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Abstract Fuzzy Description Logics (DLs) provide a means
for representing vague knowledge about an application
domain. In this paper, we study fuzzy extensions of con-
junctive queries (CQs) over the DL SROIQ based on finite
chains of degrees of truth. To answer such queries, we extend
a well-known technique that reduces the fuzzy ontology to a
classical one, and use classical DL reasoners as a black box.
We improve the complexity of previous reduction techniques
for finitely valued fuzzy DLs, which allows us to prove tight
complexity results for answering certain kinds of fuzzy CQs.
We conclude with an experimental evaluation of a prototype
implementation, showing the feasibility of our approach.

1 Introduction

Description Logics (DLs) are a family of knowledge rep-
resentation languages with unambiguous syntax and well-
defined semantics that are widely used to represent the
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conceptual knowledge of an application domain in a struc-
tured and formally well-understood manner.

DLs have been successfully employed to formulate
ontologies for a range of knowledge domains, in particular
for the bio-medical sciences. Prominent examples of ontolo-
gies in these areas are the Gene Ontology,1 and the ontology
SnomedCT.2 Arguably the largest success of DLs to date
is that they provide the formal foundation for the standard
web ontology language OWL, a milestone for the Semantic
Web. More precisely, the current version of the web ontol-
ogy language, OWL 2, is based on the very expressive DL
SROIQ.3

In DLs, knowledge is represented through concepts that
describe collections of objects (that is, correspond to unary
predicates from first-order logic), and roles that define rela-
tions between pairs of objects (binary predicates). To encode
the actual knowledge of the domain, DLs employ different
kinds of axioms. These axioms restrict the possible interpre-
tations of the concepts and roles.

For example, we can express the fact that cpuA is an
overused CPU, and that every server that has a part that
is overused is a server with limited resources through the
axioms

(CPU � Overused)(cpuA) (1)

Server � ∃hasPart.Overused

� ServerWithLimitedResources (2)

An axiom of the form (1) is called an assertion, while (2)
is a general concept inclusion (GCI).

1 http://geneontology.org/.
2 http://ihtsdo.org/snomed-ct/.
3 http://www.w3.org/TR/owl2-overview/.
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It has been widely argued that many application domains
require the representation of vague concepts, for which it is
impossible to precisely characterize the objects that belong
to these concepts, and distinguish them from those who do
not belong to them [40]. A simple example of such a concept
is that of an overused CPU. While it is easy to state that a
CPU that is running permanently at its maximum capacity is
overused, and one that is not being used at all is not overused,
there is no precise usage point where a CPU starts (or stops)
being overused. Fuzzy Description Logics have been pro-
posed to alleviate this problem. In these logics, objects are
assigned a membership degree, typically a number between
0 and 1, expressing “how much” they belong to a given con-
cept.

In general, the higher the degree of an object, the more
it belongs to the concept. To represent vague knowledge,
axioms are also extended to restrict the possible degrees that
the interpretations may use.

Thus, one can express that cpuA is overused with degree
at least 0.8 through the assertion Overused(cpuA) � 0.8.

Formally, fuzzy DLs generalize classical DLs by inter-
preting concepts and roles as fuzzy unary predicates and
fuzzy binary predicates, respectively. Hence, fuzzy DLs can
be seen as sublogics of fuzzy first-order logic. Adopting
this view, one can use a triangular norm (t-norm) and its
associated operators to interpret the different logical con-
structors. Each t-norm then defines a specific family of fuzzy
DLs.

It has been shown that reasoning in fuzzy DLs easily
becomes undecidable, if infinitelymanymembership degrees
are allowed [1,12]. In fact, these undecidability results hold
even for relatively inexpressive fuzzy DLs. This has moti-
vated the study of finitely valued fuzzy DLs.

It is known that the complexity of standard reasoning
tasks in expressive DLs is not affected by the use of t-norm-
based finitely valued semantics [13,14]. Unfortunately, the
automata-based techniques exploited in [13] cannot be eas-
ily adapted to obtain complexity bounds for the problem
of answering conjunctive queries in these logics. Moreover,
despite providing optimal complexity bounds, automata-
based methods are not used in practice due to their bad
best-case behavior.

A different approach for reasoning in the presence of
finitely many membership degrees is crispifying; i.e., trans-
forming a finitely valued ontology into an “equivalent”
classical ontology, from which the relevant membership
degrees can be read [2,4,11,37].

Reasoning in finitely valued fuzzy DLs is thus reduced to
reasoning in classical DLs, for which very efficient methods
have already been developed and implemented. The main
drawback of the translation described in [4,11] is that it may
introduce an exponential blow-upof the ontology, thus affect-
ing the efficiency of the overall method.

In this paper, we adapt the crispification approach for
answering conjunctive queries in expressive finitely valued
fuzzy DLs. The problem of answering conjunctive queries
has recently received much attention as a powerful means to
access facts encoded in an ontology. For example, using a
fuzzy conjunctive query it is possible to ask for all pairs of
servers and CPUs such that the CPU is an overused part (to
degree at least 0.6) of the server as follows:

{Server(x) � 1, hasPart(x, y) � 1, CPU(y) � 1,

Overused(y) � 0.6}.

The crispification approach allows us to effectively answer
conjunctive queries over finitely valued ontologies, by
reusing the methods developed for the classical case. Once
the ontology is crispified, this approach calls a classical con-
junctive query answering engine as a black-box procedure.
Thus, any optimization developed for the classical case auto-
matically improves the performance for the finitely valued
scenario. What remains to be addressed is the exponential
blow-up of the ontology, if done according to [4,11]. We
strengthen our results by providing a linear preprocessing
step that avoids the exponential blow-up produced by this
crispification. Using this preprocessing of the finitely val-
ued ontology, we can guarantee that the classical ontology
produced is only polynomially larger than the original input.
In particular, this means that the classical query answering
engine becomes able to provide answersmore efficiently over
classical ontologies of lesser size.
The contributions of this paper are the following:

– We prove that some of the previous crispification algo-
rithms [8,10,28] are incorrect for qualified number
restrictions (indicated by the letterQ in the name of DLs)
by means of a counter-example (see Example 8).

– We discuss a possible way to reduce such qualified num-
ber restrictions, but which depends on the presence of
so-called Boolean role constructors [34] in the DL (see
Sect. 3.1).

– We improve the reduction from finitely valued SROIN
ontologies to classical SROIN ontologies by introduc-
ing a linear normalization step (N stands for unqualified
number restrictions, see Sect. 3).

– We extend the crispification approach to answering dif-
ferent types of fuzzy conjunctive queries in the finitely
valued setting and we prove correctness of the obtained
methods (see Sect. 4). This approach works for any
known crispification algorithm, in particular specialized
ones that correctly reduce number restrictions.

– We assess the complexity of the presented conjunctive
query answering technique for a family of fuzzy exten-
sions of (sublogics of) SROIQwith regard to two types
of conjunctive queries that use membership degrees.
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– We provide an evaluation of a prototype implementation
of ourmethods over the LUBMontology benchmark [23]
based on the reduction-based DeLorean reasoner [5] for
fuzzy ontologies and a standard query answering rea-
soner for crisp ontologies (PAGOdA [42]).

A preliminary version of this paper can be found in [28],
where the incorrect reduction of number restrictions was still
used. We also extend here that earlier paper by full proofs
for the correctness of the crispification procedure, something
which has not been done before in the literature. Finally,
we optimize the crispification procedure described [28] to
eliminate an exponential blow-up inherent in some of the
previous crispification proposals.

The rest of the paper is structured as follows: Sect. 2 intro-
duces the syntax and semantics of finitely valued fuzzy DLs
based on SROIQ. Section 3 describes our improved reduc-
tion procedure from fuzzy to classical ontologies. Section 4
presents the actual reduction from fuzzy to classical conjunc-
tive query answering. Section 5 provides an evaluation of
a prototype implementation over (fuzzified versions of) the
LUBM ontology benchmark [23]. Finally, Sect. 6 presents
the current literature on reduction techniques and conjunc-
tive query answering for fuzzy DLs and Sect. 7 summarizes
the paper and mentions directions for future work.

2 Preliminaries

We first introduce a class of finite chains, together with some
basic operations over them. Afterwards, we formally define
the fuzzy extension of SROIQ, whose semantics is based
on these chains.

2.1 Finite Fuzzy Logics

The semantics of fuzzy DLs is based on truth structures
endowed with additional operators for interpreting the logi-
cal constructors. We consider arbitrary finite total orders (or
chains). Since the names of the truth degrees in a chain are
not relevant, we consider in the following only the canonical

chain of n elementsC :=
{
0, 1

n−1 , . . . ,
n−2
n−1 , 1

}
, in the usual

order. We denote C \{0} by C>0. We use the notation dnext
to refer to the direct upper neighbour of d in C , which is

the unique smallest element strictly larger than d. We now
consider tuples of the form (C ,⊗,⇒,�,⊕) that specify the
chain together with the operators used for interpreting con-
junction, implication, negation, and disjunction, respectively.

The largest family of operators used for fuzzy semantics is
based on t-norms, which are associative, commutative binary
operators that are monotonic in both arguments and have
identity 1. These binary operators, denoted by ⊗, are used
in mathematical fuzzy logic to interpret conjunction. The
residuum ⇒ is a binary operator which is used to interpret
implication. It is uniquely defined by the property that

(x ⊗ y) � z iff y � (x ⇒ z) for all x, y, z ∈ C .

The residual negation � is defined simply as �x := x ⇒ 0.
Finally, the t-conorm, used for the disjunction, is defined as
x ⊕ y := 1 − ((1 − x) ⊗ (1 − y)) for all x, y ∈ C . Two
prominent families of operators are based on the finite Gödel
t-norm and the finite Łukasiewicz t-norm (see Table 1). Note,
however, that we do not restrict our considerations to only
those logics listed in Table 1; our results are valid for any
semantics based on a finite t-norm.

An alternative to t-norm-based approaches for interpret-
ing the logical connectives in fuzzy logics is the so-called
Zadeh family of operators, shown in the first row of Table 1.
Intuitively, the Zadeh family can be seen as a combination of
the Gödel and the Łukasiewicz operators.

2.2 The Fuzzy DL C -SROIQ

We introduce finitely valued, fuzzy extensions of the classical
description logic SROIQ [25]—one of the most expres-
sive decidableDLswhich provides the directmodel-theoretic
semantics of the standardized ontology language for the
Semantic Web OWL 2. It has been shown that reasoning in
finitely valued fuzzy extensions of SROIQ can be reduced
to reasoning in classical SROIQ [3,10,37]. This reduction
technique will be considered in detail in Sect. 3.

