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Abstract Query rewriting over lightweight ontologies, like
DL-Lite ontologies, is a prominent approach for ontology-
based data access. It is often the case in realistic scenar-
ios that users ask an initial query which they later refine,
e.g., by extending it with new constraints making their ini-
tial request more precise. So far, all DL-Lite systems would
need to process the new query from scratch. In this paper, we
study the problem of computing the rewriting of an extended
query by ‘extending’ a previously computed rewriting of the
initial query and avoiding recomputation. Interestingly, our
approach also implies a novel algorithm for computing the
rewriting of a fixed query. More precisely, the query can
be ‘decomposed’ into its atoms and then each atom can
be processed incrementally. We present detailed algorithms,
several optimisations for improving the performance of our
query rewriting algorithm, and finally, an experimental eval-
uation.
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1 Introduction

Efficiently managing and retrieving large amounts of data
is a key problem for many modern applications. Ontologies
expressed in the W3C’s Web Ontology Language OWL [15]
and its revision OWL 2 [10] are often used for providing
a formal and unified schema that describes the data that
are stored in distributed and/or heterogeneous data sources.
A key application for such systems is ontology-based data
access (OBDA) [29], where answers to user queries reflect
both the data as well as the ontology that describes them.
However, reasoning and conjunctive query (CQ) answering
in the ontology languages OWL 2 DL, OWL DL, and OWL
Lite is of very high computational complexity in the worst
case [20,25]. Actually, no complete algorithm for querying
OWL 2 DL ontologies is currently known.

The need for efficient query answering has motivated the
development of many lightweight ontology languages which
provide reasoning services of at most polynomial data com-
plexity. One such language is DL-Lite [2,8]. DL-Lite forms
the logical underpinnings of the ontology language OWL 2
QL, a well-known profile of OWL 2 [23]. Query answering
in DL-Lite is usually performed via a technique called query
rewriting [2,8,28]. According to this technique a query q
and a DL-Lite ontology are transformed into another query
q ′, called a rewriting, such that the answers of q ′ over the
input data and discarding the ontology are precisely the
answers of q over the data and the ontology. Common target
languages for representing rewritings in DL-Lite are non-
recursive Datalog [13,32] or union of conjunctive queries
(UCQs) [8,9,27].

The nice properties of DL-Lite have motivated the devel-
opment of many algorithms and systems for computing a
rewriting, such as QuOnto [1], Requiem [27], Presto [32],
Nyaya [11], Quest [30] and Rapid [9]. For a given query
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most of these systems will compute a rewriting by applying
(usually in a brute-force manner) a certain set of equivalence-
preserving transformations to the query discarding any infor-
mation computed for previously rewritten queries. However,
it is quite often the case that user queries have very small
differences with previously executed ones. For example, in
Web search scenarios, it has been shown that users usually
first ask some ‘general’ query and then, according to the
returned results, they refine it by adding further constraints
making their request more precise [16,17,26]. Consequently,
a query can be refined several times until the user (possibly)
finds the intended information.

For example, a user might initially ask to retrieve from a
student database all those students who are athletes using the
following conjunctive query:

{x | Student(x), Athlete(x)}
where x is a variable that needs to be replaced with actual
students from the database while Student and Athlete are
concept atoms (unary predicates). Then, the user can refine
the search by requesting only those athletes who are female
by extending the previous query with the new concept atom
Female(x) giving raise to the following query:

{x | Student(x), Athlete(x), Female(x)}.
Finally, the new query can be further extended requesting
only those female athlete students who take a specific course.
This can be done by adding the role atom (binary predi-
cate) takesCourse(x, y). In all these cases all aforemen-
tioned DL-Lite systems would compute a rewriting for the
extended queries by running their algorithm each time from
scratch discarding any information computed during previ-
ous runs. However, due to the overlap between the queries
much of the previously computed information would need to
be re-computed by each system.

In the current paper, we study the problem of com-
puting a rewriting for queries that have been extended
with new atoms. More precisely, given a DL-Lite ontol-
ogy, a query, a rewriting computed (possibly previously)
for this query and a new atom that would extend the orig-
inal one, we study how to compute a rewriting for the new
query by “extending” the input rewriting and avoid comput-
ing one from scratch. We study the problem theoretically
and design a detailed practical algorithm. Roughly speak-
ing, the algorithm computes a rewriting for a query that
is relevant only to the newly added atom and then com-
bines this with the input rewriting using proper operations.
This way the algorithm performs only the additional work
that is required to compute a rewriting for the extended
query.

Interestingly, our techniques for rewriting extended
queries imply a novel approach for computing a rewriting
for fixed queries. More precisely, given a (fixed) query one

can pick one of its atoms compute a rewriting for it and
then iteratively add the rest of the atoms by extending the
previously computed rewriting. When all the atoms of the
input query have been processed a rewriting for the given
query would have been computed. Based on this idea, we
present a detailed query rewriting algorithm for conjunctive
queries over DL-Lite ontologies. Subsequently, in order to
improve its efficiency we also present several novel optimi-
sations.

Finally, we have implemented all the proposed algorithms
and we have conducted an extensive experimental evaluation
comparing our algorithms against several available state-of-
the-art rewriting systems. The evaluation shows that com-
puting a rewriting incrementally is in the vast majority of
cases faster than the currently fastest DL-Lite system. Espe-
cially, the comparison with the original DL-Lite algorithm
[8] with which our algorithm shares many common features
showed that the new algorithm is several orders of magni-
tude faster. This can be justified by the more guided rewrit-
ing strategy that processes each atom at a time in contrast
to the brute-force approach followed by most existing sys-
tems. In summary, our paper makes the following major
contributions:

– It studies the problem of computing a rewriting for
queries that have been extended with new atoms given
a rewriting for them.

– It shows how the reduction step of the original algorithm
for DL-Lite [8] can be optimised in order to avoid an
exponential blow-up of redundant queries.

– It presents a novel query rewriting algorithm that incre-
mentally processes the atoms of the query.

– It presents several optimisations by which the perfor-
mance of the incremental query rewriting algorithm can
be significantly improved.

– It provides an extensive experimental evaluation of the
proposed algorithms, also contrasting them with existing
state-of-the-art query rewriting systems.

Besides the immediate practical benefits, our study has
several theoretical consequences and gives many interesting
opportunities for future research. First, it shows that rewriting
in DL-Lite can largely be performed in parallel. That is, one
can complete all “rewriting” work for each atom indepen-
dently and then combine the results without referring to the
rewriting module again. To the best of our knowledge, this
is the first complete and practical algorithm for query rewrit-
ing that is based on this approach. Second, the experimen-
tal evaluation shows that with relatively few optimisations
incremental rewriting behaves very well in practice. Hence,
it would be interesting to apply such a strategy over other
ontology languages such as Linear-Datalog± [11] or OWL 2
EL [23].
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2 Preliminaries

In this section, we first briefly recall some notions from graph
theory. Then, we present the Description Logic DL-LiteR [8],
a lightweight knowledge representation formalism which
consists of the logical underpinnings of the ontology lan-
guage OWL 2 QL. Subsequently, we define the syntax and
semantics of conjunctive queries and unions of conjunctive
queries and finally, we provide a brief overview of the so-
called PerfectRef query rewriting algorithm for DL-LiteR

ontologies [8].

2.1 Directed Graphs

A (directed) graph is a tuple G = 〈V, E〉, where V is a set
of vertices and E ⊆ V × V is a binary relation over V . We
often abuse notation and use G to refer to the set of edges of
the graph; in that case it is understood that V is exactly the
set of endpoints of elements of E . Hence, adding a pair 〈a, b〉
to G creates a new graph G = 〈V ∪ {a, b}, E ∪ {〈a, b〉}〉.

For a, b ∈ V , we say that b is reachable from a in G, writ-
ten a �G b, if c0, . . . , cn with n ≥ 0 exist where c0 = a,
cn = b and 〈ci , ci+1〉 ∈ E for each 0 ≤ i < n. Note that,
according to this definition, each c ∈ V is reachable from
itself. Finally, an element c ∈ V is called top in G if for each
c′ ∈ V we have c �G c′.

2.2 The DL-LiteR language

A DL-LiteR signature is the disjoint union of a countably infi-
nite set C of atomic concepts (unary predicates), R of atomic
roles (binary predicates) and I of individuals (constants). A
DL-LiteR-role is either an atomic role P ∈ R or its inverse
P−. Let A ∈ C be an atomic concept and R a DL-LiteR-role;
then, a DL-LiteR-concept is either an atomic concept A or a
concept of the form ∃R.

Let Bi be DL-LiteR-concepts and Ri be DL-LiteR-roles.
A DL-LiteR-TBox, denoted by T , is a finite set of axioms of
one the following forms:

B1 � B2 R1 � R2

An ABox is a finite set of assertions of the form A(c) or
P(c, d) for A ∈ C, P ∈ R and c, d ∈ I. A DL-LiteR-
ontology O = T ∪ A is the union of a TBox and an ABox.1

In the following, since we are concerned with a particular
DL language, we simply speak of roles, concepts, TBoxes,
and ABoxes referring only to those expressible in DL-LiteR .

1 Note that, in DL-LiteR one can also allow for concept (role) dis-
jointness axioms of the form B1 � ¬B2 (R1 � ¬R2). However, these
axioms do not have any effects in query answering when T ∪ A is
consistent [8,28]; hence we will discard them here.

Table 1 The translation of DL-LiteR-axioms and ontologies into FOL
sentences. Note that, B is a concept, R is a role, and a, b are individuals.

π(B1 � B2) = ∀x .(πx (B1) → πx (B2))

π(R1 � R2) = ∀x, y.(πx,y(R1) → πx,y(R2))

π(A(c)) = A(c)

π(P(c, d)) = P(c, d)

π(O) =
∧

α∈O
π(α)

Table 2 The translation into FOL formulas

πx (B) = B(x)

πx,y(R) = R(x, y)

πx,y(R−) = R(y, x)

πx (∃R) = ∃y.πx,y(R)

DL-LiteR can be seen as a fragment of First-Order Logic
(FOL); thus, it can be given formal semantics via a transla-
tion to FOL, where concepts are translated into formulae with
one free variable, roles into formulae with two free variables,
axioms into FO-sentences, and TBoxes, ABoxes and ontolo-
gies into FO-sentences. The transformation π(·) for axioms
and ontologies is given in Table 1, while the translation of
concepts is defined as given in Table 2.

An ontology O is consistent if π(O) has a model, while
entailment (|�) is defined as usual in FOL.

2.3 Conjunctive Queries

We use standard notions of (function-free) term, variable and
substitution from First-Order Logic. For α an atom and σ a
substitution, the result of applying σ to α is denoted as ασ .
Moreover, we use the notation dom(σ ) to denote the domain
of a substitution σ . Furthermore, every substitution σ induces
a directed graph G = 〈V, E〉, where t ∈ V iff t is a term in
σ and 〈x, t〉 ∈ E iff x �→ t ∈ σ .

A concept atom is of the form A(t) with A an atomic
concept and t a term. A role atom is of the form R(t, t ′) for
R an atomic role, and t, t ′ terms. A conjunctive query (CQ)
q is an expression of the form:

{x | α1, . . . , αm}
where x = (x1, . . . , xn) is a tuple of variables called distin-
guished (or answer) and each αi is a concept or role atom
called body atom. Each distinguished variable appears in at
least some atom αi ; all other variables of the query are called
undistinguished. A variable that is either distinguished or
appears in at least two different atoms αi , α j with i �= j
in q is called bound, otherwise it is called unbound. For an
atom α, we use var(α) to denote the set of its variables; var
can be extended to queries in the obvious way. Moreover,
by avar(q) we denote all the distinguished variables of q.
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Table 3 Function gr defined for an atom α and an axiom I

if α = A(x) and

1.I = B � A, then gr(α, I ) = B(x);

2.I = ∃P � A, then gr(α, I ) = P(x, y) for y a new variable in q;

3.I = ∃P− � A, then gr(α, I ) = P(y, x) for y a new variable in q

if α = P(x, z), z is unbound in q and

1. I = A � ∃P , then gr(α, I ) = A(x);

2. I = ∃S � ∃P , then gr(α, I ) = S(x, y) for y a new variable in q;

3. I = ∃S− � ∃P , then gr(α, I ) = S(y, x), for y a new variable in q.

if α = P(z, x), with z unbound, then

1.I = A � ∃P−, then gr(α, I ) = A(x);

2. I = ∃S � ∃P−, then gr(α, I ) = S(x, y), where y is new in q;

3. I = ∃S− � ∃P−, then gr(α, I ) = S(y, x), where y is new in q.

if α = P(x, y) and

1.I = S � P or I = S− � P−, then gr(α, I ) = S(x, y);

2.I = S � P− or I = S− � P , then gr(α, I ) = S(y, x).

Finally, a union of conjunctive queries (UCQ) is a set of
CQs.

For a query q, we will often abuse notation and use q to
refer to the set {α1, . . . , αm} of its body atoms. Hence, for
β an atom by q ∪ {β} we denote the new C Q of the form
{avar(q) | α1, . . . , αm, β}.

Given CQs q1, q2 with distinguished variables x and y,
respectively, we say that q2 subsumes q1 (or that q2 is a sub-
sumer of q1), if there exists a substitution σ from var(q2) to
var(q1) such that [{Q(y)} ∪ q2]σ is a subset of {Q(x)} ∪ q1,
where Q is a predicate of the same arity as x (y) that does not
appear in q1 and q2. For a UCQ u and CQ q, we say that q is
redundant in u if another query q ′ in u exists that subsumes
q; otherwise it is called non-redundant in u.

A certain answer to a CQ q with respect to an ontology O
is a tuple c = (c1, . . . , cn) of individuals such that O entails
the FOL formula obtained by building the conjunction of
all atoms αi in q, replacing each distinguished variable x j

with c j and existentially quantifying over undistinguished
variables. We denote with cert(q,O) the set of all certain
answers to q w.r.t. O.

W.l.o.g. we assume that CQs are connected. More pre-
cisely, let q be a CQ. We say that q is connected if, for all
terms t, t ′, there exists a sequence t1, . . . , tn such that t1 = t ,
tn = t ′ and, for all 1 ≤ i < n, there exists a role R such that
R(ti , ti+1) ∈ q.

