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Abstract Formal methods (such as interactive provers) are
increasingly used in software engineering. They offer a for-
mal frame that guarantees the correctness of developments.
Nevertheless, they use complex notations that might be dif-
ficult to understand for unaccustomed users. On the con-
trary, visual specification languages use intuitive notations
and aiming at easing the specification and understanding of
software systems. Moreover, these languages and concomi-
tant environments permit to automatically generate graphical
interfaces or editors for Domain Specific Languages start-
ing from a meta-model. However, they suffer from a lack of
precise semantics. We are interested in combining these two
complementary technologies by mapping the elements of the
one into the other. In this paper, we present a generic trans-
formation process from functional data structures, commonly
used in proof assistants, to Ecore models and vice versa. This
translation method is based on Model-driven engineering and
defined by a set of bidirectional transformation rules. These
rules are detailed and represented in a formal description.
Our approach is implemented in the Eclipse environment
and illustrated with a case study.
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1 Introduction

Formal methods using interactive proof assistants such as
Coq [6] or Isabelle [18] are increasingly integrated into the
software engineering process to verify the correctness of soft-
ware. They have a solid formal basis and a precise seman-
tics, but they use complex notations that might be difficult to
understand for unaccustomed users. On the contrary, Model-
Driven Engineering (MDE) [4,20] supplies us with visual
specification languages such as class diagrams [11] that use
intuitive notations. These languages permit to specify, visu-
alize, understand and document software systems. However,
they suffer from a lack of precise semantics. We are inter-
ested in combining these two complementary technologies
by mapping the elements of the one into the other, using an
MDE-based transformation method.

One possible scenario is to define the abstract syntax of
a Domain Specific Language (DSL) [7] to be used in the
context of a formal verification, and then to generate a cor-
responding Ecore meta-model to be able to use an MDE-
based tool chain for further processing. Inversely, the meta-
model can then be modified by an application engineer and
serve as basis for regenerating the corresponding data types.
This operation may be used to find a compromise between
the representation of the software architect’s wishes on the
meta-model and functional data structures used in the proof.
Furthermore, the meta-model can be used to easily generate a
textual (or graphical) editor using Xtext (respectively GMF:
Graphical Modeling Framework) facilities [12].

This work constitutes a first step towards using MDE tech-
nology in an interactive proof development. The illustrat-
ing example is a Java-like language enriched with assertions
developed by ourselves for which no off-the-shelf definition
exists [2]. It constitutes a sufficiently complex case study of
realistic size for a DSL. In this paper, the transformation is
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applied only on a part of the Safety Critical Java DSL, cor-
responding to a method definition. A transformation for the
whole language can be found in [8], together with other case
studies.

This article is a considerably extended and revised ver-
sion of a previous conference paper [9]. It provides a more
detailed discussion of related work and of our case study,
and gives a more formal treatment of the transformation
rules for transforming meta-models into data types as used in
functional programming (see Sect. 4). The definition of the
inverse translation (see Sect. 5) is entirely new.

The structure of the paper is as follows: In Sect. 2, we
compare our approach with related work. Then, we present
some preliminaries, to introduce the main components of our
work in Sect. 3. Sections 4 and 5 constitute the technical core
of the article; they describe the translation from data models
used in verification environments, to meta-models in Ecore
and vice versa. We then illustrate the methodology with an
example in Sect. 6, before concluding with perspectives of
further work.

2 Related Work

Eclipse Modeling Framework (EMF) [5] models are compa-
rable to Unified Modeling Language (UML) class diagrams
[11]. For this reason, we are interested in the mappings from
other formal languages to UML class diagrams and back
again. Some research is dedicated to establishing the link
between these two formalisms. We cite the work of Idani et
al. that consists in a generic transformation of UML models
to B constructs [14] and vice versa [13]. The authors propose
a meta-model based transformation method defining a set of
structural and semantic mappings from UML to B (a for-
mal method that allows to construct a program by successive
refinements, using abstract specifications).

Similarly, there is an MDE-based transformation approach
for generating Alloy (a textual modeling language based on
first-order logic) specifications from UML class diagrams
and backwards [1,21].