Consider three countable and pairwise disjoint sets of indi-
vidual names NI, concept names NC, and role names NR.
Individual names refer to single elements of an application
domain, concept names describe sets of elements, and role
names binary relations between elements. Based on these,
complex concepts and roles can be built using different con-

Table 1 Families of fuzzy logic
operators

Name Conjunction x ⊗ y Disjunction x ⊕ y Negation �x Implication x ⇒ y

Zadeh min(x, y) max(x, y) 1 − x max(1 − x, y)

Gödel min(x, y) max(x, y)

{
1 if x = 0

0 if x > 0

{
1 if x � y

y if x > y

Łukasiewicz max(x + y − 1, 0) min(x + y, 1) 1 − x min(1 − x + y, 1)

123



58 S. Borgwardt et al.

structors. More precisely, a (complex) role is either of the
form r or r− (inverse role), for r ∈ NR, or it is the univer-
sal role u. Similarly, (complex) concepts are built inductively
from concept names using the following constructors:

– 
 (top concept),
– ⊥ (bottom concept),
– C � D (conjunction),
– C � D (disjunction),
– ¬C (negation),
– ∀r.C (value restriction),
– ∃r.C (existential restriction),
– {d1/a1, . . . , dm/am} (fuzzy nominal),
– ≥m r.C (at-least restriction),
– ≤m r.C (at-most restriction), and
– ∃r.Self (local reflexivity),

where C, D are concepts, r is a role, m is a natural number,
a1, . . . , am ∈ NI, and d1, . . . , dm ∈ C>0.

An ontology O consists of the intensional and the exten-
sional knowledge related to an application domain. The
intensional knowledge, i.e., the general knowledge about the
application domain, is expressed through

– a TBox T , a set of finitely many (fuzzy) general concept
inclusion (GCIs) axioms of the form 〈C � D � d〉,
where d ∈ C>0, and

– an RBox R, a finite set of role axioms, which are state-
ments of the following form:

– 〈r1 . . . rm � r � d〉 ((fuzzy) complex role inclusion),
– trans(r) (transitivity),
– dis(r1, r2) (disjointness),
– ref(r) (reflexivity),
– irr(r) (irreflexivity),
– sym(r) (symmetry), or
– asy(r) (asymmetry),

where r, r1, . . . , rm are roles and again d ∈ C>0.

The extensional knowledge, which refers to the particular
knowledge about specific facts or situations, is expressed
by an ABox A containing a finite set of statements about
individuals of the form:

– 〈C(a) �� d〉 (concept assertion),
– 〈r(a, b) �� d〉 (role assertion),
– a �= b (individual inequality assertion), or
– a = b (individual equality assertion),

where a, b ∈ NI, C is a concept, r is a role, d ∈ C , and
�� ∈ {�,�}. If �� is �, then we again consider only values
d > 0; dually, for assertions using � we assume that d < 1.

For any axiom of the form 〈α � 1〉, we may simply
write α. Finally, an ontology is a tuple O = (A, T ,R) con-
sisting of an ABox A, a TBox T , and an RBox R.

To ensure decidability of classical SROIQ, a set of
restrictions regarding the use of roles is imposed. For exam-
ple, transitive roles are not allowed to occur in number
restrictions (for more details see [25]). The same restrictions
are also adopted for fuzzy extensions of SROIQ [3,7,10].
However, they are not essential for our purposes, as all results
presented in this paper hold regardless of these restrictions
(except, of course, for the complexity results of Sect. 4.2).

The semantics of C -SROIQ is defined via interpre-
tations. A (fuzzy) interpretation is a pair I = (�I , ·I),
consisting of a non-empty set �I (called the domain) and
an interpretation function ·I that maps every individual
name a ∈ NI to an element aI ∈ �I , every concept
name A ∈ NC to a fuzzy set AI : �I → C , and every role
name r ∈ NR to a fuzzy binary relation rI : �I ×�I → C .
This function is extended to complex roles and complex
concepts as described in Table 2. Note that the usual
fuzzy semantics of existential and value restrictions, number
restrictions, and role inclusions formally require the compu-
tation of an infimum or supremum over all domain elements.
However, since C is a finite chain, in our case these are actu-
ally minima or maxima, respectively.

For the two-valued chain C = {0, 1}, we obtain the
semantics of classical SROIQ, since then all fuzzy opera-
tors correspond to their classical counterparts. In this setting,
it is more natural to treat CI as a subset of �I , given by its
characteristic function CI : �I → {0, 1} (and analogously

Table 2 Syntax and semantics of concepts in C -SROIQ

Concept C Semantics CI(x) for x ∈ �I


 1

⊥ 0

C � D CI(x) ⊗ DI(x)

C � D CI(x) ⊕ DI(x)

¬C �CI(x)

∀r.C inf
y∈�I

rI(x, y) ⇒ CI(y)

∃r.C sup
y∈�I

rI(x, y) ⊗ CI(y)

{d1/o1, . . . , dm/om}
{

di if x = oI
i , i ∈ {1, . . . , m}

0 otherwise

≥m r.C sup
y1,...ym∈�I

pairwise different

m
min
i=1

rI(x, yi ) ⊗ CI(yi )

≤m r.C inf
y1,...ym+1∈�I
pairwise different

�
(

m+1
min
i=1

rI(x, yi ) ⊗ CI(yi )

)

∃r.Self rI(x, x)

Role s Semantics sI(x, y) for x, y ∈ �I

r− rI(y, x)

u 1
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Table 3 Syntax and semantics
of axioms in C -SROIQ ABox Semantics

C(a) �� d CI(aI) �� d

r(a, b) �� d rI(aI , bI) �� d

a �= b aI �= bI

a = b aI = bI

TBox Semantics (for all x ∈ �I )

〈C � D � d〉 CI(x) ⇒ DI(x) � d

RBox Semantics (for all x, y, z ∈ �I )

〈r1 . . . rn � r � d〉
(

sup
x1,...,xn−1∈�I

rI1 (x, x1) ⊗ . . . ⊗ rIn (xn−1, y)

)
⇒ rI(x, y) � d

trans(r) rI(x, y) ⊗ rI(y, z) � rI(x, z)

dis(r1, r2) rI1 (x, y) = 0 or rI2 (x, y) = 0

ref(r) rI(x, x) = 1

irr(r) rI(x, x) = 0

sym(r) rI(x, y) = rI(y, x)

asy(r) rI(x, y) = 0 or rI(y, x) = 0

for roles). We call such an interpretation a classical interpre-
tation.

An ontology is satisfied by a fuzzy interpretation I if all
of its axioms are satisfied, as defined in Table 3.

In this case, I is called a model of the ontology. An ontol-
ogy is consistent iff it has a model. In fuzzy extensions of
SROIQ, axioms are often allowed to express also strict
inequalities (< and >). However, in the finitely valued set-
ting an axiom 〈α > d〉 with d < 1 can be expressed as
〈α � dnext〉 (and similarly for < and the direct lower neigh-
bour of d).

In the literature, it is also common to find negated role
assertions of the form 〈¬r(a, b) �� d〉 [4,8]. However, in
our setting 〈¬r(a, b) � d〉 is equivalent to an assertion of
the form 〈r(a, b) � d ′〉, and similarly for 〈¬r(a, b) � d〉.
Example 1 Suppose that we have a cloud computing envi-
ronment consisting ofmultiple serverswith their own internal
memory and CPU. To model such an environment, we use

– the individual names: serverA, serverB, memA,
memB, cpuA, cpuB;

– the concept names: CPU, Memory, Overused, Server,
ServerWithLimitedResources, and
ServerWithAvailableResources; and

– the role names: hasPart and isConnectedTo.

The assertional knowledge of this domain is modeled via
the ABox A
{
Server(serverA),CPU(cpuA),Memory(memA),

〈Overused(cpuA) � 0.8〉,Overused(memA),

hasPart(serverA, cpuA), hasPart(serverA,memA),

〈ServerWithAvailableResources(serverB) � 0.6〉,
〈isConnectedTo(serverA, serverB) � 0.8〉},

which, for example, states that cpuA is overused with degree
at least 0.8, and that the memorymemA is also overused with
degree 1. The terminological knowledge of this domain can
be modeled via a TBox T containing axioms like

〈Server � ∃hasPart.(Overused � CPU) �
∃hasPart.(Overused � Memory)

� ServerWithLimitedResources � 0.8〉,

stating that a server with an overused memory and CPU is
a server with limited resources. This implication must hold
with a degree of at least 0.8.

It should be noted that the concepts CPU, Memory, and
Server and the role hasPart are essentially crisp; i.e., they
can only take values in {0, 1}. This information can be
easily modeled as part of a fuzzy ontology and handled
by the reduction algorithm in [3]. In contrast to this, the
concepts ServerWithLimitedResources and Overused have
a vague nature; that is, they are fuzzy, and the degree to
which a server has limited resources and the degree to
which a CPU or a memory card is overused can take val-
ues strictly between 0 and 1. The role isConnectedTo is
also fuzzy and it is used to declare the connection between
two servers. The higher the connection degree between two
servers, the larger is the bandwidth they use in their commu-
nication.
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2.3 Conjunctive Queries

Based on the semantics, other reasoning services than con-
sistency of ontologies can be defined. In this paper, we are
interested in conjunctive query answering. We give the defi-
nition of classical conjunctive queries next.

Definition 2 (Conjunctive Query) Let NV be a countably
infinite set of variables disjoint from NC, NR, and NI. An
atom is a concept atom of the form A(x), a role atom of the
form r(x, y), or an equality atom of the form x ≈ y, where
x, y ∈ NV ∪ NI, A ∈ NC, and r ∈ NR.

A (k-ary) conjunctive query (CQ) q is a statement of the
form

(x1, . . . , xk) ← α1, . . . , αm,

where α1, . . . , αm are atoms, and x1, . . . , xk are (not nec-
essarily distinct) variables occurring in these atoms. We
call x1, . . . , xk the distinguished variables of q. VarInds(q)

denotes the set of all variables and individual names occur-
ring in q. If k = 0, we call q a Boolean conjunctive query.

Let I be a classical interpretation, q a Boolean CQ, and
π : VarInds(q) → �I a function such that π(a) = aI for
all a ∈ NI. If π(x) ∈ AI , then we write I |�π A(x), and
I |�π r(x, y) whenever (π(x), π(y)) ∈ rI , and I |�π x ≈
y if π(x) = π(y). If I |�π α for all atoms α in q, we write
I |�π q and call π a match for I and q. We say that I
satisfies q and write I |� q if there is a match π for I and q.