2.4 Query Answering and Rewriting for DL-LiteR

Query answering over DL-Lite-ontologies is performed with
a technique known as query rewriting [8,28]. Given a TBox
T and query q, the technique computes another query q ′,
called a rewriting for q, T , with the following property: for

each ABox A such that O = T ∪ A is consistent we have:

cert(q,O) = cert(q ′,A) (1)

Query rewriting has been extensively used for query
answering over “lightweight” ontologies [8,9,32]. A rewrit-
ing can be computed by applying certain transformations
over the input TBox T and query q. Several techniques and
algorithms have been proposed so far in the literature [8,9,11,
19,28,32] and many of them differ quite substantially from
each other. For example, several techniques have proposed
the use of non-recursive Datalog for representing the rewrit-
ing q ′ [32,13], while others return q ′ in its equivalent disjunc-
tive normal form—that is, as a union of conjunctive queries u
which we next call a UCQ rewriting for q, T . Non-recursive
Datalog provides a more compact (polynomial size) structure
for computing rewritings in contrast to the worst case expo-
nential size of UCQs [18]. However, it has been advocated
[31] that UCQs provide a more suitable form when it comes
to actually evaluating the computed rewriting over the stored
data. In addition, recent optimisation techniques show how
the structure of the data (structure of the ABox) can be used
to significantly reduce the size of the UCQ [30,31].

Next, we briefly present the PerfectRef algorithm pro-
posed by Calvanese et al. [8] as our algorithm uses several
of its techniques. Given a CQ q and a TBox T , PerfectRef
computes a UCQ rewriting for q, T , by applying exhaus-
tively a reformulation and reduction step. Each one of them
takes as input a CQ and possibly some axiom from T and
generates a new CQ. This process terminates when no new
query is generated.

In the reformulation step the algorithm picks a CQ q, an
atom α in the CQ and an axiom I in T and checks whether I
can be used to replaceα in q with a new atom, hence creating a
new CQ. For example, for the CQ q1 = {x | S(x, y), S(y, z)}
and the axiom I1 = B � ∃S reformulation would replace
S(y, z) producing a new query q2 = {x | S(x, y), B(y)}.
Next, if an axiom of the form I2 = ∃S− � B exists in T
then this can also be used to replace B(y) in q2 producing
the query q3 = {x | S(x, y), S(w, y)}, where w is a new
variable not appearing in q2. More formally, for an atom α of
a query and an axiom I ∈ T , the function gr(α, I ) returns a
new atom as defined in Table 3. If for some axiom I and some
atom α one of the conditions in Table 3 holds, then we say
that I is applicable to α, and applying I to some α in some
CQ q creates a new CQ of the form q[α/gr(α, I )]—that is,
a new query that contains the atom gr(α, I ) instead of the
atom α.

In the reduction step a new CQ is generated by applying
to some CQ q the most general unifier (mgu) of two of its
atoms. For example, applying reduction on query q3 from
above generates the new query q4 = {x | S(x, y)}, since
S(w, y) unifies with S(x, y).
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3 Rewriting Under Atom Extensions

In this section, we study the problem of computing a UCQ
rewriting for queries that have been extended with new atoms,
by extending a previously computed UCQ rewriting for them.
First, we provide an overview of the algorithm emphasising
several of its technical points, after which we present the
algorithm in detail.

3.1 An Overview

Consider the following TBox about an academic domain and
the CQ which retrieves all individuals that teach someone:

T = {Professor � ∃teaches, ∃teaches− � Student}
q = {x | teaches(x, y)}
The following set is a UCQ rewriting for q, T computed
using the PerfectRef algorithm:

u = {q, q1}, where q1 = {x | Professor(x)}.
More precisely, q1 is produced by applying the first TBox
axiom on atom teaches(x, y) of q, replacing it with
Professor(x).

Suppose now, that the initial query is extended in order
to retrieve only individuals that teach students—that is, q is
extended with atom α = Student(y) and the new query is
the following:

q ′ = {x | teaches(x, y), Student(y)}.
Again, using the PerfectRef algorithm, we can compute the
following UCQ rewriting for q ′, T :

u′ = {q ′, q ′
1, q, q1}

where q ′, q, and q1 are as defined previously, and q ′
1

= {x | teaches(x, y), teaches(z, y)}. More precisely, q ′
1

is obtained from q ′ by applying the second TBox axiom
on atom Student(y), replacing it with teaches(z, y) for z
a fresh variable, while q is obtained from q ′

1 by applying
reduction on its two atoms. Note that variable y in query q ′

1
is bound since it appears in both atoms teaches(x, y) and
teaches(z, y), while after reduction it becomes unbound.
Hence, finally, the algorithm can produce query q1 from q as
shown earlier.

From the above example, we can observe that when run
for q ′, T , the PerfectRef algorithm has to recompute queries
q and q1, although these have been computed previously for
q, T . To avoid repeating this work it would be beneficial to
perform any rewriting work only for the newly added atom
and then appropriately ‘combine’ the result with the previ-
ously computed rewriting (which in the following we infor-
mally call reference rewriting).

Consider the query qα = {y | Student(y)}. The set
uα = {qα, q ′

α}, where q ′
α = {y | teaches(z, y)} for z a

fresh variable, is a UCQ rewriting for qα, T computed using
the PerfectRef algorithm. It can be easily seen that query
q ′ of u′ can be constructed by adding the atoms of qα to q
(which has been computed previously in u), while query q ′

1
can also be constructed by adding the atoms of q ′

α to q. How-
ever, note that adding the atoms of qα to q1 ∈ u creates the
CQ {x | Professor(x), Student(y)} which is not part of u′.

The above considerations suggest that given a rewriting
u for q, T and an atom α, a rewriting for q ∪ {α}, T can be
computed by computing a rewriting uα for a ‘special’ query
qα and then properly extending the CQs in u with the body
atoms of queries from uα . More precisely, for α, u, q and T
the algorithm will compute a UCQ rewriting uα for the query
qα = {var(α) ∩ var(q)}α and then add the atoms of a query
q ′
α ∈ uα to the atoms of a query q ′ ∈ u if avar(q ′

α) ⊆ var(q ′).
Intuitively, the above approach is possible because the

PerfectRef algorithm is to a large extent ‘local’ with respect
to the atoms of a query. For example, the application of the
reformulation step on some query atom is independent from
the rest of the query atoms. Unfortunately, the second opera-
tion of the PerfectRef algorithm, that of reduction, involves
more than one atoms in the query and hence refutes our inde-
pendence argument. A straightforward approach would be
to also use reduction between queries from the two rewrit-
ings. In our running example, atom teaches(x, y) in query
q unifies with atom teaches(z, y) in query q ′

α . The result
of unifying these two queries indeed produces the CQ q of
u′. However, this approach has two issues. First, it is well-
known that, in terms of performance, reduction is an ineffi-
cient step that can create a large number of (possibly redun-
dant) queries [12,28,32]. Second, even with this operation
we still cannot produce query q1 ∈ u′.

The reduction step was initially introduced because an
axiom I might only be applicable to a reduction of some
CQ. In our running example, q1 is produced from q because
variable y that was bound in q ′

1 became unbound in q after
reduction. An advantage in our case is that we already know
from the reference rewriting that q1 can be produced from q.
Hence, our algorithm only needs to check whether some CQ
in uα can be ‘unified’ into q in such a way that all queries
that are produced due to q in the reference rewriting can still
be produced without producing all possible unifications. If
such a query exists, then q and all queries ‘produced by’ q
(in our case q1) should be part of the result. The algorithm
presented in the next section identifies such cases using the
function mergeCQs defined next.

Definition 1 Let q, q ′ be two queries. Then, function
mergeCQs(q ′, q) returns the smallest set � of substitutions
such that:
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– If there exists atom α ∈ q ′ ∩ q, then � contains {x �→
x | x ∈ var(α)};

– If there exist R(z, y) ∈ q ′, R(x, y) ∈ q or R(y, z) ∈
q ′, R(y, x) ∈ q and x, y, z are all distinct, then � con-
tains {z �→ x}.

Note that, our restricted reduction approach is similar to
the factorisation step proposed by Gottlob et al. [11]. How-
ever, since DL-Lite only allows for predicates with at most
two variables (cf. FO translation in Table 2) the checks we
need to perform (i.e., the ones of Definition 1) are much more
tailor made and lightweight. Whereas, to implement the fac-
torisation step one has to check applicability of certain TBox
axioms over an atom, that is, try to actually apply a rewriting
step.

As the next example shows, the substitutions returned by
function mergeCQs indicate how a query can be merged
into another one and this is key to our algorithm.

Example 1 Consider the following TBox and CQ:

T = {A � ∃R} q = {x | R(x, y)}
with the UCQ rewriting:

u = {q, q1}, where q1 = {x | A(x)}.
Consider now that we extend q with atom α1 = R(z, y)

and that we want to compute a UCQ rewriting for q ′
= q ∪ {R(z, y)} and T using the approach described ear-
lier. First, we construct qα1 = {y | R(z, y)} since y is the
only variable in var(a)∩var(q) and then the UCQ rewriting
uα1 = {qα1} for qα1 , T . Finally, a UCQ u′ is computed as
follows: The atoms of qα1 are added to q creating the CQ
q ′ = q ∪ {R(z, y)}, while query qα1 merges into q since
mergeCQs(qα1 , q) contains {z �→ x}; hence, q and q1 are
added to u′. It can be verified that u′ = {q ′, q, q1} is a UCQ
rewriting for q ′, T .

Suppose now that we want to further extend q ′ with the
atom α2 = B(z) and that we want to compute a UCQ rewrit-
ing for q ′′ = q ′∪{B(z)} and T . One such rewriting computed
using PerfectRef is the following:

u′′ = {q ′′, q ′
1, q ′

2}, where q ′
1 = {x | R(x, y), B(x)}

and q ′
2 = {x | A(x), B(x)}.

Suppose now that we want to compute u′′ using our
approach. Hence, we create the CQ qα2 = {z | B(z)}, com-
pute the UCQ rewriting uα2 = {qα2} for qα2 , T and then
combine queries from u′ and uα2 . Adding the atoms of qα2

to q ′ creates query q ′′, however, for all other queries qi ∈ u′
we have avar(qα2) � var(qi ) and hence no other query of
u′′ can be constructed.

The problem in the previous example is that after we
merged qα1 into q our reference to variable z was lost as

this was mapped to x . This information is critical when we
later further extend the input query and we want to decide
whether it is possible to extend queries from u′ with queries
from uα2 . To correctly handle these cases, instead of the sub-
set condition between variables, our algorithm uses the more
involved method canBeJoined defined next.

Definition 2 Let q be a query, let σ be a substitution, and let
vars be a set of variables. Then, function
canBeJoined(q, σ, vars) returns true if for each z ∈ vars
there exists x ∈ var(q) such that z �G x for G the graph
induced by σ .

Example 2 Consider query q ′′, UCQs uα2 and u′, and sub-
stitution σ from Example 1. For queries qα2 ∈ uα2 and
q ∈ u′ we have that canBeJoined(q, σ, avar(qα2)) = true.
Hence, the atoms of qα2 (i.e., B(z)) can be added to those of
q. Note, however, that due to σ the new query that should
be created is the query q ∪ {B(z)σ }, which is precisely q ′

1
from Example 1. Similarly, for the CQ q1 ∈ u′ we have
canBeJoined(q1, σ, avar(qα2)) = true, hence the query
q1 ∪ {B(z)σ } (i.e., q ′

2) is also created. Consequently, u′′ of
Example 1 can be constructed.

Summarising the above, when there exist queries qi ∈ uα

and q j ∈ u such that mergeCQs(qi , q j ) �= ∅ (i.e., qi can be
‘merged’ into q j ) first, we need to know which queries have
been generated in u due to q j , in order to ‘copy’ them to the
result, and second, which variable mappings are used in the
merge. To capture this information, in contrast to previous
approaches, our algorithm operates over graphs G and Gα of
queries which store the dependencies between queries and
the used mappings rather than on UCQs u and uα .

Definition 3 Let q be a CQ and let T be a TBox. A rewriting
graph for q, T is a directed labelled graph G = 〈u,H, m〉,
where u is a UCQ rewriting for q, T , H is a binary relation
over u, and m maps each qi ∈ u to a set of variable mappings.
Moreover, G satisfies the following properties:

– If 〈q1, q2〉 ∈ H, then q2 is produced from q1 by the
application of a reformulation or reduction step.

– For each 〈q1, q2〉 ∈ H if q2 is produced by a reformula-
tion step, then m(q2) = m(q1), while if it is produced by
a reduction step with σ the mgu, then m(q2) = m(q1)∪σ .

Concluding our algorithm overview, an important ques-
tion is whether we can compute a UCQ rewriting for an
extended query given any reference UCQ rewriting. As the
following example shows this is not always possible.

Example 3 Consider the following TBox and CQ:

T = {A � ∃R} q = {x | A(x), R(x, y)}.
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Algorithm 1 ExtendRewritingForNewAtom(T ,G, α)

input: A TBox T , a rewriting graph G = 〈u, H, m〉 for some q, T
and a new atom α.

1: Gα := ex-PerfectRef({var(α) ∩ var(q) | α}, T )

2: G′ := joinGraphs(G, Gα, var(α) ∩ var(q), avar(q))

3: return G′

Then, G1 = 〈u1,H,∅〉 where u1 = {q, q1}, q1 = {x | A(x)}
and H = {〈q, q1〉} is a rewriting graph for q, T . However, q
is redundant in u1. Thus, G2 = 〈{q1},∅,∅〉 is also a rewriting
graph for q, T .

Now suppose that we want to extend q with the atom
α = B(y) creating the query q ′ = q ∪ {B(y)}. A UCQ
rewriting for q ′, T computed using PerfectRef consists of
the UCQ u′ = {q ′}.

Consider now the query qα = {y | B(y)}. Using
PerfectRef, we compute the UCQ rewriting uα = {qα}.
Clearly, it is not possible to compute u′ from G2. However,
u′ can be constructed from G1. More precisely, adding the
atoms of qα to q creates q ′.

