol-
ogy instance document version that must be updated (see
Fig. 13); then, he/she changes the chosen version by modi-

123

τOWL: A Systematic Approach to Temporal... 149

Fig. 8 Specifying a logical annotation on the data property “hasCurrencyValue”

Fig. 9 Specifying a physical annotation on the class “UnitPriceSpecification”

fying the currency value (from “29.99” to “27.25”) and the
price type (from “SRP” to “SP”) of the game offering having
the ID “9223752” (see Fig. 14).

Since the conventional ontology schema (i.e.,GameSaleS-
chema_V1.owl) and the ontology annotation document (i.e.,

GameSaleAnnotations_V1.xml) are not changed, the tempo-
ral ontology schema (i.e., GameSaleTemporalSchema.xml)
is consequently not updated. However, the system updates
the temporal document, to include the new slice of the new
conventional ontology document, as shown in Fig. 15. The

123

150 A. Zekri et al.

<?xml version=”1.0” encoding=”UTF-8”?>
<temporalOntologySchema>
<conventionalOntologySchema>
<sliceSequence>
<slice location=”GameSaleSchema_V1.owl” begin=”2015-06-15” />

</sliceSequence>
</conventionalOntologySchema>
<ontologyAnnotationSet>
<sliceSequence>
<slice location=”GameSaleAnnotations_V1.xml” begin=”2015-06-15” />

</sliceSequence>
</ontologyAnnotationSet>

</temporalOntologySchema>

Fig. 10 Temporal ontology schema on June 15, 2015

<?xml version=”1.0” encoding=”UTF-8”?>
<td:temporalRoot temporalSchemaLocation=”GameSaleTemporalSchema.xml” />
<td:sliceSequence>
<td:slice location=”GameSales_V1.rdf” begin=”2015-06-15” />

</td:sliceSequence>
</td:temporalRoot>

Fig. 11 Temporal document on June 15, 2015

…
<gr:Offering rdf:ID="Offering_9223752">
<gr:hasPriceSpecification>
<gr:UnitPriceSpecification rdf:ID="UnitPriceSpecification_9223752_1">
<gr:hasCurrency>USD</gr:hasCurrency>
<hasCurrencyValue_RepItem>
<hasCurrencyValue_Version>
<timestamp_ValidExtent begin=”2015-06-15” end=”now” />
<gr:hasCurrencyValue>29.99</gr:hasCurrencyValue>

</hasCurrencyValue_Version>
</hasCurrencyValue_RepItem>
<priceType_RepItem>
<priceType_Version>
<timestamp_ValidExtent begin=”2015-06-15” end=”now” />
<gr:priceType>SRP</gr:priceType>

</priceType_Version>
</priceType_RepItem>
…

</gr:UnitPriceSpecification>
</gr:hasPriceSpecification>
…

</gr:Offering>
…

Fig. 12 Squashed document correponding to the temporal document on June 15, 2015

squashed version of the updated temporal document is pro-
vided in Fig. 16.

Obviously, each one of the squashed documents (see
Figs. 12 and 16) should conform to the representational
schema (box 13),which is generated (by theRepresentational
Schema Generator) from the temporal ontology schema
shown in Fig. 10.

The example will be completed in Sect. 4, after that the
management of schema changes has been introduced.

4 Management of Temporal Schema Versioning in
τOWL

In this section, we present our approach for managing tem-
poral schema versioning in τOWL. First, we briefly describe

how the conventional ontology schema and ontology anno-
tation documents are versioned in the τOWL framework.
Then, we propose primitives for changing the conventional
and temporal schema. Next, we focus on the schema version-
ing support in our τOWL-Manager tool. Finally, we resume
our running example to show the use of the proposed prim-
itives for versioning conventional ontology, while providing
some screenshots which illustrate the use of τOWL-Manager
for the same purpose.

4.1 Temporal Schema Versioning Process

In our approach, the schema versioning process starts with
the creation of a first schema version: the KBA defines a
new conventional ontology schema (which is stored as an

123

τOWL: A Systematic Approach to Temporal... 151

Fig. 13 Showing the chosen conventional ontology instance document version

Fig. 14 Changing the chosen conventional ontology instance document version (modifying the currency value and the price type)

OWL 2 file) and annotates it with some logical and physical
annotations (which are stored as anXMLfile). Consequently,
the system creates the temporal ontology schema (also stored
as an XML file) that ties together the conventional schema
and the annotation document.

After that, when necessary, the KBA can independently
change the conventional ontology schema or the annotation
document. Changes to the conventional ontology schema
give rise to a new version of it. Similarly, changes to the
logical or physical annotations gives rise to a new version

123

152 A. Zekri et al.

<?xml version=”1.0” encoding=”UTF-8”?>
<td:temporalRoot temporalSchemaLocation=”GameSaleTemporalSchema.xml” />
<td:sliceSequence>
<td:slice location=”GameSales_V1.rdf” begin=”2015-06-15” />
<td:slice location=”GameSales_V2.rdf” begin=”2015-07-08” />

</td:sliceSequence>
</td:temporalRoot>

Fig. 15 Temporal document on July 08, 2015

…
<gr:Offering rdf:ID="Offering_9223752">
<gr:hasPriceSpecification>
<gr:UnitPriceSpecification rdf:ID="UnitPriceSpecification_9223752_1">
<gr:hasCurrency>USD</gr:hasCurrency>
<hasCurrencyValue_RepItem>
<hasCurrencyValue_Version>
<timestamp_ValidExtent begin=”2015-06-15” end=”2015-07-07” />
<gr:hasCurrencyValue>29.99</gr:hasCurrencyValue>

</hasCurrencyValue_Version>
<hasCurrencyValue_Version>
<timestamp_ValidExtent begin=”2015-07-08” end=”now” />
<gr:hasCurrencyValue>27.25</gr:hasCurrencyValue>

</hasCurrencyValue_Version>
</hasCurrencyValue_RepItem>
<priceType_RepItem>
<priceType_Version>
<timestamp_ValidExtent begin=”2015-06-15” end=”2015-07-07” />
<gr:priceType>SRP</gr:priceType>

</priceType_Version>
<priceType_Version>
<timestamp_ValidExtent begin=”2015-07-08” end=”now” />
<gr:priceType>SP</gr:priceType>

</priceType_Version>
</priceType_RepItem>
…

</gr:UnitPriceSpecification>
</gr:hasPriceSpecification>
…

</gr:Offering>
…

Fig. 16 Squashed document correponding to the temporal document on July 08, 2015

of the entire ontology annotation document. Moreover, the
temporal ontology schema is automatically updated by the
system after each transactionwhich includes changes applied
by the KBA to the conventional schema and/or to the anno-
tation document.