A (k-ary) union of conjunctive queries (UCQ) qUCQ is a
set of k-ary conjunctive queries. An interpretation I satisfies
a Boolean UCQ qUCQ, written I |� qUCQ if I |� q for some
q ∈ qUCQ. For a Boolean (U)CQ q and an ontology O, we
write O |� q and say that O entails q if I |� q holds for all
models I of O.

Consider now an arbitrary k-ary (U)CQ q and a k-tuple
a ∈ NI

k of individual names. We say that a is an answer
to q w.r.t. an ontology O if O entails the Boolean (U)CQ
a(q) resulting from q by replacing all distinguished variables
according to a (and possibly introducing new equality atoms
if some of the distinguished variables in an answer tuple are
equal).

The problem of query answering is to compute all answers
of a (U)CQ w.r.t. a given ontology. Query answering can be
reduced to query entailment by testing all possible tuples
a ∈ NI

k , which yields an exponential blow-up. It is well
known that query entailment and query answering can
be mutually reduced and that decidability and complexity
results carry over modulo the mentioned blow-up [15].

Example 3 Consider the UCQ isMonitoredBy, consisting of
the following CQs:

(y, x) ← monitors(x, y),

(x, x) ← SelfMonitored(x).

To obtain all answers of this UCQ, we consider all possible
tuples (a, b) ∈ NI and instantiate the CQs as follows:

() ← monitors(b, a),

() ← SelfMonitored(a), a ≈ b,

which results in a Boolean UCQ. The latter is entailed by an
ontology O if one can derive that in all models of O either
the assertion monitors(b, a) holds, or else both a ≈ b and
SelfMonitored(a) are satisfied.

If the distinguished variables are clear from the context,
we may also omit them and write a CQ simply as a set of
atoms.

In fuzzy DLs, conjunctive queries can be of two differ-
ent types: threshold conjunctive queries or general fuzzy
queries [32,40,41].4

Threshold queries ask for tuples of individuals that satisfy
a set of assertions to at least some given degree. For example,
the threshold query

{Server(x) � 1, hasPart(x, y) � 1,CPU(y) � 1,

Overused(y) � 0.6}

asks for all pairs of servers and CPUs such that the CPU is
a part of the server and is also overused to a degree of at
least 0.6.

Definition 4 (Threshold Conjunctive Query) A degree atom
is an expression of the form α � d, where α is an atom and
d ∈ C>0. A (k-ary) threshold conjunctive query qt is of the
form

(x1, . . . , xk) ← α1 � d1, . . . , αm � dm,

where α1 � d1, . . . , αm � dm are degree atoms and
x1, . . . , xk are variables. As before, VarInds(qt) denotes the
set of variables and individuals occurring in the threshold CQ
qt.

Let I be an interpretation, qt a Boolean threshold CQ, and
π : VarInds(qt) → �I a function that maps each a ∈ NI to
aI . The degree of an atom α = A(x) w.r.t. π is defined as
αI(π) := AI(π(x)), and we set αI(π) := rI(π(x), π(y))

forα = r(x, y); finally, forα = x ≈ y wedefineαI(π) := 1
if π(x) = π(y), and αI(π) := 0 otherwise. If αI(π) � d
holds for all degree atoms α � d in qt, thenwewrite I |�π qt

4 In [41], queries are defined that allow for grouping, aggregation, and
ranking. Although we do not consider such queries here, we generalize
our basic queries in Sect. 4.3.
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and call π a match for I and qt. The notions of satisfaction,
entailment, and answers are defined as for classical CQs.

General fuzzy CQs, in contrast, have the same syntax as
classical conjunctive queries. Their answers are the tuples
of individuals satisfying them to a degree greater than 0,
together with the degree to which the query is satisfied. For
example,

{Server(x), hasPart(x, y),CPU(y),Overused(y)} (3)

asks for all overused CPUs that belong to a server, along with
the degree to which these CPUs are overused. To obtain the
degree of the query from the individual degrees of the atoms,
the fuzzy operator interpreting the conjunction is used.

Definition 5 (Fuzzy Conjunctive Query) A (k-ary) fuzzy
conjunctive query qf is of the form

(x1, . . . , xk) ← α1, . . . , αm,

where α1, . . . , αm are atoms and x1, . . . , xk are variables.
Let I be an interpretation, qf a Boolean fuzzy CQ, and π a
mapping as in Definition 4. If

⊗
α∈qf α

I(π) � d > 0, then
we write I |�π qf � d and call π a match for I and qf with
a degree of at least d. We say that I satisfies qf with a degree
of at least d and write I |� qf � d if there is such a match.
If I |� qf � d for all models I of an ontology O, we write
O |� qf � d and say that O entails qf with a degree of at
least d. Finally, a tuple a ∈ NI

k is an answer to a k-ary fuzzy
CQ qf w.r.t. O with a degree of at least d if O entails a(qf)

with a degree of at least d.

The query entailment problem for a (Boolean) threshold CQ
is to decidewhetherO |� qt. For fuzzyCQs,wemay consider
two variants of the query entailment problem, namely

– to decide whether O |� qf � d for a given d ∈ C>0, or
– to find the best entailment degree max{d | O |� qf � d}.

Since we consider only finitely valued semantics over the
chain C , these two problems can be polynomially reduced
to each other. As for classical query answering, it suffices to
analyze the complexity of query entailment; the results can
then be transferred to query answering [15].

Example 6 Consider the following queries:

qt := {hasPart(x, y) � 1,Overused(y) � 0.9},
qf := {hasPart(x, y),Overused(y)},

and the ontology from Example 1. An answer to the query qt

is (serverA,memA), but not (serverA, cpuA) since cpuA is

only overused to degree 0.8. The answers to qf are the pairs
(serverA, cpuA) with degree � 0.8 and (serverA,memA) to
degree 1.

Remark 7 A threshold CQ with inequalities using � would
correspond to a classical CQ containing negated role atoms,
for which query answering is undecidable even in very inex-
pressive DLs [24,33]. Similarly, upper bounds for fuzzy
conjunctive queries qf, i.e., asking whether O |� qf � d,
can be seen as a generalized form of disjunction of (negated)
query atoms. For these reasons, we consider only inequalities
using �.

Before we turn to answering such queries over fuzzy
ontologies, we describe the reduction of expressive finitely
valued fuzzy ontologies to classical ones.

3 Reduction of Finitely Valued Fuzzy Ontologies to
Classical Ontologies

A popular reasoning technique for fuzzy DLs based on finite
chains is the reductionof the fuzzyontology to a classical one.
This allows to use existing DL systems to reason in the fuzzy
description logic. However, a major drawback of existing
approaches for finite chains using arbitrary t-norms (see [8,
10,28]) is that this reduction introduces an exponential blow-
up in the size of the fuzzy ontology. While this handicap can
be remedied by our normalization step described in Sect. 3.2
(see also the experiments in Sect. 5.2), another obstacle needs
to be addressed first: the reduction proposed in [8,10,28] is
not correct for number restrictions.

In the following, we describe this problem in detail and
propose a (partial) solution.

3.1 Treating Number Restrictions

The reduction in [8,10,28] is based on the idea to simulate
number restrictions by existential restrictions in the following
way. For a number restriction≥m r.C , the newconcept names
B1, . . . , Bm and the axioms

– 
 � B1 � · · · � Bm and
– Bi � B j � ⊥ for all i, j, 1 � i < j � m.

are introduced, which require them to form a partition. Sub-
sequently, the number restriction ≥m r.C is replaced by the
concept ∃r.(C � B1)� . . .�∃r.(C � Bm). The following clas-
sical example shows that this replacement does not preserve
the semantics of the number restrictions, and thus cannot be
correct in the fuzzy case, either.
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Example 8 Consider the following ABox and TBox:

A := {r(a, a), r(a, b), r(b, a), r(b, c), r(c, b), r(c, c),

a �= b, b �= c, a �= c},
T := {
 � ≤2 r.
, 
 � ≥2 r.
}.

A simplemodel forO=(A, T ,∅) is given by�I :={a, b, c}
and rI := {(a, a), (a, b), (b, a), (b, c), (c, b), (c, c)}. Thus,
the ontology O is consistent. By replacing ≥2 r.
 according
to the method described above, we obtain the TBox

T ′ := {
 � ≤2 r.
, 
 � ∃r.B1 � ∃r.B2,

B1 � B2 � ⊥, 
 � B1 � B2}.

We show that the resulting ontology (A, T ′,∅) is inconsis-
tent. Assume to the contrary that there exists a model I ′
of the ontology O′ = (A, T ′,∅). Without loss of general-
ity, suppose that it interprets the individual names a, b, c as
themselves. Thus, we must have rI ⊆ rI

′
. There are only

eight possible combinations for a, b, c belonging to either
B1 or B2. Suppose first that a, b ∈ BI ′

1 and c ∈ BI ′
2 . Then,

by the axiom 
 � ∃r.B1 � ∃r.B2 the individual a must have
yet another r -successor x ∈ BI ′

2 . However, this contradicts
the GCI 
 � ≤2 r.
. Similar arguments apply for all other
combinations and, therefore, the ontology is inconsistent.

It should be noted that for Gödel and Zadeh semantics alter-
native (correct) reductions of number restrictions exist [7,8].

We now propose an alternative encoding of number
restrictions when using other fuzzy semantics, avoiding the
problem exhibited by Example 8. Intuitively, instead of using
a partition of the target concept C of a restriction ≥m r.C ,
we will partition the role r . Note first that at-most restrictions
can be expressed using negation and at-least restrictions; that
is, ≤m r.C has the same semantics as ¬(≥(m + 1) r.C) (cf.
Table 2). Hence, in the following, we focus on methods for
handling at-least number restrictions. Furthermore, we can
assume without loss of generality that they only occur in
axioms of the forms

〈A � ≥m r.B � d〉 and 〈≥m r.B � A � d〉,

where A and B are concept names (cf. Sect. 3.2).
Axioms of the first kind can be equivalently expressed

usingm fresh role names r1, . . . , rm in the following axioms:

〈A � ∃ri .C � d〉, ri � r, dis(r j , rk),

for all i, j, k ∈ {1, . . . , m} with j < k. This is correct due
to the minimum used in the semantics of at-least restrictions.
More precisely, every model of the original axiom can be
extended by a suitable interpretation of the new role names
to a model of the resulting axioms, and every model of the

latter is immediately a model of the former. Hence, we can
eliminate all at-least restrictions that occur on the right-hand
side of GCIs (and all at-most restrictions that occur on the
left-hand side of GCIs).

