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Abstract The Linked Open Data cloud contains tremen-
dous amounts of interlinked instances with abundant knowl-
edge for retrieval. However, because the ontologies are large
and heterogeneous, it is time-consuming to learn all the
ontologies manually and it is difficult to learn the proper-
ties important for describing instances of a specific class. To
construct an ontology that helps users to easily access var-
ious data sets, we propose a semi-automatic system, called
the Framework for InTegrating Ontologies, that can reduce
the heterogeneity of the ontologies and retrieve frequently
used core properties for each class. The framework consists
of three main components: graph-based ontology integration,
machine-learning-based approach for finding the core ontol-
ogy classes and properties, and integrated ontology construc-
tor. By analyzing the instances of linked data sets, this frame-
work constructs a high-quality integrated ontology, which is
easily understandable and effective in knowledge acquisition
from various data sets using simple SPARQL queries.
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1 Introduction

The Linked Open Data (LOD) cloud, which has been grow-
ing rapidly over the past years, consists of 295 machine-
readable data sets with over 31 billion Resource Description
Framework (RDF) triples (as of Sept. 2011). The data sets in
the LOD cloud are mainly categorized into seven domains:
cross-domain, geographic, media, life sciences, government,
user-generated content, and publications. Same instances in
different data sets are interlinked with owl:sameAs, which
is a built-in Web Ontology Language (OWL) property [4].
Currently, approximately 504 million owl:sameAs links are
in the LOD cloud. Although some built-in properties such
as owl:equivalentClass and owl:equivalentProperty are avail-
able for linking equivalent classes or properties, only a few
of these kinds of links are in the LOD cloud [12]. Hence, it
is difficult to understand the ontology alignments between
different data sets.

OWL, which is a semantic markup language developed
as a vocabulary extension of RDF, has more vocabular-
ies for describing classes and properties [3]. RDF is a
general-purpose language for representing information on
the Web. RDF Schema, which is a semantic extension of
RDF, provides mechanisms for describing groups of related
resources and the relationships between these resources [5].
OWL 2 Web Ontology Language [34] provides the same
classes and properties as in the older OWL 1 [3], but OWL
2 has richer data types, data ranges, disjoint properties,
etc.

Our research mainly focuses on integrating ontologies
from various data sets so that Semantic Web application
developers can easily understand the ontologies and gain
access to data sets. In this paper, we present our solution
to resolve the following problems:
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1. Ontology Heterogeneity Problem

Data sets are published according to the Linked Data
principles and also provide links to other data resources
[4]. However, no standard ontology fits all data sets, and
so the many kinds of ontologies can cause the ontol-
ogy heterogeneity problem. The research in [10] catego-
rized the ontology heterogeneity problem into four dif-
ferent types: syntactic heterogeneity, terminological het-
erogeneity, conceptual heterogeneity, and semiotic het-
erogeneity. We mainly focus on terminological and con-
ceptual heterogeneity problems.

— The terminological heterogeneity problem occurs
when the same entities in different ontologies are
represented differently, e.g., openingDate vs. estab-
lishedDate and shortDescription vs. abstract.

— The conceptual heterogeneity, which is also called
semantic heterogeneity in [9] and logical mismatch
in [18], occurs due to the use of different axioms
for defining concepts or due to the use of totally dif-
ferent concepts. For example, most airport instances
are described with the type of db-onto:Airport that is
a subClass of db-onto:Infrastructure (db-onto:Infra-
structure is a subClass of db-onto:Architectural
Structure). However, some airports are described
using db-onto:- Building, which is a subClass of db-
onto:ArchitecturalStructure.

Figure 1 shows the interlinked instances of ‘“France”.
All the properties (labeled on the dotted line) that are
connected to gray boxes (objects) represent the name
of “France” and the properties that are connected to the
black boxes represent the population. To access various
data sets simultaneously, we have to understand their het-
erogeneous ontologies in advance to achieve semantic
interoperability.

. Difficulty in Identifying Core Ontology Entities

The instances of each class are described by part of the
ontology properties. When the ontology is large, it is
time-consuming to identify important properties used for
describing instances of a specific class. Retrieving fre-
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quently used core classes and properties from various
data sets can help Semantic Web developers easily under-
stand the ontology entities used for describing instances
in each data. The core ontology entities help us to con-
struct SPARQL queries and to discover missing informa-
tion in the data sets. The core ontology entities consist of
top-level classes and frequently used core properties.

— Top-level class: If the data set is ontology-based,
top-level classes are all the direct subClasses of
owl:Thing. Otherwise, we use the top categories as
top-level classes. For example, db-onto:Agent and
db-onto:Place are top-level classes in DBpedia, and
nyt:nytd_geo and nyt:nytd_org are top-level classes
in NYTimes.

— Frequent core property: The frequently used prop-
erties describing instances in the data sets are con-
sidered as frequent core properties. For example, the
properties db-onto:kingdom, db-onto:- class, and db-
onto:family are frequently used to describe instances
defined with the class of db-onto:Species.

3. Missing Domain or Range Information

The relations between the ontology classes and proper-
ties are described with the property rdfs:domain, which
indicates that the properties are designed to be used for
the instances of a specific class. Furthermore, the range
information of the values can help users better understand
the data sets. However, in real data sets, many ontologies
have missing domain or range information. In addition
to the domain and range information, we should retrieve
the description of each ontology class and property to
construct an easily understandable integrated ontology.

To solve the above problems, we introduce the Frame-
work for InTegrating Ontologies (FITON), which decreases
the ontology heterogeneity in the linked data sets, retrieves
core ontology entities, and automatically enriches the inte-
grated ontology by adding the domain, range, and annota-
tions. FITON applies the different techniques listed below:
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1. Ontology Similarity Matching on the SameAs Graph Pat-

terns
Ontology integration is defined as the process that gen-
erates a single ontology from different existing ontolo-
gies [6]. However, having only few links at the class
or property level makes it difficult to directly retrieve
equivalent classes and properties for ontology integra-
tion. Ontology alignment, or ontology matching is com-
monly used to find correspondences between ontolo-
gies to solve the ontology heterogeneity problem [29].
We combined string-based and WordNet-based ontology
matching methods on the predicates and objects to dis-
cover similar concepts.
Since the same instances are linked by owl:sameAs, we
can create undirected graphs with the linked instances and
analyze the graphs to retrieve related classes and proper-
ties. By analyzing the graph patterns, we can observe how
the same concepts are represented differently in various
data sets. Moreover, to reduce the ontology heterogeneity
problem, we perform different similarity matching meth-
ods on the SameAs graph patterns to integrate the various
ontologies.

2. Machine Learning for Core Ontology Entity Extraction
Machine learning methods such as association rule learn-
ing and rule-based classification can be applied to dis-
cover core properties for describing instances in a spe-
cific class. Apriori is a well-known algorithm for learning
association rules in a big database [1], while the rule-
based learning method, Decision Table, can retrieve a
subset of properties that leads to high prediction accuracy
with cross-validation [19]. By applying machine learning
approaches to linked data sets, we can retrieve core ontol-
ogy entities that are important for describing instances in
the data sets.

3. Automatic Ontology Enrichment
The domain and the range information in the ontologies
are critical for users to understand the relations between
ontology entities. However, much missing domain and
range information exists in the published LOD cloud.
Hence, we propose the integrated ontology constructor
that automatically enriches the integrated ontology by
adding the missing domains and ranges, as well as anno-
tations.

We randomly select some samples of the instances
described by triples containing the retrieved classes and
properties. From the contents of the sample instances,
we automatically retrieve the domain information to link
the properties and classes. We also retrieve the default
range information of the properties and analyze the val-
ues of properties from the sample instances, which are
mainly categorized into String and Resource. By analyz-
ing these sample instances, we can reduce the analysis
time and also retrieve the domain or range information.

The default annotations are added to make the integrated
ontology easily understandable.

In this paper, we propose FITON, which adds the addi-
tional automatic ontology enrichment component as an
extension of the research presented in [38]. The remainder
of this paper is organized as follows. In Sect. 2, we discuss
some related work and limitations of the methods. In Sect. 3,
we introduce FITON, which contains three main compo-
nents. Section 4 describes experiments with FITON, includ-
ing assessing the performance with two machine learning
methods, a comparison between FITON and other ontology
matching tools, and an evaluation of the integrated ontology.
In Sect. 5, we discuss possible applications using the graph
patterns and the integrated ontology created with FITON. We
conclude and propose our future work in Sect. 6.