The problem in the previous example is that although q
is redundant in u1 due to q1, neither q1 nor any other query
related or produced by q1 by the extension is part of the final
UCQ rewriting. Hence, q and all queries that are produced
by q are ‘relevant’ for computing a UCQ for q ∪ {α} and are
not redundant. Next, we formalise a property that is sufficient
for computing a rewriting graph for an extended query.

Definition 4 Let q be a query, let T be a TBox, let G
= 〈u,H, m〉 be a rewriting graph for q, T . We say that G
is reformulation-closed for q, T if the following properties
are satisfied:

1. q is a top element in G.
2. For each top element qi in G we have m(qi ) = ∅.
3. If a query q2 can be produced using a single reformulation

step on some query q1 ∈ u, then 〈q1, q2〉 ∈ H.
4. If q1 ∈ u and atoms R(z, y) and R(x, y) or atoms R(y, z)

and R(y, x) appear in q1, then 〈q1, q2〉 ∈ H, where q2

= q1{z �→x}.

It is easy to see that the rewriting graph G2 from Example 3
is not reformulation-closed for q, T since q does not appear
as a top element, while G1 is.

3.2 The Rewriting Extension Algorithm

Our algorithm for computing a rewriting graph for a query
q extended with an atom α is shown in Algorithm 1.
The algorithm accepts a TBox T , a rewriting graph G for
q, T , and an atom α and it returns a rewriting graph for
q ∪ {α}, T . First, it computes a rewriting graph Gα for the

Algorithm 2 joinGraphs(G,Gα, jv, av)

input: A rewriting graph G = 〈u, H, m〉 for some q, T and a rewrit-
ing graph Gα , the set jv of the join-points, and a set of variables av.

1: Initialise a UCQ u′ := ∅, a binary relation H′ := ∅,
and a mapping m′ = ∅

2: G′ := 〈u′, H′, m′〉
3: Initialise a queue Q with the CQ q
4: while Q �= ∅ do
5: Remove the head qh of Q and let κ := m(qh)

6: if canBeJoined(qh, κ, jv) then
7: Initialise a queue Qα with a top element of Gα

8: while Qα �= ∅ do
9: Remove the head qα of Qα

10: nv := avar(qh) ∪ (var((qα)κ ) ∩ av)

11: qc := {nv | qh ∪ (qα)κ }
12: m′(qc) := κ

13: Add qc to u′
14: for all σ ∈ mergeCQs((qα)κ , qh) do
15: Add 〈qc, (qh)σ 〉 to G′
16: for all q ′ s.t. qh �G q ′ do
17: if dom(σ ) ⊆ var(q ′) ∪ dom(m(q ′)) then
18: μ′ := buildSubst(σ, m(q ′))
19: m′({nv | q ′}μ′ ) := μ′
20: for all 〈q ′, q ′′〉 ∈ G do
21: μ′′ := buildSubst(σ, m(q ′′))
22: Add 〈{nv | q ′}μ′ , {nv | q ′′}μ′′ 〉 to G′
23: end for
24: end if
25: end for
26: end for
27: for all 〈qh , q ′〉 ∈ G do
28: buildChildren(qc, q ′, qα, G, G′, av, jv)

29: Add q ′ to Q
30: end for
31: for all 〈qα, q ′〉 ∈ Gα do
32: buildChildren(qc, qh, q ′, G, G′, av, jv)

33: Add q ′ to Qα

34: end for
35: end while
36: end if
37: end while
38: return G′

query {var(α) ∩ var(q) | α}, which explicates from T the
knowledge that regards atom α. This is accomplished using
the sub-routine ex-PerfectRef, which consists of a straight-
forward extension of the standard PerfectRef algorithm [8].
More precisely, apart from applying the standard reformula-
tion and reduction steps this algorithm also stores the depen-
dencies between the queries using a relation as well as the
mappings that are created due to the reduction steps. Subse-
quently, Algorithm 1 ‘combines’ G and Gα using algorithm
joinGraphs and computes a rewriting graph for the extended
query.

Algorithm joinGraphs is shown in Algorithm 2. Intu-
itively, it computes the Cartesian product of the two input
rewriting graphs. The intuition is that if 〈q, q ′〉 ∈ G (i.e., q ′
is produced by q) and qα is a vertex in Gα , then the same step
would also be applicable to query q ∪ qα—that is, q ∪ qα
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will produce the CQ q ′ ∪ qα . Similarly, for q a vertex in G
and 〈qα, q ′

α〉 ∈ Gα .
More precisely, the algorithm uses queues Q and Qα in

order to traverse G and Gα , respectively. In line 5 it picks an
element qh from G and checks if the query can be extended
with atoms of queries in Gα (line 6). If it does, then a CQ qα

is also picked from Gα (line 9) and a new query qc from qh

and qα is created (line 11) that has as distinguished variables
the variables in nv. Moreover, m(qh) is set as the mapping
for qc (line 12). Subsequently, the algorithm checks if qα can
be merged into qh . If it does, then it adds 〈qc, (qh)σ 〉 ((qh)σ
being the query produced after applying σ to qh) to the new
graph (line 15) and then also ‘copies’ to the result the part of
G that has been produced due to qh (lines 16–25) applying
also a proper substitution μ. This substitution is constructed
using function buildSubst.

Definition 5 Let σ and κ be two sets of mappings. Then,
function buildSubst(σ, κ) returns a new set of mappings μ

constructed in the following steps:

1. Set μ := κ ∪ σ

2. For each z �→ y ∈ σ if z �→ y′ in κ exists then replace
z �→ y′ in μ with y �→ y′.

Note that, this function is important when for q ′ a ‘copied’
query we have m(q ′) �= ∅.

After checking if a query can be merged, the algorithm
iterates through the queries that are produced by qh (lines 27–
30) as well as over those that are produced by qα (lines 31–34)
and constructs proper successors of qc. This is done using the
sub-routine buildChildren, depicted in Algorithm 3, which
follows a similar approach as before. That is, it computes the
join between qh (a child of qh) and some child of qα (and
qα) and then also checks if the two queries can be merged,
in which case it copies the relevant sub-graph to the result.
Finally, the children of qh (qα) are added to Q (Qα).

Note that G and Gα can be cyclic. Hence, the algorithm
needs to keep track which nodes it has visited (copied) and
avoid revisiting (recopying) them. This can be done using
standard graph traversal techniques.

Example 4 Consider the following rewriting graphs:

G = 〈{q1, q2, q3},H, m〉 and Gα = 〈{q1
α, q2

α},Hα, mα〉
where H and Hα are as shown in Fig. 1a and b, respectively.
Assume also that m(qi ) = ∅ for each 1 ≤ i ≤ 3 and that
all queries qi can be extended. Figure 1c depicts the rewrit-
ing graph that is computed by Algorithm 1 for G and Gα ,
assuming that for each q j

α ∈ uα and for each qi ∈ u, we have
mergeCQs(q j

α, qi ) = ∅—that is, no merges occur. More
precisely, we have the following steps:

– At the first iteration we have Q = {q1} and Qα = {q1
α}, hence

qh = q1 and qα = q1
α . In line 11, CQ q1∪q1

α is created (recall

Algorithm 3 buildChildren(qc, q, qα,G,G′, av, jv)

input: qc, q, qα are CQs, G = 〈u, H, m〉 and G′ = 〈u′, H′, m′〉 are
graphs and av, jv are sets of variables.

1: κ := m(q)

2: if canBeJoined(q, κ, jv) then
3: nv := avar(q) ∪ (var((qα)κ ) ∩ av)

4: qn := {nv | q ∪ (qα)κ }
5: m′(qn) := κ

6: Add 〈qc, qn〉 to G′
7: for σ ∈ mergeCQs((qα)κ , q) do
8: Add 〈qn, qσ 〉 to G′
9: for all q ′ s.t. q �G q ′ do
10: if dom(σ ) ⊆ var(q ′) ∪ dom(m(q ′)) then
11: μ′ := buildSubst(σ, m(q ′))
12: m′({nv | q ′}μ′ ) := μ′
13: for all 〈q ′, q ′′〉 ∈ G do
14: μ′′ := buildSubst(σ, m(q ′′))
15: Add 〈{nv | q ′}μ′ , {nv | q ′′}μ′′ 〉 to G′
16: end for
17: end if
18: end for
19: end for
20: end if

(a) (b) (c)

Fig. 1 Rewriting graphs of Example

that m(q1) = ∅). Then, in the for-loop in lines 27–30, queries
q2 ∪ q1

α and q3 ∪ q1
α are created, they are set as children of

q1 ∪ q1
α and q2, q3 are added to Q. Subsequently, in the for-

loop in lines 31–34 CQ q1 ∪ q2
α is created, it is set as child of

q1 ∪ q1
α and q2

α is added to Qα .
– In the next iteration Qα = {q2

α}, hence q2
α is picked and now

qh = q1 and qα = q2
α . Then, in line 11, CQ q1 ∪q2

α is created,
and then, in a similar way as described before, CQs q2 ∪ q2

α

and q3 ∪ q2
α are created and pairs 〈q1 ∪ q2

α, q2 ∪ q2
α〉 and

〈q1 ∪ q2
α, q3 ∪ q2

α〉 are added to the result.
– In the next iteration, the algorithm picks q2 from Q and Qα

is again initialised to {q1
α}. Then, again query q2 ∪ q1

α will
be constructed and ‘connected’ with query q2 ∪ q2

α that was
constructed previously.

– Finally, the algorithm picks q3 from Q and again constructs
q3 ∪ q1

α and ‘connects’ it with q3 ∪ q2
α . Then, the algorithm

terminates.

Concluding this section we show the correctness of Algo-
rithm 1.

By the definition of the function mergeCQs it is clear
that our algorithm does not apply the standard reduction
of the PerfectRef algorithm. For example, for the query
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{x | R(x, y), R(y, z)} the standard reduction will produce
the query {x | R(x, x)}; however, for q1 = {x | R(x, y)}
and q2 = {x | R(y, z)}, we have mergeCQs(q2, q1) = ∅
and hence q2 is not merged into q1. Correctness of our merge
approach follows by the following lemma which proof is
given in the Appendix.

Lemma 1 Let q1, q2 be two CQs such that q2 subsumes q1

and let q ′
1 be the result of applying an axiom I to q1. If

q2 does not subsume q ′
1, then either I is applicable to q2

and the result subsumes q ′
1 or for 1 ≤ i ≤ n, atoms of the

form P(u, v), P(zi , v) or P(v, u), P(v, zi ) exist in q2 such
that for 1 ≤ i, j ≤ n, i �= j we have zi �= z j and for
λ = {zi �→ u | 1 ≤ i ≤ n}, I is applicable to (q2)λ and the
result subsumes q ′

1.

As explained in Sect. 3.1, the reduction step was intro-
duced because an axiom I might only be applicable to a
reduction q ′ of some CQ q. However, it is well-known that if
q ′ is the reduction of q, then q subsumes q ′. Hence, if some
I is applicable to q ′ but not to q, Lemma 1 dictates that only
a restricted form of reductions over atoms in q are necessary
to obtain a CQ over which I is applicable. Such reductions
are precisely those used to decide whether a query from uα

can be merged into a query in the reference rewriting.
Consider a CQ q, a TBox T , an atom α, a rewriting graph

G for q, T and a rewriting graph Gα computed by Algorithm 1
in line 1. Assume also that u is the UCQ rewriting computed
using the standard PerfectRef algorithm over q ∪{α}, T . To
show correctness, we will use induction over the number of
steps that the PerfectRef algorithm has been applied over
q ∪ {α}, T . For example, assume that ui ⊆ u is the UCQ
computed at step i and that for every qi ∈ ui some qh in G
and some qα in Gα exist such that {nv | qh ∪ (qα)κ}, where
κ = m(qh) and nv = avar(qh) ∪ (var((qα)κ) ∩ avar(q))

subsumes qi . Then, assume that at step i + 1 some axiom
I is applied to qi producing qi+1. By Lemma 1 either I is
applicable to {nv | qh ∪ (qα)κ} and the result subsumes qi+1

or several restricted reductions are applicable. In the former
case I is either applicable to some atom in qh producing
some query q ′

h for which we will have 〈qh, q ′
h〉 ∈ G or I is

applicable to (qα)κ . Hence, in the former case we will have
some q ′

h in G such that {nv | q ′
h ∪ (qα)κ } subsumes qi+1.

In the latter case the existence of some q ′
α in Gα such that

〈qα, q ′
α〉 ∈ Gα and {nv | qh ∪ (q ′

α)κ} subsumes qi+1 follows
by the following lemma which we show in the Appendix.

Lemma 2 Let q be a CQ that contains exactly one body
atom and let κ be a substitution such that some axiom I is
applicable to qκ producing q ′. Then I is also applicable to
q and for q ′′ the result we have q ′′

κ = q ′ (modulo renaming
of fresh variables).

Finally, the following theorem establishes the correctness
of the algorithm. The proof is given in the Appendix and

consists of a systematic analysis of all of the aforementioned
cases.

Theorem 1 Let q be a CQ, let T be a TBox, let α be an atom
such that var(α)∩ var(q) �= ∅ and let G be a reformulation-
closed rewriting graph for q, T . Let G′ be the graph returned
by Algorithm 1 when applied to G, α and T ; then G′ is a
reformulation-closed rewriting graph for q ∪ {α}, T .

4 An Incremental Query Rewriting Algorithm

Algorithm 2 can form the basis for developing a UCQ rewrit-
ing algorithm for fixed queries over TBoxes. More precisely,
for a fixed CQ q one can pick some atom α ∈ q, compute a
rewriting graph for the query q1 = {var(α) ∩ avar(q) | α}
over T using ex-PerfectRef and then extend this rewriting
graph by iteratively adding the rest of the body atoms of q
using Algorithm 2.

The above idea is illustrated in Algorithm 4. The algo-
rithm first selects some atom α such that some of its variables
appear as distinguished variables in q (line 2) and computes
a rewriting graph G for the query {var(α) ∩ avar(q) | α}
(line 3). At this point a rewriting graph for a query that
contains only atom α of q, variables cv = var(α) of q
and distinguished variables var(α) ∩ avar(q) of q have
been computed. Then, the algorithm selects one-by-one the
remaing atoms and extends the previously computed rewrit-
ing graph (lines 5–11). More precisely, at the i-th iteration
the algorithm has computed a rewriting graph G for a query
qi that contains i + 1 atoms of q, has as distinguished vari-
ables the variables in var(qi ) ∩ avar(q), while cv contains
the variables of q that appear in qi . Hence, the algorithm
picks an atom α′ such that some of its variables also appear
in cv (line 6), it computes a rewriting graph Gα′ for the query
{var(α′) ∩ cv | α′} (line 8) and then, it joins G with Gα′
using Algorithm 2 (line 9). Finally, the algorithm uses the
well-known redundancy elimination algorithm proposed in
[27] to remove the redundant (subsumed) queries (line 12)
and return a UCQ. Note that the latter is possible since we
assume that the query is fixed.