4.2 Schema Change Operations

τOWL is based on theOWL2 language [35], which is aW3C
standard ontology language for the Semantic Web. It allows
defining both schema (i.e., entities, axioms, and expressions)
and instances (i.e., individuals) of ontologies. Therefore, we
consider that the signature of an OWL 2 ontology O can be
defined as follows: O = {E, A, Exp} such that:

1. E= {C,DP,OP,AP} represents the set of the entitieswith:
(1) C: Class, represents the set of concepts; (2) DP: Data
Property, represents the set of properties of the concepts;
(3)OP:Object Property, represents the set of the semantic

relations between the concepts; and (4) AP: Annotation
Property, represents the set of annotations on the entities
and those on the axioms.

2. A = {EAx, KAx} represents the set of axioms with: (1)
EAx: Entity Axioms, represents the axioms which con-
cern the entities; and (2) KAx: Key Axioms, represents
all the identifiers associated to the various classes.

3. Exp = {CE, OPE, DPE} represents the set of the used
expressions (an expression is a complex description
which results from combinations of entities using con-
structors, such as enumeration, restriction of cardinality,
and restriction of properties) with: (1) CE: Class Expres-
sions, represents the set of combinations of concepts by
using constructors; (2) OPE: Object Property Expres-
sions, represents the set of combinations of relations; and
(3) DPE: Data Property Expressions, represents the set
of combinations of properties.

Based on this OWL 2 ontology definition, we propose a
complete set of 28 primitives for changing a conventional

123

τOWL: A Systematic Approach to Temporal... 153

ontology schema. The idea is that each primitive deals with
an OWL 2 ontology component (e.g., a class, a data property,
and an object property), by creating, removing, or modify-
ing such a component. These primitives are as follows (more
detailed description of their operational semantics showing
their effects on the COS can be found in [41,42,44]):

• CreateConventionalOntologySchema(COS.owl)
• RenameConventionalOntologySchema(oldCOS, new-
COS)

• DropConventionalOntologySchema(COS.owl)
• AddClass(COS.owl, className)
• RenameClass(COS.owl, oldClassName, newClassName)
• DropClass(COS.owl, className)
• AddDataProperty(COS.owl, className, DataProperty-
Name, DataPropertyType)

• DropDataProperty(COS.owl, className, DataProper-
tyName)

• RenameDataProperty(COS.owl, className,
oldDataPropertyName, newDataPropertyName)

• ChangeDataPropertyDomain(COS.owl, className,
DataPropertyName, newDataPropertyDomain)

• ChangeDataPropertyRange(COS.owl, className,Dat-
aPropertyName, oldDataPropertyRange, newDataProper-
tyRange)

• AddObjectProperty(COS.owl, ObjectPropertyName,
ObjectPropertyDomain, ObjectPropertyRange)

• DropObjectProperty(COS.owl, ObjectPropertyName)
• RenameObjectProperty(COS.owl, oldObjectProperty-
Name, newObjectPropertyName)

• ChangeObjectPropertyDomain(COS.owl, ObjectProp-
ertyName, oldObjectPropertyDomain, newObjectProper-
tyDomain)

• ChangeObjectPropertyRange(COS.owl, ObjectProper-
tyName, oldObjectPropertyRange, newObjectProperty-
Range)

• AddAnnotationProperty(COS.owl, propertyType, prop-
ertyName, annotationProperty)

• DropAnnotationProperty(COS.owl, propertyType,
propertyName, annotationProperty)

• ChangeAnnotationProperty(COS.owl, propertyType,
propertyName, oldAnnotationProperty, newAnnotation-
Property)

• AddEntityAxiom(COS.owl, entityType, entityName,
entityAxiom)

• DropEntityAxiom(COS.owl, entityType, entityName,
entityAxiom)

• ChangeEntityAxiom(COS.owl, entityType, entityName,
oldEntityAxiom, newEntityAxiom)

• AddKeyAxiom(COS.owl, className, keyAxiom)
• DropKeyAxiom(COS.owl, className, keyAxiom)

• ChangeKeyAxiom(COS.owl, className, oldKeyAxiom,
newKeyAxiom)

• AddEntityExpression(COS.owl, entityType, entityName,
entityExpression)

• DropEntityExpression(COS.owl, entityType,
entityName, entityExpression)

• ChangeEntityExpression(COS.owl, entityType, entity-
Name, oldEntityExpression, newEntityExpression)

Furthermore, since changing the temporal ontology schema
is a task that must be done within the same transaction that
changes the corresponding conventional ontology schema
and/or the ontology annotation document, we also propose a
complete set of four primitives acting on a temporal ontol-
ogy schema. These primitives are as follows (more details on
them can be found in [41,42,44]):

• CreateTemporalOntologySchema (TOS.xml)
• DropTemporalOntologySchema(TOS.xml)
• AddSlice (TOS.xml, toWhat, sourceSlice, targetSlice)
• DropSlice (TOS.xml, fromWhat, targetSlice)

4.3 Schema Versioning Support in τOWL-Manager

The overall architecture of τOWL-Manager is shown in Fig.
17. It is composed of three layers: presentation layer, business
layer, and storage layer.

The presentation layer includes an interface for construct-
ing temporal ontology schema, an interface for creating and
updating ontology instances, and an interface for changing
temporal ontology schema.

To construct a new temporal ontology schema, the KBA
has to start by providing a reference to an existing valid con-
ventional ontology schema (definition of an ontology schema
from scratch is not supported in the current version of τOWL-
Manager), e.g., the GoodRelation ontology as in our running
example. Then, the KBA annotates the new conventional
ontology schema by some logical and physical annotations
(as shown in Figs. 8 and 9).

