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Abstract In this paper we develop a novel logic formalism,
T RPAD (Transaction Logic with Partially Defined Actions),
designed for reasoning about the effects of complex actions.
T RPAD is based on a subset of Transaction Logic, but extends
it with a new kind of formulas, called premise-formulas,
which express information about states and the execution of
actions. This makes the formalism more suitable for specify-
ing partial knowledge about actions. We develop a sound and
complete proof theory for T RPAD and illustrate the formalism
on a number of instructive examples. In addition, we show
that an expressive subset of T RPAD is reducible to standard
logic programming and define a precise sense in which this
reduction is sound and complete.

Keywords Transaction Logic · Actions · Knowledge
representation · Reasoning

1 Introduction

Designing agents that can reason about actions has been
a long-standing goal of Artificial Intelligence. Of particu-
lar interest are agents whose underlying mechanisms are
founded on solid logical foundations. A number of sophis-
ticated logical theories for such agents have been developed
over the years, including A [19], L1 [6], C [20], ALM [22],
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Situation Calculus [23], and Fluent Calculus [39]. How-
ever, existing approaches have limitations such as the inabil-
ity to define complex actions, post-conditions for actions,
and recursive actions.

One earlier approach that overcomes many of these lim-
itations is Transaction Logic (T R) [7,9,10], which was
intended as a formalism for declarative specification of com-
plex state-changing transactions in logic programming. It
has been successfully applied to planning [9], knowledge
representation [11], active databases [9], event process-
ing [1], workflow management and Semantic Web services
[15,16,35,36], and as a declarative alternative to non-logi-
cal features in Prolog [10]. The idea behind T R is that by
defining a new logical connective for sequencing of actions
and by giving it a model-theoretic semantics over sequences
of states, one gets a purely logical formalism that combines
declarative and procedural knowledge.

As a motivating example, consider the US health insur-
ance regulations. The complexity of these laws makes it dif-
ficult to determine whether a particular action, like informa-
tion disclosure or contacting a patient, is compliant. To help
along with this problem, Lam et al. [26] formalized a frag-
ment of these regulations in Prolog, but could not formal-
ize temporal, state-changing regulations. For instance, the
language of [26] is not designed to express statements such
as, “to be compliant with the law, a DNA test requires a doc-
tor’s prescription after obtaining the patient’s consent.” The
sequencing operator of T R enables these kinds of statements
naturally.

Although T R was created to program state-changing
transactions, [8] demonstrated that T R can also do basic,
yet interesting reasoning about actions. However, that work
failed to develop a complete proof theory and the fragment
of T R studied there was not expressive enough for mod-
eling many problems in the context of action languages
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(cf. Example 4). In this paper we continue that line of inves-
tigation and develop a full-fledged theory, Transaction Logic
with Partially Defined Actions (T RPAD), which can be used
for reasoning about actions over states in addition to pro-
gramming actions. For instance, we can program an action
“do_dna” that performs a DNA test if the patient gives an ok.
In addition, assuming that the hospital was in compliance, if
the test was administered we can infer that the patient must
have given her prior consent. To carry out this kind of rea-
soning, we need to extend T R to express information about
states. For example, we need to be able to say that in state
D2 the patient consented to a DNA test and that executing
the action do_dna in state D1 leads to state D2. In addition,
we need a sound and complete proof system for this new
formalism.

Our main focus in this paper is the development of
the formalism itself and illustration of its capabilities.
T RPAD supports a great deal of sophistication in action
composition, enabling hypothetical, recursive, and non-
deterministic actions. Compared with other actions lan-
guages like [4–6,19,21,40], T RPAD supports more general
ways of describing actions and can be more selective in when
and whether fluents are subject to the laws of inertia.

T RPAD has been used in [33] to model a production rules
language that includes looping constructs and rule-based
ontologies. This approach is significantly more expressive
and simpler than the earlier attempts, such as [12,14,34]. This
approach can be further extended to reasoning about business
rules, business process management (BPM), workflow man-
agement, and related areas. For instance, in the BPM setting,
the execution traces that represent the actual instantiations
of processes can be formalized by means of linearly ordered
premise formulas. At the same time, similarly to the pro-
duction rules language mentioned above, partially defined
actions can capture very expressive event-condition-action
business rules. Reasoning can be used to check if the exe-
cution traces of business processes are compliant with the
business rules being modeled.

We will discuss specific problems that one can model
and reason about in T RPAD, but that cannot be handled by
the aforementioned action languages. A more detailed study
comparing T RPAD with other formalisms appeared in [31].

Our contribution in this paper is fourfold: (i) extension
of T R with premise formulas, which enables us to express
information about states and executions in the logic itself
and makes the formalism more suitable for specifying par-
tial knowledge about actions; (ii) defining a subset of the
formalism, called T RPAD, and demonstrating its expressive
power for high-level descriptions of the behavior of complex
actions; (iii) development of a sound and complete proof
theory for T RPAD; and (iv) a sound and complete reduction
of the deterministic subset of T RPAD to regular logic pro-
gramming. This last contribution provides an easy way to

implement and experiment with the formalism, although a
better implementation would use the proof theory directly,
similarly to the implementation of the serial-Horn subset of
T R in FLORA-2 [24,42].

A preliminary report on this work appeared in [32], which,
however, only sketched most of the definitions and results.
The present paper includes additional discussions and exam-
ples. It provides further results regarding the correctness of
the frame axioms proposed here, the relationship between
Horn T R and logic programming, and includes expanded
formulations of theorems and their complete proofs.

This paper is organized as follows: Section 2 presents the
necessary background on Transaction Logic. Section 3 deals
with the serial-Horn subset of T R and defines its reduction
to regular Horn logic programs. Since Horn T R is not suf-
ficiently expressive for describing the behavior of actions.
Section 4 introduces T RPAD, an extension of Horn T R that
(in some aspects) goes beyond the capabilities of even the
full T R, develops a sound and complete proof theory for it,
and provides numerous examples of the use of T RPAD and its
proof theory for complex reasoning tasks about actions. Sec-
tion 5 introduces a reduction from T RPAD to Horn logic pro-
grams and presents soundness and completeness results for
this reduction. Section 6 compares our formalism with other
popular action languages. Section 7 concludes the paper. All
proofs are given in the appendices.

2 Background

2.1 Transaction Logic

This section briefly reviews the syntax and model theory of
a subset of Transaction Logic, which we call T R–, that is
necessary for understanding the results of this paper. The dif-
ferences between T R– and T R are explained in Sect. 2.1.5.

2.1.1 Syntax

The alphabet of a language, LT R, of T R– consists of

– A countably infinite set of variables V.
– A countably infinite set of function symbols F , where

constants are treated as 0-arity function symbols.
– A countably infinite set of predicates P.This set is further

partitioned into two countably infinite subsets,Pfluents and
Pactions. For easier identification, actions will be written
in italics. The former will be used to represent facts in
database states and will be calledfluent-terms. The lat-
ter ill be used to represent transactions that change those
states.
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Transaction Logic with Partially Defined Actions 101

Fig. 1 Transaction Logic Formulas

– Logical connectives ∧, ∨, the implication connectives
→ and←, sequential conjunction ⊗, and hypothetical
operator ♦.

– The explicit negation connective neg.
– Quantifiers ∀ and ∃.

Terms are defined as usual in first-order logic. Formulas
in Transaction Logic are called transaction formulas; they
extend the syntax of first-order logic as defined next. TR for-
mulas are built as shown in Fig. 1.

Informally, a serial conjunction of the form φ ⊗ ψ is an
action composed of an execution of φ followed by an exe-
cution of ψ. When φ and ψ are conjunctions of fluents, the
serial and classical conjunctions behave identically, i.e.,

f 1 ∧ · · · ∧ f n ≡ f 1 ⊗ · · · ⊗ f n

We also postulate the usual De Morgan’s laws, such as

neg neg f ≡ f and neg ( f ∧ g) ≡ neg f ∨ neg g

This allows us to apply neg to complex formulas and not just
the atomic ones. For example,

neg ( f1 ∧ f2) ≡ neg f1 ∨ neg f2

neg ( f1 ∨ f2) ≡ neg f1 ∧ neg f2

neg (neg f1 ∨ neg f2) ≡ f1 ∧ f2

A hypothetical formula, ♦φ, represents an action where
φ is tested hypothetically whether it can be executed at the
current state. However, no actual changes to the current state
takes place. For instance, the first part of the following for-
mula

♦(insert(vaccinated, allergic)⊗ bill_insurance⊗ has_paid)

⊗vaccinate

is a hypothetical test to verify that the patient’s insurance
company will pay in case of an allergic reaction to a vaccine.
The actual vaccination is performed only if the test succeeds.

In this paper we will assume that hypothetical formulas con-
tain only serial conjunctions of literals.Implications of the
form

φ← ψ (1)

that can also be written ψ → φ, are treated as statements
that φ is a call to a complex transaction and ψ is a defini-
tion for that transaction (i.e., one of the ways to execute it).
In Sect. 4, we will see another use for the implication→ in
partial action definitions. If ψ is a fluent literal in (1), we
say that (1) is a fluent rule. We assume that the set of all
fluent predicates is partitioned into base fluents and derived
fluents. Base fluents can appear only as facts, while derived
fluents can appear in the heads of fluent rules, but they cannot
appear as facts.

The following examples illustrate the aforementioned
concepts. We will follow the usual logic programming con-
vention whereby lowercase symbols represent constants,
function, and predicate symbols, and the uppercase symbols
represent variables that are universally quantified outside of
the rules. Universal quantifiers are omitted, as usual.

Example 1 (Blocks World) Suppose we have a robotic arm
that can move a block from the top of one block to the top of
another if the tops of both blocks are clear.

In the rules, given below, move, delete, and insert repre-
sent actions and on, clear, light, weight are fluents.

move(X, Y )← on(X, Z)⊗ clear(X)⊗ clear(Y )⊗ light(X)

⊗delete(on(X, Z))⊗ insert(on(X, Y ))⊗
delete(clear(Y ))

light(X)← weight(X,W )⊗ limit(L)⊗W < L

?-move(blk1, blk5)⊗move(SomeBlk, blk1)

The first rule is a definition of a complex action for moving
a block from the top of one block, to the top of another. This
action is defined in terms of the built-in elementary updates
insert and delete which add and remove atomic facts to/from
the database. The second rule defines the fluent light, which
is used in the definition of move. The second rule consists
exclusively of fluents and thus is a regular logic program-
ming rule. Since all the literals involved in the definition of
light are fluents, they cause no state transitions and the use
of serial conjunction⊗ in that rule is equivalent to the use of
classical conjunction ∧. Thus, the second rule could also be
written as

light(X)← weight(X,W ) ∧ limit(L) ∧W < L

The last statement in the example is an update transaction,
which moves block blk1 from its current position to the top
of blk5 and then finds some other block and moves it on top
of blk1. For instance, if the current database state is
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D1 = {clear(blk1), clear(blk5), clear(blk3),
on(blk1, table), on(blk3, table), on(blk5, table)}

then execution of the transaction move changes the database
state to

D2=D1 \ {clear(blk5), on(blk1, table)} ∪ {on(blk1, blk5)}
(assuming that all the blocks involved satisfy the predicate
light above) and then, instantiating SomeBlk to blk3, to

D3 = D2 ∪ {on(blk3, blk1)}
\ {clear(blk1), on(blk3, table)}

2.1.2 Model Theory

In T R–, truth of a transaction is defined over sequences
of states, called execution paths (or simply paths). When
the user executes a transaction, the underlying database may
change, going from the initial state to some other state. In
doing so, the execution may pass through any number of
intermediate states.

Definition 1 (State) A state is a set of ground (i.e., vari-
able-free) base fluent literals.

For example, the execution of insert (a) ⊗ insert (b) ⊗
insert (neg c) takes a relational database from an initial state
D through the intermediate states D1 = D ∪ {a} \ {neg a}
and D2 = D1 ∪ {b} \ {neg b}, to the final state D3 = D2 ∪
{neg c} \ {c}.

In this paper, we will use only the Herbrand semantics
for T R–. The semantics defines path structures, which gen-
eralize the usual first-order semantic structures (also called
interpretations). As in first-order logic, the domain of Her-
brand path structures is called the Herbrand universe U ; it is
the set of all ground first-order terms that can be constructed
from the function symbols in the given language LT R . The
Herbrand base B is a set of all ground literals in the language.
A classical Herbrand structure is a subset of B.Note that the
Herbrand universe and Herbrand base are infinite, fixed, and
depend only on the language LT R, not on the transaction
base. Since this paper deals with Herbrand path structures
only, we shall often omit the adjective “Herbrand.”

A central feature in the semantics of T R– is the notion of
(execution) paths and the associated operation of splitting of
paths into subpaths.

Definition 2 (Path and split) An execution path of length k,
or a k-path, is a finite sequence of states, π = 〈D1 . . . Dk〉,
where k ≥ 1. A split of π is a pair of subpaths, π1 and π2,

such that π1 = 〈D1 . . . Di 〉 and π2 = 〈Di . . . Dk〉 for some
i (1 ≤ i ≤ k). In this case, we write π = π1 ◦ π2.

It is worth noting that T R– distinguishes between a database
state D and the path 〈D〉 of length 1. Intuitively, D represents

the facts stored in the database, whereas 〈D〉 represents the
superset of D that can be derived from D and the rules in the
transaction base. For instance, consider the database D = {a}
and the transaction base P = {b ← a}. In this scenario we
can conclude that

D = {a} ⊂ {a, b} = 〈D〉
Next we define Herbrand path structures. Intuitively, Her-

brand path structures in TR have the same role as transition
functions in temporal logics like LT L or μ-Calculus [17].
That is, they are relations between states and actions. How-
ever, a transition function takes a state and an action and
returns a set of states, while a Herbrand path structure takes
paths of the form 〈D1 . . .Dn〉 and returns sets of actions that
are executable starting along those paths. Actions in TR can
be non-deterministic, so executions along other paths are also
possible (e.g., two different executions of the same action
may start at the same state D0 and end at different states). The
definition itself constrains only elementary actions (which
are defined over 2-paths), but it does not impose any restric-
tions on compound actions (or paths of length longer than
two). Restrictions for complex actions are defined by the
rules that are part of transaction bases.

Definition 3 (Herbrand Path Structures) A Herbrand path
structure, M, is a mapping that assigns a classical Herbrand
structure to every path. This mapping is subject to the fol-
lowing restrictions, for all states D, D1, D2 and base fluent
p:

1. D ⊆M(〈D〉)
2. insert (p) ∈M(〈D1,D2〉) iff D2 = (D1∪{p})\{neg p}.
3. delete(p) ∈M(〈D1,D2〉) iff D2 = (D1\{p})∪{neg p}.

Note that delete(p) is equivalent to insert (neg p).