The purpose of these methods is to generate UML compo-
nents from a formal description and backwards, but their for-
mal representation is significantly different from our needs:
functional data structures used in proof assistants.

In addition, graph transformation tools [10,16] permit to
define source and target meta-models all along with a set
of transformation rules and use graphical representations of
instance models to ease the transformation process. However,
the verification functionality they offer is often limited to
syntax, typing and structural aspects (such as confluence of
transformation rules).

Notable exceptions are codings of graph transformations
as transition systems [3,23] for model checking properties

of the transformation system such as invariants or reachabil-
ity. These approaches are not applicable in our context as we
aim at modeling deeper semantic properties (such as an oper-
ational semantics of a programming language and proofs by
bisimulation that often require inductive arguments).

Our work aims at narrowing the gap between interactive
proof and meta-modeling by offering a way to transform data
structures used in interactive provers to meta-models and vice
versa.

3 Preliminaries

3.1 Methodology

Model-driven Engineering is a software development
methodology where the (meta-)models are the central ele-
ments in the development process. A meta-model defines
the constituents of a language. The instances of theses con-
stituents are used to construct a model of the language. A
model transformation is defined by a mapping from elements
of the source meta-model to those of the target meta-model.
Consequently, each model conforming to the source meta-
model can be automatically translated into an instance model
of the target meta-model. The Object Management Group
(OMG) [19] defined the Model-driven Architecture (MDA)
standard [15], as specific incarnation of the MDE.

We apply this method to define a generic transformation
processes from data types (used in functional programming)
to Ecore models and backwards. Figure 1 shows an overview
of our approach. For the first direction of the translation, we
derive a meta-model of data types starting from an EBNF
representation of the data type definition grammar [18]. This
meta-model is the source meta-model of our transformation.
We also define a subset of the Ecore meta-model [12] to be
the target meta-model. To perform this transformation, we
defined a set of transformation rules (detailed in Sect. 4) that
maps components of the meta-model of data types to those
of Ecore meta-models.

We use the mapping between the constructs of the two
meta-models to define the reverse direction transformation
rules to ensure the bidirectionality of the transformations.
Bidirectionality [22] is one of the desired options of MDE-
based transformations. Indeed, assuming we start from a
source model MS , then we perform a transformation using a
function f to get a target model MT . It is important to derive
an equivalent model to MS , as a result to the application of
f −1 on MT . Such a feature requires more restrictions on the
Ecore models. This transformation function is not automati-
cally derived from f , it is given in Sect. 5.

Introductory example: The use of the transformation rules
will be illustrated in Sect. 6 with an example that is an excerpt
of a real-life application. To give a flavour of the approach, we
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Fig. 1 Overview of the
transformation method
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Fig. 2 Automaton data types (in Caml)

Fig. 3 Automaton meta-model (in Ecore)

here present a tiny meta-model, namely, a finite-state automa-
ton.

Figure 2 represents a data type description of an automa-
ton, in this case written in the Caml language. Each automa-
ton is then composed of a list of states and a list of transitions.
Every state is composed of an integer value (for identify-
ing the state) and two Boolean values (defining whether a
state is an initial state and/or a final state). A transition is
then described by two states: a source and a target. Figure 3
consists in the representation of the same automaton as a
meta-model in Ecore. This meta-model represents the result
of applying our transformation on the presented data types.

3.2 The Data type Meta-Model

Functional programming supplies us with a rich way to
describe data structures. However, since some features are

not supported by Ecore (see Sect. 4.1 for a discussion), we
have only defined a subset that contains the essential ele-
ment composing data types. Figure 4 depicts the data type
meta-model that is constructed from the subset of data type’s
declarations grammar presented in Fig. 5 [17,18]. We point
out that we are mainly interested in data structures. They cor-
respond to the static part of the proofs. Except for the case
of accessors, the functions are not treated.