The business layer contains three modules: the first
for constructing and validating temporal ontology schema,
named “Temporal Ontology Schema Construction Man-
ager”, the second for creating/updating and validating ontol-
ogy instances, named “Ontology Instance Document Man-
ager”, and the third for evolving temporal ontology schema,
named “Temporal Ontology Schema Change Manager”.

The “Temporal Ontology SchemaConstructionManager”
first generates the files corresponding to the temporal ontol-
ogy schema, that is the conventional schema file and the
annotation document file, from the specifications expressed
by the KBA in its interface. Then, it checks the validity of the

123

154 A. Zekri et al.

Fig. 17 Architecture of τOWL-Manager

generated files and creates the temporal schema file, which
ties together the two other files.

The “Ontology Instance Document Manager” allows
creating and versioning ontology instance documents. Fig-
ure 6 shows an ontology instantiation; Figs. 13 and 14
show an example of keeping track of ontology instance
changes.

The “Temporal Ontology Schema Change Manager” first
generates the file corresponding to the new conventional
ontology schema version (i.e., a new OWL 2 file) and/or
the file corresponding to the new ontology annotation docu-
ment (i.e., a new XML file), from schema change operations
specified by the KBA in its schema change interface. Then,
it (1) checks the validity of the generated file(s), (2) adds it
(or them) to the τOWL repository, (3) updates the tempo-
ral schema file to take into account the new version of the
conventional schema version and/or the new version of the
ontology annotation document, (4) propagates the effects of
schema changes on existing ontology instance document ver-
sions to make them valid with regard to the new conventional
ontology schema version, and (5) updates the temporal doc-
ument to make reference to the new conventional ontology
instance document versions. Some screenshots, which show
the use of τOWL-Manager for managing schema changes,
will be provided within the next subsection that illustrates
temporal schema versioning in τOWL through our running
example.

The storage layer contains the repository of resources
making up temporal ontologies and associated instances,
named τOWL Repository.

4.4 Running Eample Reprise

Let us resume the example, started in Sect. 2 and continued
in Sect. 3.4, to show how temporal schema versioning is
carried out in our context. Suppose that on July 22, 2015,
the KBA decides to make some changes to the first version
of the conventional ontology schema, to meet some changes
in the code of the application that exploit such an ontology
schema. These changes are as follows:

• add a new class, named “Invoice”, having the following
properties (or data properties): ID (String), date (Date),
and total amount (float);

• add a new relationship (or object property), named “has-
Invoice”, between the class “Offering” and the new class
“Invoice”;

• specify that the price type of an offering must be either
“SP”, or “SRP”;

• specify that the relationship “hasPriceSpecification” is
irreflexive;

• specify an expression on the relationship “hasPriceSpec-
ification”, which indicates that each offering must have
at least one price specification.

123

τOWL: A Systematic Approach to Temporal... 155

<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:gr="http://purl.org/goodrelations/v1#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
…
<owl:Class rdf:about="http://purl.org/goodrelations/v1#Offering">
<owl:ObjectProperty rdf:about="http://purl.org/goodrelations/v1#hasPriceSpecification">
<rdfs:range rdf:resource="http://purl.org/goodrelations/v1#PriceSpecification"/>
…
<rdfs:domain>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<rdf:Description rdf:about="http://purl.org/goodrelations/v1#Offering"/>
<rdf:Description rdf:about="http://schema.org/Offer"/>

</owl:unionOf>
</owl:Class>

</rdfs:domain>
<rdfs:isDefinedBy rdf:resource="http://purl.org/goodrelations/v1"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="http://purl.org/goodrelations/v1#hasInvoice">
<rdfs:range rdf:resource="http://purl.org/goodrelations/v1#Invoice"/>
<rdfs:domain rdf:resource="http://purl.org/goodrelations/v1#Offering"/>

</owl:ObjectProperty>
…

</owl:Class>
<owl:Class rdf:about="http://purl.org/goodrelations/v1#Invoice">
<owl:DataProperty rdf:about="http://purl.org/goodrelations/v1#ID">
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#String"/>
<rdfs:domain rdf:resource="http://purl.org/goodrelations/v1#Invoice"/>

</owl:DataProperty>
<owl:DataProperty rdf:about="http://purl.org/goodrelations/v1#date">
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#Date"/>
<rdfs:domain rdf:resource="http://purl.org/goodrelations/v1#Invoice"/>

</owl:DataProperty>
<owl:DataProperty rdf:about="http://purl.org/goodrelations/v1#totalAmount">
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#float"/>
<rdfs:domain rdf:resource="http://purl.org/goodrelations/v1#Invoice"/>

</owl:DataProperty>
</owl:Class>
<DatatypeDefinition>
<Datatype IRI="priceType"/>
<DataOneOf>
<Literal datatypeIRI="http://www.w3.org/2001/XMLSchema#String">SP</Literal>
<Literal datatypeIRI="http://www.w3.org/2001/XMLSchema#String">SRP</Literal>

</DataOneOf>
</DatatypeDefinition>
<owl:IrreflexiveProperty rdf:about="hasPriceSpecification"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasPriceSpecification"/>
<owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger">1
</owl:minCardinality>

</owl:Restriction>
…

</rdf:RDF>

Fig. 18 Second version of the conventional ontology schema (GameSaleSchema_V2.owl), on July 22, 2015

The second version of the conventional ontology schema and
the second version of each one the two conventional ontology
instance documents are shown in Figs.18, 21, and 22, respec-
tively. Figures 19 and 20 show the addition of the new class
“Invoice” and the definition of the new relationship “hasIn-
voice” between the two classes “Offering” and “Invoice”,
respectively, through the use of τOWL-Manager. The tem-
poral ontology schema is also updated by adding a new
slice related to the new version of the conventional ontology
schema, as shown in Fig. 23. Moreover, the temporal doc-
ument is updated, to include two new slices corresponding
to the two new conventional ontology instance documents,

as shown in Fig. 24. The squashed version of the updated
temporal document that consequently can be generated by
the Temporal Instances Generator tool is similar to docu-
ments provided in Figs. 12 and 16. Notice that changes are
presented in red bold type, in Figs. 18, 21, 22, 23, and 24.