The following definition formalizes the idea that truth of
T R– formulas is defined on paths. Intuitively, each atom that
is true on a path represents a transaction whose execution
causes the state changes specified by the path. As in classical
logic, to define the truth value of quantified formulas we use
the notion of variable assignment. A variable assignment (or
an instantiation) is a mapping ν : V −→ U , which takes a
variable as input and returns a Herbrand term as output. We
extend the mapping from variables to terms in the usual way:
ν( f (t1, . . . , tn)) = f (ν(t1), . . . , ν(tn)). The mapping can
be extended to literals in a similar fashion.

Definition 4 (Satisfaction) Let M be a Herbrand path struc-
ture, π be a path, and ν be a variable assignment.

1. Base case: If p is a literal, thenM, π |�ν p if and only if
ν(p) ∈M(π). For every database state D, M,D |�ν ()
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2. “Classical” conjunction and disjunction: M, π |�ν
φ ∧ ψ iff M, π |�ν φ and M, π |�ν ψ. Similarly,
M, π |�ν φ ∨ ψ iff M, π |�ν φ or M, π |�ν ψ.

3. Implication: M, π |�ν φ← ψ (or M, π |�ν ψ → φ)
iff whenever M, π |�ν ψ then also M, π |�ν φ.

4. Serial conjunction: M, π |�ν φ ⊗ ψ iff M, π1 |�ν
φ and M, π2 |�ν ψ for some split π1 ◦ π2 of path π.

5. Universal and existential quantification: M, π |�ν
(∀X)φ iff M, π |�μ φ for every variable assignment
μ that agrees with ν everywhere except on X.M, π |�ν
(∃X)φ iff M, π |�μ φ for some variable assignment
μ that agrees with ν everywhere except on X.

6. Executional possibility: M, π |�ν ♦φ iff π is a 1-path
of the form 〈D〉, for some state D, and M, π ′ |�ν φ for
some path π ′ that begins at D.

As in classical logic, the variable assignment can be omitted
for sentences, i.e., for formulas with no free variables. From
now on, we will deal only with sentences, unless explicitly
stated otherwise. If M, π |� φ, then we say that sentence
φ is satisfied (or is true) on path π in structure M.

Definition 5 (Model) A path structure, M, is a model of
a formula φ if M, π |� φ for every path π. In this case,
we write M |� φ. A path structure is a model of a set of
formulas if it is a model of every formula in the set.

Definition 6 (Consistency and completeness of states) Let
D be a database state. We say that D is complete if and
only if for any ground base fluent-term f either f ∈ D
or neg f ∈ D.

We say that D is consistent if and only if there is no ground
base fluent-term f such that both f ∈ D and neg f ∈ D.

Models that are not consistent (i.e., in which p and neg p
could be true) are called paraconsistent. Although most of
the definitions apply to paraconsistent models, our results
regarding Horn-T R– apply to consistent models only.

2.1.3 Executional Entailment

A T R– program consists of two distinct parts: a transaction
base P and an initial database state D. The database is a set of
fluents and the transaction base is a set of transaction formu-
las. With this in mind we can define executional entailment,
a concept that relates the semantics of T R– to the notion of
execution.

Definition 7 (Executional entailment) Let P be a transaction
base,φ a transaction formula, and let D0 . . .Dn be a sequence
of databases. Then the following statement

P,D0 . . .Dn |� φ (2)

is said to be true if and only if M, 〈D0 . . .Dn〉 |� φ for every
model M of P. Related to this is the following statement

P,D0— |� φ
which is true if and only if there is a database sequence
D0 . . .Dn that makes (2) true.

Intuitively, (2) says that a successful execution of transaction
φ can change the database from state D0 to D1 . . . to Dn .

2.1.4 Serial-Horn Transaction Bases

One particular well-studied subset of Transaction Logic con-
sists of so-called serial-Horn rules. This subset has a sound
and complete SLD-style proof theory, and Sect. 3 shows that
under certain assumptions this subset is reducible to ordinary
logic programming.

Serial-Horn T R–, is the fragment of T R– that consists
of serial-Horn rules. A serial-Horn rule is a statement of the
form

b← b1 ⊗ · · · ⊗ bn

where the body of the rule is a serial-Horn goal, b is an atom
and n ≥ 0. If the rule head is a fluent literal then we require
that all the body literals are also fluents. We will refer to
this last type of rules as fluent rules. A serial-Horn goal is
defined as follows:

Definition 8 (Serial-Horn Goals)

– A literal is a serial-Horn goal
– if b1 . . . bn are serial-Horn goals, then so is b1⊗ · · ·⊗ bn

– if b is a serial-Horn goal, then so is ♦b.

Recall that a literal can be either a fluent or an action, and
action literals are always positive. A serial-Horn transaction
base is a finite set of serial-Horn rules. Note that Example 1
is serial-Horn.

2.1.5 Differences Between T R– and T R

For those familiar with T R, we briefly describe the differ-
ences between T R– and T R. One restriction in T R– are
that it has only the explicit negation neg (sometimes also
called “strong” negation [29]). This negation is weaker than
classical negation, and it applies only to fluents, not actions.
Another restriction is that T R– uses only one particular type
of database states and update operators, known as the rela-
tional oracle [9]. The data oracle specifies a set of primitive
database queries, i.e., the static aspect of states, and the tran-
sition oracle specifies a set of primitive database updates, i.e.,
the dynamic aspect of states. The restricted nature of T R–

will enable us, in Sects. 3 and 5, to reduce various interesting
subsets of T R– to ordinary logic programming.
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It is also worth noting that, T RPAD, the formalism devel-
oped in Sect. 4, does not use oracles at all. Instead, it intro-
duces a new kind of statements, called premises, which gen-
eralize the relational oracle and are part of the language of
the logic itself and not “black boxes” for the logic (unlike the
oracles in T R and T R–).

2.2 Logic Programs

In this section we briefly remind the basic notions from stan-
dard logic programming [28], which will be needed in this
paper.

2.2.1 Syntax

The language L in traditional logic programming is like that
of T R– except that predicates are not partitioned into fluents
and actions. The connectives⊗, ♦, →, and∨ are also omit-
ted (but⊗ and♦ are later re-introduced as function symbols).

A Horn logic program is a collection of statements (called
rules) of the form

l0 ← l1, . . . , lk (3)

where each li is an atom. The atom l0 is called the head of
the rule r. The set of atoms {l1, . . . , lk} is called the body of
r. By a clause we mean either a rule or a fact.

Later the set of function symbols will be partitioned into
several sorts (in the sense of many-sorted logics [18]). We
call these programs sorted Horn logic programs.

2.2.2 Semantics

Let P be a logic program. The domain of P is the Herbrand
universe U of L. The Herbrand base of P, denoted BP , is the
set of all instantiations of atoms in P using the terms from
U . A Herbrand interpretation is a subset of the Herbrand
base.Satisfaction of a formula φ by M, denoted M |� φ, is
defined as follows:

– M |� l, where l is an atom, iff l ∈M.

– M |� r, where r is a ground rule of the form (3), iff
l0 ∈M whenever li ∈M for all i = 1, . . . , k.

– M |� r,where r is a possibly non-ground rule, if M |� r ′
for every ground instantiation r ′ of r.

Queries are statements of the form ∃X̄a1 ∧ · · · ∧ ak, where
a1, . . . , ak are atoms and X̄ are all the variables mentioned in
a1, . . . , ak . The existential quantifier is usually omitted and
comma is used often in lieu of the conjunction symbol ∧.
Satisfaction of a query by a Herbrand interpretation, M, is
defined as follows:

– M |� a1, . . . , ak, where a1, …, ak are ground atoms, iff
M |� ai for all i = 1, . . . , k.

– M |� q, where q is a non-ground query, iff M |� q ′ for
some ground instantiation of q.

Given a program P,we write M |� P if M |� r for every rule
r ∈ P. In this case we say that M is a model of P. It is known
that every Horn program P has a unique least model [2]—a
model M0 such that for any other model N of P, l ∈ M0

implies l ∈ N for any l ∈ BP.

If P is a program and q is a query, we write P |� q iff
M |� q for every model of P. For Horn programs, this is
equivalent to saying that M0 |� q, where M0 is the least
model of P.

3 Reducing Serial-Horn T R− to Logic Programming

In this section we provide a new reduction of the serial-Horn
subset of T R– to sorted Horn logic programming and prove
its soundness and completeness. This contribution provides
an easy way to implement and experiment with the formal-
ism, and it is also part of the reduction of T RPAD to LP.

The serial-Horn subset of T R– uses only serial-Horn
clauses and relational data and transition oracles. This means
that, in this section, database states will be collections of
T R-fluents, i.e., facts or explicitly negated facts (e.g., like
bird(Tweety) or neg bird(John)) and the elementary update
operations are insert( f ) and delete( f ), where f is a fluent.

Given a language LT R of Transaction Logic, the cor-
responding language LL P of the target logic program
is a sorted language with the sorts state, fluent,
action, constant, and an infinite set of variables for
each sort. In addition, we assume that the sort of fluents is con-
tained in the sort of actions so anyfluent-variable is also an
action-variable and fluent-terms are allowed wherever
action-terms are. Recall that in Transaction Logic fluents
act as trivial actions that do not change the current state. We
will see that the same holds in the LP reduction.

In addition, we assume that the set of all fluent predicates
is partitioned into base fluents and derived fluents. Base flu-
ents can appear only as facts, while derived fluents can appear
in the heads of rules, but they cannot appear as facts.

LL P has several distinguished predicates and function
symbols, which play a special role in the reduction. The three
distinguished predicates are

– Hold with the signature fluent× state
– I nertial with the signature fluent× action
– Execute with the signature action×state×state

LL P has no other predicates. The distinguished function
symbols are as follows:
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– Result with the signature fluent×state→ state
– s0, a constant of sort state
– insert with the signature fluent→ action
– delete with the signature fluent→ action
– neg with the signature fluent→ fluent
– ♦ with the signature action→ action
– ⊗ with the signature action× action→ action

For convenience, we will write the function symbols neg and
♦ using the prefix notation and ⊗ using the infix notation.

In addition to the distinguished symbols, the predicate and
function symbols of the language LT R have corresponding
function symbols in LL P as explained next:

– For each n-ary predicate symbol p ∈ P f luent in LT R,

LL P has an n-ary function symbol p (with the same name)
with the signature

constant× · · · × constant→ fluent

– For each n-ary predicate symbol p ∈ Paction in
LT R, LL P has an n-ary function symbol p with the sig-
nature

constant× · · · × constant→ action

– For each n-ary function symbol f ∈ F in LT R, LL P has
an n-ary function symbol f with the signature

constant× · · · × constant→ constant

The terms that have insert and delete as the outer-most
symbols are called elementary actions. All other terms of
sort action are complex actions.

Next we list the rules that constitute the reduction of serial-
Horn Transaction Logic to logic programming, which we
will call LP-reduction. This set of rules depends on the input
transaction base P and the initial database state D, so this set
will be denoted by �(P,D).

To avoid repeating the same statements again and again,
we will use the following conventions about variables:
S, S1, S2, …denote state-variables; A, A1, A2, etc.,
will be used to denote action-variables; and F, F1, F2,

etc., will stand for fluent-variables. The rules that belong
to the reduction �(P,D) can now be formulated as follows:

Initial: For each fluent f ∈ D, �(P,D) has the fact

Holds( f, s0)

Unfolding: For each α← β ∈ P, �(P,D) has the rule

Execute(α, S1, S2)← Execute(β, S1, S2)

Sequencing: �(P,D) has the rule

Execute(A1 ⊗ A2, S1, S2)← Execute(A1, S1, S),
Execute(A2, S, S2)

Hypothetical: Execute(♦A, S, S)0 ← Execute(A, S,
S1).

Effect+: For every ground base fluent-term f ,
Holds( f, Result (insert ( f ), S)).

Effect-: For every ground base fluent-term f ,
Holds(neg f, Result (delete( f ), S)).

Query: For every ground base fluent-term f ,
Execute( f, S, S)← Holds( f, S).

Frame Axiom: �(P,D) also includes the following rule:

Holds(F, S2)← Holds(F, S1), Execute(A, S1, S2),

I nertial(F, A)

Inertial: For each pair of unrelated base fluent-terms f
and g:

I nertial( f, insert (g))
I nertial( f, delete(g))
I nertial( f,♦A)
I nertial(F, A1 ⊗ A2)← I nertial(F, A1),

I nertial(F, A2)

A pair of ground fluents f , g are said to be unrelated
if f �= g and f �= neg g (recall that neg neg g = g,
by convention). Recall that a base fluent is one that can
occur only in facts.

Execution: For each elementary action α, �(P,D) includes
the following rule:

Execute(α, S, Result (α, S))

It is easy to see from the above that, for any serial-Horn
transaction base P, the reduction �(P,D) is a Horn logic
program. By the well-known result from [41], it has a unique
least Herbrand model, which can be computed via a repeated
exhaustive application of the rules in �(P,D).

Definition 9 (Consistency and completeness of state-
terms) Let �(P,D) be the LP reduction of a serial-Horn T R
program (P,D) and let s be a ground state-term. We say
that s is complete if and only if for any ground basefluent-
term f

�(P,D) |� Holds( f, s) or �(P,D) |� Holds(neg f, s)

We will say that s is consistent if and only if there is no
ground base fluent-term f such that both of the follow-
ing hold:

�(P,D) |� Holds( f, s) and �(P,D) |� Holds(neg f, s)
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We will now establish a number of properties of the
LP-reduction.

Proposition 1 (State consistency and completeness) Let
�(P,D) be an LP-reduction of a relational serial-Horn
Transaction Logic program (P,D). Let s, ŝ be ground
state-terms such that �(P,D) |� Execute(α, ŝ, s) holds,
where α is a ground action-term. If ŝ is consistent then so
is s. If, in addition, ŝ is complete then s is also complete.

Proof See Appendix A. ��
Definition 10 (Correspondence between states in LL P and
LT R) Given a ground state-term t in LL P , let D(t) denote
the following set of database fluents in the language LT R of
Transaction Logic:

D(t) = { f | f is a ground base fluent-term such that
�(P,D) |� Holds( f, t)}

Theorem 1 (Soundness) Let �(P,D) be an LP-reduction of
a relational serial-Horn T R program (P,D) and suppose
that �(P,D) |� Execute(α, ŝ, s), where ŝ and s are ground
state-terms and ŝ is consistent. Then there exist relational
database states D1, . . . , Dn (in LT R) such that

P,D(ŝ)D1D2 . . .DnD(s) |� α

where D(ŝ) and D(s) are as in Definition 10.

Proof See Appendix A. ��
Theorem 2 (Completeness) Let�(P,D)be an LP-reduction
of a relational serial-Horn T R program (P,D). Suppose
P, D̂D1 . . .DnD̄ |� α, where D̂ = D(ŝ) for some con-
sistent ground state-term ŝ. Then there is a consistent
ground state-term s̄ such that D̄ = D(s̄) and �(P,D) |�
Execute(α, ŝ, s̄).