Theorem 2 Let q be a CQ and letT be a TBox. When applied
to q and T Algorithm 4 terminates. Let u be the UCQ pro-
duced by the algorithm; then, u is a UCQ rewriting for q, T .

The theorem follows by Theorem 1 and induction over the
atoms of q that have been added by Algorithm 4.

We now comment on the maximum number of CQs
generated by our rewriting algorithm. Since our algorithm
computes a UCQ rewriting it is thus of the same worst
case complexity as other systems, like QuOnto, Nyaya, and
Requiem, i.e., exponential w.r.t. the size of the input CQ [18].
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Algorithm 4 IncrementalRew(q, T )

input: A CQ q and a TBox T .

1: Let S be the set of body atoms in q
2: Remove an atom α from S s.t. var(α) ∩ avar(q) �= ∅
3: G := ex-PerfectRef({var(α) ∩ avar(q) | α}, T )

4: cv := var(α)

5: while S �= ∅ do
6: Remove an atom α′ from S s.t. var(α′) ∩ cv �= ∅
7: jv := cv ∩ var(α′)
8: Gα′ := ex-PerfectRef({ jv | α′}, T )

9: G := joinGraphs(G, Gα′ , jv, avar(q))

10: cv := cv ∪ var(α′)
11: end while
12: return removeRedundant(G)

Lemma 3 Let T be a DL-Lite TBox, let q be a CQ, and
let G = 〈u,H, m〉 be the output of Algorithm 4. Then, the
maximal size of |u| is O((|T | · |q|)|q|).

Proof Let m be the number of concepts and roles appearing
in T and n the number of atoms in q. Let also ui be the
UCQ computed at the i-1-th iteration of the while-loop of
Algorithm 4. In the next iteration, ui+1 is computed by first
computing a rewriting graph Gαi = 〈uαi ,Hαi , mαi 〉 for an
atom αi of q and then using the queries in uαi and ui to
build new queries by either extending or merging. Since the
query for which uαi is computed contains exactly one atom,
then there can be at most m · (2 + 1)2 different queries in
uα (the factor ‘2 + 1’ is because the atom can be a role so
there are two variables plus 1 for possibly freshly introduced
variables). Next, the algorithm extends the queries in ui with
atoms from the queries in uαi . Hence, there can be |ui | ·m ·32

CQs generated by extension. Moreover, the algorithm checks
if queries from uα can be merged to CQs by computing all
possible merges. For each merge, all CQs in ui ‘below’ the
merged query are copied. Since the queries in ui have at
most i atoms (i atoms have been processed thus far), there
can be at most i · |ui | · m · 32 CQs computed due to merging.
Summarising, |ui+1| contains at most (i +1)·|ui |·m ·32 CQs.
By recursively analysing |ui | and since |u0| = uα0 we can
conclude that |un| contains at most n ·(n−1) · . . . ·2 ·mn ·32·n
CQs. Since m is bounded by |T | and n by |q| we have that
|u| = |un| = O(|T ||q| · |q|! · 32·|q|) = O(|T ||q| · |q|!) =
O((|T | · |q|)|q|). ��

Clearly, in absence of any optimisations or refinements
Algorithm 4 is not likely to behave well in practice. In the
following sections we present several optimisations which
aim at improving its performance. Note that these optimisa-
tions intend to improve the computation time of the algorithm
rather than reduce the size of the UCQ. Recall, however, that
recent techniques show how we can also significantly reduce
the size of the UCQ using the input data when we finally
want to evaluate the rewriting [30,31].

4.1 Optimising the Last Iteration

As explained in Section 3, Algorithm 2 computes the Carte-
sian product between the input rewriting graphs. The struc-
ture of the computed graph is important for subsequent addi-
tions of atoms, however, it is not important after processing
the last atom of a fixed query using Algorithm 4. Conse-
quently, when the last atom α′ is selected in line 6, Algo-
rithm 4 can proceed as follows: First, in line 8 it can compute
a UCQ rewriting uα′ for the query { jv | α′} using the stan-
dard PerfectRef algorithm, instead of a rewriting graph Gα′ .
Then, when joining G and uα′ it can call a simplified version
of Algorithm 2 that constructs a UCQ rather than a rewriting
graph. Algorithm 5 depicts the simplified algorithm. Roughly
speaking, it is obtained from Algorithm 2 by removing the
for-loops in lines 27–34 and adding the computed queries to
a UCQ u′ rather than a graph.

Another way to further improve the performance of Algo-
rithm 5 is to identify cases where queries from G do not need
to be further processed and extended with atoms of queries
from uα . The next proposition demonstrates a case where
‘copying’ a query from the reference rewriting to u′ due to a
merge is sufficient to discard certain queries from G.

Proposition 1 Let G = 〈u,H, m〉 be a rewriting graph, let
uα be a UCQ, let nv be a set of variables and let qh ∈ u.
If there exists a query qα in uα and substitution λ such that
for all {z �→ x} ∈ mergeCQs((qα)λ, qh) we have z �∈
var(qh), then for each q ′ such that qh �G q ′, each q ′

α in
uα and each substitution κ , the CQ {nv | q ′}μ′ where μ′ =
buildSubst({z �→ x}, m(q ′)) subsumes {nv | q ′ ∪ (q ′

α)κ}.
Consider Algorithm 5 and assume that for some query qh

in line 4, some query qα in line 6 and some {z �→ x} ∈
mergeCQs((qα)λ, qh) in line 9 the algorithm adds to u′ all
CQs {nv | q ′}μ′ such that qh �G q ′ (line 14). If z �∈ var(qh),
then by the properties of reformulation and reduction for all
such q ′ we have z �∈ var(q ′) and hence also no mapping
of the form z �→ y appears in m(q ′). Moreover, we clearly
have that q ′

m(q ′) = q ′. Hence, for any such query q ′ and for
μ′ = buildSubst({z �→ x}, m(q ′)) we have q ′

μ′ = q ′ and
thus {nv | q ′}μ′ trivially subsumes {nv | q ′ ∪ (q ′

α)κ} for any
κ and q ′

α . Consequently, Algorithm 5 adds the successors of
a selected query qh to the queue in line 19 only if � = ∅ or
there exists {z �→ x} ∈ � with z ∈ var(qh) since otherwise
the extensions of such queries is known to lead to redundant
queries.

4.2 Optimising Redundancy Elimination

As described in the previous section, in line 12 Algo-
rithm 4 applies the well-known redundancy elimination
algorithm [27]. It has been shown by several experimental
evaluations [9,27] that this method usually does not perform
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Algorithm 5 OptimisedExtensionStep(G, uα, jv, av)

Input: A rewriting graph G = 〈u, H, m〉, a UCQ uα , and two sets
of variables jv and av.

1: Initialise a queue Q with a top element in G
2: Initialise a UCQ u′ := ∅
3: while Q �= ∅ do
4: Remove the head qh of Q and let κ := m(qh)

5: if canBeJoined(qh, κ, jv) then
6: for all qα ∈ uα do
7: nv := avar(qh) ∪ (var((qα)κ ) ∩ av)

8: Add {nv | qh ∪ (qα)κ } to u′
9: � := mergeCQs((qα)κ , qh)

10: for all σ ∈ � do
11: for all q ′ s.t. qh �G q ′ do
12: if dom(σ ) ⊆ var(q ′) ∪ dom(m(q ′)) then
13: μ′ := buildSubst(σ, m(q ′))
14: Add {nv | q ′}μ′ to u′
15: end if
16: end for
17: end for
18: if (� = ∅ or {z �→ x} ∈ � ∧ z ∈ var(q)) then
19: Add each q ′ such that 〈qh, q ′〉 ∈ G to Q
20: end if
21: end for
22: end if
23: end while
24: return u′

well in practice because it consists of two nested for-loops
over the (potentially large) computed UCQ u′. More pre-
cisely, the algorithm needs to check whether each CQ q1 ∈ u′
is subsumed by some other CQ q2 ∈ u′. In order to improve
the performance of this method our algorithm uses three
approaches which attempt to reduce the size of the sets over
which the algorithm would execute these for-loops.

First, it tries to identify on the fly, during the execution
of Algorithm 5, queries that if produced and added to u′
are going to be redundant. The more redundant queries are
identified the smaller the size of u′ over which algorithm
removeRedundant would be executed. However, u′ can still
be very large. Hence, second, it tries to identify queries that
are going to be non-redundant in the computed set u′. Such
queries can then be excluded from the final check reducing
the size of the first for-loop of method removeRedundant.
More precisely, if u′

nr is the set of non-redundant queries then
only the CQs in u′ \u′

nr need to be checked against the CQs in
u′. Third, it tries to identify queries that are non-subsumers.
This can be used to reduce the size of the second for-loop of
the method. More precisely, if u′

ns contains all such queries
then each CQs in u′ \ u′

nr needs to be checked only against
the CQs in u′ \ u′

ns .

4.2.1 Pruning Redundant Queries

The following proposition presents two properties by which
we can identify that a query possibly generated by Algo-
rithm 5 will be redundant in the final UCQ.

Proposition 2 Let G = 〈u,H, m〉 be a rewriting graph, let
uα be a UCQ, let jv, av be sets of variables, and let u′ be
the output of Algorithm 5 when applied to G, uα, jv, and av.
Let a CQ q ∈ u with canBeJoined(q, m(q), jv) = true,
let nv be the set of variables constructed for q in line 7, and
assume that q is subsumed by some other CQ q ′ ∈ u; then
the following properties hold:

(R1) If {nv | q ′} ∈ u′, then {nv | q} is redundant in u′.
(R2) If canBeJoined(q ′, m(q ′), jv) = true, q ′ ⊆ q, and

m(q ′) = m(q), then for each qα ∈ uα the CQ {nv |
q ∪ (qα)m(q)} is redundant in u′.

Proof Property (R1) holds straightforwardly, hence we only
show Property (R2).

First, we show that for all qα ∈ uα the CQ {nv |
q ∪ (qα)m(q)} is subsumed by the CQ {nv′ | q ′ ∪ (qα)m(q ′)}
where nv′ is the set of variables constructed for q ′ in line 7.
More precisely, since q ′ ⊆ q and m(q ′) = m(q) the for
all qα ∈ uα we have q ′ ∪ (qα)m(q ′) ⊆ q ∪ (qα)m(q).
Moreover, for the same reasons nv is equal to nv′; hence
{nv′ | q ′ ∪ (qα)m(q ′)} subsumes {nv | q ∪ (qα)m(q)} for each
qα ∈ uα .

Now, since canBeJoined(q ′, m(q ′), jv) = true, upon
termination of Algorithm 5 we have that for each qα ∈ uα

either the CQ {nv′ | q ′ ∪ (qα)m(q ′)} has been added to u′
(line 8) or another query that subsumes it. In either case
{nv | q ∪ (qα)m(q)} is redundant in u′. ��

Proposition 5 can be used to avoid adding redundant
queries to the result u′ when Algorithm 4 calls Algorithm 5 in
the last iteration. However, to check for Properties (R1) and
(R2) we need to know the subsumption relations between
the CQs in G. To identify these relations, before calling
Algorithm 5, Algorithm 4 executes the standard subsump-
tion checking algorithm over G and stores all such relations.
Note that, no queries are removed at this point as G needs to
be reformulation-closed for Algorithm 5 to produce a UCQ
rewriting. Furthermore, note that the size of G at this point of
iteration is expected to be significantly smaller than that of
the final UCQ, hence the subsumption algorithm is expected
to behave well in practice. Then, Algorithm 5 uses Properties
(R1) and (R2) as follows:

– In line 14, it does not add the query {nv | q ′}μ′ to u′ if q ′
is subsumed by some q ′′ in G and {nv | q ′′} has already
been added to u′.

– Let qh be a query selected in line 4. If qh is subsumed
by some q ′ in G and either {nv′ | q ′} has already
been added to u′, or q ′ ⊆ qh , m(q ′) = m(qh), and
canBeJoined(q ′, m(q ′), jv) = true, then the algorithm
‘skips’ qh—that is, it adds each q ′′ such that 〈qh, q ′′〉 ∈ G
to Q and it continues with the next iteration.

Note that, although the conditions of Property (R2) seem
rather strict, it is actually very often the case in practice that
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a query q ′ subsumes a query q under the identity substitution
and that m(q ′) = m(q) = ∅. Moreover, regarding Prop-
erty (R1), note that in the vast majority of cases the set of
variables nv constructed for each CQ in line 7 is the same
for all queries, while in line 10 for σ = {z �→ x} we usu-
ally have z �∈ var(q ′); hence, in line 14 we will have that
{nv | q ′}μ′ = {nv | q ′}. Consequently, both conditions of
Proposition 2 can be very effective in practice as also sup-
ported by our experimental evaluation.

Example 5 Assume that for some CQ and TBox, Algorithm 4
has at some point computed the graph G = 〈u,H, m〉, where
u contains q1 = {x | A(x), R(x, y)} and q2 = {x | A(x)}
and also m(q1) = m(q2) = ∅. Clearly, q1 is subsumed by q2,
however, the algorithm cannot remove this query from G at
this point. In the final step, assume that Algorithm 5 is called
for G and uα = {qα}, where qα = {x | B(x)}. When the algo-
rithm processes q1 and qα it is easy to see that the conditions
of Property (R2) are satisfied. More precisely, q1 is subsumed
by q2, q2 ⊆ q1 and m(q1) = m(q2). Hence, Algorithm 5 can
avoid creating query q = {x | A(x), R(x, y), B(x)} from
q1 and qα . Indeed the algorithm will at some point pick q2

and qα and it will produce the query q ′ = {x | A(x), B(x)}
which subsumes q; hence, q is indeed going to be redundant
if added to the result u′.