Unfortunately, this approach does not work for at-least
restrictions occurring on the left-hand side of GCIs. The rea-
son is that the presence of m many r -successors satisfying C
does not imply that these successors can be reached using
one of the disjoint roles r1, . . . , rm . However, this can be
expressed using the additional role axiom

r � r1 � · · · � rm, (4)

which involves a role disjunction that is interpreted using the
maximum, i.e.,

(r1 � · · · � rm)I(x, y) := m
max
i=1

rIi (x, y).

Role disjunction is an example of a (safe) Boolean role con-
structor, which can be added to most classical DLs without
increasing the complexity of reasoning [34].Moreover, some
query answering procedures for classical DLs even work in
the presence of such constructors [16]. Unfortunately, to the
best of our knowledge, role disjunctions are not yet supported
by any classical DL reasoner.

In the presence of axiom (4) and the role disjointness
axioms from above, the GCI 〈≥m r.C � A � d〉 can now be
equivalently expressed as:

〈∃r1.C � · · · � ∃rm .C � A � d〉.

Unlike the incorrect reduction for number restrictions that
was first proposed in [10], our approach does not partition
the range of the role r in the number restriction, but rather
the role itself, and hence it correctly treats the case where a
domain element is an r -successor of two different elements
that are subject to the same number restriction on r (recall
Example 8). However, like the approach of [8,10,28], this
incurs an exponential blow-up in the largest number occur-
ring in number restrictions, if these numbers are represented
in the ontology using a binary encoding. The reduction is
polynomial if we assume unary encoding of numbers.

Since role disjunctions are not supported by SROIQ or
OWL2,wewill restrict the following investigation to unqual-
ified number restrictions of the form ≥m r := ≥m r.
 and
≤m r := ≤m r.
, i.e., to the fuzzy logic C -SROIN . How-
ever, we want to emphasize that we can easily treat qualified
number restrictions in the following reduction if the classical
target language supports role disjunctions. It is straightfor-
ward to extend the reduction to deal even with SROIQBs,
the extension of SROIQwith full Boolean role expressions
(which satisfy a safety condition) [34]; the reduction of the
role constructors is similar to the one for concepts.
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Table 4 Normalization rules for C -SROIN ontologies

〈C � D � d〉 � 〈C � AD � d〉, AD � D 〈C(a) � d〉 � 〈AC (a) � d〉, AC � C

〈A � C � D � d〉 � 〈A � AC � AD � d〉, AC � C, AD � D 〈C � D � A � d〉 � 〈AC � AD � A � d〉, C � AC , D � AD

〈A � C � D � d〉 � 〈A � AC � AD � d〉, AC � C, AD � D 〈C � D � A � d〉 � 〈AC � AD � A � d〉, C � AC , D � AD

〈A � ¬C � d〉 � 〈A � ¬AC � d〉, C � AC 〈¬C � A � d〉 � 〈¬AC � A � d〉, AC � C

〈A � ∃r.C � d〉 � 〈A � ∃r.AC � d〉, AC � C 〈∃r.C � A � d〉 � 〈∃r.AC � A � d〉, C � AC

〈A � ∀r.C � d〉 � 〈A � ∀r.AC � d〉, AC � C 〈∀r.C � A � d〉 � 〈∀r.AC � A � d〉, C � AC

〈r1r2r3 . . . rm � r � d〉 � 〈rr1r2r3 . . . rm � r � d〉, r1r2 � rr1r2

3.2 Ontology Normalization for C -SROIN
Ontologies

The reason that the reductions described in [7,8,10] can cause
an exponential blow-up in the size of the ontology is that con-
cept constructors may be nested to arbitrary depths. In this
subsection, we propose a normalization step to ensure that
each GCI and concept assertion contains at most one concept
constructor, and that each complex role inclusion contains at
most two roles on the left-hand side. Because of this, the
subsequent reduction of a C -SROIN ontologyO to a clas-
sical SROIN ontology Oc causes only a linear blow-up in
the size of O (and a quadratic blow-up in the size of C ).
For an experimental evaluation of the resulting difference in
ontology size and reasoning performance, see Sect. 5.2.

The normalization proceeds by exhaustively replacing
each axiom by a set of axioms according to Table 4. In that
table, A, AC , AD denote concept names, 
, or ⊥; C, D are
complex concepts that are neither concept names, 
, nor ⊥;
and r1, . . . , rm , r , and rr1r2 are roles. AC and AD are fresh
concept names that abbreviate the concepts C and D, respec-
tively. In the last rule, rr1r2 is a fresh role name that stands
for the role composition of r1 and r2. For simplicity, we have
given the rules for conjunctions and disjunctions only for the
case where both operands are complex concepts. However, if
only one of them is a complex concept, we would not intro-
duce a new concept name for the other operand. Note that
nominals, unqualified number restrictions, and local reflex-
ivity concepts do not need to be normalized.

It should be noted that this reduction is not correct under
Zadeh semantics due to the properties of the implication func-
tion. However, [4] provides a different reduction for this case
that does not exhibit an exponential blow-up even without
normalization. Hence, we consider in the following result
only semantics that are based on finitely valued t-norms and
their induced operators ⇒, �, and ⊕.

Proposition 9 Let O′ be the ontology resulting from the
exhaustive application of the rules in Table 4 to a C -
SROIN ontology O.

Under t-norm-based semantics, every model of O can be
extended to a model of O′ by interpreting the new concept

names AC like C and rr1r2 like r1r2.5 Moreover, every model
of O′ is already a model of O.

This simple observation immediately shows that O′ is con-
sistent iff O is consistent. Moreover, it allows us to prove
correctness of the normalization procedure also with respect
to the other reasoning tasks we will consider in the following
sections. Furthermore, it is easy to see that the normaliza-
tion could be extended to deal also with qualified number
restrictions (Q).

While this procedure involves the introduction of linearly
many new concept names, it allows us to circumvent the
exponential blow-up exhibited by previous reductions.

Remark 10 The reason why this normalization reduces the
complexity of the following reduction is that it ensures that
each axiom contains at most three occurrences of concept or
role names. However, we will see in the following subsection
that concept and role names that are interpreted classically,
i.e., can take only the values 0 and 1, do not take part in
the reduction (see also [2,5]). Hence, it is enough to ensure
that each axiom contains at most three occurrences of fuzzy
concept or role names. Such axioms do not need to be reduced
any further. Nevertheless, all complexity results concerning
the reduction in the following section remain valid.

Example 11 The normalized form of the TBox T containing
the GCI from Example 1 is as follows:

{Overused � CPU � A,

Overused � Memory � B,

∃hasPart.A � C,

∃hasPart.B � D,

Server � C � E,

〈E � D � ServerWithLimitedResources � 0.8〉}

However, since the GCI in T contains only three occurrences
of names of fuzzy concepts (two times Overused and once
ServerWithLimitedResources), we can use T as it is in the
following reduction.

5 Where (r1r2)I(x, z) := supy∈�I rI1 (x, y) ⊗ rI2 (y, z) (cf. Table 3).
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Ac :=
{
Server(serverA), CPU(cpuA), Memory(memA), Overused�0.8(cpuA), Overused�1(memA), hasPart(serverA,cpuA),

hasPart(serverA, memA), ServerWithAvailableResources�0.6(serverB), isConnectedTo�0.8(serverA, serverB)
}

Tc := {Overused�0.4 � Overused�0.2, . . .} ∪
⋃

d1,d2 minimal, d3 maximal
such that (d1⊗d2)⇒d3<0.8

{
Server�∃hasPart.(Overused�d1 �CPU)�∃hasPart.(Overused�d2 �Memory) � ServerWithLimitedResources>d3

}

Fig. 1 ABox and TBox for Example 14

Wewill assume in the following thatO is already normalized.
The remainder of the reduction is very similar to the one
described in [8] (except for number restrictions).

3.3 The Reduction Algorithm

Each concept name and role name in O is mapped onto a set
of concepts and roles corresponding to their α-cuts, which
are crisp sets containing all elements that belong to a fuzzy
set to at least a given degree α. For example, if the con-
cept name Overused describes the degree to which a CPU is
overused, then Overused�0.6 represents the set of CPUs that
are overused to a degree of at least 0.6. It is clear that we do
not need to consider the value 0 for such cuts, as A�0 always
describes the whole domain. We may also refer to concept
names of the form A>d for d ∈ C and d < 1, which is a
short-hand notation for A≥dnext , and similarly for role names.

The SROIN ontology Oc obtained from the reduction
has the following form:

– To preserve the semantics of α-cuts of concept and role
names, the following axioms are added to Oc for all
A ∈ NC, r ∈ NR, and d ∈ C with 0 < d < 1:

A>d � A�d , r>d � r�d .

– Each complex concept C appearing in O is mapped to
the complex concept ρ(C,� d) that represents its α-cut
regarding degree d, as defined in the first part of Table 7
in the appendix.

– Each axiom in O is then mapped to a classical axiom or
set of axioms in Oc according to the mapping κ defined
in the second part of Table 7.

For a more detailed analysis of the reduction rules, the
interested reader may refer to [7,8,10].

Weprovide a detailed proof of correctness in the appendix.

Theorem 12 Let O be aC -SROIN ontology. Then, O has
a fuzzy model iff its reduced form Oc has a classical model.

Our normalization procedure allows us to show the following
improved complexity bounds. The proof of the following
lemma can be found in Appendix 1.

Lemma 13 For a normalized C -SROIN ontology O, the
size of Oc is linear in the size of O and quadratic in the size
of C .

This means that, by simply introducing the normalization
step, we can avoid the exponential blow-up of the crispi-
fication approach. In particular, we greatly improve the
exponential bounds shown in [8,10].

Example 14 Figure 1 contains the reduced form of the ontol-
ogy from Example 1 w.r.t. Łukasiewicz semantics over the
chain with six elements C = {0, 0.2, 0.4, 0.6, 0.8, 1}. We
have taken into account that one does not need to consider
α-cuts of classical concept and role names. This nicely illus-
trates how classical concepts and roles help to reduce the size
of the reduction [2,5]. Not only do we have 1 crisp concept
instead of n − 1 cut concepts, but the number of disjunctions
and conjunctions introduced can be reduced dramatically (cf.
Table 7).