2 Related Work

The authors in [20] introduced a closed frequent graph min-
ing algorithm to extract frequent graph patterns from the
Linked Data Cloud. Then, they extracted features from the
entities of the extracted graph patterns to detect hidden
owl:sameAs links or relations in geographic data sets such as
the U.S. Census, Geonames, DBpedia, and World Factbook.
They applied a supervised learning method on the frequent
graph patterns to discover useful attributes for linking the
same instances in various data sets. However, their approach
only focused on the geographic domain and did not discuss
the kinds of features important for finding the hidden links.

A debugging method for mapping lightweight ontologies
is introduced in [25]. These authors applied machine learning
technology to determine the disjointness of any pair of classes
using the features of taxonomic overlap, semantic distance,
object properties, label similarity, and WordNet similarity.
Although their method performs better than other state-of-
the-art ontology matching systems, the method is limited to
expressive lightweight ontologies.

In [27], the authors focused on finding concept coverings
between two sources by exploring the disjunctions of restric-
tion classes. Their approach produces coverings where con-
cepts at different levels in the ontologies can be mapped even
if there is no direct equivalence. However, the ontology align-
ments are limited to two sources only.

The analysis of the basic properties of the SameAs net-
work, the Pay-Level-Domain network, and the Class-Level
Similarity network are discussed in [8]. Those researchers
compared the five most frequent types to examine how data
publishers are connected. However, considering only the
types is not sufficient to detect related instances, which nor-
mally contain many data type properties.
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The authors in [26] proposed constructing an intermediate
layer ontology using an automatic alignment method on the
linked data. However, the authors focused only on analyzing
at the class level. If they had also considered the alignments
at the property level, they could better understand how the
instances are interlinked.

In contrast to the related research described above, FITON
finds ontology alignments at both the class and the property
levels. Furthermore, in each data set, we discover frequently
used core properties and classes that can help data publish-
ers detect misuses of the ontologies in the published data
sets. FITON is domain-independent and successfully inte-
grates heterogeneous ontologies by extracting related prop-
erties and classes that are critical for interlinking instances.
In addition, for the instances of a specific class, we recom-
mend core properties that are frequently used for instance
description.

3 Ontology Integration Framework

Semantic Web developers often want to integrate data sets
from various domains, but it is time-consuming to manu-
ally learn all the ontologies in different data sets. Moreover,
large ontologies and heterogeneous ontologies make it diffi-
cult to manually map ontologies. Constructing a global ontol-
ogy by integrating heterogeneous ontologies of linked data
can help effectively integrate various data resources. We can
decrease the ontology heterogeneity problem by retrieving
related classes and properties from the interlinked instances.
In addition, we also need the top-level classes and frequent
core properties in each data set, which can be extracted using
machine learning methods. For instance, the Decision Table
algorithm can retrieve a subset of properties that leads to
high prediction accuracy with cross-validation and the Apri-
ori algorithm can discover properties that occur frequently
in the instances of the top-level classes.

In this section, we introduce the semi-automatic ontology
integration framework FITON that finds alignments between
different ontologies and extracts core ontology entities used
to describe instances. In addition to the approach introduced
in [38], we improved the integrated ontology by enriching it
with annotations, and domain and range information that can
help users easily understand the ontology. As shown in Fig. 2,
the framework of FITON consists of three main components:

graph-based ontology integration [37], machine learning-
based approach [38], and an integrated ontology constructor
that can automatically enrich the integrated ontology with
useful information. In the following, we describe each com-
ponent in detail.

3.1 Graph-Based Ontology Integration

The instances that are interlinked by owl:sameAs are used to
construct graphs and we can apply ontology matching meth-
ods on the graphs to find the alignments for the related classes
and properties. Figure 3 shows the architecture of the graph-
based ontology integration component, which contains five
main steps. In the following, we describe each step of the
graph-based ontology integration framework introduced in
[37]:

3.1.1 Graph Pattern Extraction

We collect all the instances that have the owl:sameAs
(SameAs) links to construct graph patterns that can be ana-
lyzed for mapping different ontology classes and properties.
In the following, we list definitions of the terms SameAs
Triple, SameAs Instance, SameAs Graph and graph pattern
as follows:

Definition 1 SameAsTriple. A SameAs Triple is an RDF
triple that contains the owl:sameAs predicate.

Definition 2 SameAsInstance. A SameAs Instance is a
tuple SI = (U, T, L), where U is the URI of the instance that
appears in a SameAs Triple <U, owl:sameAs, X> or <X,
owl:sameAs, U>, T is the number of the distinct SameAs
Triples that contain U, and L is the label of the data set that
includes the instance.

Definition 3 SameAsGraph. Thisisanundirected SameAs
Graph SG = (V, E, I), where V is a set of vertices that are the
labels of data sets having the linked SameAs Instances, E C
V x Vis a set of sameAs edges, and I is a set of URISs of the
interlinked SameAs Instances.

Here, we give an example of the SameAs Graph con-
structed with the interlinked instances of “France” shown in
Fig. 1. The SameAs Graph SGFrance = (V, E, I), where V =

Fig. 2 Framework for

InTegrating Ontologies
(FITON)

,[ Graph-Based Ontology Integration

Integrated

Ontology

Constructor

{ Machine-Learning-Based Approach
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Fig. 3 Architecture of the graph-based ontology integration

Algorithm 1: SameAs Graphs extraction.

Input : IndexSI: A set of SameAs Instances
Output: SerSG: A set of SameAs Graphs
Variable: LinkedInst: Linked instances of S/
begin
SetSG «— ¢
for SI € IndexSI do
if S1.visited = false then
SG «— ¢
Sl.visited <— true
SG «— SearchGraph(SG, SI)
SetSG.put (SG)

L return SetSG

earchGraph(SG, ST)
egin
SG.V.put(SI.L)
SG.1.put(S1.U)
LinkedInst «<—
for X € ( < SI, owl:sameAs, X > U
< X, owl:sameAs, SI > ) do
if X.visited = false then
| LinkedlInst.put(X)

T

for X € LinkedInst do
if X.visited = false then
SG.E «— (S1,X)
X.visited <— true

SG «— SearchGraph(SG, X)

L return SG

{M,D,G,N}, E={(D,G),(D,N), (G, M), (G,N)},I={mdb-
country:FR,1 db:France,? geo:3017382,3 nyt:67...214}. M,
D, G, and N represent the labels of data sets LinkedMDB,
DBpedia, Geonames, and NYTimes, respectively.

To collect all the SameAs Graphs in the linked data sets
using Algorithm 1, we extract all the SameAs Instances and
rank them based on the value of T, which is the number of

' mdb-country: http://data.linkedmdb.org/resource/country/
2 db: http://dbpedia.org/resource/
3 geo: http://sws.geonames.org/

4 nyt: http://data.nytimes.com/

I G2_URI_Group_q2

/ G_URI_Group_1

!
Gk_URI_Group_1 G_URI_Group_q

A

Gk ,U'E'?‘I,'jC(oup qk

distinct SameAs Triples. The ranked SameAs Instances are
indexed in Index S1, from which we extract a set of SameAs
Graphs Set SG from the linked data sets.

In Algorithm 1, for each unvisited S7 in IndexSI, we
create an empty SameAs Graph SG and construct a SameAs
Graph by using the function SearchGraph(SG, ST). We put L
and U of ST into SG, and then search for the instances linked
with S7 and put them in LinkedInst. For each unvisited
instance X in LinkedInst, we put the edge (S/, X) into
the SG, and mark X as visited. Then we iteratively search
with SG and X and assign the returned value to SG until
all the instances in the Linked Inst are visited. The function
SearchGraph(SG, ST) returns a SameAs Graph SG and all
the SameAs Graphs constructed with the instances in the
IndexSI are stored in SetSG.

Definition 4 graphpattern. Two SameAs Graphs SG; and
SG; have the graph pattern (GP), if SG;.V = SG;.V and
SG;.E=SG;.E.

All the same SameAs Graphs form a graph pattern, from
which we can detect related classes and properties.