The sequence of primitives that have been specified by
the KBA and performed by the “Temporal Ontology Schema
Change Manager” (see Fig. 17) on the temporal ontology
schema (GameSaleTemporalSchema.xml, Fig. 10), on the
first version of the conventional ontology schema (Game-
SaleSchema_V1.owl, Fig. 4), on the first version of the con-
ventional ontology instance document (GameSales_V1.rdf,

123

156 A. Zekri et al.

Fig. 19 Adding the new class “Invoice” to the conventional ontology schema

Fig. 20 Adding the new relationship “hasInvoice” between the class “Offering” and the class “Invoice”

Fig. 1) and on the second version of the conventional
ontology instance document (GameSales_V2.rdf, Fig. 2), to
update the temporal ontology schema (see Figure 23) and
the temporal document (see Fig. 24) and to produce the

second version of the conventional ontology schema (Game-
SaleSchema_V2.owl, Fig. 18), the third version of the con-
ventional ontology instance document (GameSales_V3.rdf,
Fig. 21), and the fourth version of the conventional ontol-

123

τOWL: A Systematic Approach to Temporal... 157

…
<gr:Offering rdf:ID="Offering_9223752">
<gr:hasPriceSpecification>

<gr:UnitPriceSpecification rdf:ID="UnitPriceSpecification_9223752_1">
<gr:hasCurrency>USD</gr:hasCurrency>
<gr:hasCurrencyValue>29.99</gr:hasCurrencyValue>
<gr:priceType>SRP</gr:priceType>
…

</gr:UnitPriceSpecification>
</gr:hasPriceSpecification>
<hasInvoice/>
…

</gr:Offering>
<Invoice>
<ID/>
<date/>
<totalAmount/>

</Invoice>
…

Fig. 21 GameSales_V3.rdf”: the second version of the conventional ontology instance document “GameSales_V1.rdf”, on July 22, 2015

…
<gr:Offering rdf:ID="Offering_9223752">
<gr:hasPriceSpecification>
<gr:UnitPriceSpecification rdf:ID="UnitPriceSpecification_9223752_1">
<gr:hasCurrency>USD</gr:hasCurrency>
<gr:hasCurrencyValue>27.25</gr:hasCurrencyValue>
<gr:priceType>SP</gr:priceType>
…

</gr:UnitPriceSpecification>
</gr:hasPriceSpecification>
<hasInvoice/>
…

</gr:Offering>
<Invoice>
<ID/>
<date/>
<totalAmount/>

</Invoice>
…

Fig. 22 GameSales_V4.rdf”: the second version of the conventional ontology instance document “GameSales_V2.rdf”, on July 22, 2015

<?xml version=”1.0” encoding=”UTF-8”?>
<temporalOntologySchema>
<conventionalOntologySchema>
<sliceSequence>
<slice location=”GameSaleSchema_V1.owl” begin=”2015-06-15” />
<slice location=”GameSaleSchema_V2.owl” begin=”2015-07-22” />

</sliceSequence>
</conventionalOntologySchema>
<ontologyAnnotationSet>
<sliceSequence>
<slice location=”GameSaleAnnotations_V1.xml” begin=”2015-06-15” />

</sliceSequence>
</ontologyAnnotationSet>
</temporalOntologySchema>

Fig. 23 Temporal ontology schema (GameSaleTemporalSchema.xml), on July 22, 2015

<?xml version=”1.0” encoding=”UTF-8”?>
<td:temporalRoot temporalSchemaLocation=”GameSaleTemporalSchema.xml” />
<td:sliceSequence>
<td:slice location=”GameSales_V1.rdf” begin=”2015-06-15” />
<td:slice location=”GameSales_V2.rdf” begin=”2015-07-08” />
<td:slice location=”GameSales_V3.rdf” begin=”2015-07-22” />
<td:slice location=”GameSales_V4.rdf” begin=”2015-07-22” />

</td:sliceSequence>
</td:temporalRoot>

Fig. 24 Temporal document (GameSaleTemporalDocument.xml), on July 22, 2015

123

158 A. Zekri et al.

ogy instance document (GameSales_V4.rdf, Fig. 22), which
are valid to “GameSaleSchema_V2.owl” (see Fig. 18), could
make up the following transaction:

Notice that the transaction time associated to the execution
of the transaction above is July 22, 2015, which is used by the
system as value of the attribute “begin” of the new <slice/>
element, corresponding to the new conventional ontology
schema version, in the temporal ontology schema file.

Notice also that “GameSales_V3.rdf” and “GameSales
_V4.rdf” are the results of the effects of schema changes
on instances (i.e., the results of schema change propa-
gation), to adapt all existing instances, stored in “Game-
Sales_V1.rdf” and “GameSales_V2.rdf”, to the new schema
version “GameSaleSchema_V2.owl”. Indeed, after creating
“GameSales_V3.rdf” as a copy of “GameSales_V1.rdf” and
“GameSales_V4.rdf” as a copy of “GameSales_V2.rdf”,
the two following XQuery Update Facility [34] statements
could be executed on “GameSales_V3.rdf” and “Game-
Sales_V4.rdf”, respectively, to achieve the purpose:

These two XQuery Update Facility statements must actu-
ally be automatically derived by the “Temporal Ontology
Schema Change Manager” as a part of the semantics of

the schema change primitives. It is not part of what the
KBA puts in his/her schema change transaction, but the sys-
tem generates and adds it to the transaction that is actually
executed.

To recap, on July 22, 2015, our τOWL repository is thus
composed of the following nine resources: two successive
versions of the conventional ontology schema (shown in
Figs. 4 and 18, respectively), four versions of the conven-
tional ontology instance document (shown in Figs. 1, 2, 21,
and 22, respectively), one version of the ontology annotation
document (shown in Fig. 7), the temporal document (shown
in Fig. 24), and the temporal ontology schema (shown in
Fig. 23).

123

τOWL: A Systematic Approach to Temporal... 159

5 Related Work Discussion

Time dimension(s) are explicitly added to Semantic Web
languages and formalisms (e.g., RDF, OWL, and SPARQL)
to represent time in semantic annotations, to build temporal
ontologies, and to support temporal querying and reasoning.
Furthermore, schema versioning is being integrated into the
Semantic Web technologies for historical and legal reasons.
An annotated bibliography of the previous work on these
topics is presented in Grandi [16] and an excellent recent
survey on ontology evolution and versioning approaches can
be found in Zablith et al. [38]. Thus, several works have
been proposed in the literature to manage temporal ontol-
ogy instance versioning and/or temporal ontology schema
versioning.