A Module may contain several Type Definitions. Each Type
Definition has a Type Constructor, which corresponds to the
data type’s name. It is also composed of at least one Con-
structor Declaration. These declarations are used to express
variant types: a disjoint union of types. A Type declaration

Fig. 4 Data type meta-model
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Fig. 5 Part of the Caml data types grammar

Fig. 6 Syntax of accessor functions in Caml

has a name, it is the name of a particular type case. It takes as
argument some (optional) type expressions which can either
represent a Primitive Type (int, bool, float, etc.) or
also a data type defined previously in the Module. The list
notation introduces the predefined data structure for lists. The
type option describes the presence or the absence of a value.
The ref feature is used for references (pointers).

We enriched the type definition grammar with a specific
function named Accessor (see Fig. 6). It is introduced by the
annotation (*@accessor*). It allows assigning a name
to a special field of the type declaration. This element is
essential for the transformation process, its absence would
lead to nameless structural features.

Representing Generic Types in Functional Programming:
Parametrized types are important features in functional pro-
gramming. They are used to express polymorphic data struc-
tures. They are comparable to generics in Java and templates
in C++. They permit to build different data structures that
accept any kind of values. Each definition of a parametrized
type is formed of a Type Constructor and a set of Type Para-
meters. The type expressions then can contain a previously
defined parametrized type or one of the specified parameters.

3.3 The Ecore Meta-Model

Our destination meta-model is a subset of the Ecore meta-
model. Ecore is the core language of EMF [5], which permits
to build Java applications based on model definitions and to
integrate them as Eclipse plug-ins.

The Meta Object Facility (MOF) set by the OMG defines
a subset of UML class diagrams [11]. It represents the meta-
meta-model of UML. Ecore is comparable to MOF but sim-
pler. They are similar in their ability to specify classes, struc-
tural and behavioral features, inheritance and packages.

To implement our approach, we use Eclipse and its core
language Ecore. However, it would be possible to choose

Fig. 7 Simplified subset of the Ecore meta-model

other solutions [16]. This choice is due to the place of Eclipse
for meta-modeling and development, in particular it offers a
wide range of highly integrated tools.

Figure 7 represents a subset of the Ecore language. It con-
tains essentially the elements needed for our transformation
process. Its main components are:

– The EPackage is the root element in serialized Ecore
models. It encompasses EClasses and EDataTypes.

– The EClass component represents classes in Ecore.
It describes the structure of objects. It contains EAtt-
ributes and EOperations.

– The EDataType component represents the types of
EAttributes, either predefined types (Integer, Boo-
lean, Float, etc.) or defined by the user. There is a special
data type to represent enumerated types EEnum

– EReferences is comparable to the UML Association
link. It defines the kinds of the objects that can be linked
together. The containment feature is a Boolean value
that makes a stronger type of relationships. When it is set
to true, it represents a whole/part relationship.

Representing Generics: Ecore has been extended to support
parametric polymorphism. Actually, parametrized types and
operations can be specified, and types with arguments can
be used instead of regular types. The changes are repre-
sented in the Ecore meta-model mainly in two new classes
EGenericType and ETypeParameter (they are dis-
tinguishable from the others on the Fig. 7 by the green
color). A parametrized type is then represented by a simple
EClass that contains one or more ETypeParameters.
An EGenericType represents an explicit reference to
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Table 1 Correspondence between elements of the two meta-models

Functional data structures Ecore components

Type Constructor + Constructor EClass

Record EClass

Type Constructor + Constructors +
Type Expressions

Inheritance

Type Expression(Primitive Type) EAttribute

Type Expression EReference

Type options Multiplicities

Type Constructor + Constructors
(without Type Expressions )

EEnum

Constructor (without Type Expression) EEnumLiteral

Parametrized Data type EGenericType

Type Parameter ETypeParameter

either an EClassifier or an ETypeParameter (but
not both at the same time). The eTypeArguments refer-
ence is used to contain the EGenericTypes representing
the type parameters.

4 From data types to Meta-Models

This part details the automatic translation from functional
data types to meta-models. It represents the first direction
of translation. To precisely define transformation rules, the
transformation method is presented in a formal notation in the
form of a function noted Tr(). The transformation rules are
presented as sub-functions relative to the component given as
input. In each rule definition, we start by an informal descrip-
tion, then we present it formally and finally we show an
effective example. The Table 1 summarizes the mappings
performed between the elements of the two meta-models.