3.1.2 <Predicate, Object> Collection

An instance can be represented as a collection of RDF triples
in the form of <subject, predicate, object>, where the subject
is the URI of an instance. Since a SameAs Graph contains
linked instances, we collect all the Predicate, Object> pairs
of the interlinked instances as the content of the SameAs
Graph. Hereafter, PO represents <Predicate, Object>.

To avoid comparison between different types of objects,
we classify the PO pairs into five different types: Class,
String, Date, Number, and URI. The type of Class can be
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Table 1 Type classification

Table 2 PO pairs and types for SGgrance

Type Built-in data types Predicate Object Type

String http://www.w3.0org/2001/XMLSchemat#string rdf:type db-onto:Country Class
http://www.w3.0rg/2001/XMLSchemat#date rdfs:label “France” @en String

Date http://www.w3.0rg/2001/XMLSchematg Year foaf:name “France” @en String
http://www.w3.0rg/2001/XMLSchema#gMonthDay foaf:name “République frangaise” @en String

http://www.w3.0rg/2001/XMLSchematinteger

Number http://www.w3.0rg/2001/XMLSchema#float
http://www.w3.org/2001/
XMLSchema\protect\LY 1\textdollardouble
http://www.w3.0rg/2001/XMLSchema#int
URI http://www.w3.0rg/2001/XMLSchema#anyURI

identified from the predicates rdf:type> and skos:inScheme®
The other four types of PO pairs can be identified from the
object values with the built-in data types listed in Table 1.
Usually the data types of objects are followed by the symbol
“AN”. If the data types are not given expressively in the RDF
triples, we analyze the object values in the following way:

— Number: The value consists of all numbers.
— URI: Starts with “http://”.
— String: All the other values that can not be classified.

Table 2 shows an example of the collected PO pairs of
the interlinked instances shown in Fig. 1 and the types of PO
pairs in SG prance. The first two columns list the PO pairs
and the last column lists the types of the PO pairs.

3.1.3 Related Class and Property Grouping

To find related classes and properties for each graph pattern,
we analyze the collected PO pairs of the SameAs Graphs. In
the following, we describe how to discover related classes by
checking the subsumption relations and how to find related
properties by using ontology alignment methods.

1. Related Class Grouping
The ontology classes have subsumption relations such
as owl:subClassOf and skos:inScheme. The two triples
< C1, owl:subClassOf, C, > and < Cq, skos:inScheme,
C> > mean that the concept of C; is more specific
than the concept of C,. To identify the types of linked
instances, we focus on the most specific classes from the
linked instances by tracking the subsumption relations.
The classes and subsumption relations form a tree, and
the most specific classes are called leaf nodes in the tree.

3 rdf: http://www.w3.0rg/1999/02/22-rdf-syntax-ns#
6 skos: http://www.w3.0rg/2004/02/skos/core#
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db-onto:wikiPageExternalLink http://us.franceguide.com/ URI

db-prop:populationEstimate 65447374 Number
geo-onto:name France String
geo-onto:alternateName “France” @en String
geo-onto:featureCode geo-onto:A.PCLI Class
geo-onto:population 64768389 Number
rdf:type mdb:country Class
mdb:country_name France String
mdb:country_population 64094000 Number
rdfs:label France (Country) String
rdf:type skos:Concept Class
skos:inScheme nyt:nytd_geo Class
skos:prefLabel “France” @en String
nyt-prop:first_use 2004-09-01 Date

A class which has no subsumption relation is considered
as a leaf node.
From each SameAs Graph, we construct trees with
the classes extracted from the PO pairs classified in
the type Class. Then we group the leaf nodes, which
represent the most specific class information of an
instance. For each data set, we pre-define the proper-
ties of the class type and the subsumption relations.
For example, we use geo:featureCode as the class type
instead of rdf:type, and use skos:inScheme as the sub-
sumption relation in Geonames. In NYTimes, we use
skos:inScheme for the class type instead of rdf:type
because it can categorize NYTimes data into four dif-
ferent types. Hence, nyt:nytd_geo is used as the class
node instead of skos:Concept.
Figure 4 shows a collection of classes extracted from
SG France- The classes are connected with the subsump-
tion relations owl:subClassOf and skos:inScheme. The
gray nodes are mdb:country,” db-onto:Country®, geo-
onto:A.PCLI’ and nyt:nytd_geo, which are the leaf nodes
in Fig. 4. Therefore, we can group these four classes, that
are used for describing countries in different data sets.
2. Related Property Grouping

7 mdb:http://data.linkedmdb.org/resource/movie/
8 db-onto: http://dbpedia.org/ontology/

9 geo-onto:http://www.geonames.org/ontology #


http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2001/XMLSchema#date
http://www.w3.org/2001/XMLSchema#gYear
http://www.w3.org/2001/XMLSchema#gMonthDay
http://www.w3.org/2001/XMLSchema#integer
http://www.w3.org/2001/XMLSchema#float
http://www.w3.org/2001/XMLSchemaprotect LY1	extdollar double
http://www.w3.org/2001/XMLSchemaprotect LY1	extdollar double
http://www.w3.org/2001/XMLSchema#int
http://www.w3.org/2001/XMLSchema#anyURI
http://us.franceguide.com
http://data.linkedmdb.org/resource/movie/
http://dbpedia.org/ontology/
http://www.geonames.org/ontology
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Fig.

(a)

(b)

owl:subClassOf skos:inScheme
db-onto:Place geo-onto:A PCLI
owl:subClassOf
db-onto:PopulatedPlace
owl:subClassOf
db-onto:Count nyt:nytd_geo

4 Collected classes from SGprance

We perform exact and similarity matching methods on
the collected PO pairs to find related properties, which
are also used as predicates in the PO pairs. This is an
extension of the similarity matching method introduced
in [39].

Exact Matching for Creating the Initial Sets of PO Pairs
The first step in the predicate grouping is to create the ini-
tial sets of PO pairs by the exact string matching method.
For each classified type of PO pairs, we perform a pair-
wise comparison of PO; and PO}, and create the initial
sets S1, 82, . .., Sk by checking whether they have iden-
tical predicates or objects. Here, S is a set of PO pairs.

For example, in Table 2, the predicates rdfs:label, 10
mdb:country_name, foaf:name, skos:prefLabel, geo-
onto:name, and geo-onto:alternateName have the same
value “France”, and the predicate foaf:name has another
object, “République francaise” @en. Hence, these six
PO pairs are grouped together to create an initial set.
After creating initial sets by exact matching, we cre-
ate an initial set for each PO pair that has not yet been
grouped.

Similarity Matching on the Initial Sets of PO Pairs

The identical predicates of PO pairs that are classified
into Date and URI can be discovered by exact matching.
However, for the types of Number and String, the objects
may be slightly different.

To find related initial sets, we apply similarity matching
methods on the PO pairs of two initial sets and merge
them if the similarity of any two PO pairs is higher than
the predefined similarity threshold.

String-based and WordNet-based similarity matching
methods are commonly used for matching ontologies at
the concept level [10]. In our approach, we adopt three
string-based similarity measures, namely, Jaro-Winkler
distance [35], Levenshtein distance, and n-gram, as
introduced in [14]. String-based similarity measures are
applied to compare the objects of PO pairs that are clas-
sified in String. Obj Sim(PO;, PO;), which is the sim-
ilarity of objects between two PO pairs, is calculated as

10" rdfs:http://www.w3.0rg/2000/01/rdf-schema#

(c

~

follows:

ObjSim(PO;, PO;)

1 10p0; —Opo;|
Oro; +0ro;

StrSim(Opo;, 0130_/.)

ifOpp is Number

if Opp is String

where StrSim(Opo;, Opo j) is the average of the three
string-based similarity values and the term Op¢p indi-
cates the object of PO.