4.2.2 Tracking Non-Redundant Queries

It is quite often the case that extending a query that is
non-redundant in step i produces a query that is also non-
redundant in step i+1. Since usually the largest number of
CQs in the final UCQ are non-redundant, it would be bene-
ficial for the algorithm if these could be identified during the
course of Algorithm 5. Such queries can then be excluded
from the final reduction elimination check (line 12 of Algo-
rithm 4), hence reducing significantly the size of the for-loops
that this method needs to execute.

The following proposition provides means to identify
non-redundant queries during the execution of Algorithm 5
assuming we have identified the subsumption relations in the
input rewriting graph.

Proposition 3 Let G = 〈u,H, m〉 be a rewriting graph, let
uα be a UCQ, let jv, av be sets of variables, and let u′ be the
output of Algorithm 5 when applied to G, uα, jv, and av. Let
a CQ q ∈ u with canBeJoined(q, m(q), jv) = true, let nv

be the set of variables constructed for q in line 7, and assume
that q is non-redundant in u; then the following properties
hold:

(N1) {nv | q} is also non-redundant in u′.
(N2) Let κ = m(q) and consider a CQ qα ∈ uα . If none

of the predicates of the body atoms of qα appear in
any CQ q ′ ∈ u different from q and for each q ′

α ∈ uα

we have mergeCQs((q ′
α)κ , q) = ∅, then the query

{nv | q ∪ (qα)κ} is also non-redundant in u′.

Proof (Property (N1)) Let q ′ be an arbitrary CQ in u dif-
ferent from q. Upon termination, either a CQ of the form
{nv′ | q ′}μ′ for someμ′ or a CQ of the form {nv′ | q ′ ∪ (qα)κ }
for some qα ∈ uα is added to u′ by Algorithm 5. Assume
that {nv′ | q ′}μ′ subsumes {nv | q}. Then a θ exists such that
q ′
μ′◦θ

⊆ q and so, q ′
θ ′ ⊆ q for θ ′ = μ′ ◦ θ , contrary to our

assumption; similarly if we assume that {nv′ | q ′ ∪ (qα)κ }
subsumes q. Hence, we can conclude that none of the afore-
mentioned queries can subsume {nv | q}. Since q ′ was an
arbitrary CQ it follows that no query in u′ subsumes {nv | q}
and hence this is non-redundant in u′.

(Property (N2)) Since q is non-redundant in u then for
all q ′ ∈ u different from q and for all substitutions θ ,
we have [{Q(avar(q ′))} ∪ q ′]θ �⊆ [{Q(avar(q))} ∪ q].
Let q ′ be one such arbitrary CQ and let θ be an arbi-
trary substitution. If Q(avar(q ′))θ �= Q(avar(q)), then
the property trivially holds as qα is irrelevant. Hence,
assume that Q(avar(q ′))θ = Q(avar(q)). This implies
that there must be some atom At in the body of q ′ such
that Atθ ∈ q ′

θ and Atθ �∈ q. Consider now an arbi-
trary query qα ∈ uα such that none of the predicates
of its body atoms appear in any body atom of q ′. This
implies that Atθ �∈ qα and Atθ �∈ (qα)κ for any sub-
stitution κ and hence also Atθ �∈ q ∪ (qα)m(q). Conse-
quently, neither {nv′ | q ′}μ′ for any substitution μ′ nor
{nv′ | q ′ ∪ (q ′

α)m(q ′)} for any q ′
α ∈ uα subsume {nv |

q ∪ (qα)m(q)}. Furthermore, for each query q ′
α ∈ uα we have

mergeCQs(q ′
α, q) = ∅ and again because no predicate

name of q ′
α appears in any other CQ, no query of the form

{nv | q}μ′ for μ′ a substitution is ever added to u′ by Algo-
rithm 5. Summarising, {nv | q ∪ (qα)m(q)} is non-redundant
in u′. ��

Let G = 〈u,H, m〉 be the graph and uα the UCQ with
which Algorithm 5 is called. Then, in order to use Properties
(N1) and (N2) the algorithm is modified as follows:

– At the beginning it initialises an empty set NR of non-
redundant queries.

– In line 14, if {nv′ | q ′}μ′ = {nv | q ′} and q ′ is non-
redundant in u, then it adds {nv | q ′}μ′ to N R.

– In line 8, it adds {nv | qh ∪ (qα)m(q)} to N R if qh is
non-redundant in u, none of the predicates in qα appear
in any query in u and if for each q ′

α ∈ uα we have
mergeCQs(q ′

α, q) = ∅.
– Finally, it returns both the UCQ u′ and the set NR.

Subsequently, the returned set NR is used by method
removeRedundant (line 12 of Algorithm 4) to exclude all
these queries from redundancy checking.

Again, note that checking whether for each qα no predi-
cate appears in a body atom of a query in u requires iterating
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for each qα ∈ uα through all queries in u. However, this can
be performed only once at the beginning of Algorithm 5 and
moreover, as mentioned before, at this point of the algorithm
the set u is expected to be moderate in size. Furthermore, as
we will show in the evaluation section, in several cases this
technique helps us to significantly decrease the cost of check-
ing redundancy of the set u′ and in many cases even avoid
it completely if u′ = NR. This significantly outperforms its
implementation overhead.

Example 6 Consider again G, u, and uα from Example 5.
If u contains no other queries, then it is easy to see that
for q2 ∈ u and qα ∈ uα the conditions of Property (N2)

are satisfied. More precisely, q2 is non-redundant in u, none
of the predicates of qα appear in any other CQ in u and
mergeCQs(qα, q2) = ∅. Hence, the CQ produced by q2

and qα—that is, q ′ from Example 5, is non-redundant in the
result. However, assume that besides q1 and q2 the UCQ
u also contained the CQ q3 = {x | S(x, z)} and uα also
contained the CQ q ′

α = {x | S(x, z)}. Now, Property (N2) is
not satisfied for q2 and q ′

α , since the predicate of q ′
α appears in

q3. Hence, we cannot guarantee that q2 and q ′
α will produce

a non-redundant query. Actually, the query that they produce
(i.e., {x | A(x), S(x, z)}) is going to be subsumed by the
query produced from q3 and q ′

α (i.e., {x | S(x, z)}). However,
the query q ′ produced by q2 and qα is still non-redundant.

4.2.3 Tracking Non-Subsumers

Finally, the following proposition presents a property by
which we can identify that a query generated during the
execution of Algorithm 5 will not subsume any other CQ
generated by the same algorithm.

Proposition 4 Let G = 〈u,H, m〉 be a rewriting graph, let
uα be a UCQ, let jv, av be sets of variables, and let u′ be
the output of Algorithm 5 when applied to G, uα, jv, and av.
Let a CQ q ∈ u with canBeJoined(q, m(q), jv) = true,
let nv be the set of variables constructed for q in line 7,
and assume that q does not subsume any CQ in u; then the
following property holds:

(S) Let a CQ qα ∈ uα . If none of the predicates of the body
atoms of qα appear in any CQ in u (including q), then
the query {nv | q ∪ (qα)m(q)} does not subsume any CQ
in u′.

Proof Since q does not subsume any CQ in u, we have
qθ �⊆ q ′ for all q ′ ∈ u different from q and substitu-
tions θ . Hence, for each θ there exists an atom At in the
body of q such that Atθ ∈ qθ and Atθ �∈ q ′. To show that
{nv | q ∪ (qα)m(q)}, called qn in the following, is not a sub-
sumer of any CQ in u′ consider an arbitrary CQ q ′ ∈ u.
Upon termination, Algorithm 5 can add to u′ either the CQ

{nv′ | q ′}μ′ for some μ′ or the CQ {nv′ | q ′ ∪ (q ′
α)κ} for

some (possibly different) q ′
α ∈ uα . We will show that qn

does not subsume any such CQ.
By assumption none of the predicates of the atoms in qα

appear in q ′. Hence, there clearly exists some At ′ ∈ qn (actu-
ally some that appears in qα) such that for any θ we have
At ′θ �∈ {nv′ | q ′

μ′ }; hence, qn does not subsume {nv′ | q ′}μ′ .
Moreover, by these arguments it also follows that qn does
not subsume {nv′ | q ′ ∪ (q ′

α)κ} for any κ and any q ′
α ∈ uα

different from qα .
Finally, consider the CQ {nv′ | q ′ ∪ (qα)κ }. Recall that

for every θ there exists Atθ ∈ qθ such that Atθ �∈ q ′. Hence,
again by assumption since none of the atoms in qα appear in
q we have Atθ �∈ qα and hence also Atθ �∈ {nv′ | q ′ ∪ (qα)κ}.

Since q ′ was an arbitrary query, it follows that qn cannot
subsume any CQ produced by Algorithm 5. ��

Similarly as before, Algorithm 5 uses additional sets to
store such queries which are then excluded from the for-loops
of algorithm removeRedundant.

Example 7 Consider again Examples 5 and 6, and the UCQ
u = {q1, q2, q3}. Then, it is easy to see that for q1 ∈ u and
qα ∈ uα the conditions of Property (S) are satisfied. More
precisely, q1 does not subsume any CQ in u and none of the
predicates of the body of atoms of qα appear in any CQ in
u. Hence, the CQ produced by q1 and qα—that is q ′ = {x |
A(x), R(x, y), B(x))} is not going to subsume any CQ in the
result. However, assume that uα also contained the CQ q ′

α =
{x | R(x, z)}. Now, Property (S) is not satisfied for q1 and
q ′
α , since the predicate of q ′

α appears in q1. Hence, we cannot
guarantee that q1 and q ′

α will produce a query that is not going
to subsume any other CQ in the result. Actually the query that
they produce (i.e., {x | A(x), R(x, y), R(x, z))}) subsumes
the query produced by q2 and q ′

α (i.e., {x | A(x), R(x, z)}).

5 Implementation and Evaluation

We have implemented Algorithms 1–5 in a prototype tool
called IQAROS.2 We have also implemented an extended
PerfectRef algorithm, called PerfectRef+, that uses a
restricted reduction step based on Lemma 1.

We have conducted three experimental evaluations. The
first one compares PerfectRef with PerfectRef+ to assess
how much the restricted reduction step improves the perfor-
mance of the original PerfectRef algorithm. In the second
one we compared several versions of the IQAROS system
using each time a different set of the optimisations presented
in Section 4. In addition, we compared against PerfectRef+
to assess how much the incremental step-by-step algorithm

2 http://code.google.com/p/iqaros/
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improves the original strategy. Finally, in the third experiment
we compared IQAROS against several state-of-the-art query
rewriting systems. More precisely, we were able to compare
with Rapid [9], Nyaya [11] and Presto [32], while we did not
compare against Requiem [27] because Rapid significantly
outperforms it [9].

For the evaluation we used the framework proposed in
[27]. It consists of nine ontologies, namely V that captures
information about European history, P1 and P5 that are two
hand-crafted artificial ontologies, S that models informa-
tion about European Union financial institutions, U that is a
DL-LiteR version of the well-known LUBM3 ontology and A
that is an ontology capturing information about abilities and
disabilities. Moreover, we also used the ontologies P5X, UX
and AX that consist of normalised versions4 of the ontologies
P5, U and A. For each ontology, a set of five hand-crafted
queries is proposed. All experiments were conducted on a
MacBook Pro with a 2.66GHz processor and 4GB of RAM,
with a time-out of 600 s.

5.1 Comparing PerfectRef and PerfectRef+

Table 4 presents the results of running PerfectRef
(denoted as PR in the table) and PerfectRef+ (denoted as
PR+ in the table) over the test queries and ontologies. The
table presents the size of the computed UCQs before applying
the final redundancy elimination algorithm, then the corre-
sponding computation times (in milliseconds), and finally the
time to execute the redundancy elimination algorithm in the
computed UCQ. Furthermore, the column marked as 
N R
presents the size of the non-redundant UCQ that systems
should have computed. Note that this is the size of the UCQ
computed by both system after the final redundancy elimi-
nation. Also, note that we do not present results for ontology
P1 as it is trivial for the tested systems.

From the table we can observe that in many cases, most
notably in ontologies P5, P5X, and S the size of the UCQ
computed by PerfectRef+ is much smaller than the one
computed by PerfectRef. Especially, in P5 and P5X this
is because the test queries consist of a role chain of the form
{x | R(x1, x2), . . . , R(xi−1, xi )}, hence the (standard) reduc-
tion of PerfectRef produces many redundant queries like
those presented before Lemma 1. However, in all other cases
the differences between the systems are marginal.

Regarding performance, we note that PerfectRef+
demonstrates better performance than PerfectRef in all tests
where the former managed to compute fewer redundant
queries than the latter. However, in all other cases both sys-

3 http://swat.cse.lehigh.edu/projects/lubm/
4 In the normalised ontologies each axiom of the form A � ∃R.B in
the original ontology is rewritten into the axioms A � ∃Rn, Rn � R,

and ∃R−
n � B for Rn a new role.

tems behave the same and sometimes PerfectRef+ is actu-
ally slower than PerfectRef. This is due to the overhead of
implementing the checks for the restricted reduction step.
No significant differences were observed in the execution
of the final redundancy elimination algorithm, not even in
the ontologies where the UCQ computed by PerfectRef+ is
notably smaller that that computed by PerfectRef.

5.2 Comparing IQAROS and PerfectRef+

Table 4 also shows the results of running three different ver-
sions of IQAROS; the first one (called Inc1) implements
Algorithms 4 and 2 without any optimisations, the second
one (called Inc2) uses Algorithm 5 instead of Algorithm 2
when it adds the last atom of the query, while the third one
(called Inc3) refines Inc2 by also implementing the various
optimisations detailed in the previous section for improving
the efficiency of the redundancy elimination algorithm.