T r : DataT ypes −→ Ecore Meta-model

The following translation sub-functions are given for a
concrete syntax in the style of Caml [17]. Since most func-
tional languages (including the language of proof assistants)
have great similarities, the concrete syntax can be mapped to
different functional languages.

4.1 Well-Formedness Constraints for Input Data Types

Our translation does not treat all the features typically present
in functional programming languages such as Isabelle and
Caml. The primary reason is that some features which are
specific to functional programming have no counterpart in
Ecore. This is particularly true of higher-order constructors,
ı.e, constructors taking functions as arguments.

Even though we allow reference types (stateful program-
ming can be simulated in functional programming by a

monadic style), we exclude some mutable data structures, in
particular arrays. Also, for now, we have not implemented a
treatment for mutually recursive types, except for the list, ref-
erence and option type constructors. Genuine mutual recur-
sion considerably complexifies the transformation proce-
dure, but apart from the exceptions mentioned, only occurs
rarely in practice.

However, as presented previously in Sect. 3.2, we treat
primitive types (integers, Booleans, floats, strings) and user
defined data types, represented in variant types. We allow the
use of parametrized types and our subset detects the use of
Caml keywords introducing lists, references and type option.

4.2 Rule ModuleToEPackage

In ML programs (respectively in the Isabelle proof assistant),
it is possible to group portions of programs into modules. We
decided to represent these modules byEPackages in Ecore.
They are used to gather EDataTypes and EClasses.
Thus, the transformation process consists of creating an
EPackage for each module. The name of the correspond-
ing EPackage is the module name. We have to also specify
the prefix and the URI of the XML namespace by instantiat-
ing the NsPrefix and NsURI values. To translate the data
types contained in the module, we call the function T rdtp()

for each type definition.

T rmodule(Module md_name Dtp1 . . . Dtpn) =
createE Package();
set Name(md_name);
set Ns Pre f i x(md_name);
set NsU RI (“http : //md_name/1.0”);
T rdtp(Dtpi ) / 1 ≤ i ≤ n

4.3 Rule DatatypeToEClass

This rule is applied when the data type is formed of only
one constructor. The latter is translated into an EClass.
The EClass name is the name of the type constructor. The
types composing the data type are translated using other rules
(PrimitivTypeToEAttribute or TypeToEReference).

T rdtp(tpConstr = cn t1 . . . tn) = createEClass();
set Name(tpConstr);
T rtype(acci , ti )
/ 1 ≤ i ≤ n

Example:
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4.4 Rule DatatypeToEEnum

Data types composed only of constructors (without type
expressions typexpr) are translated into EEnums, which are
usually employed to model enumerated types in Ecore. Then,
each constructor composing the data type is translated into a
literal named EEnumLiteral. The name of each construc-
tor becomes the name of a literal.

T rdtp(tpConstr = cn1| . . . |cn p) = createE Enum();
set Name(tpConstr);
T rconstr Nm(cni );
/ 1 ≤ i ≤ p

T rconstr Nm(cni ) = E EnumLiteral(cni );
/ 1 ≤ i ≤ p

Example:

4.5 Rule DatatypeToEClasses

When constructor declarations are composed of more than
one constructor declaration containing type expressions: a
first EClass is created to represent the type constructor
(tpConstr). Then, for each constructor, an EClass is created
too, and inherits from the tpConstr one. To transform the
type expressions of each constructor, we call the functions
for translating the type expressions.

T rdtp(tpConstr = cd1| . . . |cdn) = createEClass();
set Name(tpConstr);
T rdecl(cdi , tpConstr)

/ 1 ≤ i ≤ n

T rdecl : Constructor Declaration −→ EClass

T rdecl(cni t1 . . . tm, tpConstr) =
createEClass();
set Name(cni );
set SuperT ype (EClass(tpConstr));
T rtype(acc j , t j ) / 1 ≤ j ≤ m

Example:

4.6 Rule PrimitiveTypeToEAttribute

If a type expression is formed of a primitive type, the trans-
lation function generates a new EAttribute. The name of
thisEAttribute is the name of its corresponding accessor,
and its type is the EMF representation of the primitive type
: EInt for int, EBoolean for bool, EString for string,
etc.