As for temporal ontology instance versioning, there are
various contributions that propose to represent and manage
temporal data in the Semantic Web.

In Gutiérrez et al. [20], the authors present a compre-
hensive framework to incorporate temporal reasoning into
RDF, yielding temporal RDF graphs. They define a syntactic
notion of temporal RDF graphs. Furthermore, [1] propose
CHRONOS, a powerful system for reasoning over temporal
information inOWLontologies. Since qualitative representa-
tions are very common in natural language expressions such
as in free text or speech and can be proven to be valuable in
the SemanticWeb, the authors choose to represent both qual-
itative temporal (i.e., informationwhose temporal extents are
unknown, such as “before” and“after” for temporal relations)
and quantitative information (i.e., where temporal informa-
tion is defined precisely, e.g., using dates). With regard to
those approaches, we are not interested in temporal reason-
ing (and, thus, in spatio-temporal reasoning). In our present
approach, reasoning facilities can be added as an external
stratum on top of the τOWL framework: although no time-
related concepts can be defined within an ontology version,
temporal reasoning could be supported by combining con-
cepts present in different ontology versions (as retrieved by
our system) taking into account the timestamps of the ver-
sions.

Moti [26] proposes a logic-based approach to introduce
valid time into RDFS and OWL 2 languages. An extension
of SPARQL that can be used to query temporal RDF(S) and
OWL 2 is also presented. In Zamborlini et al. [39], two
complementary proposals for modeling temporally chang-
ing information in OWL are presented. They are based on
the perdurantist theory and benefit from results coming from
the discipline of Formal Ontology, to restrict the appropriate
use of the proposed frameworks.With regard to [26] and [39],
our approach does not deal with modeling of time inside the
ontology. It just supports temporal versioning.

InO’Connor andDas [27], the authors present amethodol-
ogy and a set of tools for representing and querying temporal

information in OWL ontologies. Their approach uses a light-
weight temporal model to encode the temporal dimension
of data. It also uses the OWL-based Semantic Web Rule
Language (SWRL) and the SWRL-based OWL query lan-
guage (SQWRL) to reason with and query the temporal
information represented using the proposed model. By now,
our approach does not support temporally-aware semantic
rules. Milea et al. [25], the authors propose a new lan-
guage, called temporal OWL (tOWL), which is an extension
of the Ontology Web Language Description Logics (OWL-
DL) to the temporal aspect. It enables the representation
of time and change in dynamic domains. Through a lay-
ered approach, they introduce three extensions: (1) Concrete
Domains, allowing the representation of restrictions using
concrete domain binary predicates, (2) Temporal Represen-
tation, introducing timepoints, relations between timepoints,
intervals, and Allen’s 13 interval relations into the language,
and (3) TimeSlices/Fluents, implementing a perdurantist
view on individuals and enabling the representation of com-
plex temporal aspects, such as process state transitions. The
main purpose of our approach is simply the support of the
past ontology versions, which could be accessed via time-
slice queries. We think that supporting temporal ontology
versions is very interesting for several purposes and in dif-
ferent areas. The problem of not having temporal versions is
that, for instance, if a third party has to resolve now a contro-
versy on some item sold online, it must be able to individuate
the offer details valid at the time of the purchase even if they
have been changed thereafter.

Notice that in [37], the authors present the annotation
features of OWL 2 by showing that this latter allows for
annotations on ontologies, entities, axioms, and so on. In our
work, we took another direction from using OWL 2 annota-
tion features, because we rather wanted to exploit the power
of the τXSchema approach (e.g., including the exploitation
of a τXSchema-like underlying infrastructure and suite of
tools).

As for ontology schema versioning, there are also several
work which have dealt with such an issue [2,12,13,15,17,
18,21,24,29,31,40–44].

Heflin and Pan [21] show that the Semantic Web needs
a formal semantics for the various kinds of links between
ontologies and other documents, and then provide a model
theoretic semantics that takes into account ontology exten-
sion and ontology versioning. Völkel and Groza [31] present
an RDF-centric versioning approach and an implementation
called SemVersion. The proposed approach separates the
management aspects from the versioning core functionality.
SemVersion provides structural and semantic versioning for
RDFmodels and RDF-based ontology languages like RDFS,
considering blank node enrichment as a technique to identify
the blank nodes in the versioned models. Bedi and Marwaha
[2] introduce an approach which combines the concepts of

123

160 A. Zekri et al.

temporal frame and slot versioning with the ontology to cre-
ate temporal tagged ontologies with embedded versioning.
The authors also propose to enhance the existing OWL to
enable the creation of temporal tagged OWL ontologies: two
new tags, “rdf:Validity” and “rdf:Timestamp”, are introduced
and a scheme is presented for the value of the “rdf:Id” and
“rdf:Resource” tags to make the temporal tagged ontologies
consistent with the non-temporal ontologies. Kondylakis and
Plexousakis [24] propose a solution that allowsquery answer-
ing in data integration systems under evolving ontologies
without mapping redefinition. This is achieved by rewriting
queries among ontology versions and then forwarding them
to the underlying data integration systems to be answered.

The works, which are more strictly related with our
approach, are [12,13,15,17,18,29,40–44].

Grandi [12] provides a multi-temporal RDF database
model; a database consists in a set ofRDF triples timestamped
along the valid and/or transaction time axes. The data model
is equipped with manipulation operations which allow the
KBA to maintain a multi-temporal RDF database to manage
temporal versions of an ontology. Grandi [15] focuses on
temporal versioning of light-weight ontologies expressed in
RDF(S) and show how the multi-temporal RDF data model
proposed in Grandi [12] can be used to support RDF(S)
ontology versioning. The data model is equipped with a
complete set of primitive ontology change operations, which
are defined in terms of low-level updates acting on RDF
triples. When used within the transaction template, which
has also been introduced, the proposed ontology changes
allow a KBA to define and manage temporal versions of an
RDF(S) ontology. Similarly to [12] and [15], our present
work handles schema versioning of temporal ontologies but
in a different temporal Semantic Web framework. In partic-
ular, whereas such approaches introduce ad hoc solutions
requiring an extension of the Semantic Web standards, our
proposal relies on the current OWL 2 recommendation and
is fully compliant with off-the-shelf SemanticWeb standards
and available ontology specifications.