First, we can observe that the sizes of the UCQs com-
puted by Inc1 and PerfectRef+ are almost identical (with
some minor differences in some queries and ontologies).
This is because both systems are based on the restricted
reduction step and because in its core Inc1 is based on
the same reformulation algorithm for explicating knowl-
edge from T . However, despite their similarities in the
computed UCQs we can observe that Inc1 is significantly
more efficient than PerfectRef+. For example, in ontolo-
gies P5, P5X, S, U, and UX, Inc1 is several times faster
than PerfectRef+, while in query 5 in ontologies A and
AX, it manages to be up to two orders of a magnitude
faster than PerfectRef+. Since in their core both systems
are based on the same approach for materialising knowledge
from T and since the restricted reduction step implemented
in PerfectRef+ did not improve much the performance
of the original PerfectRef system, we concluded that this
improvement is mainly due to the incremental rewriting strat-
egy. More precisely, the incremental approach provides a
much more guided and localised strategy (it processes a
single atom at a time), compared to the blind brute-force
application of the inference rules of PerfectRef(+). Finally,
since both systems compute UCQs of comparable size the
time for eliminating the redundant queries using algorithm
removeRedundant are quite similar. Note, however, that
this algorithm heavily depends on the form of input (e.g., the
order that it processes the queries) and hence small variations
may occur.

Comparing the different versions of IQAROS we can
observe that the size of the computed UCQs decreases as
we move from Inc1 to Inc2 and finally to Inc3. For exam-
ple, in several cases Inc2 computes even up to 30 times
smaller UCQs than Inc1 (see ontologies P5X, S, U, and
UX). This decrease can be justified by the fact that Inc2

uses (the simpler) Algorithm 5 instead of Algorithm 2, when
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Table 4 Comparison between PerfectRef, PerfectRef+ and various versions of IQAROS

O Q Size of Computed UCQ 
N R UCQ Computation Time Redundancy Elimination Time

PR PR+ Inc1 Inc2 Inc3 PR PR+ Inc1 Inc2 Inc3 PR PR+ Inc1 Inc2 Inc3

V 1 15 15 15 15 15 15 5 4 7 6 6 1 1 1 1 1

2 11 10 10 10 10 10 8 5 8 6 8 3 3 2 2 1

3 72 72 72 72 72 72 56 46 24 12 14 85 93 41 37 0

4 185 185 185 185 185 185 101 81 41 22 31 53 38 45 34 0

5 150 150 30 30 30 30 111 126 11 10 17 125 115 3 13

P5 1 6 6 6 6 6 6 1 1 1 1 1 1 0 0 1 0

2 11 10 10 10 10 10 15 11 7 3 5 2 2 1 1 1

3 22 13 13 13 13 13 256 152 76 19 19 3 3 2 2 1

4 45 15 15 15 15 15 1,828 875 288 173 123 1 2 3 5 2

5 90 16 16 16 16 16 32,255 5,706 838 306 362 1 0 3 4 2

P5X 1 14 14 14 14 14 14 0 0 0 0 0 0 0 0 1 1

2 86 81 81 25 25 25 2 3 2 3 1 2 2 4 1 1

3 530 413 413 133 103 58 36 24 24 6 17 19 16 71 13 14

4 3,476 2,070 2,070 670 369 179 656 325 187 46 123 73 76 126 237 382

5 23,744 10,352 10,352 3,352 1,885 718 41,454 6,762 828 214 418 1,327 1,340 1,989 864 879

S 1 6 6 6 6 6 6 0 0 0 0 1 0 0 0 0 0

2 202 202 204 12 2 2 12 15 12 4 5 1 1 0 0 0

3 1,005 995 864 96 4 4 190 180 60 8 16 4 5 5 1 0

4 1,548 1,548 1,428 84 4 4 254 247 104 9 14 5 5 12 1 0

5 8,693 7,855 6,048 672 8 8 8,216 5,888 1,018 227 160 90 85 128 9 0

U 1 2 2 2 2 2 2 0 1 1 1 2 0 0 0 0 0

2 189 189 190 5 1 1 24 17 12 3 2 1 1 0 0 0

3 296 296 300 20 4 4 112 112 77 5 8 2 1 2 0 0

4 1,763 1,746 1,688 45 2 2 826 808 253 8 22 7 5 5 0 0

5 3,418 3,410 3,375 90 10 10 2,680 2,624 527 17 41 17 16 55 1 0

UX 1 5 5 5 5 5 5 0 1 1 1 6 0 0 0 1 0

2 286 286 287 7 1 1 14 7 10 4 7 0 1 1 0 0

3 1,248 1,248 1,260 84 12 12 118 121 80 10 34 10 10 24 11 0

4 5,385 5,325 5,137 129 5 5 829 818 201 11 24 20 19 42 4 0

5 9,220 9,200 8,955 225 25 25 2,625 2,731 427 31 61 95 97 166 36 0

A 1 402 402 357 77 77 27 24 28 17 5 16 1 3 1 6 1

2 103 103 103 54 54 50 124 124 39 12 10 0 1 0 31 0

3 104 104 104 104 104 104 656 677 173 103 65 5 6 4 225 0

4 492 492 471 320 320 224 1,237 1,264 170 58 57 17 16 27 72 1

5 624 624 624 624 624 624 355,571 324,006 3,412 258 812 166 145 255 233 5

AX 1 783 783 794 431 431 41 30 27 18 4 7 4 5 6 4 3

2 1,812 1,812 1,812 1,653 1,545 1,431 141 141 57 26 34 620 546 695 746 6

3 4,763 4,763 4,763 4,466 4,466 4,466 707 701 186 48 144 7,985 7,141 9,832 7,958 47

4 7,251 7,251 7,229 6,639 4,479 3,159 1,282 1,384 192 37 88 3,527 3,322 4,699 3,542 49

5 78,885 78,885 78,885 74,025 32,944 32,921 319,681 337,649 4,361 665 1,559 – – – – 840

it adds the last atom of the query. Moreover, we can see
that the use of a lightweight algorithm for the last itera-
tion of Algorithm 4 is also reflected in the computation
times of Inc2 compared to Inc1. More precisely, in nearly
all ontologies Inc2 is several times faster than Inc1. The

effects of computing much smaller UCQs for ontologies
P5X and AX are also reflected in the final redundancy elim-
ination algorithm. However, note that neither system can
compute a non-redundant UCQ for query 5 in ontology
AX.
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Finally, Inc3 produces the smallest UCQ rewriting com-
pared to all previous systems. This is due to the additional
implemented techniques for identifying redundant queries
that have been described in Proposition 2. We can also
observe that due to these optimisations, in most cases the
UCQ computed by Inc3 is actually also non-redundant or
it contains very few redundant queries. Regarding com-
putation time, Inc3 is generally as fast as Inc2, however,
we can observe that in several cases it is slightly slower.
This is due to the overhead of implementing the various
optimisations. However, when considering the time for the
redundancy elimination algorithm the benefits of tracking
(non-)redundant queries become most apparent. Inc3 is faster
than all other systems and much faster in all queries of ontol-
ogy AX. Especially, Inc3 is the only system that can compute
a non-redundant UCQ for query 5 in ontologies A and AX.
More precisely, from the 32,960 queries that the algorithm
has computed after processing the last atom of query 5 it
has identified 31,593 non-redundant queries. These queries
are then skipped from the redundancy elimination step and
hence the algorithm finishes in less than 2.4 s.

5.3 Comparing IQAROS, Nyaya, Presto and Rapid

Table 5 presents a comparison between Inc3 and the systems
Rapid, Nyaya and Presto (again we do not present the results
for P1). Moreover, in the columns marked as ‘UCQ Compu-
tation Time’ we also present two additional times. The first
one, marked as Incn

1, is the time required by Inc1 to process
the last atom α of the input query q using Algorithm 4, while
Incn

3 is the same time but for the configuration Inc3 using
Algorithm 5. Hence, these times reflect only the time that is
required to extend the rewriting graph G− computed so far
for q−, T , where q− = q \ {α}, into a rewriting for q, T —
that is, if we were given G− for q−, T these times would
reflect only the time to extend the input rewriting into a new
UCQ rewriting for q− extended with α. Note here that the
output of Incn

1 is a rewriting graph which can then be further
extended, while the output of Incn

3 is a UCQ.
As before, after the final redundancy elimination all sys-

tems return UCQ rewritings of the same size (those reported
in Table 4 column 
N R), except for Presto in queries 2–5
in ontology P5 and queries 2 and 4 in ontology AX. After
manually inspecting the ontologies and computed UCQs and
contrasted with the ones computed by all other systems we
concluded that Presto is incomplete in these cases. More
precisely, it fails to compute queries which are not subsumed
by other queries that it computes. Hence, there exist an ABox
for which equation (1) fails; similarly, in ontology AX.

Compared to Nyaya, Inc3 (as well as all other versions of
IQAROS from Table 4) is in general much faster, in some
cases even for several orders of magnitude. Furthermore,
Inc3 also computes much smaller UCQs. Since Nyaya is

also mainly based on the same reformulation algorithm as
PerfectRef for materialising knowledge from T the reasons
for this difference are again similar to the ones mentioned
before.

Compared to Presto, Inc3 computes smaller UCQs with
most distinct cases queries 2–5 in P5X, queries 1 and 2 in A
and finally all the queries in AX. The effects of computing
much smaller UCQs are also reflected in the UCQ computa-
tion time where Inc3 performs in general much faster, even
for several orders of magnitude in some cases (query 1 in V,
queries 4 and 5 in P5X, query 1 in A, and all queries in AX)
with most notable one query 5 in AX where Presto fails to
terminate in the provided timeout. However there exist cases
that Presto is ‘notably faster’5 such as query 5 in UX and
query 5 in A. In addition we can see that the redundancy elim-
ination algorithm of Inc3 is much more efficient than that of
Presto due to the several optimisations techniques that are
used to identify (non-)redundant and non-subsumer queries.

Compared to Rapid, Inc3 computes similarly small UCQs
with some small exceptions (either against or in favour) in
queries 3–5 in ontology P5X, in query 1 in ontologies A and
AX and in queries 2, 4 and 5 in ontology AX. Moreover,
Rapid is notably faster only in queries 4 and 5 in P5 and 5 in
S and A. However, even in these cases the difference between
the systems is rather marginal as it never exceeds 253 ms. In
all the other scenarios Inc3 is faster with most notable cases
queries 4 and 5 in P5X and 2–5 in AX. Moreover, we can
also see that the redundancy elimination algorithm of Inc3 is
much more efficient than that of Rapid with again notable
case query 5 in ontology AX. Once more, this is justified by
the optimisation techniques that are used in Inc3 in order to
identify (non-)redundant and non-subsumer queries.

However, we can see that the most efficient approach is
Incn

3. Hence, indeed computing a UCQ rewriting by extend-
ing a previously computed rewriting graph is the fastest
way to compute a UCQ rewriting for an extended query.
However, as noted before, the output of this algorithm is
not a rewriting graph and hence cannot be used for further
extensions of the query. However, by observing the compu-
tation time of Incn

1 we can see that a rewriting graph can
also be computed relatively efficiently. Hence, we argue that
when a query q is extended with a new atom α Algorithm 5
can be used to efficiently compute a new UCQ rewriting
for q ′ = q ∪ {α}, while at the same time, as a back-
ground process, Algorithm 4 (discarding redundancy elimi-
nation) can be used to compute a new rewriting graph for
q ′, which can then be used in a similar way to compute
a UCQ rewriting and a rewriting graph for extensions of
q ′.

5 We consider a system X to be ‘notably faster’ than a system Y if
tY − tX > 20 ms.
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Table 5 Comparison between Rapid, Nyaya, Presto and IQAROS

O Q Size of Computed UCQ UCQ Computation Time Redundancy Elimination Time

Rapid Nyaya Presto Inc3 Rapid Nyaya Presto Inc3 Incn
1 Incn

3 Rapid Nyaya Presto Inc3

V 1 15 15 15 15 13 84 793 6 6 6 0 0 1 1

2 10 10 10 10 13 121 4 8 3 4 0 0 1 1

3 72 72 72 72 78 360 42 14 15 9 0 0 21 0

4 185 185 185 185 102 442 52 31 30 25 0 0 36 0

5 30 52 30 30 98 476 12 17 5 8 0 24 2 13

P5 1 6 6 6 6 7 14 5 1 1 1 0 0 0 0

2 10 10 6 10 14 128 4 5 6 3 1 0 0 1

3 13 13 6 13 22 726 16 19 62 6 1 0 1 1

4 15 15 6 15 33 1,889 2 123 212 19 3 0 7 2

5 16 16 6 16 75 16,062 3 362 660 30 2 0 4 2

P5X 1 14 14 14 14 10 12 20 0 0 0 0 0 1 1

2 25 66 81 25 23 130 7 1 1 1 3 40 13 1

3 127 374 413 103 92 540 76 17 15 13 43 875 1,095 14

4 636 2,475 2,070 369 343 1,672 1,371 123 120 106 838 2,170 1,891 382

5 3,180 17,584 10,352 1,885 2,061 15,095 31,797 418 581 276 3,191 127,485 73,762 879

S 1 6 6 6 6 6 15 57 1 0 1 0 0 0 0

2 2 3 2 2 9 11 9 5 9 2 0 1 0 0

3 4 7 4 4 14 46 23 16 45 4 0 2 0 0

4 4 5 4 4 14 34 19 14 86 6 0 0 0 0

5 8 13 8 8 36 159 23 160 808 51 1 4 0 0

U 1 2 2 2 2 9 25 63 2 0 1 0 0 0 0

2 1 1 1 1 19 7 15 2 9 1 0 0 0 0

3 4 4 4 4 13 172 14 8 68 4 1 0 0 0

4 2 2 2 2 17 15 4 22 238 11 0 0 0 0

5 10 11 10 10 18 107 5 41 484 18 1 1 0 0

UX 1 5 5 5 5 11 24 74 6 0 3 0 0 0 0

2 1 1 1 1 13 6 13 7 6 3 0 0 0 0

3 12 12 12 12 20 166 7 34 64 24 1 0 0 0

4 5 5 5 5 17 15 23 24 160 13 0 0 0 0

5 25 26 25 25 26 115 6 61 358 36 4 5 0 0

A 1 27 248 402 77 18 1,231 778 16 15 14 0 73 41 1

2 54 93 103 54 43 4,928 12 10 37 6 2 39 2 0

3 104 105 104 104 97 35,451 15 65 145 31 0 40 5 0

4 333 455 492 320 170 17,121 47 57 153 49 38 390 65 1

5 624 – 624 624 383 – 160 812 3,243 624 1 – 197 5

AX 1 41 556 782 431 26 1,282 2,245 7 14 6 0 367 128 3

2 1,546 1,738 1,781 1,545 649 4,493 615 34 41 32 542 1,095 1,034 6

3 4,466 4,742 4,752 4,466 1,694 34,032 8,000 144 129 81 531 17,320 17,260 47

4 4,497 6,565 7,100 4,479 1,247 16,569 8,236 88 152 82 1,538 19,891 22,543 49

5 32,956 – – 32,944 3,810 – – 1,559 3,628 1,430 56,196 – – 840

Summarising, Fig. 2 presents (using a logarithmic scale)
the average computation time (both rewriting and final redun-
dancy elimination) for each ontology, query and system pre-
sented in Table 5. The results depicted in the figure verify our
previous analysis—that is, in the three non-trivial ontologies

(i.e., V, P5X, and AX5) we can observe that Incn
3 is the most

efficient system followed by Inc3, Rapid and then Presto.
However, in most of the other ontologies all systems behave
quite close to each other and no significant differences can
be noted.
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Fig. 2 Average rewriting time for all queries for each ontology

Finally, we have conducted a brief analysis of the mem-
ory required by each system in order to compute the final
UCQ. The maximum amount of memory required by Rapid
is 140MB, followed by Nyaya with 150MB, then Presto with
180MB, and finally Inc3 with 200MB. These maximum num-
bers were observed in ontology AX query 5.