T rtype : (accessor, t ype) −→ E Structual Feature
T rtype(acc, primT p) = createE Atrribute();

set Name(acc);
setT ype(primT pE M F );

Example: Same example is presented in Sect. 4.3.

4.7 Rule TypeToEReference

When a type expression contains a type which is not a primi-
tive type, the latter has to be previously defined in the Isabelle
theory. Then, a containment link is created between the cur-
rent EClass and the EClass referenced by the type con-
structor, and the multiplicity is set to 1.

T rtype : (accessor, t ype) −→ E Structual Feature

T rtype(acc, tpConstr) = createE Re f erence();
set Name(acc);
setT ype (tp_constr);
setContainment (true);
set Lower Bound(1);
setU pper Bound(1);

Example:

4.8 Rule TypeOptionToMultiplicity

The type expressions can also appear in the form of a type
list. In this case the multiplicity is set to 0...*. The type
expression typeoption is used to express whether a value is
present or not. It returnsNone, if it is absent and Some value,
if it is present. This is modeled by changing the cardinality
to 0...1.

T rtype : (accessor, t ype) −→ E Structual Feature

T rtype(acc, t list) = T rtype(acc, t)

set Lower Bound(0);
setU pper Bound(∗);
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T rtype(acc, t option) = T rtype(acc, t)

set Lower Bound(0);
setU pper Bound(1);

Example:

The last case that we deal with is references (type ref).
References are used to represent pointers in ML program-
ming and Isabelle. They are translated into simple references
without containment option in Ecore.

T rtype(acc, t re f ) = T rtype(acc, t)
setContainment (False);

Example:

4.9 Rule AccessorToStructuralFeaturesName

This rule is spelled out to define how the accessor_name is
selected for naming a particular EStructuralFeature.
Accessors are grouped in accssors_list . Each accessor
structure is formed of an accessor_name, a constructor
_name and an integer value named index . This index corre-
sponds to the position of the type concerned by the accessor
function.

The elements composing the accessor are used to select
which (previously created) structural feature is concerned by
the accessor. The accessor name is then used to name the
selected EStructuralFeature.

The details of the process are given formally by the fol-
lowing representation.

T racc : Accessor −→ E Structual Feature
T racc(acc) =

T racc(acc_name, constr_nm, i)
eCl_list := package.get EClassi f ier();
select_eCl := eCl_list.search_by_name(constr_nm);
eSF_list := select_eCl.get E AllStructural Features();
select_eSF.set_Name(acc_name);

Here is an example of transforming a data type descrip-
tion together with accessor functions into a class diagram
represented in Ecore.

4.10 Transforming Generics

In case the data type definition is polymorphic, it is
translated into the representation of generics in the meta-
model. It consists in creating an EClass to represent
the Type Constructor and for each type parameter creat-
ing an ETypeParameter related to the EClass via the
eTypeParameters reference. Notice that we have to
create an EGenericType for each class and type para-
meters (related to their EGenericType via the refer-

123



150 S. Djeddai et al.

ence: eTypeArguments) each time we intend to use the
EClass as a generic. Then, for each constructor declara-
tion:

– Create an EClass to represent the Constructor Decla-
ration which has the same ETypeParameters as the
Type Constructor one.

– Setting its eGenericSuperType referring to the
generic type representing the Type Constructor EClass.

When it comes to use these generics to type EStru-
cturalFeatures, we are faced with two scenarios. First,
when the type expression is a type parameter. The EStru-
cturalFeature is typed with an EGenericType refer-
ring to the ETypeParameter of the containing EClass.
If instead the type expression corresponds to a para-
metrized type with type parameters it is typed with an
EGenericType representing the EClass with EType
Para- meters.

To clarify this process, we use the example below. It con-
sists in transforming a parametrized tree data type. It has two
parameters: the first corresponds to the type of leaves and the
second to the type of values contained in a node. The result
after performing the translation is displayed in the arbores-
cent Ecore editor. The EGenericTypes are not explicitly
represented in the EcoreDiagram.