4 Conjunctive Query Answering for Fuzzy DLs

In this section, we show how to solve the problem of answer-
ing threshold and fuzzy CQs in finitely valued fuzzy DLs by
taking advantage of existing algorithms for answering unions
of conjunctive queries in classical DLs. Our solution is based
on the reduction technique described in Sect. 3 .

4.1 Translating Fuzzy and Threshold CQs

In the following,wedefine a functionκ thatmaps each thresh-
old CQ and fuzzy CQ to a (U)CQ in a classical DL. The idea
is that we can then evaluate these classical queries over Oc

to answer the original queries over O. The shape of the map-
ping κ depends on the type of query, and uses α-cuts for
reducing fuzzy concept and role names to classical ones (cf.
Sect. 3).

We first define the function κ for degree atoms of queries
analogously as it was done for assertions:

κ(A(x) � d) := A�d(x),

κ(r(x, y) � d) := r�d(x, y).
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This definition is then lifted to threshold CQs qt in the
obvious way: κ(qt) := {κ(α) | α ∈ qt}.

For transforming fuzzy CQs, we use α-cuts as in the trans-
lation of concepts. Thus, in the case of fuzzy CQs, κ receives
as input also a membership degree from C>0, which will be
a lower bound for the degree of the query. Recall that the
answers depend on the operator ⊗ that interprets the con-
junction in the logic under consideration. Since there can
be several different combinations of degrees for the different
atoms that result in the same degree, fuzzy CQs are translated
into unions of (classical) conjunctive queries, representing
each of these combinations.

Formally, for a fuzzy CQ qf = {α1, . . . , αn} and d ∈ C>0,
κ(qf,� d) is the set of all conjunctive queries

{κ(α1 � d1), . . . , κ(αn � dn)},

where d1, . . . , dn ∈ C are such that
⊗n

i=1 di � d.

Example 15 Consider a threshold CQ asking for all pairs of
connected servers such that the first one has limited and the
second one has available resources:

{ServerWithLimitedResources(x) � 0.8,

isConnectedTo(x, y) � 0.6,

ServerWithAvailableResources(y) � 0.6}.

This threshold CQ is reduced to the following classical CQ:

{ServerWithLimitedResources�0.8(x),

isConnectedTo�0.6(x, y),

ServerWithAvailableResources�0.6(y)}.

A fuzzy CQ asking for the same information, but without
the thresholds, is the following:

{ServerWithLimitedResources(x),

isConnectedTo(x, y),

ServerWithAvailableResources(y)}.

To acquire all the pairs (x, y) that satisfy this query with
degree at least 0.8, for the Łukasiewicz t-norm over the chain
with 6 membership degrees, the query is reduced to the fol-
lowing union of classical CQs:

{{ServerWithLimitedResources�0.8(x),

isConnectedTo�1(x, y),

ServerWithAvailableResources�1(y)},
{ServerWithLimitedResources�1(x),

isConnectedTo�0.8(x, y),

ServerWithAvailableResources�1(y)},

{ServerWithLimitedResources�1(x),

isConnectedTo�1(x, y),

ServerWithAvailableResources�0.8(y)}}.

The following theorem states that our query reduction is
sound and complete.

Theorem 16 Let Oc be the classical version of the fuzzy
ontology O, qt be a threshold CQ, qf be a fuzzy CQ, and
d ∈ C . Then, the following equivalences hold:

1. O |� qt ⇔ Oc |� κ(qt)

2. O |� qf � d ⇔ Oc |� κ(qf,� d).

Proof To prove that Oc |� κ(qt) implies O |� qt, consider
any fuzzymodel I ofO. By Proposition 9, I can be extended
to a model of the normalized ontology O′. We now define
the classical interpretation J = {�J , ·J } as follows (cf.
Appendix 1):

�J := �I

aJ := aI

AJ
�d :=

{
β | AI(β) � d

}

rJ�d :=
{
(β, γ ) | rI(β, γ ) � d

}
. (5)

By Lemma 22, J is a classical model of Oc. Since
J |� Oc and Oc |� κ(qt), it follows that J |� κ(qt). By
the construction of J , it can be easily verified that I |� qt.

It can be shown in a similar way that O |� qf � d implies
Oc |� κ(qf,� d). To prove the opposite direction we build
for each classical model J of Oc, the fuzzy interpretation
I = (�I , ·I), where

�I := �J

aI := aJ

AI(β) := max
{
d | β ∈ AJ

�d

}

rI(β, γ ) := max
{
d | (β, γ ) ∈ rJ�d

}
. (6)

(cf. Appendix 1). By Proposition 9 and Lemma 20, I is a
fuzzy model of the original ontology O.

It is straightforward to show that J |� κ(qt) whenever
I |� qt, and similarly for fuzzy CQs. ��

It is easy to see that this result applies not only to the reduction
described in Sect. 3, but also to any reduction that can be
shown correct using the definitions in (5) and (6), e.g., the one
optimized forC -SROIQ under Gödel and Zadeh semantics
in [8].
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4.2 Complexity Results

By Lemma 13, the size of the crispified ontology Oc is
polynomial in the size of O. Therefore, we can transfer all
complexity results for answering classical CQs over classi-
cal sublogics of SROIN directly to the query answering
problem for threshold CQs. In particular, recall that CQ
entailment in SROIN can be decided in 3- ExpTime [16],
is 2- ExpTime-complete forSHIN , andExpTime-complete
for ALCHN [20,27].

Moreover, for fuzzyDLswhere correct crispification algo-
rithms exist even for SROIQ, e.g., for Gödel and Zadeh
semantics [8] or in the presence of role disjunctions (see
Sect. 3.1), any classical CQ answering technique that is able
to handle number restrictions can be applied also for thresh-
old CQs. Under this condition, answering threshold CQs
in finitely valued extensions of SHIQ and SHOQ is 2-
ExpTime-complete [20,22], for SROQ and SRIQ it can
be done in 3- ExpTime [16], while for SHQ it becomes
ExpTime-complete if queries are restricted to simple roles,
i.e., roles that do not have transitive subroles [27]. Notice,
however, that none of these query answering approaches has
been implemented so far.

For fuzzyCQs, the complexity increases by an exponential
factor due to the blow-up in the translation κ . It is possible to
eliminate this blow-up, however, when the minimum t-norm
is used, i.e., under Gödel and Zadeh semantics. Then, we can
obviously define κ(qf,� d) := {κ(α � d) | α ∈ qf} for any
fuzzy CQ qf, and thus obtain the same complexity results as
for threshold CQs.

It should also be noted that the data complexity of all these
problems is the same as that for classical CQs, as the size of
the ABox is not increased by the reduction from O to Oc.
Since for many applications the TBox remains unchanged,
while the ABox changes frequently; the reduction to the
crisp ontology Oc need not be computed when queries are
answered, but need to be computed only once “off-line”
beforehand.

4.3 Generalizing the Query Component

So far, we have examined the reduction technique for answer-
ing threshold CQs and fuzzy CQs. These two types of
queries are immediate extensions of classical CQs, and usu-
ally considered in the literature. Nevertheless, the existence
of degrees may lead to more general forms of fuzzy CQs
in which the score of a query is computed via a monotone
scoring function, as described in the following.

Definition 17 A (k-ary) scoring query qs is an expression
of the form

(x1, . . . , xk) ← f (α1, . . . , αn),

where f is a monotonically increasing scoring function with
n arguments, α1, . . . , αn are atoms, and x1, . . . , xk are vari-
ables. Let I be an interpretation, qs a Boolean scoring query,
and π a mapping as in Definition 4. If

f (αI
1 (π), . . . , αI

n (π)) � d,

then we write I |�π qs � d and call π a match for I and
qs with a score of at least d. We say that I satisfies qs with
a score of at least d and write I |� qs � d if there is such
a match. If I |� qs � d for all models I of an ontology O,
we write O |� qs � d and say that O entails qs with a score
of at least d. Finally, a tuple a ∈ NI

k is an answer to a k-
ary scoring query qs w.r.t. O with a score of at least d if O
entails a(qs) with a score of at least d.6

It should be noted that the score may take an arbitrary
value in R. This kind of queries has already been considered
in the literature [32,40,41]. Fuzzy CQs can be seen as special
scoring queries of the form α1 ⊗ . . . ⊗ αn . Since C is finite,
the same technique as for fuzzy CQs can be applied here, i.e.,
considering all possible combinations of degrees in C .

Example 18 Suppose that we are interested in finding all
servers that have overused CPU and memory, but the exces-
sive use of CPU should be considered of greater importance
than the use of memory. To achieve this, we formulate the
following query to include a weighting factor on the degrees
of overuse for the different components. For instance, we can
use the query

Server(x) · hasPart(x, y) · CPU(y) · hasPart(x, z) ·
Memory(z) · 3 · Overused(y)+2 · Overused(z)

5
(7)

where the fraction in the last factor takes into account the
degrees of overuse of CPU and memory with weights 0.6
and 0.4, respectively.

Assume that C = {0, 0.25, 0.5, 0.75, 1} and that the con-
cepts Server, CPU, andMemory and the role hasPart behave
classically. If we want to find all answers that satisfy this
query to degree at least 0.25, then we can translate it into a
union of classical conjunctive queries that contains, e.g.,

{
Server�1(x), hasPart�1(x, y),CPU�1(y),

hasPart�1(x, z),Memory�1(z),

Overused�0.25(y),Overused�0.75(z)
}
.

When evaluated over the reduced ontology, this query returns
all triples of elements from Server,CPU, and Memory,

6 Possibly new equality atoms a ≈ b introduced by the instantiation
can be connected with a multiplication to the score of the original query
(see Example 3).

123



Answering Fuzzy Conjunctive Queries 67

respectively, where the CPU is overused to degree 0.25 and
the memory is overused to degree 0.75. These tuples satisfy
the query (7) with a degree of at least

0.6 · 0.25 + 0.4 · 0.75 = 0.45 � 0.25,

as desired.

Another interesting problem, specific to weighted logics, is
the top-k query answering problem presented in [39–41].
This variation of the fuzzy query answering problem focuses
on the k answers with the highest degrees of satisfaction.
In a naive approach to solve this problem, the translation
function κ for fuzzy or scoring CQs can be iteratively applied
starting from the highest to the lowest degrees in C until the
limit of k answers is reached. It has to be investigated if amore
sophisticated approach can be adopted to solve this problem.

5 Practical Evaluation

We have proved that, by introducing the normalization step,
we can avoid the exponential blow-up of the earlier crispifi-
cation approach (Sect. 3). We have additionally extended the
reduction process to handle the problem of CQ answering
(Sect. 4). The main objectives of this section are to

1. Evaluate how the ontology normalization preprocessing
improves the total execution time for CQ answering, and

2. Study the practical limitations of the reduction approach
for the problem of CQ answering in the finitely valued
fuzzy setting.