6 Related Work

To the best of our knowledge there is no previous work in
computing a rewriting of an extended query q based on a
previously computed rewriting for q in the presence of log-
ical constraints in either the ontology or database literature.
The only relevant problem studied in the database literature is
view adaptation [14,22], where the problem is to compute the
materialisation of a re-defined materialised view. However,
in both works the focus is on updating the data (the materi-
alisation of the view) and additionally there are no database
constraints (ontological axioms) involved.

However, much work has been spent the last couple of
years towards studying the problem of query rewriting over
lightweight ontology languages both from a complexity point
of view [7,13,18] as well as from the point of view of devel-
oping practical query rewriting systems [8,9,11,24,27,32].
Next, we briefly overview the works that are most relevant
to ours; a more extensive and detailed literature survey on
query rewriting can also be found at [12].

The first algorithm for query rewriting over DL-Lite
ontologies was introduced by Calvanese et al. [8] and was
later implemented in the QuOnto system [1]. The algorithm
rewrites an input query and TBox into a union of conjunctive
queries using the reformulation and reduction steps. Then,
Pérez-Urbina et al. [28] presented a resolution-based query
rewriting algorithm for DL-Lite. The algorithm was imple-
mented in the system Requiem [27] and the experimental
evaluation showed that it outperforms QuOnto. Requiem
was the first system to use query subsumption in order to
reduce the number of computed redundant queries. Sub-
sequently, Rosati and Almatelli [32] presented Presto that
computes a rewriting in the form of a non-recursive Datalog
program instead of a UCQ. Hence, the computed rewriting

is much smaller compared to the output of Requiem and
QuOnto. Also Presto was the first system to provide a tech-
nique that avoids the exponential blow-up of the reduction
step of PerfectRef. Recently, Chortaras et al. [9] presented
a highly optimised resolution-based algorithm for DL-Lite
that was implemented in the system Rapid. It was shown
that Rapid outperforms both QuOnto and Requiem. Finally,
a new system called Quest [30] uses similar rewriting tech-
niques to PerfectRef but with many additional optimisations
that use the structure of the input data to reduce the size of
the computed rewriting and speed up the process.

Moreover, query rewriting has also attracted the attention
in the field of query answering over database constraints.
Calì et al. [3,5] have studied and presented several light-
weight classes of tuple-generating dependencies as well as
of the Entity-Relationship model [4,6]. Moreover, in sub-
sequent works Gottlob et al. [11] also presented a practical
query rewriting algorithm for Linear-Datalog± which is the
one implemented in the Nyaya system. This algorithm is
also based on the original DL-Lite algorithm but improves
it with many optimisations, like atom factorization which
is intended to reduce the number of redundant queries pro-
duced in the reduction step. Subsequently, a new algorithm
that computes a non-recursive Datalog program for Linear-
Datalog± was also presented [24].

Finally, a slightly different approach than the previous
ones, called combined rewriting, has been proposed by Lutz
et al. [21] for the DL language EL and by Kontchakov et
al. [19] for the DL language DL-LiteN

horn . This approach
computes small rewritings, however, it also requires pre-
processing of the database.

7 Conclusions

In the current paper, we studied the problem of computing a
UCQ rewriting for queries that have been extended with new
atoms, by extending a previously computed UCQ rewriting
for them and avoiding the computation of a UCQ rewrit-
ing from scratch. We studied the problem theoretically and
presented detailed algorithms. Our study also gave rise to a
novel query rewriting algorithm that is based on the incre-
mental processing of query atoms. More precisely, given a
fixed input query one can process one atom at a time and
extend a previously computed rewriting until a UCQ for the
input query has been computed. To improve its efficiency
we have proposed several novel optimisations which greatly
improve the computation time and reduce the number of com-
puted redundant queries. Finally, we have implemented all
algorithms and have conducted a detailed experimental eval-
uation. Our results show that the algorithm is highly efficient
and generally outperforms all state-of-the-art systems that
are currently available.
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Apart from providing a novel efficient query rewriting
system, our results have several important theoretical conse-
quences and give many opportunities for future work. First,
they show that rewriting over DL-Lite ontologies can largely
be performed in parallel giving a complete efficient algo-
rithm which, to the best of our knowledge, was previously
unknown. This direction has not been explored in this paper
and can be part of future work. Other directions of future work
can be the investigation and design of such incremental algo-
rithms for other lightweight languages, like Linear-Datalog±,
or for more expressive languages, like ELHI. Furthermore,
in the current paper, we have not studied other types of
refinements for input queries, like the removal of atoms and
the addition/removal of distinguished variables. Last but not
least, another interesting problem that largely remains open
in the area of query rewriting is how to efficiently evaluate the
computed UCQ rewriting over a database. We feel that the
incremental algorithm can provide some new opportunities
in addressing this problem.

Acknowledgments Work by Giorgos Stoilos is supported by a Marie
Curie Career Reintegration Grant within European Union’s Seventh
Framework Programme (FP7/2007-2013) under REA grant agreement
303914.

A Omitted Proofs

Lemma 1 Let q1, q2 be two CQs such that q2 subsumes q1

and let q ′
1 be the result of applying an axiom I to q1. If

q2 does not subsume q ′
1, then either I is applicable to q2

and the result subsumes q ′
1 or for 1 ≤ i ≤ n, atoms of the

form P(u, v), P(zi , v) or P(v, u), P(v, zi ) exist in q2 such
that for 1 ≤ i, j ≤ n, i �= j we have zi �= z j and for
λ = {zi �→ u | 1 ≤ i ≤ n}, I is applicable to q2λ and the
result subsumes q ′

1.

Proof Since q2 subsumes q1, there exists a substitution θ s.t.
[{Q(avar(q2))} ∪ q2]θ ⊆ {Q(avar(q1))} ∪ q1; however, Q
does not appear in either q1 or q2, hence q2θ ⊆ q1. Moreover,
since q2 does not subsume q ′

1 we have q2θ � q ′
1. Hence, since

q ′
1 is the result of applying I to q1 we have that I is applied

to an atom α ∈ q1 that is also in q2θ replacing it with a
new atom β that is not in q2θ . Next, α ∈ q2θ implies that
q2 contains an atom α0 such that α = α0θ , i.e., an atom
with the same predicate name as α, but possibly containing
different variables. By case analysis on the different types
of applications between axioms and query atoms we show
that either I is also applicable to α0 and for q ′

2 the result of
applying I to q2, θ can be extended to a new substitution σ s.t.
q ′

2σ ⊆ q ′
1, or for i ≥ 1 atoms of the form P(u, v), P(zi , v)

or P(v, u), P(v, zi ) exist in q2 such that for λ = {zi �→ u |
i ≥ 1}, I is applicable to q2λ and the result subsumes q ′

1.

Recall first that α ∈ q1, α ∈ q2θ , α0 ∈ q2, and β ∈ q ′
1.

We have the following cases:

1. If α = A(x), then I is of the form C � A, with C a
concept, β is of the form C(x), while α0 is of the form
A(u), with u �→ x ∈ θ . Then, clearly, I is also applicable
to q2 creating a new query q ′

2 that contains C(u). Then,
we have the following cases:

– If I is of the form B � A, then β = B(x). In this case,
B(u) ∈ q ′

2, and for σ = θ we have B(x) ∈ q ′
2σ which

implies that q ′
2σ ⊆ q ′

1.
– If I is of the form ∃P � A, then β = P(x, y) for y a

new variable in q1. In this case, P(u, z) ∈ q ′
2 for z a new

variable in q2. Since z is new in q2, θ can be extended to
σ = θ ∪ {z �→ y}. Then, P(x, y) ∈ q ′

2σ which implies
that q ′

2σ ⊆ q ′
1.

– The case where I is of the form ∃P− � A is symmetric
with the previous one.

2. Ifα = P(x, y) and I is of the form S � P (or equivalently
S− � P−), then β = S(x, y), while α0 is of the form
P(u, v) with {u �→ x, v �→ y} ⊆ θ . Then, clearly I is
also applicable to q2 and its application creates q ′

2 with
S(u, v) ∈ q ′

2, while for σ = θ we have S(x, y) ∈ q ′
2σ

which implies that q ′
2σ ⊆ q ′

1. The cases where I is of the
form S � P− or S− � P can be shown similarly.

3. If α = P(x, y), y is unbound in q1, and I is of the form
C � ∃P with C a concept, then β = C(x) and α0 =
P(u, v) with {u �→ x, v �→ y} ⊆ θ . If v is also unbound
in q2, then I is applicable to q2 and for q ′

2 the result we will
have A(u) ∈ q ′

2; hence, for σ = θ we will have A(x) ∈
q ′

2σ and also q ′
2σ ⊆ q ′

1. If v is not unbound in q2 this
implies that there is another atom α2 in q2 that mentions
v. α2 cannot be a concept atom of the form A(v) because
due to q2θ ⊆ q1 we would have A(v)θ = A(y) ∈ q1 and
hence y would not be unbound in q1 as well (it would
appear in A(y) and P(x, y)) leading to a contradiction;
hence, α2 must be a role atom. However, α2 cannot be of
the form P(v, z), for z an arbitrary variable since then,
again q2θ ⊆ q1 implies that P(v, z)θ = P(y, zθ ) ∈ q1

and thus y would not be unbound in q1. The only possible
case is that α2 is of the form P(z, v) with z �→ x ∈ θ

(again if z is mapped to a different variable than x , this
would imply that q1 has two role atoms both having y as
a second argument and y would not be unbound in q1).
Consequently, we have α0θ = P(u, v)θ = P(z, v)θ =
a2θ , which implies that the two atoms unify. Now, let
the substitution σ1 = {z �→ u}. As mentioned before,
θ maps both z and u to x ; hence, for the defined σ1 we
have q2σ1◦θ = q2θ and hence q2σ1 also subsumes q1.
Consequently, all previous conditions apply to q2σ1 —that
is, either q2σ1 subsumes q ′

1, or I is applicable to q2σ1 and
the result subsumes q ′

1. If neither of these is the case then
again an atom P(z′, v) with z′ �= z must exist in q2σ1 , such

123



20 T. Venetis et al.

that it unifies with P(u, v) and a σ2 can be constructed
such that q2σ1◦σ2 subsumes q1. Since, there is only a finite
number of atoms in a query, at some point some λ =
{zi �→ u | i ≥ 1} exists such that I is applicable to
q2λ and the result subsumes q ′

1. Note also that each σi is
independent from the other and hence they can be applied
in an arbitrary order over q2.

4. If α = P(y, x), y is unbound in q1, and I is of the form
C � ∃P−, then β = C(x) and α0 = P(v, u) with {v �→
y, u �→ x} ⊆ θ . Following a similar reasoning as in the
previous case we can deduce that, either v is also unbound
in q2 so I is applicable to q2 and the result subsumes q ′

1,
or it is not and in this case a list of atoms P(v, zi ) exists
such that for λ = {zi �→ u}, I is applicable to q2λ and the
result subsumes q ′

1. ��
Lemma 2 Let q be a CQ that contains only one body atom
and let κ be a substitution such that some axiom I is applica-
ble to qκ producing q ′. Then I is also applicable to q and
for q ′′ the result we have q ′′

κ = q ′ (modulo renaming of fresh
variables).

Proof If κ does not change any variables of q then the prop-
erty follows trivially. If it does, then we show the property
by performing a case analysis on the form of q.

1. q is of the form {x | A(x)}. Then, κ can be of the form
{x �→ y} and I is of the form C � A, with C a concept.
In this case, q ′ = {y | C(y)}, while I is also applicable
to q and the result is q ′′ = {x | C(x)}. If C is an atomic
concept then clearly q ′′

κ = q ′. If C is of the form ∃R for R
a role, then q ′ = {y | R(y, z1)} and q ′′ = {x | R(x, z2)},
for z1, z2 fresh variables and again (modulo renaming of
fresh variables) q ′′

κ = q ′.
2. q is of the form {x | R(x, y)}. Then we have two cases

depending on I .

(a) If I is of the form C � ∃R, then κ cannot map y to x (and
vice versa), as this would make x (y) bound in qκ . Hence,
κ (possibly) maps x and/or y to different variables. In any
case q ′ = {xκ | C(xκ)}. Clearly, I is applicable to q and
again as in case 1. we can deduce that q ′′

κ = q ′.
(b) If I is of the form P � R and κ is as in the previous case,

then the claim follows by a similar argument. However,
κ can be of the form {y �→ x} (or {x �→ y}). Then,
q ′ = {x | P(x, x)} (or q ′ = {y | P(y, y)}). Clearly, I is
also applicable to q and the result is q ′′ = {x | P(x, y)}
for which q ′′

κ = {x | P(x, x)} (or q ′′
κ = {y | P(y, y)}).

In either case q ′′
κ = q ′.

3. q is of the form {x, y | R(x, y)} and I is of the form
P � R. This case is similar to case 2(b).