Example:

5 From Meta-Models to Data types

In this section, we present the second direction of the transla-
tion: from meta-models into data structures used in functional
programming. We start by defining some well-formedness
conditions on the entry meta-model. Next, we detail one
by one the different transformation rules. As in the previ-
ous section, transformation rules are presented in the natural
language with a formal notation. To avoid overloading the
notation, we use again the notation T r() to represent the
translation function.

5.1 Well-Formedness Constraints for Input Meta Model

To perform the reverse direction of the transformation, we
draw heavily on the mapping performed on the forward trans-
lation (Sect. 4). In our view, it is important to successfully
implement a function that is the inverse of the one from data
type to meta-models. Indeed, it seems important to insure that
the composition of the two opposite transformation functions
gives identity, even if it leads us to impose some additional
restrictions on the meta-model. In the forthcoming Ph.D the-
sis of the first author [8], these well-formedness constraints
are spelled out in more detail.

The first restriction concerns the depth of inheritance rela-
tions: the transformation of a meta-model containing inheri-
tance of classes on more than one level (a class that inherits
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from a class that inherits from another one etc.) is not sup-
ported by our rules.

The second restriction aims at avoiding mutually depen-
dent data types. We therefore define a partial order ≺ on
classes for the transformation of EClassifiers contained
in an EPackage. The EEnums have to be translated first,
because they do not depend on any other elements. The
EClasses left in the EPackage have then to be ordered
using two criteria:

– The inheritance relation: if an EClass C1 is a
superType (used in Ecore for determining a super
class) of another EClassC2, then C1 has to be translated
before C2. We therefore add the constraint C1 ≺ C2.

– The reference relation: if an EClass C1 is a target
(eType in Ecore) of an EReference belonging to
another EClass C2, then C1 has to be translated before
C2, thus C1 ≺ C2.

This order allows us to define the second well-formedness
criterion: the order ≺ generated by the above two constraints
has to be acyclic.

The last constraint we impose on the models is about inher-
itance and genericity. Indeed, if we have an inheritance rela-
tion between two generics (represented by EClasses with
ETypeParameters), all the parameters used by the child
class have to appear in the super class.

5.2 Rule EPackageToModule

The elements composing Ecore models can be gathered
into EPackages. When we perform the translation from
Ecore models to functional data type descriptions, we trans-
form these packages into modules. The name of a particular
EPackage gives the name of the module. The additional
elements nsPrefix and nsURI are specific features of
Ecore. They are not translated and not used in the functional
description.

T r(ePackage name = p
nsPrefix = pp
nsURI = puri
{ECl1 . . . ECln}) =

createModule();
set Name(p);
T rCl(ECli ); / 1 ≤ i ≤ n

5.3 Rule EEnumToDatatype

Enumerated types are represented in Ecore by EEnums. To
translate an EEnum, we first get all the EClassifiers
contained in the EPackage, check for their instances and
transform them to a data type definition composed of con-

structors without type expressions. Each EEnumLiteral
is mapped to a constructor name.

T rCl(eEnum name = e
{E Lit1 . . . E Litn}) =

createDatatype();
NewT p_Constr();
set Name(e);
T rLit (E Liti ); / 1 ≤ i ≤ n

T rLit (literal = l) =
createConstructor();
set Name(l);

Example:

5.4 Rule EClassToDatatype

The simplest case that we deal with is the one consisting
in transforming a simple EClass which is not related with
other EClasses by any inheritance link. In such a case, the
EClass is translated into a single type definition without
constructor declarations. The EClass name gives the type
constructor name. Then, for eachEStructuralFeature
contained in the EClass, we call the appropriate sub-
function: T rSF that stands for Translate Structural Feature.

T rCl(eClass name = c
{E S f1 . . . E S fn}) =

i f (c.is_superT ype() == f alse)
createDatatype();
set Name(c);
T rSF (E S fi ); / 1 ≤ i ≤ n

Example:

5.5 Rule EClassInheritenceToDatatype

This rule transforms an EClass hierarchy into a type defi-
nition. When we are faced with an EClass transformation,
we first check if it is a SuperType of other classes. In such
a case, we create a new data type definition named with the
EClass name. Then, we select all the classes that inherit
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from this super class. For each of them, we apply the rule
EClassToConstructor.