Proof See Appendix A. ��

4 Partially Defined Actions and Incomplete Information

This section extends T R– making it suitable for representing
commonsense knowledge about actions and for reasoning
about their effects in the presence of incomplete informa-
tion. We introduce a new kind of formulas, called premise
formulas, which supply information about states and about
execution of actions. Then we propose a sublanguage of the
resulting extended formalism. This new formalism, called
T RPAD, is a substantial generalization of the serial-Horn
subset of T R–, which was studied in [7,9,10] and briefly
described in Sect. 2.1.4. It has a sound and complete proof
theory, is much more expressive, and better lends itself to
complex representational and reasoning tasks about actions.

T RPAD consists of serial-Horn rules (including fluent
rules, c.f. Sect. 2.1.4), partial action definitions (PADs),
and certain statements about action execution, which we call
premises. A premise is a new kind of formula that was not in
the original Transaction Logic (and thus not in T R–). It is
worth noting that although one can express PADs in T R–,

there was previously no proof theory to reason about these
constructs—only the Horn subset of T R– had a proof theory,
but that subset did not allow PADs.

Like T R–, T RPAD uses only relational states, i.e., they are
simply sets of fluents.

A partial action defn (or a PAD ) is a statement of the
form:

b1 ⊗ α ⊗ b2 → b3 ⊗ α ⊗ b4 (4)

where b1 and b2 are conjunctions of fluent literals, b3 and
b4 are conjunctions of base fluent literals, and α is an action
atom. The serial conjunction⊗ binds stronger than the impli-
cation, so the above PAD statement should be interpreted as
(b1 ⊗ α ⊗ b2) → (b3 ⊗ α ⊗ b4). We will say that b1 is a
precondition of the action α and b4 is its effect. In addition,
b2 will be called post-condition and b3 is a pre-effect. Intui-
tively, (4) means that whenever we know that b1 holds before
executing α and b2 holds after, we can conclude that b3 must
have held before executing α and b4 must hold as a result of
α. Note that neither the pre/postcondition nor the pre/effect
is mandatory and can be omitted. For instance, the PAD,

alive_turkey⊗ shoot⊗¬alive_turkey→ loaded⊗ shoot

states that if a turkey is alive before firing the gun and is dead
after the shooting, then we can conclude that the gun was
loaded initially.

Since b1, b2, b3, and b4 are conjunctions of fluents, we
can use the serial and the classical conjunctions for them
interchangeably, as explained in Sect. 2. Each individual con-
junct in b1 will be called a primitive precondition and in b2 a
primitive post-condition. Similarly, each individual conjunct
in b3 will be referred to as a primitive pre-effect and in b4 as
primitive effect.

T RPAD makes no use of the built-in actions insert( f ) and
delete( f ) of Sect. 2, since they can be axiomatized by the
following PADs:

insert( f )→ insert( f )⊗ f
g ⊗ insert( f )→ insert( f )⊗ g where g �= f and g �= neg f
delete( f )→ delete( f )⊗ neg f
g ⊗ delete( f )→delete( f )⊗ g where g �= f and g �=neg f

Therefore, in T RPAD we will not distinguish built-in actions
in any way. However, we will be distinguishing between
partially defined actions (abbr., pda) and complex actions.
Partially defined actions cannot be defined by Horn rules—
they can be defined by PADs only. In contrast, complex
actions will be defined by Horn rules only, not by PADs.
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An important point is that pdas can appear in the rule bodies
that define complex actions and, in this way, T RPAD can be
used to create larger action theories out of smaller ones in a
modular way.

A T RPAD transaction base is a set of serial-Horn rules and
partial action definitions.

One key addition that T RPAD brings to TR is the notion
of premises.In premises, states are referred to with the help
of special constants called state identifiers. We will be usu-
ally using boldface lowercase letters d, d1, d2, to represent
them. In TR, state identifiers are not part of the language,
since TR formulas never refer to such constants explicitly.In
the following, for the sake of simplicity, we will refer to state
identifiers just as states.

Definition 11 (Premise) A premise is a statement that has
one of the following forms:

– A state-premise: d� f, where f is a fluent and d a data-
base identifier. Intuitively, it means that f is known to be
true at state d.

– A run-premise: d1
α� d2, where α is a partially defined

action. Intuitively it says that execution of action α in
state represented by d1 is known to lead to state denoted
by d2 (among others).1

A T RPAD specification is a pair (P,S) where P is a T RPAD

transaction base, and S is a set of premises.

Usually, premises are statements about the initial and the
final database states, and statements about some possible
executions of partially defined actions. Typically, these are
partial descriptions so several different database states may
satisfy the state-premises and several execution paths may
satisfy the run-premises. Let us now turn to the semantics of
T RPAD specifications.

Definition 12 (Herbrand Path Structures) A Herbrand
path structure, M, is a mapping that assigns a classical
Herbrand structure to every path. This mapping must satisfy
the following condition for every state D:

D ⊆M(〈D〉)
In addition, M includes a mapping of the form 	M : State
identifiers −→ Database states, which associates states to
state identifiers. We will usually omit the subscript in 	M.

A path abstraction is a finite sequence of state identifiers.
If 〈d1 . . . dk〉 is a path abstraction then 〈D1 . . . Dk〉, where
Di = 	(di ), is an execution path. We will also sometimes
write M(〈d1 . . . dk〉) meaning M(〈	(d1) . . . 	(dk)〉).

1 In general, an action can be non-deterministic and may non-deter-
ministically move to any one of a number of states.

Definition 13 (Models) Let M be a Herbrand path struc-
ture, such that M |� P, and let σ be a premise statement.
We say that M satisfies σ, denoted M |� σ, iff:

– σ is a run-premise of the form d1
α� d2 and M,

〈	(d1)	(d2)〉 |� α.
– σ is a state-premise d� f and M, 〈	(d)〉 |� f.

M is a model of a set of premises S if it satisfies every
statement in S.

Definition 14 (Entailment) Let P be a T RPAD transaction
base, φ a transaction formula, and let S be a set of premises.
We write

P,S,d1 . . . dn |� φ (5)

if and only if for every model M of P and S, we have
M, 〈	(d1) . . . 	(dn)〉 |� φ.

4.1 A Proof Theory for T RPAD

This section develops an inference system for proving state-
ments about transaction execution. These statements, called
sequents have the form P,S,d— � φ, where φ is a serial-
Horn goal and (P,S) a T RPAD specification. Informally, such
a sequent says that transaction φ can successfully execute
starting at state d.We refer to the inference system developed
here as F ; it significantly generalizes the inference system
F H for the serial-Horn fragment of T R– presented in [9].

Definition 15 (Inference System F) Let P be a transaction
base and S a set of premises. The inference system F consists
of the following axioms and inference rules, where d, d1, d2,

…denote database states.
Axioms:

1. No-op: P,S,d � ()

Inference rules: In the rules below, a, and α are literals,
and φ, ψ, and bi (i = 1, . . . , 4) are serial goals.

1. A subset of Horn inference rules from [9,10]:

(a) Applying transaction definitions:

a← φ ∈ P
P,S,d1 . . . dn � φ ⊗ ψ
P,S,d1 . . . dn � a ⊗ ψ

(b) Hypothetical operations:

P,S,d,d′1 . . . d′n � β
P,S,d,d1 . . . dm � γ

P,d,d1 . . . dm � ♦β ⊗ γ
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2. Premise rules: For each premise in S:

d1
α� d2 ∈ S

P,S,d1d2 � α
d� f ∈ S
P,S,d � f

3. Forward Projection: Suppose α is a partially defined
action. Then

b1 ⊗ α ⊗ b2 → b3 ⊗ α ⊗ b4 ∈ P
P,S,d1 � b1

P,S,d2 � b2

P,S,d1d2 � α
P,S,d1 � b3 and P,S,d2 � b4

4. Sequencing:

P,S,d1 . . . di � φ
P,S,di . . . dn � ψ
where 1 ≤ i ≤ n

P,S,d1 . . . dn � φ ⊗ ψ

5. Decomposition: Supposeφ andψ are serial conjunctions
of literals and hypotheticals. Then

P,S,d � φ ⊗ ψ
P,S,d � φ and P,S,d � ψ

The next theorem relates the inference system F to the
model-theory.

Theorem 3 (Soundness and completeness) For any serial
goal φ and a T RPAD specification (P,S), the executional
entailment P,S, d1 . . . dn |� φ holds if and only if there is a
deduction in F of the sequent P,S, d1 . . . dn � φ

Proof See Appendix B. ��

4.2 Representing Actions with T RPAD

We will now show how T RPAD can be used to represent com-
plex scenarios that arise in reasoning about actions. We will
discuss which conclusions are desired in each case, but the
machinery needed to do the actual reasoning will be devel-
oped in subsequent sections.

Example 2 (Health Insurance) Consider the US health
insurance regulations scenario discussed in the introduction.
Suppose we want to formalize the following regulations:

(i) The AIDS and DNA tests (aids_t(T ) and dna_t(T ))
require prior consent of the patient (need_consent
(T )).

(ii) To perform a test T prescribed by doctor D to
patient P in compliance with the law (do_cmplnt_test
(T, P, D)), T must be done (do_t(T, P, D)) only
after D prescribed T test (do_presc(D, T )), which
in turn must be done after receiving the consent of
P (rcv_consent(P, T )). This is expressed as follows:

(1) need_consent(T )← aids_t(T )
(2) need_consent(T )← dna_t(T )
(3) do_cmplnt_test(T, P, D)← rcv_consent(P, T )⊗

consent(P, T ) ⊗ do_presc(D, T ) ⊗ presc(T, P,
D)⊗ do_t(T, P, D)[1ex]

In the rules above, do_cmplnt_test, rcv_consent, do_presc
and do_t are actions, while need_consent, dna_t, aids_t,
consent and presc are fluents.Rules (1) and (2) define the
fluent need_consent. They consist exclusively of fluents
so they are regular logic programming rules that do not
cause state transitions. Moreover, serial conjunction of flu-
ents is equivalent to the use of the classical conjunction,
since fluents do not cause state transitions. Rules (1) and
(2) formalize regulation (i). Rule (3) defines the compound
action do_cmplnt_test which formalizes regulation (ii). The
three actions in Rule (3) will be defined in Example 3.
They are partially defined actions, which we will define
in the following section. Note that compound actions like
do_cmplnt_test cannot be expressed in action languages like
[6,19,40]. In the simple case when compound actions are
non-recursive, they can be expressed via relatively simple
extensions. For instance, ALM [22] allows non-recursive
compound actions, which are reducible to AL. However,
adding recursive actions requires deep changes in the seman-
tics of that language.

The next statement is an update transaction, wherewb, s,
and m are constants.

?-aids_t(wb)⊗do_cmplnt_test(wb,m, s)⊗ negative(m, wb)

It first queries the database to check if Western Blot (wb) is an
aids test. If it is, the transaction executes the compound action
do_cmplnt_test to perform a complaint testwb for the patient
Mark (m) prescribed by Dr. Smith (s). If the test finishes suc-
cessfully, the transaction checks that the result is negative
and all is well. Note that if after executing do_cmplnt_test
the transaction fails, for example, because Mark’s consent
was not received, actions are “backtracked over,” and the
underlying database state remains unchanged.

Example 3 (Health Insurance, continued) Consider Exam-
ple 2, and let us now present the three PADs that were left
undefined. We also add the fluents dr, matching, and finished.
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P=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

neg finished(P, T ) ∧ neg matching(P, T )⊗
do_t(T, P, D)→ do_t(T, P, D)⊗ finished(P, T )⊗

negative(P, T )

patient(P) ∧ need_consent(T )⊗ rcv_consent(P, T )→
rcv_consent(P, T )⊗ consent(P, T )

dr(D)⊗ do_presc(T, P, D)→ do_presc(T, P, D)⊗
presc(D, P, T )

The first PAD states that the result of the test is negative
if the test is still in process (i.e., not finished) and there is
no match with the patient’s sample. The second and third
rules define the actions rcv_consent and do_presc. Suppose
that Mark (m) got a PCR DNA test (pr ) prescribed by Doc-
tor Smith (s), and we know that the result of the test did
not match the sample and the test finished successfully. The
description implicitly talks about four main states: the initial
state where we have the intent to do the test, but have no
requisite permissions,d1; the state where we have the con-
sent to do the test, but have no prescription (or the other way
around),d2; the state where we have both the consent and
the prescription,d3; and, finally, the state where the test has
already been done,d4. The set of premises, below, shows one
particular way the state transitions might have happened:

S=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1
rcv_consent(m,pr)� d2 − m’s consent is received at

d1, which leads to d2

d2
do_presc(m,pr,s)� d3 − The prescription is received

at d2 leading to d3

d3
do_t(m,pr,s)� d4 − m’s test is made at state

d3 and it results in d4

d1 � neg finished(m, pr) − The test is not finished at
state d1

d1 � dna_t(pr) − PCR is a DNA test
d1 � patient(m) − Mark is a patient
d1 � dr(s) − Smith is a doctor
d3 � neg matching(m, pr) − There is no match with

m’s sample
d4 � finished(m, pr) − The test was performed

successfully

We would like the logic to infer that the result of the com-
pliant PCR test for Mark was negative. That is,

P,S,d1— |� do_cmplnt_test(pr,m,s)⊗ negative(m, pr)

Let us now consider a popular example in action lan-
guages, the Turkey Hunting Problem [6,19,40].

Example 4 (The Turkey Shoot Problem [21]) A pilgrim goes
turkey-hunting. If he fires a loaded gun, the turkey is dead in
the next state. The turkey can die only by being shot. Assum-
ing that the turkey is alive initially and dead afterwards, we
want to be able to infer that the gun was loaded initially. For
this problem, the fluents are loaded and alive, and the actions
are load and shoot. The set of premises is

S =

⎧
⎪⎨

⎪⎩

d1
shoot� d2

d1 � alive
d2 � neg alive

The PADs for the above problem are as follows:

load→ load⊗ loaded
loaded⊗ shoot→ shoot⊗ neg alive

shoot→ shoot⊗ neg loaded

The above premises state that a shooting action has occurred
at some state D1 (= 	(d1)), that the turkey was alive then,
and that it was not alive after the action. The PADs describe
the effects of loading and shooting. Our requirement is that
the logic be strong enough to prove that the gun was loaded
initially:

P,d1 |� loaded

In general, there is not enough information to prove that in
all models where shoot makes a transition from D1 to D2

(= 	(d2)), the following is impossible:

D1 = {neg loaded, alive} D2 = {neg loaded,neg alive}
However, common sense reasoners would normally reject
transitions from such D1 to D2 because the fluent alive
changes without a cause.