The WordNet-based similarity matching method is
required to group semantically similar predicates as
discussed in [39]. WordNet::Similarity!! provides nine
similarity measures based on the lexical database Word-
Net [30]. Resnik [32], Lin [23], and Jiang and Conrath
(JCN) [17] are based on the information content of the
least common subsumer (LCS) o f concepts, and Lea-
cock and Chodorow (LCH) [21], Wu and Palmer (WUP)
[36], and PATH are based on path lengths between a
pair of concepts. The other three methods measure relat-
edness between concepts, which are Hirst and StOnge
(HSO)[13],LESK [2], and VECTOR [28]. We adopt the
same approach to calculate the similarity of predicates
PreSim(PO;, PO;) using the following formula:

PreSim(POi, POj) = WNSim(Tpoi, Tpoj)

where Tpo indicates the pre-processed terms of the pred-
icates in PO and WN Sim(Tpo, , Tpoj) is the average of
the nine applied WordNet-based similarity values.
Sim(PO;, POj), which is the similarity between PO;
and PO, is calculated as follows:

Sim(PO;, PO;)
_ 0bjSim(PO;, PO)) + PreSim(PO;, PO )
- 2

If Sim(PO;, POj) is higher than the predefined simi-
larity threshold, we consider that these two PO pairs
are similar and merge the two sets S, and S, that con-
tain PO; and PO, respectively. In this work, we set the
default similarity threshold to 0.5. After comparing all
the pairwise initial sets, we remove the initial set S; if
it has not been merged during this process and has only
one PO pair.

Refine Sets of PO Pairs

The final step of the related property grouping is to
split the predicates of each S; according to the relation
rdfs:domain [5]. Even though the objects or terms of
the predicates are similar, the predicates may belong to
different domains. For further refinement, we keep only

T http://wn-similarity.sourceforge.net/
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frequent pruned S; that appears more than the predefined
frequency threshold.

From the sets of PO pairs retrieved from each graph pat-
tern, we collect the classes and properties. Then we construct
integrated groups of classes and properties for the types Date,
String, Number, and URL

3.1.4 Aggregation of All Integrated Classes and Properties

In this step, we aggregate the integrated classes and prop-
erties from all the graph patterns to construct a preliminary
integrated ontology according to the following rules:

1. Select a Term for Each Set
To perform automatic term selection, we pre-process all
the terms of the classes and properties in each set by tok-
enization, stop word removal, and stemming. We keep
the original terms because sometimes a single word is
ambiguous for representing a set of terms. For exam-
ple, “area” and “areaCode” have different meanings, but
they may have the same frequency because the former is
extracted from the latter. Hence, when two terms have the
same frequency, we choose the longer one. The predicate
ex-onto:ClassTerm is designed to represent a class, where
“ClassTerm” is automatically selected and starts with a
capitalized character. The predicate ex-prop:propTerm is
designed to represent a property, where “propTerm” is
automatically selected and starts with a lowercase char-
acter.

2. Construct Relations
We use the predicate ex-prop:hasMemberClasses to
link the integrated classes with ex-onto:ClassTerm, and
the predicate ex-prop:hasMemberProperties to link the
integrated properties with ex-prop:propTerm. Here, we
use the relation ex-prop:hasMemberClasses and ex-
prop:hasMemberProperties instead of the existing owl:
equivalentClass or owl:equivalentProperty to easily
observe how each class and property are connected and
how they are used for describing instances. Each class
or property can belong to different groups and might
be used in a different way. Furthermore, even if classes
or properties are in the same group, it does not mean
that they are equivalent. However, if we can guarantee
they are equivalent, we can easily connect them with
owl:equivalentClass or owl:equivalentProperty.

3. Construct Preliminary Integrated Ontology
A preliminary integrated ontology is automatically con-
structed with the integrated sets of related classes and
properties, the selected terms ClassTerm and propTerm,
and the ex-prop:hasMemberClasses and ex-prop:has
MemberProperties.

@ Springer

3.1.5 Manual Revision

The automatically constructed preliminary integrated ontol-
ogy includes related classes and properties from different
data sets. However, not all the terms of the classes and
properties are properly selected, and some statements of
rdfs:domain are missing. Hence, we need experts to revise
the integrated ontology by choosing a proper term for each
group of properties and by amending wrong groups of classes
and properties. Since the integrated ontology is much smaller
than the original ontologies, it is lightweight work.

3.2 Machine-Learning-Based Approach

Although, the graph-based ontology integration method can
retrieve related classes and properties from different ontolo-
gies, this method may miss some core classes and fre-
quently used properties that might be important for describ-
ing instances. Since the method relies too much on SameAs
links, it cannot retrieve related classes or properties if no
links or no other similar classes or properties exist. There-
fore, we need another method to extract top-level classes and
frequent core properties, which are essential for describing
instances. Even though each instance is described by using
one top-level class and subclasses of the top-level class that
have more specific class information, not all the instances
are described by specific class information and the number
of instances per specific class is not balanced. Hence, we
consider the top-level classes as part of the core ontology
entities and perform machine learning methods.

By applying machine learning methods, we can find core
properties that are frequently used to describe instances of a
specific class. The Decision Table is a rule-based algorithm
that can retrieve a subset of core properties, and the Apriori
algorithm can find a set of associated properties that are fre-
quently used for describing instances. Therefore, we apply
the Decision Table and the Apriori algorithm to retrieve top-
level classes and frequent core properties from the linked
data sets.

To perform the machine learning methods, we randomly
select a fixed number of instances for each top-level class
from the data sets. For the data sets built based on an ontol-
ogy, we track the subsumption relations to retrieve the top-
level classes. For example, we track the owl:subClassOf sub-
sumption relation to retrieve the top-level classes in DBpe-
dia and track skos:in- Scheme in Geonames. However, some
data sets use categories without any structured ontology. For
this kind of data set, we use the categories as the top-level
classes. As an example, NYTimes instances are only catego-
rized into people, locations, organizations, and descriptors.
We use this strategy to collect the top-level classes in each
data set, and then extract properties that appear more than the
frequency threshold 8. The selected instances, properties, and
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top-level classes are used for performing machine learning
methods.

3.2.1 Decision Table

The Decision Table is a simple rule-based supervised learn-
ing algorithm that leads to high performance with a simple
hypothesis [19]. The Decision Table algorithm can retrieve a
subset of core properties that can predict unlabeled instances
with high accuracy. Therefore, the properties retrieved by the
Decision Table play an important role in the data description.

We convert the instances of the linked data sets into data
that is adaptable to the Decision Table algorithm. The data
consists of a list of weights of the properties and the class
labels. The weight represents the importance of a property in
an instance and the labels are top-level classes. The weight
of a property in an instance is calculated in a similar way
as the Term Frequency-Inverse Document Frequency (TF-
IDF), which is often used as a weighting factor in information
retrieval and text mining [24]. The TF-IDF value reflects how
important a word is to a document of a collection or a corpus.
Similarly, in the Decision Table algorithm, the weight of each
property in an instance is defined as the product of the prop-
erty frequency (PF) and the inverse instance frequency (IIF).
The property frequency pf (prop, inst) is the frequency of
the property prop in the instance inst.

The inverse instance frequency of the property prop in the
data set D is ii f (prop, D), calculated as follows:

|D|

itf(prop, D) = log Tinstoro]
prop

where inst,,,p indicates an instance that contains the prop-
erty prop. The value of ii f (prop, D) is the logarithm of the
ratio between the number of instances in D and the number of
instances that contain prop. If prop appears in inst, the weight
of prop is calculated according to the following equation:

weight (prop,inst) = pf(prop,inst) x iif(prop, D)

The properties retrieved in each data set by the Decision
Table are critical for describing instances in that data set.
Thus, we use these retrieved properties and top-level classes
as parts of the final integrated ontology.

3.2.2 Apriori

An association rule learning method can extract a set of
properties occurring frequently in the instances of a specific
class. Apriori is a classic association rule mining algorithm,
designed to operate on the databases of transactions. A fre-
quent itemset is an itemset whose support is greater than the
user-specified minimum support. Each instance in a specific
class represents a transaction, and the properties that describe

the instance are treated as items. Hence, the frequent item-
sets represent the frequently used properties for describing
the instances of a specific class. The frequent core properties
can be recommended to data publishers or help them finding
missing important descriptions of the instances.

For each instance, a top-level class and all the proper-
ties that appear in the instance are collected as a transaction.
The Apriori algorithm can extract associated sets of prop-
erties that occur frequently in the instances of a top-level
class. Hence, the retrieved sets of properties are essential for
describing the instances of a specific class. Furthermore, we
can either identify commonly used properties in each data
set or unique properties used in the instances of each class.
Therefore, the properties extracted with the Apriori algorithm
are necessary for the integrated ontology.