Rather than implementing a full fuzzy CQ answering sys-
tem from scratch, we have modified the existing reasoner
DeLorean [5].7 DeLorean is a reduction-based fuzzy DL
reasoner that supports fuzzy variants of the description log-
ics SROIQ(D) and SHOIN (D) under the finite Gödel,
finite Łukasiewicz, and Zadeh semantics. We use DeLorean
to transform an input fuzzy ontology into a crisp ontology
through the transformation rules described earlier in this
paper. Additionally, we have implemented the reduction for
threshold queries described in Sect. 4. After the crisp ontol-
ogy and query are obtained, an arbitrary crisp reasoner can
be employed for query answering. For our experiments, we
used the PAGOdA system8 [42,43]. See [2] for an evalua-
tion of the performance of DeLorean on classical reasoning
problems in tractable DLs.

Other reasoners that support query answering for expres-
sive DLs could also have been adopted. However, most

7 http://webdiis.unizar.es/~fbobillo/delorean.
8 PAGOdA version from 23rd of April 2015 commit id: 30b5afef93 in
https://github.com/yujiaoz/PAGOdA.

other systems can only correctly answer CQs that can be
directly expressed in the DL, e.g., tree-shaped CQs or
instance queries, or employ the simplifying restriction that
the non-distinguished variables can only be bound to named
individuals [31]. Although in theory PAGOdA also depends
on the query answering capabilities of HermiT [21], it was
shown in [42] that it correctly answers the standard queries
of the LUBM benchmark (which we use in the following),
without having to rely onHermiT. This is also the case for the
normalized, fuzzified, and crispified versions of the LUBM
TBox we use in the following experiments.

5.1 Test Data and Test Set-up

To evaluate our approach, we used the LUBM9 ontology
benchmark [23]. The LUBM benchmark contains termino-
logical knowledge that describes the domain of a university,
and generates synthetic OWL data (ABox) over the ontology
specifying individuals belonging to the university. TheABox
corresponding to a single university contains approximately
1300 concept assertions and 2450 role assertions and can be
scaled by a factor of k, producing information for k different
universities. In our experiments, we used different ABoxes
covering 1, 15, and 30 universities, respectively.

To use LUBM as a benchmark for fuzzy reasoning, we
have extended all ABox axioms with random degrees chosen
from a fixed finite chain of cardinality 3, 7, or 11, which
are interpreted using Łukasiewicz semantics. The axioms in
the TBox are always required to hold with degree 1. Note
that the original LUBM TBox is formulated in ELHI R+
(we ignored all datatype axioms), and hence the same holds
for our fuzzified variants. However, due to the introduction
of disjunctions in the reduction to a classical ontology, the
resulting TBox is formulated in SHI (see Table 7 and [2]).

The queries of the LUBM benchmark were translated to
threshold queries by asking each atom to hold with the small-
est non-zero degree ( 12 ,

1
6 , and

1
10 for 3, 7, and 11 truth

degrees, respectively).
For all experiments, we report the average runtime over 5

separate runs; the coefficient of variation was mostly below
25%, which means that the runtimes did not differ much
between runs. All the tests were performed on a machine
powered by an Intel Core i7 2.6 GHz processor and equipped
with 8 GB DDR3 1600MHz main memory.

5.2 Evaluating the Normalization and Its Effect on
Query Answering

For the first experiment, we applied the normalization from
Sect. 3.2 to the LUBM TBox, and compared the query
answering times for a single challenging thresholdCQ (based

9 http://swat.cse.lehigh.edu/projects/lubm/.
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Table 5 Time needed for preprocessing by PAGOdA (in s) and query execution time (in ms) for instance queries over the original LUBM TBox
vs. its normalized version

	 Degrees Normalized TBox size 	 Universities

1 15 30

Preprocessing
(in s)

Querying
(in ms)

Preprocessing
(in s)

Querying
(in ms)

Preprocessing
(in s)

Querying
(in ms)

3 no 493 8.94 2.8 9.24 9.8 9.52 18.8

3 yes 518 8.92 2.4 9.21 9.4 9.52 16.6

7 no 2187 13.09 2.4 13.58 5.0 14.25 7.2

7 yes 2022 12.21 2.2 12.57 3.8 13.06 6.4

11 no 5177 26.62 2.0 27.36 3.2 28.45 5.0

11 yes 3942 18.69 2.2 19.60 3.6 20.50 5.6

on query #9 of the LUBM benchmark). The results of this
evaluation, based on the Łukasiewicz semantics, are pre-
sented in Table 5.

The table compares the sizes of the crispified TBoxes for
both the original TBox and the normalized one (counted as
the number of occurrences of concept and role names), as
well as the running times of PAGOdA. It shows both the
time needed by PAGOdA for its own preprocessing of the
ontology and the time needed to perform query answering.
The preprocessing clearly dominates the overall runtime. In
comparison to this, the time needed by PAGOdA to actually
answer the queries is almost negligible.

The preprocessing time is mostly determined by the nor-
malization and by the number of degrees, i.e., the size of C ,
but it also increases slightly with increased ABox size. One
can also see that, although the query answering times are
not much affected, the size of the TBox, and hence the time
PAGOdA needs for preprocessing, can be reduced signifi-
cantly by normalization. This can also be seen in the graph
in Fig. 2, where the normalized variant of the TBox is clearly
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Fig. 2 The sizes of the crispified TBoxes (the number of occurrences
of concept and role names) compared between the original LUBMTBox
and its normalized variant

smaller w.r.t. increasing numbers of degrees than the original
TBox.

However, for only 3 degrees of membership, the avoided
exponential blow-up does not outweigh the overhead of intro-
ducing auxiliary concept names for the normalization in
practice.

Finally, it should be noted that the query answering time
actually decreases when the number of truth degrees is
increased (for both the normalized and the original TBox).
This is not relevant for our experiments, but is simply a
consequence of the Łukasiewicz semantics:Whenmore fine-
grained truth degrees are randomly assigned to all ABox
assertions, the chance is larger that the degree to which a
query atom is satisfied is reduced to 0, and hence does not
yield an answer tuple (see Table 1). And with a decreased
number of answers, the queries need less time to be answered.

5.3 Evaluating Conjunctive Query Answering

To analyze the practical usefulness of the reduction approach
for CQ answering, we consider several CQs from the LUBM
benchmark (namely #5, #7, and #9) over the normalized
LUBM TBox.

An additional parameter that is evaluated here is the per-
centage of crisp concepts and roles appearing in the ontology;
0, 20, 80, or 100% of all names are randomly chosen to be
crisp.

Recall that a crisp concept or role name can only take
the values 0 or 1. For such concepts and roles, the reduction
process is more light-weight, since it results in a smaller
number of concept names in the reduced ontology [2,5].

For each chain size, number of universities, and percent-
age of crisp symbols, we evaluated three threshold CQs10

that extend the CQs in the LUBM benchmark.

10 Note that for answering fuzzy CQs instead of threshold CQs, the
runtimewill increase by an exponential factor, depending on the number
of atoms in the fuzzy CQ.
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The evaluation was performed again w.r.t. the Łukasie-
wicz semantics. The results are depicted in Table 6.

We again see a counter-intuitive behavior, namely that the
query answering time decreases with smaller percentage of
crisp elements (and hence increased TBox size). The rea-
son lies again with the Łukasiewicz semantics: queries over
“more fuzzy” TBoxes will have less answers, and hence less
effort is required to answer them. Nevertheless, we can see
that the times required to answer threshold CQs are of the
same order of magnitude as for classical CQs. Again the total
runtime is dominated by the preprocessing time of PAGOdA,
and hence mainly by the TBox size. This is good news, since
the preprocessing step only needs to be performed once as
long as the input TBox does not change.

Moreover, our approach is scalable for large ABoxes (as
much as this is the case for a crisp ontology) since the crispifi-
cation mainly affects the size of the TBox, but there is nearly
no difference in size between a fuzzy ABox and its crispified
version (see also Table 7).

As a final note, in practical applications of fuzzy ontolo-
gies one would hardly expect the ontology to have only fuzzy
concept and role names, but rather that a smaller number of
fuzzy names complements a large number of crisp names
that describe precise knowledge. This is closer to our 80%
scenario, which does not differ much from the purely crisp
case in terms of runtime.

6 Related Work

Non-fuzzy representations of fuzzy DLs have been exten-
sively studied for several families of languages. Themethods
can be classified based on their fuzzy and DL expressivity
used. Based on the Zadeh family of fuzzy logic operators,
reduction techniques and optimizations have been examined
for the fuzzy extensions of the ALCH [37], SHOIN [36],
and SROIQ [3] languages, while an experimental eval-
uation of the reduction technique for the fuzzy version of
SHIN is presented in [19]. For Gödel semantics, a reduc-
tion procedure for the DL SROIQ is considered in [7]. This
procedure is extended in [8] for a language combining Gödel
and Zadeh semantics. The reduction technique for the Łu-
kasiewicz t-norm over SROIQ is studied in [10], and for
arbitrary finite t-norms in [8,11]. It should be noted, as we
show in Example 8, that the reduction of qualified number
restrictions proposed in [8,10,28] is incorrect. This family
of algorithms has been implemented in the DeLorean rea-
soner [5,6,9]. Based on a different approach, a family of
fuzzy DLs using α-cuts as atomic concepts and roles is con-
sidered in [26].

Conjunctive query answering for fuzzy DLs has mostly
been studied for the DL-Lite family of languages. In [38,
39], the problem of evaluating top-k queries in fuzzy DL- Ta
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Lite is considered. In [32], the authors present a variety of
query languages that can be used for querying fuzzy DL-Lite
ontologies and adapt classical query rewriting techniques for
answering these queries. A similar approach is taken in [30].

A tableaux algorithm for conjunctive query answering
for fuzzy CARIN, a language combining the DL ALCNR
with Horn rules under Zadeh semantics, is provided in [29].
Another algorithm for answering expressive fuzzy conjunc-
tive queries is presented in [17,18]. The algorithm allows
the occurrence of both lower bound and the upper bound of
thresholds in a query atom over the DL SHIN extended
with the Zadeh semantics. Finally, practical approaches for
storing and querying fuzzy knowledge in the Semantic Web
have been also investigated [35].