To solve the problem highlighted in the above example,
we need to be able to state the so-called inertia (or frame)
axioms, which say that things stay the same unless there is an
explicitly stated cause for a change. However, the following
example shows that there are situations where assuming that
things change only due to a direct effect of an action (and
remain the same otherwise) is inappropriate.

Example 5 (The Turkey Shoot Problem #2) Consider Exam-
ple 4 with the following additional features:

– the gun can be loaded only if the pilgrim has bullets
– the pilgrim can only hunt during the day and
– after performing two actions the night falls

To represent this, we introduce two new fluents, daylight and
bullets, and the following premises:

S =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1
shoot� d2

d2
load� d3

d1 � daylight
d1 � alive
d2 � neg alive
d3 � neg loaded
d3 � neg daylight

The PADs for the above problem are as follows:

bullets⊗ load→ load⊗ loaded
daylight ∧ loaded⊗ shoot→ shoot⊗ neg alive

shoot→ shoot⊗ neg loaded
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These premises state that a shooting occurs at some state rep-
resented by d1 and then a load action at d2.Also, initially the
turkey was alive and there was daylight, but following the
shooting, the turkey was not alive. After shooting and load-
ing took place, the gun was found to be unloaded, and it was
dark outside. The PADs describe the effects of the loading
and shooting actions. We want our logic to conclude that the
gun was loaded initially and after shooting the pilgrim must
have run out of bullets:
P,d1 |� loaded
P,d2 |� neg bullets

A subtle point here is that daylight is not a direct effect of
an action, so a simplistic law of inertia would conclude

P,d1 |� neg daylight

Clearly, this is not what we want in this case.

Example 6 (The Turkey Shoot Problem #3) Consider again
the scenario described in Example 4. Assuming that the gun
is unloaded initially and the turkey is dead afterwards, we
want to be able to infer that the turkey was not alive initially.
We keep the same set of fluents and actions as in Example 4,
and the premises are

S =

⎧
⎪⎨

⎪⎩

d1
shoot� d2

d1 � neg loaded
d2 � neg alive

The above states that a shooting action has occurred at some
state d1, that the gun was not loaded initially, and that the
turkey was not alive after shooting. The PADs describe the
effects of loading and shooting. Our requirement is that
the logic be strong enough to prove that the turkey was not
alive initially:

P,d1 |� neg alive

The following example illustrates the use of complex
actions:

Example 7 (The Turkey Shoot Problem #4) Again we take
Example 4 as a point of departure. We extend the set of
fluents with hidden and bird_in_range and add the actions
find_location, hunt and hide. The action hunt is a complex
action composed of several partially defined actions and flu-
ents. The pilgrim can hunt if he finds a good spot to shoot,
manages to hide, the gun is loaded, and when he shoots he
kills the turkey. The set of premises is

S =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1
f ind_location� d2

d2
hide� d3

d3
shoot� d4

d5
shoot� d4

d3 � loaded
d2 � alive
d4 � neg alive

The aforementioned premises state that shooting in state
d3 or d5 leads to d4, hiding in state d2 leads to d3, and find-
ing a location in d1 brings in state d2.We also know that the
gun was loaded in d3, and that the turkey was not alive in
d4, but it was alive in d2. (The index number should not be
construed as implying a temporal order among the states d1,

…, d5.)
The PADs for the aforementioned problem describe the

effects of loading, shooting, etc. They are as follows:

load→ load⊗ loaded
loaded⊗ shoot→ shoot⊗ neg alive

shoot→ shoot⊗ neg loaded
hide→ hide⊗ hidden

find_location→ find_location⊗ bird_in_range

The rules for the complex actions and derived fluents in the
transaction base are shown below. The first rule defines a
fluent, correct_location, and the second defines the complex
action hunt.

correct_location← hidden⊗ bird_in_range
hunt← find_location⊗ hide⊗ correct_location
⊗loaded⊗ shoot

Our requirement is that the logic must be strong enough to
prove that the turkey was not alive after executing hunt in d1:

P,d1— |� hunt⊗ neg alive��

Examples 4, 5, 6, and 7 illustrate the need for additional
axioms to express the common-sense inertia laws.

It is worth noting that the problem described in Exam-
ples 3, 4, 5, etc., cannot be expressed in the action language
previously cited. For instance, the action language A [19],
does not allow defined fluents, and neither A nor AL nor AC
[6,19,40] support compound actions.

Note that in all previous examples we were using a
restricted type of PADs of the form b1 ⊗ α→ α ⊗ b2. This
restricted form is sufficient for most types of action speci-
fication, but inertia and related laws require a more general
kind. For example, a rule suitable for expressing the inertia
needed in Example 4 is

neg loaded⊗ shoot⊗ neg alive→ neg alive⊗ shoot

It says that if shooting with an unloaded gun puts us in a
state where the turkey is dead, the turkey must have been
dead beforehand.

4.3 Axioms of Inertia and Action Theory

We now return to the problem of inertia discussed in Exam-
ples 4, 5, 6 and 7. Given a T RPAD transaction base P, we
augment it with suitable frame axioms and construct a specifi-
cation A(P), called the action theory of P,where P ⊆ A(P).
For simplicity we give only the ground version of the action
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theory. Lifting to the non-ground case is done in a standard
way (cf. [9]).

For this specification to be well defined, we impose a
restriction over interloping PADs—defined below. Observe
that we do not impose this restriction on T RPAD itself—only
on the particular action theory presented in this section. For
instance, the inference system and the reduction to logic pro-
gramming given in Sect. 5 do not rely on this assumption.
Some other action languages (e.g., the A-language of [19])
impose the same restriction.2 To capture the inertia laws in
T RPAD without the restriction over interloping PADs, one
needs a more elaborate theory, which includes default nega-
tion [33]. This will be presented in a followup paper.Two
PADs for the same action α are said to be interloping if they
share a common primitive effect. That is, there is a fluent
f, which is a primitive effect of the same partially defined
action α in two different PADs. For instance, the following
PADs are interloping, as they share a fluent (loaded):

has_bullets⊗ load→ load⊗ loaded
has_ammunition⊗ load→ load⊗ (loaded ∧ ready)

In this section, we will assume that T RPAD transaction bases
do not contain interloping PADs. For conciseness, we will
be combining several formulas into one using the usual De
Morgan’s laws. Note that the explicit negation connective
neg is distributive with respect to conjunctions of fluent lit-
erals (serial and classical, which are equivalent for fluents)
the same way as negation distributes through the regular clas-
sical conjunction according to Morgan’s laws.

As explained in Example 4, it is a requirement that the
frame axioms must be able to model a variety of different
behaviors, depending on the problem at hand. In the follow-
ing we define a general set of rules, Frame(P), that encodes
different aspects of the Frame Axiom. For instance, in Exam-
ple 5 we expect that some fluents, like alive, are subject to the
frame axioms, while others, like daylight, are not. We thus
introduce a predicate, inertial, that indicates whether a fluent
is subject to inertia.3 If a fluent, f, behaves according to the
frame axioms in state D (= 	(d)), it is assumed that S has
a state-premise of the form d� inertial( f ).

The action theory A(P) for a transaction base P is defined
as P ∪ Frame(P), where Frame(P) is the following set of
axioms:

Unrelatedness: For each base fluent literal h and each par-
tially defined action α such that neither h nor neg h
is a primitive effect of α, the following axiom is in
Frame(P):

2 In [19], these are called similar actions, p. 13.
3 In some cases, we can also specify inertial via rules and facts. For
instance, if every fluent is inertial, we could just have a universal fact
inertial(F).

(inertial(h) ∧ h)⊗ α→ α ⊗ h (6)

Here it is worth noting that the number of the axioms
for unrelatedness is quadratic, i.e., it is proportional to
the number of fluents times the number of actions. How-
ever, it is easy to replace all these axioms with just one
if we use HiLog [13] and thus gain the ability to quan-
tify over propositions. In that case, we could replace the
aforementioned axiom schema with a single axiom of the
form

(unrelated(H, Action) ∧ inertial(H) ∧ H)⊗ Action
→ Action ⊗ H

where H and Action are variables and unrelated is a
predicate that provides information on which fluents are
independent of which actions.

Forward and Backward Disablement: Let g or neg g be
base literals and α a pda. Due to the restriction over
interloping actions, there can be at most one partially
defined action pg with the primitive effect g and at most
one pda pneg g with the primitive effect neg g. Let fg

be the precondition of pg and fneg g the precondition of
pneg g (if pg or pneg g does not exist, assume that neg fg

or neg fneg g is true in every state). Then the following
forward disablement axioms are in Frame(P):

(inertial(g) ∧ neg fg ∧ neg fneg g)⊗
g ⊗ α→ α ⊗ g

(inertial(g) ∧ neg fg ∧ neg fneg g)⊗
neg g ⊗ α→ α ⊗ neg g

(7)

The following backward disablement axioms are also in
Frame(P):

(inertial(g) ∧ neg fg ∧ neg fneg g)⊗
α ⊗ g→ g ⊗ α

(inertial(g) ∧ neg fg ∧ neg fneg g)⊗
α ⊗ neg g→ neg g ⊗ α

(8)

In other words, if the pdas pg and pneg g are disabled in
some state then executing α in that state does not change
the truth value of the fluents g and neg g.

Weak Disablement: For each pda α and a base literal f
such that f is not a primitive effect of α:

inertial( f )⊗ α ⊗ f → f ⊗ α ∈ Frame(P) (9)

Causality: For each PAD b1 ⊗ α → α ⊗ b2 ∈ P and each
base primitive effect b′ that occurs as one of the conjuncts
in b2:
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neg b′ ⊗ α ⊗ b′ → b1 ⊗ α ∈ Frame(P) (10)

That is, if an effect of an action has been observed, the
action must have been executed as prescribed by the
unique (since there are no interloping PADs) PAD that
specifies that effect. In particular, the precondition of that
PAD must have been true.

Backward Projection: For each P AD in P of the form
(∧k

i=1bi
1) ⊗ α → α ⊗ b4, and each base primitive pre-

condition b j
1

(∧k
i=1,i �= j b

i
1)⊗ α ⊗ neg b4 →

neg b j
1 ⊗ α

}

∈ Frame(P) (11)

That is, if all but one primitive preconditions hold, but
the effect of the action is not observed in the next state,
we must conclude that the remaining precondition was
false prior to the execution.

We now return to our examples and show how the afore-
mentioned action theory supports the kinds of reasoning that
we desired in Sect. 4.2.

Example 8 (Turkey Shoot, continued) The issue in Exam-
ple 4 was the inability to prove P,S,d1 |� loaded (the
gun was loaded initially), because T RPAD was not suffi-
ciently expressive to let us specify the rules of inertia. Fortu-
nately, the P AD axioms Frame(P) do the trick. Let A(P)
be the action theory of P. We now show how to prove
A(P),S,d1 |� loaded using the inference system F . The
relevant instance of the causality axioms in Frame(P) is

alive⊗ shoot⊗ neg alive→ loaded⊗ shoot (12)

Now:

A(P),S,d1 � alive by the inference rule 2 (Premise rule)
A(P),S,d2 � neg alive by rule 2 (Premise rule)
A(P),S,d1d2 � shoot by rule 2 (Premise rule)
A(P),S,d1 � loaded by the inference rule 3 (Forward

projection), the instance (12) of the
causality axiom and the above three
sequents

The desired conclusion now follows from the soundness of
F (Theorem 3).

Example 9 (Turkey Shoot 2, continued) In Example 5 we
wanted to prove P,S,d1 |� loaded and P,S,d2 |�
neg bullet, i.e., that the gun was loaded initially, and after
shooting the pilgrim runs out of bullets. Furthermore, to
ensure consistency, we should not be concluding P,S,d1 |�
neg daylight, i.e., that initially it was nighttime.

The proof that A(P),S,d1 |� loaded is the same as in
Example 4. Below we show how to prove A(P),S,d2 |�

neg bullet using the inference system F . The relevant back-
ward projection axiom of Frame(P) is

load⊗ neg loaded→ neg bullet⊗ load (13)

Now

A(P),S, d3 � neg loaded by the inference rule 2 (Premise rule)
A(P),S, d2,d3 � load by rule 2 (Premise rule)
A(P),S, d2 � neg bullet by the inference rule 3 (Forward

projection), the instance (13) of the
backward projection axiom, and the
two sequents above

The required conclusion now follows from the soundness of
F .

Example 10 (Turkey Shoot 3, continued) The problem in
Example 6 was to be able to prove P,d1 |� neg alive.
We show how to prove A(P),S,d1 |� neg alive using the
inference system F . The relevant instance of the axioms in
Frame(P) is

inertial(alive) ∧ neg loaded⊗ shoot⊗ neg alive→
neg alive⊗ shoot

(14)

Next:

A(P),S, d2 � neg alive by rule 2 (Premise rule)
A(P),S, d1d2 � shoot by rule 2 (Premise rule)
A(P),S, d1 � neg loaded by rule 2 (Premise rule)
A(P),S, d1 � inertial(alive) by the inference rule 2 (Premise

rule)
A(P),S, d1 � neg alive by the inference rule 3, the

instance (14) of the Backward
disablement axiom, and the above
sequents

The required conclusion now follows from the soundness of
F .

Example 11 (Turkey Shoot 4, continued) The problem in
Example 7 was to be able to prove

P,d1— |� hunt⊗ neg alive (15)

We show in Fig. 2 how to prove (15) using the inference
system F .The relevant instances of the axioms in Frame(P)
are

inertial(bird_in_range) ∧ bird_in_range⊗ hide→
hide⊗ bird_in_range

(16)

The required conclusion now follows from the soundness
of F and the definition of entailment in T R.

Example 12 (Health Insurance, continued #2) The issue in
Example 3 was to prove

P,S,d1— |� do_cmplnt_test(pr,m, s)⊗ negative(pr,m)

We now show a proof for this statement using the inference
system F . We assume that all fluents are inertial in every
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Fig. 2 Derivation of A(P),S,d1— � hunt⊗ neg alive

Fig. 3 Derivation of A(P),S,d1— � do_cmplnt_test(pr,m, s)⊗ negative(pr,m)

state. For convenience, we show the relevant instances of the
axioms in Frame(P) here:

(a) inertial(finished(m, pr))⊗ neg finished(m, pr)⊗
rcv_consent(m, pr)→ rcv_consent(m, pr)⊗

neg finished(m, pr) (Unrelatedness)
(b) inertial(dr(s))⊗ dr(s)⊗ rcv_consent(m, pr)→

rcv_consent(m, pr)⊗ dr(s) (Unrelatedness)

The derivation is shown in Fig. 3.
The required conclusion now follows from the soundness

of F and the definition of entailment in TR.

In the rest of this section we will show that T RPAD general-
izes Horn-T R–. This implies that the frame axioms in the
action theory behave as expected in the relational case. That
is, they correctly model the inertia laws behind Horn-T R–.