3.3 Integrated Ontology Constructor

The third component is an integrated ontology construc-
tor, which merges the ontology classes and properties
extracted from the previous two components. The graph-
based ontology integration component outputs groups of
related classes and properties, whereas the machine learning-
based approach outputs a set of core properties retrieved by
the Decision Table and a set of properties along with a top-
level class retrieved by the Apriori algorithm. The global
integrated ontology can help us to easily access various data
sets and discover missing links. Furthermore, the domain
information of the properties is automatically added using
the results of the Apriori algorithm.

To construct an easily understandable ontology, we enrich
the definition of the retrieved ontology classes and proper-
ties by adding annotations, and domain and range informa-
tion. This integrated ontology constructor mainly consists of
ontology enrichment, ontology merger, and naming valida-
tor. In the following, we describe each part in detail.

3.3.1 Ontology Enrichment

Most of the retrieved ontology classes and properties lack
clear definitions. Therefore, an ontology enrichment method
is necessary for a better understanding of the ontology defini-
tions and the relations between the classes and properties. We
enrich the retrieved classes and properties in the following
way:

— Annotation: We collect all the default annotation defini-
tions of the classes and properties from the data sets. In
this process, for each group of classes and properties, we
simply remove the duplicated annotations and the simple
annotations that are included in the more comprehensive
ones.
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— Domain: The domain information of a property should be
included in the integrated ontology because it indicates
the relation between a property and a class. This infor-
mation can help users to easily understand the kinds of
properties that can be used for a specific class. To retrieve
the domain information of a property, we randomly select
m number of samples of instances having the property.
Then we collect all the class information of the sample
instances and iteratively do the sampling process for n
times. The class information can be collected by tracking
with properties rdf:type, skos:inScheme, etc.

Then we analyze the collected class information to retrieve
the proper domain information for a property. We choose
the most frequently appearing classes as the domains of
a property, which are the classes that appear in almost
every sample instance. However, we observed that some
classes are also frequently used, but are missing in a few
instances. Hence, we set a frequency threshold for the
domain retrieval as 0.95 * Fregq,,p, where Freq,p is the
highest frequency of a class. If we could not retrieve the
frequent class information or default definition of domain
information, we set owl: Thing as the domain information.

— Range: The range information of a property is also impor-

tant for users when they create SPARQL queries or pub-
lish data sets. However, most of the ranges are missing
and sometimes the values are published in various ranges.
To retrieve the range information, we also use the same
sample instances described above. Then we analyze the
values of the properties in the sample instances.
We can retrieve the built-in data types by tracking the sym-
bol “AA”. For other values for which we do not expres-
sively show the data types, we classify them into two
types: Resource and String. If the value contains resource
information, we classify it as a Resource, otherwise we
consider it as a String.

3.3.2 Ontology Merger

We adopt OWL 2 for constructing an integrated ontology.
During the merging process, we also add relations between
classes and properties so that we can easily identify the kinds
of properties used to describe the instances of a specific class.
We obey the following rules to construct the integrated ontol-
ogy, where “ex-onto” and “ex-prop” are the prefixes of the
integrated ontology.

— Class Related classes are collected from the graph-based
ontology integration component and the top-level classes
in each data set are collected from the machine learning-
based ontology entity extraction component.

1. Groups of classes from the graph-based ontology
integration
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Related classes from different data sets are extracted
by analyzing SameAs graph patterns and then grouped
into cgroupi, cgroups, ...,cgroup,. We define
ex—onto : ClassTerm for each group, where
ClassTerm is the most frequent term in the group.
For all ¢; € cgroupy, <ex—onto : ClassT ermy,
ex—prop : hasMemberClasses,c; > is added auto-
matically.

2. Classes from the machine-learning-based approach
Top-level classes in each data set are added to
the integrated ontology. If a top-level class ¢; ¢
cgroupi(l < k < z), we create a new group
cgroup;4+1 for each class ¢; and create a new
term ex —onto : ClassT erm,y; for the new group.
Then we add a triple <ex—onto : ClassTerm,1,
ex—prop : hasMemberClasses, ¢;>.

— Property The extracted properties from two compo-
nents are merged according to the following rules.
First, we extract the existing property type and the
domain information of each property from the data sets.
The property type is mainly defined by rdf:Property,
owl:DataTypeProperty, and the object property owl:
ObjectProperty. If the type is not clearly defined, we set
the type as rdf:Property.

1. Groups of properties from graph-based ontology inte-
gration
Related properties from various data sets are extracted
by analyzing the SameAs graph patterns and then
grouped into pgroupi, pgroups, ..., pgr- oupp.
For each group, we choose the most frequent term
ex-onto:propTerm. Next, for each property prop; €
pgroup;(1 <t < p), we add a triple <ex—onto :
propTerm,, ex—prop : hasMember Properties,
prop;> and the triple <ex—onto : propTerm,
rdfs:domain, dInfo>, where dInfo is retrieved domain
information of prop; in the ontology enrichment
process.

2. Properties from machine learning-based approach
We automatically add domain information for the
properties retrieved by the Apriori method. For each
property prop extracted from the instances of class c,
<prop,rdfs : domain, c > is automatically added,
if it is not defined in the data set.

3.3.3 Naming Validator

The naming validator corrects the terms that have a naming
format different from others. In the pitfall catalog introduced
in the OOPS! (OntOlogy Pitfall Scanner!) system [31], con-
sistent naming criteria is suggested for validating the ontol-
ogy quality. In our regulation, we do not allow any characters,
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such as “—7, and “/”, in the terms. We convert names
containing words separated by these special characters into
camelCase.

—

4 Experiments

In this section, we introduce the experimental data sets and
then discuss experimental results with the Decision Table
and the Apriori algorithm, which retrieve the top-level classes
and the frequent core properties. The comparison results with
other ontology matching tools are also discussed using ontol-
ogy reference alignments. Last, we evaluate the quality of the
integrated ontology with an ontology validator and ontology
reference alignments.

4.1 Data Sets

We selected DBpedia (v3.6), Geonames (v2.2.1), NYTimes,
and LinkedMDB from the LOD cloud to evaluate FITON.
DBpedia is a cross-domain data set with approximately 8.9
million URIs and more than 232 million RDF triples. Geon-
ames is a geographic domain data set with more than 7 mil-
lion distinct URIs. NYTimes and LinkedMDB are both from
the media domain with 10,467 and 0.5 million URISs, respec-
tively.

Figure 5 shows the SameAs links connecting the above
four data sets, as plotted by Cytoscape [33]. In this figure,
the size of anode is determined by the total number of distinct
instances in a data set on a logarithmic scale. The thickness
of an arc is determined by the number of SameAs links as
labeled on each arc on a logarithmic scale.

The number of instances in our database is listed in the sec-
ond column of Table 3. The graph-based ontology integration
component uses all the instances in the data sets. However,
for the machine learning methods, we randomly choose sam-
ples of the data sets to speed up the modeling process, as well
as to use an unbiased data size for each top-level class. We
randomly select 5,000 instances per top-level class in Geon-

DBpedia
29,526 8,409 -

\ NYTimes
LinkedMDB | \ )
117,238 86,547 9123
247 1,787

Geonames

Fig. 5 SameAs links between data sets

ames and LinkedMDB, 3,000 instances per top-level class in
DBpedia, and use all the instances in NYTimes. The number
of selected instances of DBpedia is less than 84,000, because
some classes include less than 3,000 instances.

The original number of classes and properties, the number
of top-level classes and the selected properties for machine
learning methods are listed in Table 3. We track the subsump-
tion relations such as owl:subClassOf and skos:inScheme to
collect the top-level classes. Since the number of properties
in the data sets is large, we filter out infrequent properties
that appear less than the frequency threshold 6. For each
data set, we manually set a different frequency threshold 6
as ﬁ where n is the total number of instances in the data
sets.

4.2 Decision Table

The Decision Table algorithm is used to discover a subset of
features that can achieve high prediction accuracy with cross-
validation. Hence, we apply the Decision Table to retrieve
the core properties essential in describing instances of the
data sets. For each data set, we execute the Decision Table
algorithm to retrieve core properties by analyzing randomly
selected instances of the top-level classes. In this experi-
ment, we evaluate whether the retrieved sets of properties
are important for describing instances by testing their per-
formance on instance classification.