Theorem 1 Let q be a CQ, let T be a TBox, let α be an atom
such that var(α)∩ var(q) �= ∅ and let G be a reformulation-
closed rewriting graph for q, T . Let G′ be the graph returned

by Algorithm 1 when applied to G, α and T ; then G′ is a
reformulation-closed rewriting graph for q ∪ {α}, T .

Proof First, note that ex-PerfectRef extends PerfectRef,
hence for a given query q and TBox T it computes a rewrit-
ing graph for q, T . Moreover, since PerfectRef applies
exhaustively reformulation and reduction and does not prune
computed queries, the output of the extended algorithm is
reformulation-closed.

Let G = 〈u,H, m〉 be the input of Algorithm 1 and let
G′ = 〈u′,H′, m′〉 be its output. Moreover, for the follow-
ing of the proof, let jv = var(α) ∩ avar(q), let Gα =
〈uα,Hα, mα〉 be the rewriting graph computed by Algo-
rithm 1 in line 1, and let ui be a UCQ rewriting computed
after i steps of the PerfectRef algorithm when applied to
q ∪ {α}, T —that is, after generating i queries by an applica-
tion of the reformulation or the reduction step.

Correctness of the claim is strongly based of the following
property:

(�): For all i ≥ 0 and for all q j in ui a vertex qh in G
and a vertex qα in Gα exist such that, for κ = m(qh)

and nv = avar(qh) ∪ (avar(q) ∩ var((qα)κ)) we have
canBeJoined(qh, κ, jv) = true, and one of the fol-
lowing conditions hold:

1. {nv | qh ∪ (qα)κ} subsumes q j , or
2. for some σ ∈ mergeCQs((qα)κ , qh) some CQ q ′

exists such that qh �G q ′ and {nv | q ′}μ′ , where
μ′ = buildSubst(σ, m(q ′)) subsumes q j .

Assume for now that Property (�) holds. We will show that
G′ = 〈u′,H′, m′〉 is a reformulation-closed rewriting graph
for q ∪ {α}, T .

First, we show that u′ is a UCQ rewriting for q ∪ {α}, T .
Assume that when applied to q ∪ {α} and T the PerfectRef
algorithm terminates after n steps and that un is the com-
puted UCQ rewriting. But then, by Property (�), we know
that upon termination of Algorithm 1, for each CQ qn ∈ un

either a CQ of the form {nv | qh ∪ (qα)κ} or a CQ of the form
{nv | q ′}μ′ that subsumes qn has been added to u′. More-
over, functions canBeJoined, buildSubst, and the condi-
tion dom(σ ) ⊆ var(q ′) ∪ dom(m(q ′)) of the respective
algorithms ensure that every CQ produced by our algorithm
can also be produced by the PerfectRef algorithm. Conse-
quently, u′ is both sound and complete, thus it is indeed a
UCQ rewriting for q ∪ {α}, T .

Now we show that G′ is reformulation-closed. First, by
definition of the mappings m′(q ′

n) for each CQ added to G′ it
follows that m′ satisfies the conditions in Definition 3. Fur-
thermore, upon termination of the algorithm also the relation
H′ satisfies the property of Definition 3. Moreover, again it
can be easily seen that the algorithm will create and set as a
top element of G′ the CQ q ∪{α} with m′(q ∪{α}) = ∅, while
for all top elements qi in G′ we will also have m(qi ) = ∅ as
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they inherit the mapping of q (we elaborate more on this in
the proof of Property (�) later on). In addition, H′ is closed
under restricted reduction; if for some qh ∈ u, κ = m(qh)

and qα ∈ uα we have some σ ∈ mergeCQs((qα)κ , qh),
then the algorithm first adds q+ = {nv | qh ∪ (qα)κ } to G′
(line 13) and then adds 〈q+, {nv | (qh)}σ 〉 to G′ (line 15).
Then, it copies the sub-graph of H below qh , but H is
also reformulation-closed. The only interesting case is if
for some q ′ such that qh �G q ′ we have z �→ x ∈ σ

and z �→ x ′ ∈ m(q ′). The latter implies that there exists
q ′′ such that 〈q ′′, q ′〉 ∈ H and R(x ′, y), R(z, y) are atoms
in q ′′ while q ′ = q ′′

z �→x ′ , i.e., every occurence of z in q ′′
has been mapped to x ′. In the new graph H′, the algo-
rithm will rather contain the query q ′′

σ , i.e., q ′′
σ will now con-

tain atoms R(x ′, y), R(x, y) instead of R(x, y), R(z, y), i.e.,
occurences of z have been mapped to x . Subsequently, a child
of q ′′

σ needs to be created. For H′ to be reformulation-closed
the child needs to be a query where now x , rather than z, is
mapped to x ′. This is accomplished by function buildSubst.
More precisely, since z �→ x ∈ σ and z �→ x ′ ∈ m(q ′),
the function returns a mapping μ that contains z �→ x and
x �→ x ′ which is applied to q ′ creating the appropriate query.
Consequently, G′ is reformulation-closed for q ∪ {α}, T .

Now, we give the omitted proof of Property (�).
To show this property we use induction over the number

of steps i that algorithm ex-PerfectRef has completed when
applied to q ∪ {α}, T . For a CQ q we will use the notation
mq to denote the substitution m(q).

Base Case (i = 0): On the one hand, when algorithm
ex-PerfectRef is applied to q ∪ {α}, T , at step 0 it ini-
tialises a UCQ u0 to contain the vertex q ∪ {α}. On the
other hand, in line 1 Algorithm 1 computes Gα for qα =
{var(α) ∩ var(q) | α} and T which uses ex-PerfectRef
and hence at least contains qα as a vertex. Moreover, since
G is reformulation-closed for q, T , then q appears as a top
element in G with mq = ∅. Hence, by construction of qα

and jv we have canBeJoined(q, mq , jv) = true and also
{nv | q ∪ (qα)mq } is exactly q ∪ {α}. Consequently, condi-
tion 1 is satisfied and hence also Property (�) is satisfied at
step i = 0.

Induction Step: Assume that Property (�) holds at step i
for each q j ∈ ui . Subsequently, suppose that at step i +1 the
algorithm produces the UCQ ui+1 by applying a reformula-
tion or a reduction step on some query q j in ui producing a
query qi+1. Moreover, by induction hypothesis, vertices qh in
G and qα inGα exist such that Property (�) is satisfied—that is,
for κ = mqh , we have canBeJoined(qh, κ, jv) = true and
either the query {nv | qh ∪ (qα)κ} (called q+ in the follow-
ing) subsumes q j , or for some σ ∈ mergeCQs((qα)κ , qh)

and some q ′ such that qh �G q ′, we have that {nv | q ′}μ′
(called qm in the following) subsumes q j . We now distinguish
between two cases according to whether qi+1 was produced
by a reformulation or a reduction step.

If a reduction step was applied to q j to produce qi+1, then it
is well-known by the properties of reduction that q j subsumes
qi+1. Hence, by the transitivity of the subsumes relation and
the induction hypothesis qi+1 is also subsumed by either q+
or qm . Consequently, Property (�) is still satisfied.

Otherwise, assume that a reformulation step was applied
to q j to produce qi+1. This implies that some axiom I is
applied to some body atom of q j producing qi+1. By induc-
tion hypothesis, either q+ or qm subsume q j . If either of
these queries subsumes qi+1, then Property (�) is satisfied. If
neither query subsumes qi+1, then by Lemma 1, either (i) I is
applicable to them and the result subsumes qi+1 or (ii) for n ≥
1 atoms of the form P(u, v), P(zi , v) or P(v, u), P(v, zi )

exist in q+ or in qm such that for λ = {zi �→ u | 1 ≤ i ≤ n},
q+
λ or qm

λ subsumes q j , I is applicable to q+
λ or qm

λ and the
result subsumes qi+1. We now examine separately the cases
that q+ or qm subsume q j .

1. Assume that q+ subsumes q j and also that we have case
(i) from above—that is, I is applicable to q+ = {nv |
qh ∪ (qα)κ }. Since reformulation applies an axiom to a
single body atom of a query at each time, this implies that
I is either applicable to some body atom of qh and the
application creates a CQ of the form {nv | q ′

h ∪ (qα)κ},
or it is applicable to some body atom of (qα)κ and the
application creates a CQ of the form {nv | qh ∪ q ′

α}.
(Note that reformulation does not change the distin-
guished variables of the query) In the former case, since
I is applicable to qh producing q ′

h , qh is a vertex in
G and G is reformulation-closed, then 〈qh, q ′

h〉 ∈ H
with mq ′

h
= κ and avar(qh) = avar(q ′

h). Moreover,
canBeJoined(q ′

h, mq ′
h
, jv) = true; this is because I is

applicable to {nv | qh ∪ (qα)κ }, hence its application can
only remove variables that do not appear in (qα)κ . Conse-
quently, condition 1 is satisfied and thus also Property (�).
Now we study the case when I is applicable to (qα)κ :
First, note that qα contains exactly one body atom; this
follows straightforwardly by the fact that the query for
which Gα is computed contains exactly one atom and by
the fact that the PerfectRef calculus always produces a
new query that contains at most the same number of atoms
as one from which it is produced. Hence, by Lemma 2,
I is also applicable to qα and for the result q ′′

α we have
(q ′′

α)κ = q ′
α . But since qα ∈ uα and Gα is reformulation-

closed, then q ′′
α ∈ uα . Consequently, again condition 2. is

satisfied thus also Property (�).
Assume now that we have case (ii) from above—that is,
for n ≥ 1 there are atoms of the form P(u, v), P(zi , v)

or of the form P(u, v), P(zi , v) in q+ such that for
λ = {zi �→ u | 1 ≤ i ≤ n}, I is applicable to
q+
λ = {nvλ | (qh)λ ∪ (qα)κ◦λ} and the new CQ pro-

duced by applying I on q+
λ , called q f , subsumes qi+1.

We will show that our algorithm can compute queries
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q+
λ and q f . First note that the existence of atoms of the

above form in q+ implies that several restricted reduction
steps are applicable between body atoms P(zi , v) and the
atom P(u, v) in q ′

j . Moreover, since (qα)κ contains a sin-
gle atom, then these reductions are either applicable over
two atoms from qh or between an atom from qh and the
atom in (qα)κ . In the former case, an application of one of
these reductions would produce the CQ (qh)λi ∪(qα)κ◦λi .
Since graph G is reformulation-closed and by the form of
these reductions, also 〈qh, q ′

h〉 ∈ G, with q ′
h = (qh)λi

and mq ′
h

= κ ◦ λi ; hence, canBeJoined(q ′
h, mq ′

h
, jv) =

true. If none of these reductions is performed between
(qα)κ and qh , then for λ as defined before we will have
qh �G (qh)λ with m(qh)λ = κ ◦ λ and hence also
canBeJoined((qh)λ, m(qh)λ , jv) = true. Then, axiom I
is applicable to (qh)λ and since G is reformulation-closed
we also have 〈(qh)λ, q ′′〉 ∈ H and mq ′′ = mqhλ

. Finally,
{nv′ | q ′′ ∪ (qα)mq′′ } for nv′ = avar(q ′′) ∪ (avar(q) ∩
var((qα)mq′′ )) is q f and it subsumes qi+1, hence Property
(�) is satisfied.
Assume now that for some k ≤ n, (qα)κ contains atom
P(zk, u) and one reduction step involves (qα)κ and atoms
from qh . In this case since (qα)κ contains one atom then
this reduction actually eliminates this atom from q+ and
hence q+

λk
is of the form {avar(q)λk | (qh)λk }. Conse-

quently, applying the rest of reductions the final CQ q+
λ

would be of the form {avar(q)λ | (qh)λ} and q f can
be produced by applying I on this CQ. Now, since G
is reformulation-closed all reductions but λk have been
applied on queries in G starting from qh , hence a CQ
(qh)ν , with ν = λ\λk exists in G such that qh �G (qh)ν .
Moreover, since (qh)ν does not contain the atom that is
in (qα)κ I is applicable to it and hence 〈(qh)ν, q ′′〉 ∈ H.
Then, by definition of function mergeCQs, we have that
mergeCQs((qα)ν, (qh)ν) contains {λk}. Hence, the CQ
q ′′
λk

is actually q f that subsumes qi+1 and Property (�) is
satisfied again.

2. Assume now that qm , i.e., {nv |q ′}μ′ where qh �G q ′, μ′ =
buildSubst(σ, m(q ′)) and σ ∈ mergeCQs((qα)κ , qh)

subsumes q j . Again by Lemma 1 either I is applicable
to qm and the result (call it q f ) subsumes qi+1 or further
restricted reduction steps are applicable to qm producing
a CQ over which I is applicable and the result (call it
again q f ) subsumes qi+1.
Since q ′

m(q ′) = q ′ and since μ′ is constructed from σ

and m(q ′), then {nv | q ′}μ′ is like q ′ but perhaps with
some variable z ∈ var(q ′) renamed due to a mapping
z �→ y ∈ σ . Moreover, since {nv | q ′}μ′ does not mention
z (it has been renamed by μ′), then neither of the previ-
ous steps (application of I or restricted reductions) does
involve z. Now, due to μ′ either q ′ has fewer bound vari-
ables than {nv | q ′}μ′ or μ′ frees a bound variable that is

not free in q ′ after which some axiom might be applicable.
In the former case (q ′ has fewer bound variables), at least
the same sequence of reformulation or restricted reduc-
tion steps as to qm are applicable to q ′. Since these do not
involve variable z, after applying them, a CQ q ′′ such that
{nv | q ′′}μ′′ = q f , where μ′′ = buildSubst(σ, m(q ′′)) is
generated, as μ′′ built from σ will perform the same vari-
able renaming on z. In addition, since G is reformulation-
closed q ′′ is in G. Now consider the latter case, i.e., μ′
frees a bound variable in q ′. This implies that μ′ induces
a mapping {z �→ x} that frees some bound variable
in q ′. Consequently, a restricted reduction with unifier
σ ′ = {z �→ x} is applicable and since G is reformulation-
closed we have that 〈q ′, q ′

σ ′ 〉 ∈ H. Subsequently, the
same sequence of reformulation and restricted reduction
steps as to qm are applicable to q ′

σ ′ . Hence again, we
will have a query q ′′ such that {nv | q ′′}μ′′ = q f , where
μ′′ = buildSubst(σ, m(q ′′)) is produced in G. In any
case Property (�) is satisfied. ��
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