In [13], the authors introduce “The Valid Ontology”
approach as a temporal extension of OWL. Indeed, they pro-
pose to use a single temporal XML document to represent
and store a multi-version ontology and use a temporal XML
query processor to efficiently extract valid OWL ontologies
from the XML document as temporal snapshots. The result
is an efficient ontology temporal versioning solution, relying
on the standard XML technology. Different from the τOWL
principled and flexible approach, “The Valid Ontology” con-
sists of an ad hoc solution, with a fixed version encoding and
timestamping scheme, without logical and physical indepen-
dence support, and without the provision of supporting tools.

Grandi [17] proposes a storage scheme based on a tem-
poral relation which can be used to represent and manage
the class structure of a multi-version ontology (embody-

ing a tree-shaped class hierarchy) in a temporal relational
database. Furthermore, the author provides the definition of
primitive operations which can be used for the maintenance
of a multi-version ontology in such a framework. Grandi
[18] extends this work by considering ontologies with a class
hierarchy structured as a general directed graph, that is also
supporting multiple inheritance and intersection classes, and
showing how multi-version ontologies must be dealt with
for the processing of ontology-based personalization queries.
Contrarily to [17] and [18], we deal with the temporal multi-
version management of a fully fledged ontology, not only of
its class hierarchy. Therefore, our approach is much more
general, as it extends to multi-version temporal management
all kinds of Semantic Web applications where ontologies are
needed, not only ontology-based personalization.

Jaziri et al. [23] provide an approach for managing ontol-
ogy versioning. The authors state that their approach (1)
keeps track of ontology versions and applied changes, (2)
creates links between versions, and (3) maintains coherence
(which means here structural consistency) of ontology ver-
sions. Notice that according to this approach, in some cases,
a schema change applied to an ontology version does not
lead to a new ontology version, but updates such a version
with a destructive manner. In our approach, when applying
a sequence of schema change operations to a given ontology
schema version (always the current one), a new schema ver-
sion will be created and the “evolved” one is kept unchanged.
As for linking ontology versions, our approach links ontol-
ogy schemaversions automatically and easily through the use
of the <slice/> elements in the temporal ontology schema;
ontology instance document versions are also linked by
<slice/> elements of the temporal document. As for struc-
tural consistency, our approach guarantees that each newly
created ontology schema/instance version is structurally
correct.

Sassi et al. [29] focus on the relevance of ontologyversions
produced by changes, which is evaluated according to four
criteria (i.e., conceptualization, usage frequency, abstraction,
and completeness), and introduce an “optimisation process”
to reduce the number of versions to retain: when a maxi-
mum is reached, the least relevant versions are deleted. The
maximum number of versions and the selection of relevance
criteria to be applied are managed by the tool user. In our cur-
rent work, we deal neither with ontology version relevance,
nor with reducing the number of ontology schema versions.

Zekri et al. [40] introduce τOWL, a τXSchema-like frame-
work, which allows creating a temporal OWL 2 ontology
from a conventional OWL 2 ontology and a set of logical and
physical annotations. This framework ensures logical and
physical data independence, since it (1) separates conven-
tional schema, logical annotations, and physical annotations
and (2) allows each one of these three components to be
changed independently and safely. The present work extends

123

τOWL: A Systematic Approach to Temporal... 161

[40] by (1) proposing a general approach for schema ver-
sioning in τOWL and (2) focusing on the proposition of
a set of change primitives for supporting the evolution
of both temporal and conventional ontology schema. Our
approach helps KBAs in themanagement of the conventional
schema changes in τOWL-based Semantic Web repositories
and guarantees the maintenance of a full history of evolv-
ing conventional ontology instances and schemata. Zekri
et al. [41] extend the work presented in [40] by showing
how, in the τOWL framework, temporal ontology instance
versioning could be managed in the presence of tempo-
ral ontology schema versioning, simultaneously and in a
consistent manner. In [42], the authors propose two com-
plete sets of schema change primitives, one for changing
conventional ontology schema and the other for updating
temporal ontology schema, in the τOWL context. Zekri et
al. [44] propose an approach, which extends the contribu-
tion of [42], for managing time-varying knowledge, since
an ontology can be used for knowledge management. Zekri
et al. [43] present τOWL-Manager, a prototype tool for
defining temporal ontology schema and managing tempo-
ral versioning of temporal ontology instances, in the τOWL
framework. Our present work extends [43] by adding schema
versioning support to τOWL-Manager and showing its func-
tionalities.

6 Conclusion

In this paper, we proposed τOWL, a τXSchema-like frame-
work, which allows creating a temporal OWL 2 ontology
from a conventional OWL 2 ontology and a set of log-
ical and physical annotations. τOWL ensures logical and
physical data independence, since it (1) separates conven-
tional schema, logical annotations, and physical annotations
and (2) allows each one of these three components to be
changed independently and safely. Furthermore, adopting
τOWL provides for a low-impact solution, since it requires
neither modifications of existing Semantic Web documents,
including ontology specifications, nor extensions to the
OWL 2 recommendation and Semantic Web standards. The
extension of OWL 2 to temporal and versioning aspects is
performedwithout having to depend on approval of proposed
extensions by standardization committees (and on upgrade
of existing tools conforming to standards to comply with
approved extensions).

Furthermore, we have extended τOWL to support tem-
poral schema versioning, by introducing an approach for
defining and evolving temporal ontologies, proposing two
complete set of primitives for changing both conventional
and temporal ontology schema, and illustrating such an
approach and such primitives through a running example.
To demonstrate the feasibility of our τOWL approach, we

have also proposed τOWL-Manager, a tool for the manage-
ment of temporal ontologies. It supports temporal versioning
of both ontology instances and ontology schema. It allows
the KBA to (1) construct and change temporal ontology
schema and (2) create and update ontology instance docu-
ments, within a schema versioning context. Our approach
and our tool assist the KBA in his/her tasks of specifying and
maintaining conventional ontology schema in τOWL-based
repositories. They also allow obtaining a complete history of
both conventional ontology schema and instances.