Furthermore, the results presented in [31] guarantee that the
frame axioms introduced above are correct. In that work, we
reduce the action language L1 to T RPAD and prove the cor-
rectness of that reduction. This implies that our action theory
in T RPAD correctly models the inertia laws of L1.

First we define a T RPAD specification that corresponds to
a serial-Horn program P with the initial database D, which
we will denote by (P,D).

Definition 16 (Relational specifications for serial-Horn
programs) A T RPAD specification (Q,S)d0 is a relational
specification of a serial-Horn program (P,D) if and only if:

Initial State for every ground base fluent-literal f
such that f ∈ D, (Q,S)d0 has these premise formulas:

d0 � f
d0 � inertial( f )

Transaction Base

Q = P
∪ {insert( f )→ insert( f )⊗ f |

for every ground base fluent-literal f }
∪ {delete( f )→ delete( f )⊗ neg f |

for every ground base fluent-literal f }
Plus the action theory of Q.
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Transitions for every elementary action α, and sequence
r of elementary action, S contains run-premises of the form:

d0,r
α� d0,r,α

In addition, we assume that every ground base fluent is iner-
tial in every state.

Definition 17 (Correspondence of states) Let (P,S) be a
T RPAD specification. Given a state identifier d in LT RPAD ,

let D(d) denote the following set of database fluents in the
language LT R– of Transaction Logic:

D(d) = { f | f is a ground base fluent-term such that
P,S,d |� f }
Proposition 2 (State consistency and completeness) Let
(P,D) be a Horn-T R– program and (Q,S)d be a relational
specification of (P,D). Let α be an action and d1, d2 be state
identifiers such that Q,S, d1 . . . dn |� α. If D(d1) is consis-
tent then so is D(dn). If, in addition, D(d1) is complete, then
so is D(dn).

Proof See Appendix C. ��
Theorem 4 (Soundness) Let P be a Horn-T R– transac-
tion base and D a database state. Let (Q,S)d0 be a rela-
tional specification of (P,D) and h a serial goal. Suppose
that Q,S, d0 . . . dn |� h. Then there are relational database
states D1, . . . , Dn−1 (in LT R) such that

P,D,D1 . . .Dn−1,D(dn) |� h

where D(dn) is as in Definition 17.

Proof See Appendix C. ��
Theorem 5 (Completeness) Let P be a Horn-T R– transac-
tion base and D a database state. Let (Q,S)d0 be a relational
specification of (P,D), and h a serial goal. Suppose that
P,D, . . .Dn |� h. Then there are state identifiers d1 . . . dn

such that Q,S, d0 . . . dn |� h.

Proof See Appendix C. ��

5 Reducing Relational T RP AD
D to Logic Programming

In this section we define a reduction for a large fragment
of T RPAD,which we call definite T RPAD, T RPAD

D , to sorted
Horn logic programming, and prove its soundness and com-
pleteness. The only difference between T RPAD

D and T RPAD is
that T RPAD

D allows neither non-deterministic nor converging
run-premises and it requires the set of premises to be well-
founded. These notions are defined next.

A set of run-premises is converging if it has a pair of
run-premises that share the same final state. For instance,

d1
shoot� d2

d3
load� d2

Two run-premises for the same partially defined action, α,
are non-deterministic if they have the same initial state but
different final states. For instance the following run-premises
are non-deterministic:

d
α� d1

d
α� d2

We should note that the restriction about determinism of the
premises concerns partially defined actions only: complex
actions defined by serial-Horn rules can be non-determinis-
tic, and T RPAD

D can represent and deal with them.
We say that a set of premises S is well-founded if S does

not have an infinite chain of run-premises of the form d1
α0�

d0, d2
α1� d1, d3

α2� d2, . . . , for any states d0, d1, d2, . . .

and partially defined actions α0, α1, α2, . . . . As a special
case, this precludes circular run-premises. For instance, the
set of premises that has the following run-premises is not
well founded:

d1
α� d2 d2

β� d1

As in Sect. 3, all states in T RPAD
D are relational, i.e., col-

lections of fluents. Given a language LT R of T RPAD
D , the tar-

get language LL P for the logic programming reduction of
T RPAD

D is defined as in Sect. 3 except for the set of constants.
Recall that the language of the reduct has three distinguished
predicate symbols: Holds, I nertial, and Execute; and the
distinguished function symbols Result, ⊗, ♦, and neg .
Section 3 had a single state-constant s0, but now we will
have a unique state-constant sd for each database state d.

Intuitively, the atom Holds( f, s) means that the fluent f
holds in state s, and Execute(α, s1, s2) means that execut-
ing α in s1 leads to state s2. The intuition behind neg , ♦, ⊗
should be clear at this point: they encode negated literals,
hypotheticals, and sequencing of actions. The state-term
Result (α, s) represents the state resulting from executing α
in the state s.

The set of LP axioms that constitute the reduction depends
on the input transaction base P as well as on the set of
premises S. We denote this reduction by �(P,S).

As in Sect. 3, we use the following conventions: S, S1, S2,

and so on, denotestate-variables; the symbols A, A1, A2,

etc., are used for action-variables; and F, F1, F2, etc.,
represent fluent-variables.

Note that in the PADs the pre- and post-conditions are con-
junctions of fluents, and occasionally we will need Boolean
combinations of fluents. In these cases, we will be sometimes
using the usual De Morgan’s laws, such as neg ( f ∧ g) =
neg f ∨neg g, and we postulate that∨ and∧ are distributive
with respect to Holds. For example,
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Holds( f1 ∧ f2, s) ≡ Holds( f1, S) ∧ Holds( fn, S)
Holds( f1 ∨ f2, s) ≡ Holds( f1, S) ∨ Holds( f2, S)
Holds(neg ( f1 ∧ f2), s) ≡ Holds(neg f1, S) ∨

Holds( f neg 2, S)
Holds(neg ( f1 ∨ f2), s) ≡ Holds(neg f1, S) ∧

Holds( f neg 2, S)

The reduction �(P,S) of a T RPAD
D specification (P,S) is

defined by the following set of rules and facts. First we define
db2stS , as a correspondence between database states and
state-terms, as follows:

– db2stS(d) = sd, if d occurs in a run- or state-premise

in S and S has no run-premise of the form d0
α� d, for

some state d0. Here sd is the unique LL P state constant
that corresponds to the T RPAD

D state identifier d and α is
a partially defined action.

– db2stS(d) = Result(α, s), if S has a run-premise of the

form d0
α� d, and db2stS(d0) = s.

Note that this definition is well-formed because S is a
well-founded set of premises.

Premises: The following facts are added to�(P,S) for each
premise in S:

– For each state-premise d� f ∈ S and any state s =
db2stS(d):

Holds( f, s) ∈ �(P,S)

– For each run-premise d1
α� d2 ∈ S and any state

s = db2stS(d1):

Execute(α, s,Result(α, s)) ∈ �(P,S)

No-op: For each database D such that db2stS(D) is non
empty, and for any state s = db2stS(D)4

Holds((), s) ∈ �(P,S)

Unfolding: For each α← β ∈ P, �(P,S) has the rule

Execute(α, S1, S2)← Execute(β, S1, S2)

Sequencing: �(P,S) has the rule

Execute(A1 ⊗ A2, S1, S2)← Execute(A1, S1, S),
Execute(A2, S, S2)

4 Recall that () is an empty conjunction of fluents.

Decomposition: For every conjunction of fluent-terms
and hypotheticals g and each conjunct h in g, �(P,S)
includes the following rule:

Execute(h, S, S)← Execute(g, S, S)

Hypothetical: Execute(♦A, S, S)← Execute(A, S, S1).
Query: If f is a ground base fluent-term or the empty

conjunction (), then �(P,S) includes

Execute( f, S, S)← Holds( f, S)

Forward Projection: For each P AD b1⊗α⊗ b2 → b3⊗
α ⊗ b4 ∈ P, �(P,S) has the following rules:

Holds(b3, S)← Execute(α, S,Result(α, S)),
Execute(b1, S, S),
Execute(b2,Result(α, S),Result(α, S))

Holds(b4,Result(α, S))←
Execute(α, S,Result(α, S)),
Execute(b1, S, S),
Execute(b2,Result(α, S),Result(α, S))

Observe that, since b1, b2, b3, and b4 might be conjunc-
tions of literals, application of De Morgan’s laws to these
rules may result in conjunctions in the rule heads and dis-
junctions in the body. However, such rules reduce to Horn
rules.

Observe that�(P,S) contains one kind of LP rule for each
inference rule/axiom in F5 plus one extra rule that interprets
fluents as trivial actions that do not change states. Also note
that derived fluents can appear only in Execute statements,
and not inside the Holds facts.

It follows directly from the construction of �(P,S) that
it is equivalent to a set of Horn rules for any T RPAD

D transac-
tion base P. Therefore, it has a unique least Herbrand model,
which can be computed via a repeated exhaustive application
of the rules in �(P,S) in a bottom-up fashion.

Definition 18 (Correspondence between fluents in LL P and
LT RPAD ) Given a ground state-term s in LL P , we define
D(s) to be the following set of database fluents in the lan-
guage LT RPAD of Transaction Logic:

{ f | f is a ground fluent-term such that
�(P,S) |� Holds( f, s)}

The following definition relies on the fact that S has no
non-deterministic run-premises in T RPAD

D and that it is well
founded.

5 Forward Projection in �(P,S) consists of two kinds of rules, one for
the post-condition, and one for the pre-effect.
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The soundness theorem uses the following partial func-
tion from state-terms to database states. Let st2db be the
partial function defined as follows:

Definition 19 Let �(P,S) be an LP-reduction of a rela-
tional T RPAD

D specification (P,S). We define a partial func-
tion st2db from state-terms to database state identifiers as
follows:

– st2db(sd) = d, if d occurs in a run- or state-premise

in S and S has no run-premise of the form d0
α� d for

some d0. If d does not occur in any run- or state-premise
in S, then st2db(sd) is undefined. Here sd is the unique
state constant that corresponds to the database state d and
α is a partially defined action. Here sd is the unique state
constant that corresponds to the database state d and α is
a partially defined action.

– st2db(Result (α, s)) = d, if st2db(s) exists and
db2st (s)

α� d ∈ S. Otherwise, st2db(Result (α, s))
is undefined.

st2db(s) is uniquely defined and thus well formed because
S is well founded and has no non-deterministic run-premises.

Theorem 6 (Soundness) Let �(P,S) be an LP-reduction
of a T RPAD

D program (P,S). Suppose that �(P,S) |�
Execute(α, s1, s2), where s1 and s2 are ground state-
terms and α an action. Then there are relational database
states d1, . . . , d2 in LT R such that the following holds:

(1) P,S, d1 . . . d2 |� α
(2) d1 = st2db(s1), d2 = st2db(s2)

(3) P,S, d1 |� D(s1)

(4) P,S, d2 |� D(s2)

where D(s) denotes the set of all database fluents f in the
language LT RPAD , such that �(P,S) |� Holds( f, s).

Proof See Appendix D. ��
Theorem 7 (Completeness) Let�(P,S) be an LP reduction
of a T RPAD

D specification (P,S). Suppose that P,S, d1 . . .

dn |� φ. Then the following holds: – If n = 1, and there is
a state-term s1 such that db2stS(d1) = s1, then φ is a
conjunction of fluents and hypotheticals and

�(P,S) |� Execute(φ, s1, s1)

– If n > 1, and there are ground state-terms s1, s2 such
that db2stS(d1) = s1 and db2stS(dn) = s2, then

�(P,S) |� Execute(φ, s1, s2)

Proof See Appendix D. ��
In plain English, these theorems say that every execution

of an action in�(P,S) has a similar execution in T RPAD
D , and

vice versa.

6 Related Work

In this section briefly compare T RPAD with several well-
known action languages.

The L1 language [6].The alphabet of L1 consists of three
disjoint nonempty sets of symbols: a set of fluent names F, a
set of action names A, and a set of situations S.The language
L1 contains two kinds of propositions: causal laws and facts.
In the following table, f, f1 . . . fn are fluent literals, each si

is a situation, a is an action, and α stands for a sequence of
actions.

Causal laws
(1) a causes f if f1 . . . fn (causal law)

Atomic Facts
(2) α occurs_at s (occurrence fact)
(3) f at s (fluent fact)
(4) s1 precedes s2 (precedence fact )

The causal law (1) describes the effect of a on f.We will
say that f1 . . . fn is the precondition of the action a and f
is its effect. Intuitively, the occurrence fact (2) means that
the sequence α of actions occurred in situation s. The fluent
fact (3) means that the fluent f is true in the situation s. The
precedence fact (4) states that the situation s2 occurred after
the situation s1. Statements of the form (2), (3), (4), are called
atomic facts. A fact is a conjunction or disjunction of atomic
facts. An L1 domain description is a set of laws and facts D.
In order to query and reason about domain descriptions, [6]
provides a sound, but incomplete translation of a fragment of
L1 into logic programming.

There are several similarities in the modeling capabili-
ties of T RPAD and L1: elementary actions (PADs vs. causal
laws), states (state-premises vs. fluent facts), execution of
actions (state-premises vs. occurrence facts), etc. However,
the semantics of T RPAD and L1 are completely different and
so are some of the capabilities (compound/recursive actions
and fluent rules vs. interloping actions). From the reasoning
perspective, T RPAD has a sound and complete proof system,
whereas L1’s reasoning depends on a sound, but incomplete
translation to logic programming. Further details about the
relation between L1 and T RPAD can be found in [31].

The ALM language [22]. This action language intro-
duces the following features that L1 lacks: defined fluents,
modular definition of actions, sorts, executability conditions,
and a form of concurrency. Although in ALM one can
describe the effects and hierarchies of actions and also define
fluents based on other fluents, one cannot (i) express the exe-
cution of actions like the occurrence facts in L1 and run-
premises in T RPAD do, or (ii) to assert information about
states, as do the fluent facts in L1 and state-premises in
T RPAD. Recursion is disallowed for actions, but it is allowed
for fluents.
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T RPAD can express most of the features of ALM rather
easily: defined fluents are expressed with fluent rules, mod-
ular definition of actions is done using compound actions,
sorts can be emulated by predicates, and executability condi-
tions can be represented using compound actions. However,
T RPAD does not yet handle parallel actions.