In Table 4, we list the percentage of the weighted averages
of precision, recall, and F-measure. The precision is the ratio
of correct results to all the results retrieved, and the recall
is the percentage of retrieved relevant results to all relevant
results. The F-measure is a measure of a test’s accuracy, and
it considers both the precision and the recall. The F'-measure
is the weighted harmonic mean of the precision and recall,
calculated as follows:

2 x Precision x Recall

F-measure = —
Precision + Recall

The F-measure reaches its best value at 1 and its worst
value at 0. A higher F-measure value means the retrieved
subset of properties can well classify the instances; this
implies that these properties are important for describing
the instances of a specific class. A lower F-measure fails
to classify some instances, because the retrieved properties
are commonly used in every instance. In the following, we
discuss the experimental results using the Decision Table
algorithm in each data set.

— DBpedia. The Decision Table algorithm retrieved 53
DBpedia properties from 840 selected properties. For
example, the properties db-onto:formation Year, db-prop:
city, db-prop:debut, and db-prop:stateName are extracted
from DBpedia instances. The precision, recall, and F-
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Table 3 Data sets for

Selected instances Classes Top-level classes Properties Selected properties

241 28 1,385 840
428 9 31 21
5 8 7
53 10 107 60

Average recall

Average F-measure

Retrieved properties

. Data set Instances
experiments
DBpedia 3,708,696 64,460
Geonames 7,480,462 45,000
NYTimes 10,441 10,441
LinkedMDB 694,400 50,000
Table 4 Results for the D: A .
Decision Table algorithm ata set Verage precision
DBpedia 0.892
Geonames 0.472
NYTimes 0.795

LinkedMDB 1

0.821 0.837 53
0.4 0.324 10
0.792 0.785 5
1 1 11

measure on DBpedia are 0.892,0.821, and 0.837, respec-
tively.

— Geonames. We retrieved 10 properties from 21 selected
properties, such as geo-onto:alternateName, geo-onto:
countryCode, and wgs84_post:alt, etc. Since all the
instances of Geonames are from the geographic domain,
the Decision Table algorithm cannot well distinguish
different classes with these commonly used properties.
Hence, the evaluation results on Geonames are very low
with 0.472 precision, 0.4 recall, and 0.324 F-measure.

— NYTimes. Among the 7 properties used in the data
set, 5 of them are retrieved using the Decision Table
algorithm. We retrieved skos:scopeNote, nyt:latest_use,
nyt:topicPage, skos:definition, and wg- s84_pos:long. In
NYTimes, only a few properties describe news articles
and most of them are commonly used in every instance.
The cross-validation test results with NYTimes are 0.795
precision, 0.792 recall, and 0.785 F-measure.

— LinkedMDB. The algorithm can correctly classify all the
instances in LinkedMDB with 11 properties retrieved
from 60 properties. In addition to commonly used prop-
erties such as foaf:page, and rfs:label, we also extracted
some unique properties such as director_directorid,
mdb:writer_writerid, md- b:performance_performanceid
etc.

The experimental results show that the properties extracted
from LinkedMDB can well distinguish the types of instances,
because the properties are unique IDs of different types of
instances. The performance of the classifications in DBpedia
and N'YTimes is lower because the retrieved properties con-
tain commonly used properties. Since most of the instances
in Geonames are described by common properties, the per-
formance in predicting the types of instances is also low.
We observed that the Decision Table either retrieves unique
properties or commonly used properties, both of which are
important for describing instances. Furthermore, instances of
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the same class type are consistently described by the retrieved
properties. The Decision Table retrieves core properties in the
data sets; therefore, it is necessary for FITON to create an
integrated ontology.

4.3 Apriori

The Apriori algorithm is a classic algorithm for retrieving fre-
quent itemsets based on the transaction data. We list represen-
tative examples of the top-level class and the corresponding
set of properties that are retrieved by the Apriori algorithm.
Furthermore, we analyze the performance of the algorithm
in each data set with examples. For the experiment, we use
the parameters for the upper and lower bound of minimum
support as 1 and 0.2, respectively. We set the minimum confi-
dence as 0.9. With a lower minimum support, we can retrieve
more properties that frequently appear in the data.

We retrieve frequently appearing core properties using the
Apriori algorithm. Some examples are listed in Table 5. The
first column lists the experimental data sets, and the second
column lists samples of the top-level classes in each data set.
The third column lists some of the representative properties
retrieved for each top-level class.

In DBpedia and LinkedMDB, we retrieved some unique
properties in each class such as db-onto:kingdom, db-
onto:family, mdb:actor_name, and mdb:actor_netflix- _id.
We can easily identify the class type with the unique prop-
erties of IDs in LinkedMDB, but we need combinations of
unique properties to identify the class type in some types of
DBpedia. From Geonames and NYTimes, we only retrieved
commonly used properties in the data sets. It was diffi-
cult to predict the class type with high accuracy. From
the instances of Geonames, we found the commonly used
properties geo-onto:alternateName, wgs84_pos:alt, and geo-
onto:countryCode. NYTimes has only a few properties, such
as property wgs84_pos:long in the nyt:nytd_geo class and
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Table 5 Examples of the

retrieved properties with the Data set Class Properties
Apriori algorithm
DBpedia db:Event db-onto:place, db-prop:date, db-onto:related/geo.
db:Species db-onto:kingdom, db-onto:class, db-onto:family.
db:Person foaf:givenName, foaf:surname, db-onto:birthDate.
Geonames geo-onto:P geo-onto:alternateName, geo-onto:countryCode
geo-onto:R wgs84_pos:alt, geo-onto:name, geo-onto:countryCode.
NYTimes ny.t:nytd_geo wgs84_pos:long
nyt:nytd_des skos:scopeNote
LinkedMDB mdb:actor mdb:performance, mdb:actor_name, mdb:actor_netflix_id.
mdb:film mdb:director, mdb:performane, mdb:actor, dc:date.

property skos:scopeNote in the nyt:nytd_des class, that are
commonly used in every instance.

We retrieved frequent sets of properties in most of the
cases except in the db:Planet class, because db:Planet con-
tains 201 different properties for describing instances that are
sparsely used. In addition, we retrieved only db-onto:title and
rdfs:type from db:PersonFunction and only rdfs:type prop-
erty from db:Sales. This is caused by the lack of descriptions
in the instances: most of the instances in db:PersonFunction
and db:Sales defined only the class information without other
detailed descriptions.

The set of properties retrieved from each class implies that
the properties are frequently used for the instance descrip-
tions of the class. Hence, for each property prop retrieved
from the instances of class ¢, we automatically added <prop,
rdfs:domain, c> to assert that prop can be used for describing
instances in class c. Therefore, we can automatically recom-
mend the missing core properties for an instance based on its
top-level class.

4.4 Comparison with Other Ontology Matching Tools

Many state-of-the-art ontology matching tools have been
developed, but most of them accept only two ontologies as
inputs. Furthermore, since these tools need ontologies for
analysis, they cannot find alignments for data sets, such
as NYTimes and LinkedMDB, that do not contain struc-
tured ontologies. Hence, we compare the alignments between
DBpedia and Geonames with other ontology matching tools.
The following two comparison experiments are conducted
using DB-Geo alignments'> and BLOOMS alignments'?.

4.4.1 Comparison with DB-Geo Alignments
Since LOD schema alignments have no standard bench-
mark, an expert manually created some DB-Geo align-

ments between DBpedia and Geonames. The DB-Geo

12 http://ri-www.nii.ac jp/~lihua/Alignments.xlsx
13 http://wiki.knoesis.org/index.php/BLOOMS

Table 6 Comparison with DB-Geo alignment references

DBpedia-Geonames AROMA FITON
Precision 0.18 0.64
Recall 0.04 0.37
F-measure 0.07 0.47

alignments contain 49 reference alignments, such as (db-
onto:totalPopulation and geo-onto:population), (db-ont- o:
location and geo-onto:location), (db-onto:Airport and geo-
onto:S.AIRP), and (db-onto:Mountain and geo-onto- : T.MT).
We compare FITON with the AROMA [7] ontology match-
ing system, which can find alignments between DBpedia and
Geonames.