Currently, we are extending the present work by (1)
defining a complete set of schema change primitives for
the ontology annotation document which stores logical and
physical annotations specified on the conventional ontology
schema and (2) completing the development of τOWL-
Manager to support all schema change primitives proposed in
this paper and also the new primitives for changing ontology
annotation documents. In the next future, we plan to propose
high-level schema change operations, since they are more
user-friendly that schema change primitives; a high-level
operation is a valid and optimized sequence of primitives,
which correspond to frequent schema evolution needs and
allows expressing complex changes in a more compact way
[6]. Moreover, we plan to deeply study conventional ontol-
ogy schema change propagation and how the system could
generate automatically the optimized list of XQuery Update
Facility statements associated to every schema change trans-
action. Finally, we intend to study querying instances of
τOWL ontologies, under schema versioning. We could start
from T-SPARQL language [14], which allows expressing
temporal queries on multi-temporal RDF triples in an envi-
ronment which contains a single conventional ontology
schema version, and extend it with necessary features to sup-
port queries involving several schema versions [16].

References

1. Anagnostopoulos E, Batsakis S, Petrakis EGM(2013)CHRONOS:
a reasoning engine for qualitative temporal information in OWL.
In: Proceedings of the 17th international conference in knowledge-
based and intelligent information and engineering systems (KES
2013), Kitakyushu, Japan, 9–11 September, pp 70–77

2. Bedi P, Marwaha S (2007) Versioning OWL ontology using tem-
poral tags. In: Proceedings of the 21st international conference on
computer, electrical, systems science and engineering (CESSE’07),
Vienna, Austria, 25–27 May, pp 332–337

3. Berners-Lee T, Cailliau R, Luotonen A, Nielsen HF, Secret A
(1994) The World Wide Web. Commun ACM 37(8):76–82

4. Berners-Lee T, Hendler J, Lassila O (2001) The semantic web. Sci
Am 284(5):34–43

5. BrahmiaZ,Grandi F,OliboniB,BouazizR (2014a) Schema change
operations for full support of schema versioning in the τXSchema
framework. Int J Inf Technol Web Eng 9(2):20–46

6. Brahmia Z, Grandi F, Oliboni B, Bouaziz R (2014b) High-level
operations for changing temporal schema, conventional schema

123

162 A. Zekri et al.

and annotations, in the τXSchema framework. Technical Report
TR-96, TimeCenter, 56 pp, January. http://timecenter.cs.aau.dk/
TimeCenterPublications/TR-96.pdf. (retrieved: April, 2016)

7. BrahmiaZ,Grandi F,OliboniB,BouazizR (2015) Schemaversion-
ing. In: Khosrow-PourM (ed) Encyclopedia of information science
and technology, 3rd edn. IGI Global, Hershey, PA, pp 7651–7661.
doi:10.4018/978-1-4666-5888-2.ch754

8. BurnsT, FongE, JeffersonD,KnoxR,MarkL,ReedyCet al (1986)
Reference model for DBMS standardization, database architecture
framework task group (DAFTG) of the ANSI/X3/SPARC database
system study group. SIGMOD Rec 15(1):19–58

9. Currim F, Currim S, Dyreson CE, Snodgrass RT (2004) A tale of
two schemas: creating a temporal XML schema from a snapshot
schema with tXSchema. In: Proceedings of the 9th international
conference on extending database technology (EDBT) 2004, Her-
aklion, Crete, Greece, 14–18 March, pp 348–365

10. Dyreson CE, Grandi F (2009) Temporal XML. In: Liu L, ÖzsuMT
(eds) Encyclopedia of database systems. Springer, US, pp 3032–
3035

11. Grandi F (2002) A relational multi-schema data model and query
language for full support of schema versioning. In: Proceedings of
SEBD 2002—national conference on advanced database systems,
Isola d’Elba, Italy, 19–21 June, pp 323–336

12. Grandi F (2009)Multi-temporal RDF ontology versioning. In: Pro-
ceedings of the 3rd international workshop on ontology dynamics
(IWOD 2009), Washington DC, USA, 26 October. CEUR work-
shop proceedings (CEUR-WS.org), vol 519. http://ceur-ws.org/
Vol-519/grandi.pdf. (retrieved: April, 2016)

13. Grandi F, Scalas MR (2009) The valid ontology: a simple OWL
temporal versioning framework. In: Proceedings of the 3rd interna-
tional conference on advances in semantic processing (SEMAPRO
2009), Sliema, Malta, 11–16 October, pp 98–102

14. Grandi F (2010) T-SPARQL: a TSQL2-like temporal query lan-
guage for RDF. In: Proceedings of the 1st international workshop
on querying graph structured data (GraphQ 2010), Novi Sad, Ser-
bia, 20 September, pp 21–30

15. Grandi F (2011) Light-weight ontology versioning with multi-
temporal RDF schema. In: Proceedings of the 5th international
conference on advances in semantic processing (SEMAPRO2011),
Lisbon, Portugal, 20–25 November, pp 42–48

16. Grandi F (2012) An annotated bibliography on temporal and
evolution aspects in the semantic web. SIGMOD Rec 41(4):18–
21

17. Grandi F (2013) Dynamic multi-version ontology-based person-
alization. In: Proceedings of the 2nd international workshop on
querying graph structured data (GraphQ 2013), Genoa, Italy, 22
March, pp 224–232

18. Grandi F (2016) Dynamic class hierarchy management for
multi-version ontology-based personalization. J Comput Syst Sci
82(1):69–90

19. Guarino N (ed) (1998) Formal ontology in information systems.
IOS Press, Amsterdam

20. Gutiérrez C, Hurtado CA, Vaisman AA (2007) Introducing time
into RDF. IEEE Trans Knowl Data Eng 19(2):207–218

21. Heflin J, Pan Z (2004) A model theoretic semantics for ontology
versioning. In: Proceedings of the 3rd international semantic web
conference (ISWC 2004), Hiroshima, Japan, 7–11 November, pp
62–76

22. Horridge M, Bechhofer S (2011) The OWL API: a Java API for
OWL ontologies. Semant Web 2:11–21

23. Jaziri W, Sassi N, Gargouri F (2010) Approach and tool to evolve
ontology and maintain its coherence. Int J Metadata Semant Ontol
5(2):151–166

24. Kondylakis H, Plexousakis D (2013) Ontology evolution without
tears. J Web Semant 19:42–58

25. Milea V, Frasincar F, Kaymak U (2012) tOWL: a temporal web
ontology language. IEEETransSystManCybernPartB42(1):268–
281