The C language [20]. This language is based on the the-
ory of causal explanation. That is, everything that is true in
a state must be caused. This implies that the frame axioms
are not part of the semantics but are expressed as axioms. In
that sense, T RPAD is closer to C than to L1. The language C is
the simplest among the formalisms mentioned so far. It only
allows causal laws and fluent definitions of the form

– caused F if G; and
– causes F if G after H

where F,G, H are propositional formulas, and only H can
contain actions. Note that H may contain more than one
action, which leads to concurrency in causal laws. Although
causal laws can contain disjunctions in the rule conditions
and effects, which is disallowed in PADs, in the propositional
case disjunction can be modeled in T RPAD by splitting rules.
For instance, causes f if g1 ∨ g2 after h is equivalent to the
set of rules causes f if g1 after h and causes f if g2 after h.
A similar transformation can eliminate disjunction from F
and H. In this way, T RPAD can model non-concurrent domain
descriptions of C. In addition, [20] also shows how to encode
forward-reasoning frame axioms, but C is not expressive
enough to solve problems that involve backward reasoning,
which is easily done in T RPAD. This type of reasoning is done
in T RPAD by exploiting the pre-effects of PADs, which are
not available in C. C also does not support hypothetical tests
and hypothetical actions.

Situation Calculus and Golog [23,27,30].In the Situa-
tion Calculus (SC) a domain description is composed of the
following axioms:

– An axiom for each action in the language specifying the
action preconditions. Action preconditions are conjunc-
tion of fluent literals.

– For each fluent, the successor state axioms which describe
the effect of the different actions on that fluent. These axi-
oms also take care of encoding the inertia laws.

– Axioms describing defined fluents.
– The foundational axioms of the situation calculus. The

description of these axioms are beyond the scope of this
work; further details can be found in [23,30].

There are two important features in T RPAD that are lacking in
SC: hypothetical formulas (which may include actions), and
a direct connection between the precondition of the action
and its effect. In SC the preconditions of actions are spec-

ified separately from their effect, so it is rather difficult to
specify different effects for an action that depends on dif-
ferent preconditions. SC also lacks the flexibility to specify
which actions are subject to the inertia laws in which state.

Some features, like recursion, sequence of actions, and
complex actions, were absent in the earlier versions of SC
but were incorporated later on, when Golog was defined.
However, Golog is not a logic, but an imperative program-
ming language based on SC. It inherits from SC the limi-
tations regarding hypothetical reasoning and the ability to
easily define effects based on different preconditions.

To summarize, T RPAD offers a more modular, succinct,
and clear way of specifying action preconditions and effects
in the form of PADs. It gracefully supports hypothetical
tests, including hypothetical actions, that are very useful in
many scenarios, such as preventing undesired executions. It
is worth noting that T RPAD does not require foundational axi-
oms of SC and states do not occur as arguments of actions or
of fluents, unlike situations in SC. All these features coexist
within a single logical language with a single unifying model
and proof theory; T RPAD does not resort to an external imper-
ative language to provide action composition and other basic
features.

Fluent Calculus and Flux [38,39]. The Fluent Calculus
(FC) deviates from SC by introducing states instead of situ-
ations and by specifying the effects of actions using action-
based state update axioms (as opposed to SC’s successor state
axioms). These axioms also take care of the inertia laws. As
in SC, FC theories need a set of foundational axioms. FC also
has Flux, a high-level programming language. Like Golog,
it is not a logical language, but an imperative language that
operates with logical statements. FC allows nondeterminis-
tic actions, looping actions, and defined fluents. In that sense
FC is closer to T RPAD than SC. However, FC (and Flux) offer
concurrent actions which is lacking in T RPAD.

On the other hand, T RPAD allows complex hypothetical
tests including hypothetical actions, complex actions, a sim-
ple and modular way of expressing the laws of inertia, and it
does not require a complex set of foundational axioms or an
external non-logical language.

Event Calculus [25]. Event calculus (EC) is a methodol-
ogy for specifying actions in logic programming. It includes
predicates for describing the initial situation, the effects of
actions, and for specifying which fluents hold at what times.
The event calculus solves the frame problem in a way that
is similar to the successor state axiom but relies on non-
monotonic aspects of logic programming (unlike SC, which
is completely first-order). It is capable of representing a vari-
ety of features present in T RPAD, like defined fluents, actions
with non-deterministic effects, compound actions. It also has
some features that are not present in T RPAD, like parallel
actions. However, EC does not support hypothetical actions
and recursion.
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In sum, T RPAD offers a powerful combination of fea-
tures for action representation most of which are not pres-
ent in combination in any other formalism. These include
recursion, non-determinism, compound and partially defined
actions, hypothetical reasoning, forward and backward rea-
soning in time, logical model theory, and sound and complete
proof theory. Nevertheless, T RPAD does not completely sub-
sume any of the other formalisms discussed in this chapter,
for it does not support concurrency and interloping partial
action definitions. Enhancing T RPAD in that direction, includ-
ing well-founded negation to lift the restriction over interlop-
ing actions, and parallel actions as in Concurrent T R [37],
will be the focus of our future work.

7 Conclusions

We extended Transaction Logic and made it suitable for
reasoning about partially defined actions. We illustrated the
power of the language for complex reasoning tasks involving
actions and gave a sound and complete proof theory for that
formalism. We also showed that, when all partially defined
actions are definite, such reasoning can be done by a reduc-
tion to ordinary logic programming. This last contribution
provides an easy way to implement and experiment with the
formalism, although a better implementation should be using
the proof theory directly, similarly to the implementation of
the serial-Horn subset of TR in FLORA-2 [24].

This work continues the line of research started in [8],
which, however, was targeting a different fragment of TR.
It did not provide a complete proof theory or a reduction
to logic programming. It also did not consider premise state-
ments and thus could not be used for reasoning about partially
defined actions without further extensions.

In many respects, T RPAD supports more general ways of
describing actions than other related formalisms [4–6,19,21,
40] including non-determinism, recursion, and hypothetical
suppositions. Uniquely among these formalisms it supports
powerful ways of action composition. Nevertheless, as dis-
cussed in Sect. 6, T RPAD does not subsume other works on
the subject, as it cannot perform certain reasoning tasks that
are possible with formalisms such as [3,5,40].

Enhancing T RPAD in that direction, including non- mono-
tonic extensions, will be the focus of our future work.
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A Proofs of the Reduction of Serial Horn-T RP AD to LP

This appendix contains proofs of soundness and complete-
ness of the reduction of serial Horn-T R– to LP developed

in Sect. 3. We assume that all transactions are serial goals,
and that the transaction base is a set of serial Horn rules. For
convenient reference we reproduce some of the definitions
below.

Definition 20 (Consistency and completeness of state-
terms) Let �(P,D) be the LP reduction of a serial-Horn T R
program (P,D) and let s be a ground state-term. We say
that s is complete if and only if for any ground basefluent-
term f

�(P,D) |� Holds( f, s) or �(P,D) |� Holds(neg f, s)

We will say that s is consistent if and only if there is no
ground base fluent-term f such that both of the follow-
ing hold:

�(P,D) |� Holds( f, s) and �(P,D) |� Holds(neg f, s)

We will now establish a number of properties of the LP-
reduction.

Proposition 3 (State consistency and completeness) Let
�(P,D) be an LP-reduction of a relational serial-Horn
Transaction Logic program (P,D). Let s, ŝ be ground
state-terms such that �(P,D) |� Execute(α, ŝ, s) holds,
where α is a ground action-term. If ŝ is consistent then so
is s. If, in addition, ŝ is complete then s is also complete.

Proof Recall that �(P,D) has a unique least Herbrand
model, M, so �(P,D) |� Execute(α, ŝ, s) if and only
if Execute(α, ŝ, s) ∈ M. This model is computed via a
sequence of bottom-up derivation steps, which apply the rules
of �(P,D) to the facts in �(P,D) and then repeatedly to the
newly derived facts. Our proof will proceed by induction on
the number N of such steps. We will prove only the sec-
ond claim, namely, that consistency and completeness of ŝ
implies these properties for s.A proof of the fact that consis-
tency alone (without completeness) of ŝ implies consistency
for s can be obtained by disregarding the completeness con-
siderations in the proof below.

Base case: N = 1. This means that Execute(α, ŝ, s)
is a fact in �(P,D) and thus it can be derived by the
rule Execution only. Therefore, α is an elementary action
and s = Result (α, ŝ). Since insert and delete actions are
symmetric in �(P,D), let us assume for concreteness that
α = insert ( f ) for some fluent f. By the rule Inertial, all
base fluents except f and neg f are inertial with respect to
α. By Frame Axiom, this means that, for every base ground
fluent-term h other than f and neg f,6 Holds(h, s) ∈M
if Holds(h, ŝ) ∈ M. Since ŝ is a complete and consistent
state, it follows that for every fluent other than f or neg f,
the fluent or its negation holds in s. For the remaining fluents

6 Recall that, by convention, double-negation cancels out.
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f and neg f, the rule Effect+ yields Holds( f, s) ∈M while
Holds(neg f, s) can be derived neither by Frame Axiom nor
by the Effect axioms—the only rules that can possibly derive
Holds-facts for states other than s0. This establishes the base
case of the induction.

Induction step: N = k, where k > 1. Assume that
the claim holds for all facts of the form Execute(α, ŝ, s)
that were derived via k − 1 or fewer derivation steps.
Execute(α, ŝ, s) can possibly be derived only via one of
the following rules: Unfolding, Sequencing, Hypothetical,
or Query. We will consider each possibility in turn.

Unfolding: Suppose Execute(α, ŝ, s) was derived via a
ground instance

Execute(α, ŝ, s)← Execute(β, ŝ, s)

of the rule Unfolding. This means that Execute(β, ŝ, s) ∈
M, and it was derived before Execute(α, ŝ, s), i.e., using
< k steps. Hence, s is consistent and complete, by the induc-
tive hypothesis.

Sequencing: Suppose that α = β ⊗ γ, and Execute(α,
ŝ, s) was derived via a ground instance

Execute(β ⊗ γ, ŝ, s)← Execute(β, ŝ, s′), Execute(γ, s′, s)

of the rule Sequencing. This means that Execute(β, ŝ, s′)
and Execute(γ, s′, s) have already been derived in less than
k steps. By the inductive hypothesis, since ŝ is consistent and
complete, so is s′. Applying the inductive hypothesis again
to Execute(γ, s′, s), we conclude that s is also consistent
and complete.

Hypothetical: Suppose α = ♦β, and Execute(α, ŝ, s)
was derived via a ground instance

Execute(♦β, ŝ, ŝ)← Execute(β, ŝ, s′)
of the rule Hypothetical. Since here s = ŝ, the claim follows
trivially.

Query: Suppose Execute(α, ŝ, s)was derived by the rule
Query. The argument here is the same as in the case of the
rule Hypothetical: s = ŝ and therefore s both consistent and
complete. ��
Definition 21 (Correspondence between states in LL P and
LT R) Given a ground state-term t in LL P , let D(t) denote
the following set of database fluents in the language LT R of
Transaction Logic:

D(t) = { f | f is a ground base fluent-term
such that �(P,D) |� Holds( f, t)}
Theorem 8 (Soundness) Let �(P,D) be an LP-reduction of
a relational serial-Horn T R program (P,D) and suppose
that �(P,D) |� Execute(α, ŝ, s), where ŝ and s are ground
state-terms and ŝ is consistent. Then there exist relational
database states D1, . . . , Dn (in LT R) such that

P,D(ŝ)D1D2 . . .DnD(s) |� α

where D(ŝ) and D(s) are as in Definition 10.

Proof The proof is by induction on the number N of deriva-
tion steps needed to conclude Execute(α, ŝ, s) ∈M, where
M is the unique least model of �(P,D). Observe that since
ŝ is consistent, so is s, by Proposition 1,

Base case: N = 1, i.e., Execute(α, ŝ, s) ∈ M was
derived in just one derivation step. This could be done only
via the rule Execution, and in this case α is a an elementary
action insert ( f ) or delete( f ) and s = Result (α, ŝ).Recall
that the treatment of insert and delete actions in �(P,D)
is completely symmetric. For concreteness, we assume that
α = delete( f ).

Similarly to the proof of Proposition 1, it is easy to show
by direct inspection of the rules in �(P,D) that if g is unre-
lated to f and both f and g are ground base fluents then
Holds(g, ŝ) ∈M iff Holds(g, s) ∈M.

Concerning f, we know from the rule Effect- that
Holds(neg f, s) ∈ M and that (by consistency and com-
pleteness of ŝ) either Holds( f, ŝ) or Holds(neg f, ŝ) holds,
but not both. Therefore, D(s) = D(ŝ)−{ f }+{neg f }.By the
definition of the relational deletion operations in Transaction
Logic, it follows that P,D(ŝ)D(s) |� α.

Inductive hypothesis: N = k > 1 and assume that the
claim holds for all statements Execute(α, ŝ, s) that are deriv-
able via less than k derivation steps using the rules in�(P,D).
As in earlier proofs, Execute(α, ŝ, s) can possibly be derived
only via one of the following rules: Unfolding, Sequencing,
Hypothetical, or Query. So we will consider each possibility
in turn.

Unfolding: Suppose Execute(α, ŝ, s) was derived via a
ground instance

Execute(α, ŝ, s)← Execute(β, ŝ, s)

of rule Unfolding. This implies the following:

– α← β is a ground instance of an implication in P
– Execute(β, ŝ, s) ∈ M, and it was derived before

Execute(α, ŝ, s), i.e., using < k steps.

By the inductive hypothesis, P,D(ŝ)D1D2 . . .DnD(s) |�
β for some intermediate database states D1,…, Dn, and D(s)
is consistent. This and the fact that α ← β is an instance of
an implication in P implies P,D(ŝ)D1D2 . . .DnD(s) |� α,

by the definition of implication in T R.
Sequencing: Suppose that α = β ⊗ γ, and Execute(α,

ŝ, s) was derived via a ground instance

Execute(β ⊗ γ, ŝ, s)← Execute(β, ŝ, s′), Execute(γ, s′, s)

of rule Sequencing. This means that both Execute(β, ŝ, s′)
and Execute(γ, s′, s)were derived in less than k steps. Since
ŝ is consistent and complete, Proposition 1 ensures that so
are s′ and s. By the inductive hypothesis, we conclude that

P,D(ŝ)D1D2 . . .DmD(s′) |� β
P,D(s′)Dm+1Dm+2 . . .DnD(s) |� γ
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for some intermediate states D1,…, Dn, and that D(s′), D(s)
are consistent. The claim now follows from the definition of
serial conjunction ⊗ in T R.

Hypothetical: Suppose α = ♦β, and Execute(α, ŝ, s)
was derived via a ground instance

Execute(♦β, ŝ, ŝ)← Execute(β, ŝ, s′)

of the rule Hypothetical. By the inductive hypothesis,
P,D(ŝ) . . .D(s′) |� β. Therefore, the definition of the hypo-
thetical operator in T R yields P,D(ŝ) |� ♦β.

Query: Suppose Execute(α, ŝ, s)was derived by the rule
Query. This means that Execute(α, ŝ, s) was derived via
a rule of the form Execute( f, ŝ, ŝ) ← Holds( f, ŝ) and
Holds( f, ŝ) ∈ M, where f is a ground base fluent. In par-
ticular, α = f and s = ŝ. By Definition 10, f ∈ D(ŝ)
and, by the definition of executional entailment for fluents in
T R, P,D(ŝ) |� f.