The AROMA system uses association rule mining on the
data for matching ontologies [7]. AROMA found 11 align-
ments between DBpedia and Geonames, where only 2 were
correct alignments. As shown in Table 6, the precision, recall,
and F-measure of the AROMA system are 0.18, 0.04, and
0.07, respectively. FITON found alignments with 0.64 pre-
cision, 0.37 recall, and 0.47 F-measure. We found 28 align-
ments in total, where 18 of them were correctly matched. The
experimental results show that FITON performs much better
than the AROMA system.

In some cases, we found correct matches, but some
of them were categorized as incorrect mappings accord-
ing to the manual alignments because of the misuses of
the schemas in the real data. For example, in the refer-
ence alignments, db-onto:totalPopulation is matched to geo-
onto:population, but db-onto:totalPopulation never appears
in the DBpedia data set. In fact, the population is described
with other properties, such as db-onto:populationTotal, db-
prop:populationEstimate, and db-prop:population. FITON
successfully grouped these properties with geo-onto:
population.

4.4.2 Comparison with BLOOMS Alignments

The BLOOMS ontology matching approach utilizes the
Wikipedia category hierarchy and constructs BLOOMS
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forests to find alignments between two ontologies [15].
For evaluation, BLOOMS provides 48 reference alignments
between DBpedia and Geonames. BLOOMS matched the
geo-onto:SpatialThing to most of the DBpedia ontology
classes. This result means BLOOMS matched all the geo-
graphic information in the DBpedia ontology classes to
geo-onto:SpatialThing. However, in DB-Geo alignments, we
matched the ontologies with more specific geographic fea-
ture codes. Hence, to compare the alignment results with
BLOOMS and other systems with BLOOMS alignments, we
assume all the feature codes of geonames are subclasses of
geo-onto:SpatialThing.

According to [15], only S-Match [11] can find ontology
alignments between DBpedia and Geonames, while RIMOM
[22] causes errors and all other systems including BLOOMS
failed to find ontology alignments. The failure in ontol-
ogy alignment is caused by ontologies that have ambiguous
meaning of the concepts or the absence of corresponding
concepts in the target data set. However, FITON can find
alignments for poorly structured data sets by analyzing the
contents of the interlinked instances. In Table 7, we list the
results of BLOO- MS, RiMOM, and S-Match from the evalu-
ation results in [15]. The precision of FITON is 0.65, which is
approximately 3 times the precision of S-Match: this means
65% of the found alignments are correct with FITON. How-
ever, the recall is lower than that of S-Match, where S-Match
can find all the alignments used in the evaluation. The F-
measure of FITON and S-Match is the same, 0.37.

4.5 Evaluation of the Integrated Ontology

The final integrated ontology contains 135 classes and 453
properties that are grouped into 87 and 97 groups, respec-
tively. In this section, we evaluate the integrated ontology
using the OOPS! ontology validator and evaluate the qual-
ity using the ontology reference alignments created by an
ontology expert.

4.5.1 Evaluation with OOPS! validator
The OOPS! (OntOlogy Pitfall Scanner!) analyzes whether

an ontology contains anomalies or pitfalls [31]. Currently,
they use 29 pitfalls from four dimensions, such as human

Table 7 Comparison with BLOOMS alignments

Geonames-DBpedia  Alignments from BLOOMS

FITON BLOOMS RiMOM  S-Match
Precision 0.65 0 err 0.23
Recall 0.26 0 err 1
F-measure 0.37 N/A N/A 0.37

understanding, logical consistency, modeling issues, and
real-world representation. We validated the integrated ontol-
ogy constructed from previous work [38] and this improved
FITON using the OOPS! validator. We did not perform any
optimization on FITON for the evaluation with OOPS!.

The OOPS! detected 55 missing ranges, 9 missing
domains, and different naming criteria pitfalls from the inte-
grated ontology in our previous work. However, we did not
detect any of these pitfalls in our current work, because we
automatically added ranges, domains, and naming mistakes
in the integrated ontology constructor component. In fact,
we found 26 missing domains and automatically added the
domain info by analyzing the object values. This finding
shows that OOPS! did not detect all the missing domains
of the properties.

With the integrated ontology constructor component,
we successfully removed the pitfalls caused by missing
domains, missing ranges, and inconsistent naming criteria.
The domain information can help users to understand the
relations between properties and classes, and the range infor-
mation can help us to easily validate or add values for prop-
erties.

4.5.2 Evaluation with Ontology Reference Alignments

The quality of the integrated ontology is evaluated with the
ontology reference alignments created by an expert familiar
with the LOD data sets. The expert created alignments among
DBpedia, Geonames, LinkedMDB, and NYTimes.

As shown in Table 8, the precision reaches 1 for the align-
ments of DBpedia-LinkedMDB, LinkedMDB-NY Times,
and Geonames-NYTimes. For DBpedia-Geo- names and
DBpedia-NYTimes we found some incorrect alignments, but
we could not get any alignment for LinkedMDB-Geonames.
The system performs best while finding the alignments
between DBpedia and Geonames. One of the reasons is that
most of the links are between DBpedia and Geonames, as
shown in Fig. 5, while only 247 links are between Linked-
MDB and Geonames, which is not sufficient number of links
to find correct alignments.

Table 8 Evaluation of the integrated ontology

Data pair Precision Recall F-measure
DBpedia-Geonames 0.64 0.37 0.47
DBpedia-LinkedMDB 1 0.1 0.2
DBpedia-NYTimes 0.93 0.02 0.04
LinkedMDB-NYTimes 1 0.07 0.13
LinkedMDB-Geonames 0 0 n/a
Geonames-NY Times 1 0.04 0.08
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Since no statistics are available on the number of missing
SameAs links among these data sets, it is difficult to judge
how many links among data sets are necessary for FITON
to perform effectively. However, according to the existing
SameAs links in the data sets, FITON can perform well when
at least 4% of the instances in the smaller data set are linked
to the other data set. In addition, even with no direct links
between LinkedMDB and NYTimes, FITON can perform
well with the indirect links through DBpedia.

Since we only analyzed the interlinked instances for find-
ing alignments, we cannot find alignments if no links or too
few links exist between instances. Therefore, the recall is
low between most of the data set pairs. Although it can-
not find some alignments that the expert created, FITON
could find some alignments that the expert did not dis-
cover. For example, nyt:nytd_geo, mdb-movie:country, geo-
onto:A.PCLI, geo-onto:A.PCLD, and db-onto:Country are
integrated as the members of ex-onto:Country with FITON.
In the ontology enrichment process, FITON added the label
“country” as the annotation of ex-onto:Country, which is
the default annotation definition of db-onto:Country. There-
fore, the users can easily understand that all the integrated
classes represent countries. However, the expert could not
discover that geo-onto:A.PCLI and geo-onto:A.PCLD are
used to represent countries in Geonames, because these two
feature codes have no annotation.

The expert could only match the given ontologies, but
some of the ontology entities might be mistakenly used in
the real data. For example, as listed in Table 9, among the
7 different properties that indicate the birthday of a person,
only the property “db-onto:birthDate” has the domain defi-
nition with the class db-onto:Person and has the highest fre-
quency of usage that appeared in 287,327 DBpedia instances.
The second column in Table 9 represents the number of
distinct instances using the property listed in the first col-
umn. From the definitions of the properties and the number
of instances that contain the corresponding properties, we
can assume that properties except “db-onto:birthDate” are
mistakenly used when the data providers publish the DBpe-
dia data. The property “db-onto:birthDate” is well defined

Table 9 Predicates grouped in ex-prop:birthDate

Property Number of instances rdfs:domain
db-onto:birthDate 287,327 db-onto:Person
db-prop:datebirth 1,675 N/A
db-prop:dateotbirth 87,364 N/A
db-prop:dateOfBirth 163,876 N/A
db-prop:born 34,832 N/A
db-prop:birthdate 70,630 N/A
db-prop:birthDate 101,121 N/A

with rdfs:domain and has the highest usage in the DBpedia
instances. Therefore, we suggest “db-onto:birthDate” as the
standard property to represent the birthday of a person, and
correct the other properties with this standard property. Using
FITON, we can integrate heterogeneous ontologies and also
recommend standard ontology entities so that we can validate
whether the ontologies are correctly used in the data.