If the super class is a generic type (an EClass augmented
with ETypeParameters) we call the function T rprm() for
every ETypeParameter.

T rCl(eClass name = sClass
{E S f1 . . . E S fn}
{ET p1 . . . ET pn}) =

i f (c.is_superT ype() == true)
createDatatype();

set Name(sClass);
class_list = select_child_classes;
T rch_cl(classi ) / classi ∈ class_list
T rprm(ET pi ); / 1 ≤ i ≤ n

5.5.1 Rule EClassToConstructor

Thanks to this rule, each (child) EClass is transformed
into a constructor declaration in the corresponding type
definition. First, a new constructor is created, the name
of the constructor is the EClass name. Then for each
EStructuralFeature contained in the EClass the
function T rSF is called. The rules EAttributeToType (Sect.
5.6) and EReferenceToType (Sect. 5.7) are applied depending
on the nature of the EStructuralFeature.

T rch_cl((eClass name = c
eSuperType = sClass
{E S f1 . . . E S fn}) =

set Name();
createConstructor(c);
T rSF (E S fi ); / 1 ≤ i ≤ n

The rule is applied in the same way when the super class
is generic (in this case, we have eGenericSuperType
instead of eGenericType).

T rch_cl(eClass name = c
eGenericSuperType = sClass
{E S f1 . . . E S fn})

5.5.2 Rule ETypeParamaterToTypeParameter

Clearly, the ETypeParameters used in the representation
of generics in Ecore are translated into their equivalents in
functional programming: type parameters.

T rprm(eTypeParameter name = tp) =
createT ypeParameter();
set Name(tp);

Example:

5.6 Rule EAttributeToType

Transforming each EAttribute consists in creating a
new type expression in the corresponding constructor dec-
laration (or type definition). This corresponding element
can be selected by name in the list of created data types.
EAttribute’s type becomes the equivalent type in the
functional language (using the transformation function
T rT ype).

To translate the upper and lower bounds, the function
T rBnd is called.

T rSF (eAttribute name = a
Lower Bound
U pper Bound
ET ype) =

createT ypeExpression(T rT ype(ET ype));
T rBnd(Lower Bound, U pper Bound);
T rT ype(eType = EInt) = int
T rT ype(eType = EBoolean) = bool
T rT ype(eType = EFloat) = float
T rT ype(eType = EString) = string
T rT ype(eType = eenum e) = e

5.6.1 Rule EAttributeToTypeParameter

If the EAttribute is typed with an ETypeParameter
(belonging to a generic type), it is translated (as the precedent
case) into a type expression consisting of a type parameter.
The name of the ETypeParameter becomes the name of
the type parameter in the type expression.

T rSF (eAttribute name = a
Lower Bound
U pper Bound
eGenericType{ET p1 . . . ET pn}) =

createT ypeExpression(T rT pPrm(ET pi ));
/ 1 ≤ i ≤ n
T rBnd(LowerBound, UpperBound);

T rT pPrm(eTypeParameter name = prm) =
createT ypeExpression(prm)
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Example:

5.7 Rule EReferenceToType

To translate an EReference (pointing to an EClass c),
we first create (as in the precedent rule) a new type expression
in the corresponding constructor declaration (or type defin-
ition). This type expression is then represented by the name
of the EClass to whom is targeting the EReference. The
name of this EClass corresponds to a previously translated
type definition.

To translate the multiplicities and the containment values,
we call respectively the functions T rBnd and T rcont.

T rSF (eReference Containment
name = r
Lower Bound
U pper Bound
eType = c) =

createT ypeExpression(c T rcont(Containment));
T rBnd(Lower Bound, U pper Bound);

If the Boolean value “containment” is set to False, the
translated type expression is augmented with keyword ref.
ref is used to represent pointers in functional languages.