Theorem 9 (Completeness) Let �(P,D) be an LP-reduc-
tion of a relational serial-Horn T R program (P,D). Sup-
pose that P, D̂D1 . . .DnD̄ |� α, where D̂ = D(ŝ) for some
consistent ground state-term ŝ. Then there is a consistent
ground state-term s̄ such that D̄ = D(s̄) and �(P,D) |�
Execute(α, ŝ, s̄).7

Proof The proof relies on the fact that serial-Horn Transac-
tion Logic has a sound and complete proof theory [9]. We
reproduce a ground version of that theory below. This ground
version suffices for the purpose of our proof, since the prob-
lem can be reduced to the case where P is ground.

TR0 (axiom): P,D � (), where () is an empty serial
conjunction of actions, which we will
view as a special fluent that is true in
every state.

TR1 (folding): Suppose α ← β ∈ P. Then, for any
sequence of database states D1, . . . ,Dn,

from P,D1, . . . ,Dn � β⊗γ derive P,
D1, . . . ,Dn � α ⊗ γ.

TR2 (hypothetical): From P,D,D′1, . . . ,D′n � β and P,D,
D1, . . . ,Dm � γ derive P,D,D1, . . . ,

Dm � ♦β ⊗ γ.
TR3 (query): Suppose f is a fluent such that f ∈ D1.

Then from
P,D1, . . . ,Dn � β derive P,D1, . . . ,

Dn � f ⊗ β.
TR4 (update): Suppose u is an elementary transi-

tion (insert ( f )or delete( f )) such that
P,D1D2 |� u. Then from P,D2 . . .

Dn � β derive P,D1D2 . . .Dn �
u ⊗ β.

7 D(ŝ) and D(s̄) were introduced in Definition 10.

We will now prove the theorem by induction on the number
N of steps needed to derive

P, D̂,D1, . . . ,Dn, D̄ � α (17)

using the above inference rules and the axiom.
Base case: N = 1. In that case, (17) must have been

derived by the axiom T R0 and thus must have the form
P, D̂ � (), where D̂ = D̄ (and thus ŝ = s̄). Since () is
treated as a fluent that is true in every state, the rule Query
of �(P,D) ensures that �(P,D) |� Execute((), ŝ, s̄), since
ŝ = s̄.

Inductive case: N = k > 1. Suppose that whenever (17)
can be derived by the above proof theory in less than k steps
then �(P,D) |� Execute(α, ŝ, s̄). To prove that the same
holds also when (17) is derived using k steps, note that the
last step in the derivation must be an application of one of
the rules T R1, …, T R4. We consider each of these cases in
turn.

T R1: (17) was derived because α ← β ∈ P and
P, D̂D1 . . .DnD̄ � β ⊗ γ was derived previously, in less
than k steps. By the inductive assumption, �(P,D) |�
Execute(β⊗γ, ŝ, s̄)must hold. But then, by the rule Unfold-
ing of �(P,D) we can derive �(P,D) |� Execute(α, ŝ, s̄).

T R2: (17) was derived because α = ♦β ⊗ γ and both
P, D̂D′1 . . .D′n � β and P, D̂D1 . . .DmD̄ � γ were derived
previously via less than k steps. By the inductive assumption,
�(P,D) |� Execute(β, ŝ, s′n), for some consistent state s′n,
and �(P,D) |� Execute(γ, ŝ, s̄). But then rules Hypothet-
ical and Sequencing yield �(P,D) |� Execute(α, ŝ, s̄).

T R3: (17) was derived because α = f ⊗ β, f ∈
D̂, and P, D̂D1 . . .DnD̄ � β was derived previously. Since
f ∈ D̂, Definition 10 implies �(P,D) |� Holds( f, ŝ). The
inductive assumption also gives us �(P,D) |� Execute
(β, ŝ, s̄). The inductive claim now follows from these two
facts and the rules Query and Sequencing.

T R4: (17) was derived because α = u ⊗ β, where u
is an elementary transition such that P, D̂D1 |� u, and
P,D1 . . .DnD̄ � β was derived earlier. By the rule Execu-
tion, we have

�(P,D) |� Execute(u, ŝ, Result (u, ŝ)) (18)

Moreover, it is easy to show from the definitions of
insert ( f ), delete( f ) and the rules Effect+, Effect-, and
Frame Axiom that D1 = D(Result (u, ŝ)). This and the
inductive assumption lets us conclude

�(P,D) |� Execute(β, Result (u, ŝ), s̄) (19)

The inductive claim now follows from (18), (19), and the rule
Sequencing. This concludes the proof. ��
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B Soundness and Completeness Proofs for F

In this Appendix we prove soundness and completeness of
the inference system F developed in Sect. 4.1. For simplicity
we present a ground version of the inference system. Lifting
to the non-ground case is done in a standard way (cf. [9]).

B.1 Soundness of F

This appendix contains proofs of soundness of the inference
system F developed in Sect. 4.1. We assume that all trans-
actions are serial goals, that the transaction base is a set of
serial Horn rules and PADs, and that the set of premises are
state- and run-premises defined in Definition 11. For conve-
nient reference we reproduce the axioms and inference rules
of system F below.

Definition 22 (Inference System F) Let P be a transaction
base and S a set of premises. The inference system F consists
of the following axioms and inference rules, where d, d1, d2,

and so on, denote database states.
Axioms:

(1) No-op: P,S,d � ()

Inference rules: In the rules below, a, and α are literals,
and φ,ψ, and bi (i = 1, 2, 3, 4) are serial goals.

(1) A subset of Horn inference rules from [9,10]:

(a) Applying transaction definitions:

a← φ ∈ P
P,S,d1 . . . dn � φ ⊗ ψ
P,S,d1 . . . dn � a ⊗ ψ

(b) Hypothetical operations:

P,S,d,d′1, . . . ,d′n � β
P,S,d,d1, . . . ,dm � γ

P,d,d1, . . . ,dm � ♦β ⊗ γ
(2) Premise rules: Suppose d1

α� d2 or d� f is a premise
in S. Then

d1
α� d2 ∈ S

P,S,d1d2 � α
d� f ∈ S
P,S,d � f

(3) Forward Projection: Suppose α is a partially defined
ground action term. Then

b1 ⊗ α ⊗ b2 → b3 ⊗ α ⊗ b4 ∈ P
P,S,d1 � b1

P,S,d2 � b2

P,S,d1d2 � α
P,S,d1 � b3 and P,S,d2 � b4

(4) Sequencing:

P,S,d1 . . . di � φ
P,S,di . . . dn � ψ
where 1 ≤ i ≤ n

P,S,d1 . . . dn � φ ⊗ ψ

(5) Decomposition: Suppose φ and ψ are serial conjunc-
tions of literals and hypotheticals. Then

P,S,d � φ ⊗ ψ
P,S,d � φ and P,S,d � ψ

Theorem 10 (Soundness of F) If P,S, d1 . . . dn � φ then
P,S, d1 . . . dn |� φ

To prove Theorem 10, it is enough to show that every
axiom and inference rule of system F is sound. Soundness
of the axioms and of the Horn inference rules in F follows
from Theorem A.2 in [9] after simple adjustments for the
existence of PADs (instead of elementary updates defined by
transition oracles) in P. Lemma 1 establishes the soundness
of the remaining inference rules.

Lemma 1 (Inference Rules)

(1) Suppose that the premise d1
α� d2 is in S. Then

P,S, d1d2 |� α.
(2) Suppose that b1⊗ α⊗ b2 → b3⊗ α⊗ b4 is a P AD in

P. If

P,S, d1 |� b1

P,S, d2 |� b2

P,S, d1d2 |� α

then P,S, d1 |� b3 and P,S, d2 |� b4.

(3) Letφ andψ be serial conjunctions of atoms. If, for some
1 ≤ i ≤ n,

P,S, d1 . . . di |� φ
P,S, di . . . dn |� ψ

then P,S, d1 . . . dn |� φ ⊗ ψ.
(4) Let φ and ψ be serial conjunctions of fluents.

P,S, d1 |� φ ⊗ ψ

then P,S, d1 |� φ and P,S, d1 |� ψ.

Proof Claim 1 follows immediately, since for every model M
of (P,S) and premise d1

α� d2 in S, it follows by Definition
13 that M,d1d2 |� α Therefore, by definition of entailment
in T RPAD, we have P,S,d1d2 |� φ.
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To prove Claim 2, suppose that the P AD b1⊗ α⊗ b2 →
b3 ⊗ α ⊗ b4 is in P and the entailments in the statement of
the claim hold. Let M be a model of (P,S) such that

– M, 〈d1〉 |� b1

– M, 〈d2〉 |� b2

– M, 〈d1d2〉 |� α

Since M is also a model of b1 ⊗ α⊗ b2 → b3 ⊗ α⊗ b4 and
the premise of that implication holds in M, by assumption,
it follows that

M, 〈d1d2〉 |� b3 ⊗ α ⊗ b4

must hold. Since b3 and b4 are conjunctions of fluents and
M,d1d2 |� α, the definition of satisfaction in T R implies

M, 〈d1〉 |� b3

M, 〈d2〉 |� b4

Since M is an arbitrary model of (P,S),we obtain P,S,d1 |�
b3 and P,S,d2 |� b4. Claims 3 and 4 follows directly from
the definition of serial conjunction ⊗. ��

B.2 Completeness of F

To prove completeness of the inference system F of Sect. 4.1,
we construct a canonical Herbrand model of the T RPAD spec-
ification (P,S). As before, U will be denoting the Herbrand
universe of the logic language and B its Herbrand domain. A
classical Herbrand structure is a subset of B. Recall that we
assume that all transactions are serial goals, that the trans-
action base is a set of serial Horn rules and PADs, and that
premise statements are as in Definitions 11.

Definition 23 (Canonical Model) The canonical model of a
transaction base P and a set of premises S is a Herbrand path
structure MP,S, such that

MP,S(〈d1 . . . dn〉) = {b ∈ B | P,S,d1 . . . dn � b}
for any sequence of states 〈d1 . . . dn〉.

To justify its name, we need to show that canonical mod-
els are indeed models. The next lemma shows that MP,S is a
path structure. That it is a model follows from Theorem 12,
below. Recall that in T RPAD we use PADs instead of elemen-
tary updates, so elementary updates and transition oracles of
TR play no role in our construction.

Lemma 2 Let MP,S be the canonical model of P,S. Then,

MP,S(〈d〉) |�c l for every literal l ∈ d

Proof If l ∈ d then, by the No-op axiom and the inference
rule 4,

P,S,d � l. By construction of MP,S, l ∈ MP,S(〈d〉),
which implies MP,S(〈d〉) |�c l. ��

The following lemma is a key property of canonical models:

Lemma 3 If b is a ground atomic formula, then

MP,S, 〈d1 . . . dn〉 |� b iff P,S, d1 . . . dn � b

Proof By the definition of satisfaction in path structures,
MP,S, 〈d1 . . . dn〉 |� b if and only if b ∈ MP,S(〈d1 . . . dn〉).
By Definition 23, b ∈ MP,S(〈d1 . . . dn〉) if and only if
P,S,d1 . . . dn � b. ��

We now generalize the aforementioned result to serial con-
junctions.

Theorem 11 Let φ be a ground serial conjunction. Then

if MP,S, 〈d1 . . . dn〉 |� φ then P,S, d1 . . . dn � φ
Proof Let φ have the form b1 ⊗ · · · ⊗ bk, where k ≥ 0 and
each bi is a ground atomic formula. Our proof is by induc-
tion on k. In the base case, k = 0 and φ is the empty clause
(i.e., ()). If the expression MP,S, 〈d1 . . . dn〉 |� () is true, then
n = 1, since the empty clause is true only on paths of length
one. But the sequent P,S,d1 |� () is an axiom, and the claim
follows.

For the inductive case, assume the claim is true for all k
such that 0 ≤ k < m. We show that it is true for k = m.
Below we use φm to denote b1 ⊗ · · · ⊗ bm−1. We have that

MP,S, 〈d1 . . . dn〉 |� φm ⊗ bm

by Definition 13,for some i,

MP,S, 〈d1 . . . di 〉 |� φm and MP,S, 〈di . . . dn〉 |� bm

by Inductive Hypothesis

P,S,d1 . . . di � φm and P,S,di . . . dn |� bm

by Lemma 3

P,S,d1 . . . di � φm and P,S,di . . . dn � bm

by Inference Rule 4

P,S,d1 . . . di � φm ⊗ bm

��
Theorem 12 MP,S is a model of P and S

Proof Since the proof that MP,S satisfies the Horn rules in
P is very similar to the proof of Theorem B.9 in [9], we only
show that MP,S satisfies the PADs in P and the premises in
S.

Let b1 ⊗ α ⊗ b2 → b3 ⊗ α ⊗ b4 be a P AD in P and
〈d1 . . . dn〉 a path. If

MP,S, 〈d1 . . . dn〉 |� α
MP,S, 〈d1〉 |� b1,

MP,S, 〈dn〉 |� b2
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Then, by Theorem 11,

P,S,d1 . . . dn � α
P,S,d1 � b1

P,S,dn � b2

(20)

and by inference rule 3 we get

P,S,d1 � b3 and P,S,dn � b4 (21)

Since b1 and b2 are classical conjunctions of fluents, by infer-
ence rule 5 we conclude P,S,d1 � b′1 for every atomic con-
junct b′1 of b1 and P,S,dn � b′2 for every atomic conjunct
b′2 of b2. From this and Lemma 3 it now follows that

MP,S, 〈d1〉 |� b′1
MP,S, 〈dn〉 |� b′2
and thus, by the definition of ∧, that

MP,S, 〈d1〉 |� b3

MP,S, 〈dn〉 |� b4

Finally, we observe that MP,S is a model of S because every
premise in S gives rise to a sequent in F , by inference rule 2.

Hence, for every premise d� f or d1
α� d2 in S we derive

the corresponding sequent P,S,d � f or P,S,d1d2 � α.
Therefore, f ∈MP,S(〈d〉) and α ∈MP,S(〈d1d2〉). ��

Corollary 1 (Completeness of F) Let φ be a ground serial
conjunction. Then

P,S, d1 . . . dn |� φ implies P,S, d1 . . . dn � φ

Proof Suppose that P,S,d1 . . . dn |� φ. Then

M, 〈d1 . . . dn〉 |� φ for every model, M, of P and S
MP,S, 〈d1 . . . dn〉 |� φ since MP,S is a model of (P,S), by

Theorem 12
P,S,d1 . . . dn � φ by Theorem 11 ��

C Proof of the Reduction of Horn-T R− to T RP AD

This appendix provides a proof that T RPAD generalizes Horn-
T R–.As a corollary, this means that the frame axioms in the
action theory behaves as expected in the relational case. That
is, they can model the inertia laws underlying the relational
transition oracles.