26. Motik B (2010) Representing and querying validity time in RDF
and OWL: a logic-based approach. In: Proceedings of the 9th inter-
national semantic web conference (ISWC 2010), Shanghai, China,
7–11 November, pp 550–565

27. O’Connor MJ, Das AK (2011) A method for representing and
querying temporal information in OWL. Biomedical engineer-
ing systems and technologies, volume 127 of communications in
computer and information science. Springer-Verlag, Heidelberg,
Germany, pp 97–110

28. Rogozan D, Paquette G (2005) Managing ontology changes on the
semantic web. In: Proceedings of the 2005 IEEE/WIC/ACM inter-
national conference on web intelligence (WI 2005), Compiegne,
France, 19–22 September, pp 430–433

29. Sassi N, JaziriW,Alharbi S (2015) Supporting ontology adaptation
and versioning based on a graph of relevance. J Exp Theor Artif
Intell. doi:10.1080/0952813X.2015.1056239

30. SnodgrassRT,DyresonCE,CurrimF,CurrimS, Joshi S (2008)Val-
idating quicksand: schema versioning in τXSchema. Data Knowl
Eng 65(2):223–242

31. Völkel M, Groza T (2006) SemVersion: an RDF-based ontol-
ogy versioning system. In: Proceedings of the IADIS inter-
national conference on WWW/Internet (ICWI 2006), Murcia,
Spain, 5–8 October, vol 1, pp 195–202. http://www.xam.de/2006/
10-SemVersion-ICIW2006.pdf. (retrieved: April, 2016)

32. W3C (2004a) XML schema part 0: primer second edition. W3C
Recommendation, 28 October 2004. http://www.w3.org/TR/2004/
REC-xmlschema-0-20041028/. (retrieved: April, 2016)

33. W3C (2004b) RDF/XML syntax specification (Revised). W3C
Recommendation, 10 February 2004. http://www.w3.org/TR/
2004/REC-rdf-syntax-grammar-20040210/. (retrieved: April,
2016)

34. W3C (2011) XQuery update facility 1.0. W3C Candidate Rec-
ommendation, 17 March 2011. http://www.w3.org/TR/2011/
REC-xquery-update-10-20110317/. (retrieved: April, 2016)

35. W3C (2012a) OWL 2 web ontology language—primer (2nd Edi-
tion).W3CRecommendation, 11 December 2012. http://www.w3.
org/TR/owl2-primer/. (retrieved: April, 2016)

36. W3C (2012b) OWL 2 web ontology language—document
overview (2nd Edition). W3C Recommendation, 11 December
2012. http://www.w3.org/TR/owl2-overview/. (retrieved: April,
2016)

37. W3C (2012c) OWL 2 web ontology language—new features
and rationale (2nd Edition). W3C Recommendation, 11 Decem-
ber 2012. http://www.w3.org/TR/owl2-new-features/. (retrieved:
April, 2016)

38. Zablith F, AntoniouG, d’AquinM, Flouris G, Kondylakis H,Motta
E et al (2015) Ontology evolution: a process-centric survey. Knowl
Eng Rev 30(1):45–75

39. Zamborlini V, Guizzardi G (2010) On the representation of tempo-
rally changing information in OWL. In:Workshops proceedings of
the 14th IEEE international enterprise distributed object comput-
ing conference (EDOCW 2010), Vitória, Brazil, 25–29 October,
pp 283–292

40. Zekri A, Brahmia Z, Grandi F, Bouaziz R (2014) τOWL: a
framework for managing temporal semantic web documents.
In: Proceedings of the 8th international conference on advances
in semantic processing (SEMAPRO 2014), Rome, Italy, 24–28
August, pp 33–41

41. Zekri A, Brahmia Z, Grandi F, Bouaziz R (2015a) τOWL: a frame-
work for managing temporal semantic web documents supporting
temporal schema versioning. Int J Adv Softw 8(1&2):85–102
(IARIA)

123

http://timecenter.cs.aau.dk/TimeCenterPublications/TR-96.pdf
http://timecenter.cs.aau.dk/TimeCenterPublications/TR-96.pdf
http://dx.doi.org/10.4018/978-1-4666-5888-2.ch754
http://ceur-ws.org/Vol-519/grandi.pdf
http://ceur-ws.org/Vol-519/grandi.pdf
http://dx.doi.org/10.1080/0952813X.2015.1056239
http://www.xam.de/2006/10-SemVersion-ICIW2006.pdf
http://www.xam.de/2006/10-SemVersion-ICIW2006.pdf
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.w3.org/TR/2011/REC-xquery-update-10-20110317/
http://www.w3.org/TR/2011/REC-xquery-update-10-20110317/
http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-new-features/

τOWL: A Systematic Approach to Temporal... 163

42. ZekriA,BrahmiaZ,Grandi F,BouazizR (2015b)Temporal schema
versioning in τOWL. In:Proceedings of the 2nd international con-
ference on knowledge management, information and knowledge
systems (KMIKS 2015), Hammamet, Tunisia, 16–18 April, pp 81–
92

43. ZekriA,BrahmiaZ,Grandi F, BouazizR (2015c) τOWL-Manager:
a tool for managing temporal semantic web documents in the
τOWL framework. In: Proceedings of the 9th international con-
ference on advances in semantic processing (SEMAPRO 2015),
Nice, France, 19–24 July, pp 56–64

44. Zekri A, Brahmia Z, Grandi F, Bouaziz R (2016) Temporal schema
versioning in τOWL: a systematic approach for the management
of time-varying knowledge. Accepted for publication on Journal
of Decision Systems

123

	OWL: A Systematic Approach to Temporal Versioning of Semantic Web Ontologies
	Abstract
	1 Introduction
	2 Motivation
	3 The τOWL Framework
	3.1 Goals
	3.2 Architecture
	3.3 τOWL-Manager
	3.4 Running Example

	4 Management of Temporal Schema Versioning in τOWL
	4.1 Temporal Schema Versioning Process
	4.2 Schema Change Operations
	4.3 Schema Versioning Support in τOWL-Manager
	4.4 Running Eample Reprise

	5 Related Work Discussion
	6 Conclusion
	References