It is time-consuming to find alignments for the data sets,
especially for DBpedia, which has hundreds of classes and
thousands of properties. Furthermore, it was impossible for
the expert to find alignments of the heterogeneous ontologies.
Therefore, FITON can dramatically decrease the time cost for
finding the ontology alignments.

5 Discussion

In this section, we discuss possible applications with the
graph patterns extracted by FITON and with the integrated
ontology.

5.1 Discovering Missing Links with Graph Patterns

The graph-based ontology integration component retrieved
13 different graph patterns from the SameAs Graphs listed in
Fig. 6 [37]. The labels of nodes M, D, N, and G represent the
data sets LinkedMDB, DBpedia, NYTimes, and Geonames,
respectively. The number on the right side of each graph
pattern is the number of SameAs Graphs and is used to decide
the frequency threshold for refining the sets of PO pairs.

The type of instances shared by the four data sets is
Country. The integrated class that represents Country is
ex-onto:Country, which consists of geo-ontoA.PCLI, geo-
onto:A.PCLD, mdb:country, nyt:nytd_geo, and db-onto:
Country. As we can see in Fig. 6, the graph patterns GPo,
GPjp, GP11, and GPjy are sub-graphs of GP;3. However,
GP13 is not a complete graph and has missing links between
(M, N) and (M, D). Hence, with ex-onto:Country, we can link
the missing links of countries among these four data sets. We
can also add missing links for all the other incomplete graph
patterns, such as GPs, GP¢, GP7, and GPs.

5.2 Discovering Missing Links with Integrated Ontology

Here, we show two examples, shown in Table 10, that can
find missing SameAs links with the integrated ontology. The
first example finds the missing links for island instances
between DBpedia and Geonames. Here, db-onto:Island and
geo-onto:T.ISL are used for island instances in DBpedia and
Geonames, respectively. Example 1 in Table 10 shows a
SPARQL query to find the same islands that have the same
name in DBpedia and Geonames. In total, we retrieved 509
links, among which 97 existing links are from DBpedia to
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Fig. 6 SameAs graph patterns
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Table 10 Finding missing links

Example 1: Link Islands

SELECT DISTINCT ?geo ?db ?string

where {

?geo geo-onto:featureCode geo-onto:T.ISL.

?geo ?gname 7string.

ex-onto:name ex-prop:hasMemberProperties ?gname.
7db rdf:type db-onto:Island.

ex-onto:name ex-prop:hasMemberProperties ?dname.

7db ?dname ?string. }

Example 2: Link Countries

SELECT DISTINCT ?geo ?db

where {

ex-onto:name ex-prop:hasMemberProperties ?gname.
{ ?geo geo-onto:featureCode go-onto:A.PCLI. }
UNION

{ ?geo geo-onto:featureCode geo-onto:A.PCLD. }
?geo ?gname ?string.

?db rdf:type db-onto:Country.

ex-onto:name ex-prop:hasMemberProperties ?dname.

7db ?dname ?string. }

Geonames, 211 links are from Geonames to DBpedia, and
90 bidirectional links are between DBpedia and Geonames.
Hence, we discovered 291 missing links that have the same
island name.

@ Springer

The second example finds missing links for country
instances. The class db-onto:Country is integrated with geo-
onto:A.PCLI and geo-onto:A.PCLD. With the SPARQL
query in Example 2 in Table 10, we retrieved 663 links,
including 221 existing SameAs links. Among the existing
links 30 are from DBpedia to Geonames, 220 are from Geon-
ames to DBpedia, and 29 links are bidirectional links. As a
result, we discovered 442 new links for countries with exact
matching on the names.

The above SPARQL examples show that we can find miss-
ing links with the integrated ontology using exact matching
on the labels of instances. If we can analyze the labels with
similarity string matching, we could discover more links with
the integrated ontology. However, the SPARQL endpoint cur-
rently does not support a similarity matching query.

5.3 More Answers with the Integrated Ontology

The heterogeneous ontologies make it difficult to find proper
properties to construct a SPARQL query. However, the inte-
grated ontology grouped all kinds of properties used in real
data sets, including properties that are not defined in the
ontology. Hence, we can discover more query results sim-
ply using the classes and properties in the integrated ontol-
ogy. Here, we discuss the two SPARQL examples shown in
Table 11. We selected two questions from the QALD-1 Open
Challenge. '

14 http://www.sc.cit-ec.uni-bielefeld.de/qald- 1
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Table 11 SPARQL examples

Standard Query
from QALD-1 Open Challenge

Query with the Integrated Ontology

Give me all the cities with more than 10,000,000 inhabitants

SELECT DISTINCT ?uri ?string

WHERE {
Turi rdf:type db-onto:City.

uri db-prop:populationTotal ?inhabitants.
FILTER (?inhabitants > 10000000).
OPTIONAL { ?uri rdfs:label ?string.

FILTER (lang(?string) = "en’) }}

SELECT DISTINCT ?uri ?string

WHERE {

uri rdf:type db-onto:City.

ex-onto:population ex-prop:hasMemberProperties ?prop.
uri ?prop ?inhabitants.

FILTER (?inhabitants > 10000000).

OPTIONAL { ?uri rdfs:label ?string.

FILTER (lang(?string) = ’en’) }}

How tall is Claudia Schiffer?

SELECT DISTINCT ?height
WHERE {

res:Claudia_Schiffer db-onto:height ?height.

}

SELECT DISTINCT ?height

WHERE {

ex-onto:height ex-prop:hasMemberProperties ?hprop
res:Claudia_Schiffer ?hprop ?height. }

The first query is to find the cities that have a population
of more than 10 million. The SPARQL query on the left side
is the standard one given by the QALD-1 Open Challenge,
which utilizes the db-onto:City class and the standard prop-
erty db-prop:populationTotal. The query on the right side
uses all the population properties used in the real DBpedia.
As aresult, we retrieved 20 distinct cities with our SPARQL
query, in comparison with only 9 cities retrieved with the
standard query.

The second query is to answer the height of Clau-
dia Schiffer. With the standard property db-onto:height,
we can retrieve the answer of 1.8(m). However, with our
integrated ontology, which consists of db-onto:height, db-
prop:height, db-prop:heightln, db-prop:heightFt, and db-
onto:Person/height, we found one more answer, 180.0 (cen-
timeter), which uses a different measurement unit.

Since we integrated properties that are not defined in the
ontologies, although commonly used in real data sets, we can
retrieve more answers with the integrated ontology. Hence, it
is helpful for discovering more related answers with simple
queries.

6 Conclusion and Future Work

In this paper, we introduced FITON, which constructs an inte-
grated ontology for Semantic Web developers. The frame-
work consists of three main components: graph-based ontol-
ogy integration, machine-learning-based approach, and inte-
grated ontology constructor. The graph-based ontology inte-
gration component retrieves related ontology classes and
properties by analyzing the graph patterns of the inter-
linked instances. This component reduces the heterogeneity
of ontologies in the LOD cloud. The integrated ontology con-
tains top-level classes and frequent core properties retrieved
from the machine-learning-based approach. This component

helps Semantic Web application developers to more easily
find core properties used for a specific instance. We also
enriched the integrated ontology with annotations, domain,
and range information, and validated it during the ontology
construction process. With the integrated ontology, we can
also detect misuses of the ontologies in data sets and recom-
mend core properties for describing instances. Furthermore,
we can detect missing links using the integrated ontology and
use it for QA systems to retrieve more related results.

In future work, we would like to compare FITON with
other latest state-of-the-art ontology alignment tools such as
BLOOMS+ [16], which is an improved version of BLOOMS.
However, BLOOMS+ is not publicly available and the devel-
opers have only provided comparison results of linked data
sets with PROTON ontology. Hence, it is difficult to com-
pare the newer version with FITON. We will perform a com-
parison between FITON and BLOOMS+ when that tool is
available. We will also work on a link discovery system that
can utilize the integrated ontology to find missing links in
linked data sets. By iteratively feeding discovered missing
links to the data sets, we can update the integrated ontol-
ogy with newly linked instances. Moreover, we can retrieve
more missing links by applying similarity matching methods
on the object values in the link discovery process.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
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