7 Conclusions and Future Work

This paper focuses on how a classical representation of
ontologies written in finitely valued fuzzy DLs can be
adopted to solve the threshold and fuzzy conjunctive query
answering problems. These problems are reduced to equiv-
alent (U)CQ answering problems in classical DLs. The
correctness of the suggested technique is proved and its com-
plexity is studied for different variants of C -SROIQ. As
far as we know, no similar theoretical results have been pre-
sented. The proofs rely on the fact that each model of a fuzzy
ontology O can be mapped to a model of its reduced crisp
form Oc and vice versa, thus showing the soundness and
completeness of the reduction technique.

To verify the correctness of our approach, we have cor-
rected and extended the proofs sketched in [10], providing
the first full proof for this result in the literature. Addition-
ally, we have improved the size of the reduction from fuzzy
SROIN ontologies to classical SROIN ontologies by
introducing a linear normalization step. After this step, the
obtained classical ontology can be exponentially smaller than
the one obtained by previous crispification approaches. The
smaller size promises lower runtimes of the query answering
procedure. We have also suggested a reduction of qualified
number restrictions, which uses role disjunctions to express
a partitioning of a role.

In our evaluation of a prototype implementation of this
approach, based on the DeLorean system, we have demon-
strated that the overhead involved in using a finitely valued
fuzzzy description logic instead of a classical DL is reason-
able. In a scenario where only the data and queries change
frequently, while the TBox remains fixed, the normalization
and the reduction of a finitely valued TBox can be computed
“off-line”. It is thus sufficient to consider the time required
for query answering, which does not increase significantly
when using more than two membership degrees.

Future work involves examining if available optimization
techniques for fuzzy and classical DLs can be applied to
improve the performance of these algorithms. On the theo-
retical side, we will investigate the possibility of extending
the reduction to deal with qualified number restrictions with-
out resorting to non-standard role constructors, obtaining a
polynomial reduction for any finitely valued fuzzy descrip-
tion logic extending OWL 2 DL.
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Appendix

Proof of Theorem 12

Table 7 depicts the reduction rules for transforming a C -
SROIN ontology O into a classical SROIN ontology
Oc. In this table, we use the notation

�−(d) := max{d ′ ∈ C | �d ′ � d}.

Likewise, we define ⊗−(d) as the set of all pairs
(d1, d2) ∈ C 2 that satisfy d1 ⊗ d2 � d and are minimal
w.r.t. the component-wise ordering on C 2. This means that
all elements of⊗−(d) are incomparable, i.e., for all (d1, d2),
(d ′

1, d ′
2) ∈ ⊗−(d)wehave either d1 > d ′

1 and d2 < d ′
2 or vice

versa. The set ⊕−(d) is defined analogously. For the impli-
cation, we need a slightly different definition, characterizing
all pairs of elements whose implication does not exceed a
specified value d. More precisely, we define ⇒−(d) as the
set of all (d1, d2) ∈ C 2 satisfying d1 ⇒ d2 < d, and mini-
mize here w.r.t. the first component and maximize w.r.t. the
second component since ⇒ is antitone in the first argument
and monotone in the second argument.

Note that all expressions of the form > d in Table 7 are
well defined since we have d < 1 in all such cases. In partic-
ular, it holds that �−(d) < 1 whenever d > 0, and d2 < 1
for all (d1, d2) ∈ ⇒−(d). We can now prove Theorem 12. In
the following, let O be an arbitrary (not necessarily normal-
ized) ontology in C -SROIN , and Oc be its reduced form
according to Table 7.

Soundness

Consider first a classical model J of Oc. We construct a
fuzzy interpretation I, with the goal of showing that I is a
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Table 7 Mapping of concepts,
roles, and axioms to classical
SROIN

ρ(
, � d) 

ρ(⊥, � d) ⊥
ρ(A, � d) A�d

ρ(¬C, � d) ¬ρ(C,> �−(d))

ρ(C � D, � d) �
(d1,d2)∈⊗−(d)

(
ρ(C, � d1) � ρ(D, � d2)

)

ρ(C � D, � d) �
(d1,d2)∈⊕−(d)

(
ρ(C, � d1) � ρ(D, � d2)

)

ρ(∃r.C, � d) �
(d1,d2)∈⊗−(d)

∃ρ(r, � d1).ρ(C, � d2)

ρ(∀r.C, � d) �
(d1,d2)∈⇒−(d)

∀ρ(r, � d1).ρ(C,> d2)

ρ({d1/o1, . . . , dm/om}, � d) {oi | di � d, i ∈ {1, . . . , m}}
ρ(≥m r, � d) ≥m ρ(r, � d)

ρ(≤m r, � d) ≤m ρ(r,> �−(d))

ρ(∃r.Self, � d) ∃ρ(r, � d).Self

ρ(r, � d) r�d

ρ(r−, � d) r−
�d

ρ(u, � d) u

κ(C(a) � d) ρ(C, � d)(a)

κ(C(a) � d) ¬ρ(C,> d)(a)

κ(r(a, b) � d) ρ(r, � d)(a, b)

κ(r(a, b) � d) ¬ρ(r,> d)(a, b)

κ(a �= b) a �= b

κ(a = b) a = b

κ(〈C � D � d〉)
⋃

(d1,d2)∈⇒−(d)

{
ρ(C, � d1) � ρ(D,> d2)

}

κ(〈r1r2 � r � d〉)
⋃

(d1,d ′)∈⇒−(d), (d2,d3)∈⇒−(d ′
next)

{
ρ(r1, � d1)ρ(r2, � d2) � ρ(r,> d3)

}

κ(〈r1 � r2 � d〉) κ(〈r1u � r2 � d〉)
κ(trans(r)) κ(rr � r)

κ(dis(r1, r2)) dis(ρ(r1,> 0), ρ(r2,> 0))

κ(ref(r)) ref(ρ(r, � 1))

κ(irr(r)) irr(ρ(r,> 0))

κ(sym(r)) κ(r � r−)

κ(asy(r)) asy(ρ(r,> 0))

model of O, as follows (for all x, y ∈ �J , a ∈ NI, A ∈ NC,
r ∈ NR, and d ∈ C ):

�I := �J

aI := aJ

AI (x) := max
{
d | x ∈ AJ

�d

}

rI (x, y) := max
{
d | (x, y) ∈ rJ�d

}

To show thatI is amodel ofO, wefirst prove the following
proposition:

Proposition 19 Let C be a concept, r a role, x, y ∈ �I , and
d ∈ C>0. Then, we have

CI (x) � d iff x ∈ ρ (C,� d)J and

rI (x, y) � d iff (x, y) ∈ ρ (r,� d)J .

Proof For role names r , the claim holds by the construction
of rI and the fact that r�dnext � r�d is contained in Oc for
every d ∈ C<1. For the universal role u, the equivalence triv-
ially holds since we have that (x, y) ∈ uJ and uI(x, y) = 1.
Finally, for inverse roles it is an immediate consequence of
the facts that (r−)I(x, y) = rI(y, x), and (x, y) ∈ (r−

�d)J

iff (y, x) ∈ rJ�d .
The rest of the proposition is proved by induction on the

structure of C . For concept names A, the equivalence holds
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by the definition of AI and the fact that A�dnext � A�d is in
Oc for every d ∈ C<1. For the induction step, we consider
all possible concept constructors:

Top Concept: The proof for this case is an immediate con-
sequence of the facts that 
I(x) = 1, ρ(
,� d) = 
, and

J = �J = �I .

Bottom Concept: For bottom, we have ⊥I(x) = 0,
ρ(⊥,� d) = ⊥, and ⊥J = ∅.
Concept Negation:We have that x ∈ ρ(¬C,� d)J holds if
and only if x /∈ ρ(C,> �−(d))J . By the induction hypoth-
esis, this is equivalent to CI(x) �max{d ′ ∈C | �d ′ � d}.
Since � is antitone, this is finally equivalent to
(¬C)I(x) = �CI(x) � d.

Concept Conjunction: If CI
1 (x) ⊗ CI

2 (x) � d, then
by the definition of ⊗−(d) there is at least one pair
(d1, d2) ∈ ⊗−(d) such that CI

1 (x) � d1 and CI
2 (x) � d2.

Since d > 0, we also know that d1 > 0 and d2 > 0. Thus,
by the induction hypothesis we have

x ∈ (
ρ(C1,� d1) � ρ(C2,� d2)

)J ⊆ ρ(C1 � C2,� d)J .

Conversely, suppose that x ∈(ρ(C1,�d1)�ρ(C2,�d2))J

holds for some (d1, d2) ∈ ⊗−(d). Then, by induction
hypothesis, CI

1 (x) � d1 and CI
2 (x) � d2. Because of

the monotonicity of ⊗ we then get that CI
1 (x) ⊗ CI

2 (x) �
d1 ⊗ d2�d, as we wanted to show.

The proof for disjunction is similar to the proof for con-
junction.

Existential Restriction: Suppose that (∃r.C)I(x) � d.
Since C is finite, there must exist some y ∈ �I with
rI(x, y) ⊗ CI(y) � d. We have rI(x, y) � d1 and
CI(y) � d2 for some (d1, d2) ∈ ⊗−(d). By induction, we
get (x, y) ∈ ρ(r,� d1)J and y ∈ ρ(C,� d2)J . Therefore,

x ∈ (∃ρ(r,� d1).ρ(C,� d2)
)J ⊆ ρ(∃r.C,� d)J .

Conversely, suppose that x ∈ (∃ρ(r,� d1).ρ(C,� d2))J

for some pair (d1, d2) ∈ ⊗−(d). Thus, there exists y with
(x, y) ∈ ρ(r,� d1)J and y ∈ ρ(C,� d2)J . By induction,
we have that rI(x, y) � d1 and CI(y) � d2, and therefore

(∃r.C)I(x) � rI(x, y) ⊗ CI(y) � d1 ⊗ d2 � d.

Universal Restriction: If (∀r.C)I(x) � d, then for all
y ∈ �I we have

(
rI(x, y) ⇒ CI(y)

)
� d. Consider any

y ∈ �I and (d1, d2) ∈ ⇒−(d) with rI(x, y) � d1. If
CI(y) � d2, then we immediately get that

rI(x, y) ⇒ CI(y) � d1 ⇒ d2 < d,

which contradicts our assumption. Thus, we must have

CI(y) > d2, and hence x ∈ (∀ρ(r,� d1).ρ(C,> d2)
)J

by the induction hypothesis (as d1 > 0). As this argu-
ment applies to all pairs (d1, d2) ∈ ⇒−(d), we obtain
x ∈ ρ(∀r.C,� d)J , as required.