T rcont(containment = false) = re f ; ;

5.7.1 Rule EReferenceToParametrizedType

When theEReference target is a generic type (in the shape
of an EClass augmented with type parameters), a new type
expression in the corresponding constructor declaration (or
type definition) is created to represent the EClass. Next,
to each ETypeParmeter related to the EClass a type
parmater is created in the type expression.

T rSF (eReference name = a
Lower Bound
U pper Bound
eGenericType name = genT p

{ET p1 . . . ET pn}) =
createT ypeExpression(genT p)

createT ypeParameters(prmi ) / 1 ≤ i ≤ n

Where ET pi has the form:
ET pi =(eTypeParametername= prmi )/1≤ i ≤n

Example:

5.8 Rule MultiplicitiesToTypeOptions

This rule permits to translate multiplicity values contained
in structural feature definitions (represented by an upper and
a lower bound). They are used to determine the number of
features that composes an instance. When the lowerBound
is0 and the upperBound is set to1, this signifies that in the
instance this EStructuralFeature might be present or
absent. These values are translated into type option in the
type expressions.

If the upperBound is represented by a * this implies the
ability of creating more than one instance of the concerned
EStructuralFeature. It is mapped to the type list in
the data type description.

T rBnd (lowerBound =“0”,upperBound =“1”) = option;
T rBnd (lowerBound =“0”,upperBound =“*”) = list;

Example:

6 Case Studies

To evaluate our approach we have applied our method on case
studies that combine our transformation with the generation
of tools for graphical/textual syntaxes. More details can be
found in [8]. For the lack of space, we here illustrate our
approach with a part of a description of a DSL.

This DSL is a Java-like language enriched with assertions
developed by ourselves for which no off-the-shelf definition
exists. It represents a real-time dialect of the Java language
allowing us to carry out specific static analyses of Java pro-
gram (details are described in [2]), where a formal semantics
of Java is defined in the Isabelle proof assistant. Because of
this application context, we do not use a Caml grammar in
this case. Our approach is implemented using the Eclipse
environment.

Performing the translation for the whole language descrip-
tion would generate a huge meta-model that could not be pre-
sented in the paper. We thus choose to present only an excerpt
of it, corresponding to a method definition. Figure 8 shows
a data type taken from the Isabelle theory where the verifi-
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Fig. 8 Data types in Isabelle

Fig. 9 Resulting Ecore diagram after transformation

cations were performed. A method definition (in our DSL)
is composed of a method declaration, a list of variables, and
statements. Each method declaration has an access modifier
that specifies its kind. It also has a type, a name, and some
variable declarations. The stmt data type describes the state-
ments allowed in the method body: assignments, conditions,
sequence of statements, return and the annotation statement
(for time annotations). In this example we use Booleans, inte-
gers, strings for types and values.

This part of the Isabelle theory was given as input to the
implementation of our translation rules presented in Sect. 4.
The resulting Ecore diagram is presented in Fig. 9. As it is
shown on the figure, data type definitions built only of type

constructors (Tp, AccModifier, Binop, Binding) are treated
as enumerations in the meta-model. Whereas Data type
MethodDecl composed of only one constructor derive a sin-
gle class. As for type expressions that represent a list of types
(like accModifier list in varDecl), they generate a structural
feature in the corresponding class and their multiplicities are
set to (0...*). The result of type definitions containing more
than one constructor and at least a type expression (stmt and
expr) is modeled as a number of classes inheriting from a
main one. Finally, the translation of the int, bool and string
types is straightforward. They are mapped to respectively
EInt, EBoolean and EString.

7 Conclusion

Our work constitutes a first step towards a combination of
interactive proof and MDE. We have presented an MDE-
based method for transforming data type definitions used
in proof assistants to class diagrams and back again, using
bidirectional transformations.

The approach is illustrated with the help of a DSL devel-
oped by ourselves. It is a Java-like language enriched with
annotations. Starting from data type definitions, set up for
the semantic modeling of the DSL, we have been able to
generate an EMF meta-model. The generated meta-model is
used for documenting and visualizing the DSL, it can also be
manipulated in the Eclipse workbench to generate a textual
editor as an Eclipse plug-in.

We are working on coupling our work with the gener-
ation of provably correct object-oriented code from proof
assistants.
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