For the opposite direction, assume that (∀r.C)I(x) < d.
Then there must be a y ∈ �I such that
rI(x, y) ⇒ CI(y) < d. By the definition of ⇒−(d), we
can find a pair (d1, d2) ∈ ⇒−(d) with rI(x, y) � d1 and
CI(y) � d2. Since d1 > 0, the induction hypothesis yields
that (x, y) ∈ ρ(r,� d1)J and y /∈ ρ(C,> d2)J . But then,
this implies that x /∈ ρ(∀r.C,� d)J .

Nominals:Consider the casewhereC ={d1/o1, . . . , dm/om}
such that o1, . . . , om ∈ NI and d1, . . . dm ∈ C>0. Then,
CI(x) � d iff x = oIi for some i ∈ {1, . . . , m} with di � d,
which in turn is equivalent to

x ∈ {oIi | di � d, i ∈ {1, . . . , m}} = ρ(C,� d)J .

Unqualified Number Restrictions: The fact that
(≥m r)I(x) � d is equivalent to the existence of m dif-
ferent elements y1, . . . , ym ∈ �I such that rI(x, yi ) � d
holds for all i ∈ {1, . . . , m}. This is in turn equivalent to the
existence of such yi with (x, yi ) ∈ ρ(r,� d)J for all i , and
hence to x ∈ (≥m ρ(r,� d))J .

The proof for unqualified at-most restrictions can be
obtained by a combination of previous arguments for ≥m r
and ¬C .

LocalReflexivity:Wehave (∃r.Self)I(x) � d iff rI(x, x) �
d, which is equivalent to (x, x) ∈ ρ(r,� d)J , and to
x ∈ (∃ρ(r,� d).Self)J . ��

To finish the proof of the first direction of Theorem 12, it
remains to show the following lemma.

Lemma 20 If J is a classical model of Oc, then I is a fuzzy
model of O.

Proof We need to show that I satisfies all axioms in O:

Concept Assertions: Suppose that O contains the concept
assertion C(a) � d, and thus Oc contains the ρ(C,� d)(a).
Since J is a model of Oc, we have aJ ∈ ρ(C,� d)J ,
and by Proposition 19 that CI(aI) � d. Similarly, for an
assertion C(a) � d in O, we have aJ /∈ ρ(C,> d)J , and
thus CI(aI) � d.

Other ABox Axioms: The proof for role assertions can
be obtained by adapting the proof for concept assertions.
Axioms of the form a �= b, a = b are trivially satisfied
since �I = �J and for every individual a ∈ NI we have
aI = aJ .
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Concept Inclusions: Suppose that our ontology contains the
concept inclusion 〈C � D � d〉 and assume that there is a
x ∈ �I such that CI(x) ⇒ DI(x) < d. Thus, there exists a
pair (d1, d2)∈⇒−(d) such thatCI(x)�d1 and DI(x)�d2.
Since d1 > 0, Proposition 19 yields x ∈ ρ(C,� d1)J and
x /∈ ρ(D,> d2)J , which contradicts the fact thatJ satisfies
ρ(C,� d1) � ρ(D,> d2).

Role Inclusions: Suppose that our ontology contains the role
inclusion 〈r1r2 � r � d〉 and it holds that

(
rI1 (x, y) ⊗ rI2 (y, z)

) ⇒ rI(x, z) < d,

or equivalently,

rI1 (x, y) ⇒ (
rI2 (y, z) ⇒ rI(x, z)

)
< d,

for some x, y, z ∈ �I . Then, there exist (d1, d ′) ∈ ⇒−(d)

such that rI1 (x, y) � d1 and rI2 (y, z) ⇒ rI(x, z) � d ′. The
latter implies the existence of (d2, d3) ∈ ⇒−(d ′

next) with
rI2 (y, z) � d2 and rI(x, z) � d3. Proposition 19 yields
that (x, y) ∈ ρ(r1,� d1)J , (y, z) ∈ ρ(r2,� d2)J , and
(x, z) /∈ ρ(r3,> d3)J , which contradicts the fact that J
satisfies ρ(r1,� d1)ρ(r2,� d2) � ρ(r,> d3).

Disjoint Role Axioms: Suppose that our ontology contains
the axiom dis(r1, r2). We show that for all x, y ∈ �I ,
either rI1 (x, y) = 0 or rI2 (x, y) = 0. Since J satisfies
Oc, ρ(r1,> 0)J ∩ ρ(r2,> 0)J = ∅. By Proposition 19,
there can be no pair x, y ∈ �I such that rI1 (x, y) > 0 and
rI2 (x, y) > 0, as we wanted to show.

The proofs for the other role axioms are similar. ��

Completeness

Conversely, we consider a fuzzy model I of O, and define
the classical interpretation J as follows (for all x, y ∈ �I ,
a ∈ NI, A ∈ NC, r ∈ NR, and d ∈ C>0):

�J := �I

aJ := aI

AJ
�d := {x | AI (x) � d}

rJ�d := {(x, y) | rI (x, y) � d}

We again prove a connection similar to the one of Propo-
sition 19.

Proposition 21 Let C be a concept, r a role, x, y ∈ �I , and
d ∈ C>0. Then, we have

x ∈ ρ (C,� d)J iff CI (x) � d and

(x, y) ∈ ρ (r,� d)J iff rI (x, y) � d.

Proof The proof is nearly the same as for Proposition 19,
the only difference being the induction base cases. But it is
easy to show the claim for concept and role names, given the
definition of J . ��
Lemma 22 If I is a fuzzy model of O, then J is a classical
model of Oc.

Proof We need to show that J satisfies all axioms in Oc:

Concept Assertions: Suppose that Oc contains the concept
assertionρ(C,� d)(a). By the construction ofOc,C(a) � d
appears in O. Since I is a model of O, we have CI(a) � d,
and by Proposition 21 we get aJ ∈ ρ(C,� d)J , as we
wanted to show.

If Oc contains an assertion ¬ρ(C,> d)(a), then
C(a) � d appears in O and consequently CI(a) � d. By
Proposition 21, we have that a /∈ ρ(C,> d)J , as we wanted
to show.

Other ABox Axioms: The proof for role assertions can
be obtained by adapting the proof for concept assertions.
Axioms of the form a �= b, a = b are trivially satisfied
since �I = �J and for every individual a ∈ NI we have
aI = aJ .

Concept Inclusions: Suppose that our ontology contains
a concept inclusion ρ(C,� d1) � ρ(D,> d2) that is
not satisfied. Thus, there exists some x ∈ �J such that
x ∈ ρ(C,� d1)J and x /∈ ρ(D,> d2)J and, by Proposi-
tion 21, CI(x) � d1 and DI(x) � d2. By the construction
of Oc, we have 〈C � D � d〉 in O and (d1 ⇒ d2) <

d for some d ∈ C>0. By the properties of ⇒, we get
CI(x) ⇒ DI(x) � d1 ⇒ d2 < d, which contradicts our
assumption that I is a model of O.

All concept inclusions of the form A�dnext � A�d are
trivially satisfied by the construction of J .

Role Inclusions: Assume that a role inclusion

ρ(r1,� d1)ρ(r2,� d2) � ρ(r,> d3) ∈ Oc

is violated, i.e., there are three elements x, y, z ∈ �J such
that we have (x, y) ∈ ρ(r1,� d1)J , (y, z) ∈ ρ(r2,� d2)J ,
and (x, z) /∈ ρ(r,> d3)J . Proposition 21 implies that:

rI1 (x, y) � d1, rI2 (y, z) � d2, r(x, z) � d3. (8)

By construction of Oc, we have that 〈r1r2 � r � d〉 ∈ O,
(d1 ⇒ d ′) < d, and (d2 ⇒ d3) < d ′

next for some
d, d ′ ∈ C>0. We obtain

(
d1 ⇒ (d2 ⇒ d3)

)
� (d1 ⇒ d ′) < d,

and hence
(
(d1 ⊗ d2) ⇒ d3

)
< d.
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Alongwith (8) and themonotonicity and antitonicity prop-
erties of the operators ⊗ and ⇒, this implies that

((
rI1 (x, y) ⊗ rI2 (y, z)

)
⇒ rI(x, z)

)
< d

which is absurd since I is a model of O and
〈r1r2 � r � d〉 ∈ O.

All role inclusions of the form r�dnext � r�d are trivially
satisfied by the construction of J .

Disjoint Role Axioms: Suppose thatOc contains the disjoint
role axiom dis(ρ(r1,> 0), ρ(r2,> 0)). By construction of
Oc, we also have that dis(r1, r2) ∈ O, and therefore either
r1(x, y) = 0 or r2(x, y) = 0 for all x, y ∈ �I . Proposi-
tion 21 now implies that the axiom

dis(ρ(r1,> 0), ρ(r2,> 0))

is satisfied.
The proofs for the other role axioms are similar. ��

Proof of Lemma 13

To determine the size of Oc for a normalized C -SROIN
ontologyO, we start by analyzing the size of the sets⊗−(d),
⊕−(d) and ⇒−(d) (defined in the beginning of the proof of
Theorem 12). It is clear that for every d1 ∈ C there can be at
most one element d2 ∈ C such that (d1, d2) is contained in
any of these sets. This is due to theminimization conditions in
their definitions. Thus, the size of these sets is at most linear
in the size of C . Consequently, the size of any expression
of the form ρ(C,� d), where C is a complex concept that
contains only one concept constructor, is at most linear in the
sizes of C and C (cf. Table 7).

SinceO is normalized, ABox axioms contain no complex
concepts, and hence the size of κ(α) for any such axiom α is
the same as the size of α.

Consider now a GCI α := 〈C � D � d〉 and its reduced
form, containing a GCI ρ(C,� d1) � ρ(D,> d2) for each
pair (d1, d2) ∈ ⇒−(d). Since α contains at most one concept
constructor, the size of each reduced axiom is linear in the
sizes of α and C . Moreover, there are at most linearly many
such axioms (in the size ofC ), bringing the total size of κ(α)

to at most linear in the size ofα and quadratic in the size ofC .
Likewise, for a role inclusion α := 〈r1r2 � r � d〉 the

number of pairs (d1, d ′) ∈ ⇒−(d) is linear in the size of C ,
and for each of these pairs we additionally have to consider
linearly many pairs of the form (d2, d3) ∈ ⇒−(d ′

next). Thus,
the same bounds are valid for role inclusions. The proof for
the remaining role axioms is trivial.

In summary, the total size ofOc is bounded linearly in the
size of O and quadratically in the size of C . ��
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