Proposition 4 (State consistency and completeness) Let
(P,D) be a Horn-T R– program and (Q,S)d be a rela-
tional specification for (P,D) (see Definition 16). Let α
be an action, and d1, d2 be state identifiers such that
Q,S, d1 . . . dn |� α. If D(d1) is consistent then so is D(dn).

If, in addition, D(d1) is complete then so is D(dn).

Proof The proof relies on the fact that T RPAD has a sound
and complete proof theory and proceeds by induction on the
number N of steps needed to derive

Q,S,d1 . . . dn � α (22)

Observe that since insert( f ) and delete( f ) have neither a
precondition nor a post-condition, we can disregard the fol-
lowing frame axioms:

– Forward and Backward Disablement
– Backward Projection
– Causality

Moreover, since the only state-premises we have use d0, we
can also disregard the Weak Disablement frame axiom.

Base Case: N = 1. In that case, (22) can be derived only
by the run-premise inference rule. Therefore (22) must have
the form

Q,S,d1d2 � α (23)

From the previous facts we know that α is either of the form
insert( f ) or of the form delete( f ). For concreteness assume
that α = insert( f ). From the definition of S we know that
for every elementary action α, and sequence r of elementary
actions, S contains run-premises of the form:

d0,r
α� d0,r,α

Thus, it follows that d2 = d1,insert( f ), where the subin-
dex 1 is a sequence of elementary actions. From definition of
satisfaction in path structures we know that for every model
M of Q,S:

M, 〈d1d2〉 � insert( f )

Since there are no state premises of the form d2 � g for
any fluent g, it follows that the base fluent facts that hold in
M(〈d2〉) are induced by the PADs that exist in the transac-
tion base. Thus, since M(〈d0〉) is complete and consistent,
from the Unrelatedness frame axioms we can conclude that
if M, 〈d1〉 |� g, then M, 〈d2〉 |� g for every base fluent g
other than f or neg f. And from the definition of insert( f ),
we know that M, 〈d2〉 |� f. It follows that D(d2) is also
consistent and complete.

Induction Step: N = k, and assume that whenever (22)
can be derived by the proof theory in less than k steps, then
consistency of D(d1) entails consistency of D(dn). If, in addi-
tion, D(d1) is complete then so is D(dn). Observe that (22)
can possibly be derived only via one of the following rules:
applying transaction definition Rule or Sequencing Rule. We
will consider each possibility in turn. Since α is an action,
(22) cannot be derived neither by the Forward Projection
Rule, nor by the Decomposition Rule.
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– Applying transaction definition Rule: Suppose that α is
a composed action, and there is a rule in P of the form

α← β

and (22) was derived via the Applying transaction defi-
nition Rule. Then we know that

Q,S,d1 . . . dn � β (24)

was derived in less than k steps. By Inductive Hypothesis,
if D(d1) is consistent and complete, then so is D(dn).

– Sequencing Rule: Suppose that α = β⊗ γ, and (22) was
derived via the Sequencing Rule. Then we know that

Q,S,d1 . . . dk � β and Q,S,dk . . . dn � γ (25)

were derived in less than k steps. By Inductive Hypothe-
sis, if D(d1) is consistent and complete, then so is D(dk),

and by inductive hypothesis again, so is D(dn). ��

Theorem 13 (Soundness) Let P be a Horn-T R– transac-
tion base and D a database state. Let (Q,S)d0 be a relational
specification of (P,D). Suppose that Q,S, d0 . . . dn |� h.
Then there exist relational database states D1, . . . , Dn−1

(in LT R) such that

P,D,D1 . . .Dn−1,D(dn) |� h

where D(dn) is as in Definition 17.

Proof The proof relies on the fact that T RPAD has a sound
and complete proof theory. We will now prove the theorem
by induction on the number N of steps needed to derive

Q,S,d . . . dn � h (26)

Base Case: N = 1. In that case, (26) can only be derived
by the (run or state) premise inference rule or by the axiom
in F . We consider each case in turn:

– Suppose that (26) was derived by the axiom in F , then
it follows that (26) has the form: P,d � (). The claim
follows by the axioms in the Horn-T R– proof system.

– Suppose that and (26) has the form P,S,d0 � h for some
fluent literal h, and it was derived by a state premise infer-
ence rule. By the definition of (Q,S)d0 , it follows that
d0�h ∈ S if and only if h ∈ D. Thus, D(d0) = D and by
definition of satisfaction in Horn-T R–,we can conclude
that P,D |� h.

– Suppose that (26) has the form P,S,dndn+1 � α for
some partially defined action α, and it was derived by a
run premise inference rule. The cases where α is an insert
or a delete are completely symmetrical. For concreteness
assume that α = insert( f ). By definition of S we know

that dn+1 = dn,α and there is a run premises in S of the
form

dn
α� dn+1

From the Unrelatedness frame axioms, it follows that for
every model M of (Q,S)d0 , it holds that

1. For every base fluent g

{g |M, 〈dn〉 |� g and g �= f and g �= neg f }
=
{g |M, 〈dn,α〉 |� g and g �= f and g �= neg f }

2. From the definition of insert( f ), we know that

M, 〈dn,α〉 |� f

Therefore, it follows that

D(dn,α) = D(dn) ∪ { f } \ {neg f }

this implies that

P,D(dn)D(dn,α) � α

Induction Step: N = k > 1 and assume that whenever
(26) can be derived by the proof theory in less than k steps;
then there are relational states D1 . . .Dn such that

P,D(d),D1 . . .Dn−1,D(dn) � h

– Forward Projection: Suppose that (26) was derived via
the Forward Projection rule. This means that (26) was
derived using a PAD p ∈ Q that belongs to one of the
following types of rules:

– A Frame Axiom
– The encoding of an elementary action.

We consider each of these cases in turn:

– Suppose (26) was derived via the Forward Projection
rule and p is a Unrelatedness pda. This implies that

1. p has the form inertial( f ) ∧ f ⊗ α→ α ⊗ f
2. (26) has the form P,S,dn � f
3. neither f nor neg f is a primitive effect of α, and,
4. the following statements were derived in less than

k steps:
(a) Q,S,dn−1 � f
(b) Q,S,dn−1,dn � α

by inductive hypothesis

P,S,D(dn−1) � f
P,S,D(dn−1)D(dn) � α
The cases where α is an insert or a delete are com-
pletely symmetrical. For concreteness assume that
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α = insert (g) where g �= f and g �= neg f. There-
fore, it follows by definition of the built-in operation
insert (g) in T R– that

P,D(dn) |� f

– Suppose (26) was derived via the Forward Projection
rule and p is the definition of insert or a delete. The
cases where p defines an insert or a delete are com-
pletely symmetrical. For concreteness assume that p
defines insert ( f ). This implies that

1. p has the form α→ α ⊗ f
2. (26) has the form P,S,dn � f
3. the following statement were derived in less than

k steps: Q,S,dn−1,dn � α
by inductive hypothesis

Q,S,D(dn−1)D(dn) � α
It follows that

P,D(dn) |� f

– Decomposition Rule: Suppose (26) was derived via the
Decomposition Rule rule. This implies that the following
statements was derived in less than k steps:

Q,S,d � ψ ⊗ φ

where φ and ψ are serial conjunction of fluent literals.
The inductive claim trivially follows from the inductive
hypothesis.

– Sequencing Rule: Suppose (26) was derived via the
Sequencing Rule rule. This implies that the following
statements were derived in less than k steps:

Q,S,d . . . dn � φ
Q,S,d . . . dn � ψ

Then, by the inductive hypothesis, there are relational
states D1 . . .Dn−1 such that

P,D(d),D1 . . .Dk−1,D(dk) |� φ
P,D(dk),D1 . . .Dn−1,D(dn) |� ψ

It follows that

P,D(d),D1 . . .Dn−1D(dn) |� φ ⊗ ψ

– Applying transaction definition Rule: Suppose that h is a
composed action, and there is a rule in P of the form

h← β

and (22) was derived via the Applying transaction defi-
nition Rule. Then we know that

Q,S,d1 . . . dn � β (27)

was derived in less than k steps. The claim follows from
the Inductive Hypothesis. This concludes the soundness
proof. ��

Theorem 14 (Completeness) Let P be a Horn-T R– trans-
action base and D a database state. Let (Q,S)d0 be a rela-
tional specification of (P,D). Suppose that

P,D, . . .Dn |� h.

Then there are state identifiers d1 . . . dn such that

Q,S, d0 . . . dn |� h

Proof The proof relies on the fact that serial-Horn Transac-
tion Logic has a sound and complete proof theory [9]. We
reproduce a ground version of that theory below. This ground
version suffices for the purpose of our proof, since the prob-
lem can be reduced to the case where P is ground.

TR0 (axiom): P,D � (), where () is an empty serial conjunc-
tion of actions, which we will view as a special fluent that
is true in every state.

TR1 (folding): Supposeα← β ∈ P. Then, for any sequence
of database states D1, . . . ,Dn , from P,D1, . . . ,

Dn � β ⊗ γ derive P,D1, . . . ,Dn � α ⊗ γ .
TR2 (hypothetical): From P,D,D′1, . . . ,D′n � β and

P,D,D1, . . . ,Dm � γ derive P,D,D1, . . . ,Dm �
♦β ⊗ γ .

TR3 (query): Suppose f is a fluent such that f ∈ D1.
Then from P,D1, . . . ,Dn � β derive P,D1, . . . ,Dn �
f ⊗ β.

TR4 (update): Suppose u is an elementary transition (insert
( f ) or delete( f )) such that P,D1D2 |� u. Then
from P,D2 . . .Dn � β derive P,D1D2 . . .Dn � u⊗β.

Observe that we only need to consider states which are
“reachable” from D. We say that D1 is reachable from D, if
there a serial conjunction of elementary actions φ such that

P,D, . . . ,D1 � φ (28)

Let D1 be reachable from D.We will now prove the theorem
by induction on the number N of steps needed to derive

P,D1, . . . ,Dn � h (29)

using the aforementioned inference rules and the axiom.
Base case: N = 1. In that case, (29) must have been

derived by the axiom T R0 and thus must have the form
P,D � (). The proof of this case follows from Axiom 1
in F .
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Inductive case: N = k > 1. Suppose that whenever (29)
can be derived by the aforementioned proof theory in less
than k steps; then there are state identifiers d1 . . . dn such
that

Q,S,d . . . dn |� h

To prove that the same holds also when (29) is derived
using k steps, note that the last step in the derivation must be
an application of one of the rules T R1, …, T R4. The cases
where the last step in the derivation of (29) was either T R1,

or T R2, follow straightforwardly from inductive hypothesis
and rules 1a and 1b, respectively. We consider each of the
remaining two cases in turn.

– T R4:(29) was derived because h = u ⊗ β, where u is
an elementary transition such that P,D1,D2 |� u, and
P,D2 . . .Dn � β.
Since D1 is reachable from D with a finite number of
insert and delete operations, we know that there is serial
conjunction of elementary actions φ s.t. P,D . . .D1 � φ,
can be derived by the above proof theory.
Thus, by construction of S we know that there is a data-
base state identifier dφ such that

Q,S,d0 . . . dφ |� φ

Suppose for concreteness that u = insert(g). From the
definition of S we know that

dφ
insert(g)� dφ,insert (g) ∈ S

Therefore,

Q,S,dφ,dφ,insert(g) � u

The claim now follows from 4 in F .
– T R3: (17) was derived because α = f ⊗ β, f ∈ D1,

and P,D1 . . .Dn � β was derived previously. Since D1

is reachable from D with a finite number of insert and
delete operations φ, we know that either

1. f ∈ D = and f was not removed by action φ, or
2. it was inserted by some insert action in φ.

In the first case, by definition, we know that

Q,S,d0 |� f
Q,S,d0 |� inertial( f );

thus the claim follows from rules 2 and 4 in F .
The second case follows straightforwardly using the
premises and following a similar reasoning as above. ��

D Proofs for the Reduction of T RP AD to Logic
Programming

In this appendix we prove soundness and completeness of
the reduction of T RPAD

D to sorted Horn logic programming
developed in Sect. 5.

Lemma 4 Let�(P,S)be an LP-reduction of a T RPAD
D speci-

fication (P,S). Suppose s = db2stS(d), then d = st2db(s).

Proof The proof is by induction on the structure of the
state-term db2stS(d) = s.

Base case: s is a state-constant. The claim follows
directly from Definition 19.

Inductive step: Suppose db2stS(d) = s, and s =
Result (α, s0) for some partially defined action α and a
state-term s0. By definition, there must be a premise

d0
α� d such that s0 = db2stS(d0). By the inductive

hypothesis, d0 = st2db(s0). From this and the definition
of st2db it follows that d = st2db(s). ��
Lemma 5 Let �(P,S) be an LP-reduction of a P AD spec-
ification (P,S). Let s be a ground state-term. Suppose
Holds( f, s) is a fact in �(P,S). Then

1. st2db(s) is defined and
2. P,S st2db(s) |� f.

As a special case, we get P,S, st2db(s) |� ().
Proof Suppose Holds( f, s) is a fact in �(P,S). By con-
struction of �(P,S), Holds( f, s) must have gotten into
�(P,S) due to the Premises part of the construction
because S has a state-premise of the form d � f such that
s= db2stS(d). (If f = (), then the same conclusion fol-
lows from the No-op rule.) By Lemma 4, we conclude that
d = st2db(s) and, therefore, st2db(s) is defined. Also, by
the Premise inference rule, P,S,d � f and, by the sound-
ness of the inference system, P,S,d |� f. ��

The following technical results are used in the proof of
soundness of the reduction from T RPAD

D to logic program-
ming.

Lemma 6 Let �(P,S) be an LP-reduction of a P AD speci-
fication (P,S). Suppose that, for some ground state-terms
s1 and s2 and a partially defined action α

– �(P,S) |� Execute(α, s1, s2)

– st2db(s1), st2db(s2) are defined, and
– P,S, d1d2 |� α, where d1 = st2db(s1) and d2 =

st2db(s2)

Then
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– P,S, d1 |� d(s1)

– P,S, d2 |� d(s2)

Proof Recall that �(P,S) has a unique least Herbrand
model, M, and, therefore, for any ground predicate p,
�(P,S) |� p if and only if p ∈ M. This model is com-
puted via a sequence of bottom-up derivation steps, which
apply the rules of �(P,S) to the facts in �(P,S) and then
repeatedly to the newly derived facts.

The proof is by induction on the number N of deri-
vation steps needed to conclude Holds( f, s1) ∈ M (or
Holds( f, s2) ∈ M). Since the proofs for Holds( f, s1)

and Holds( f, s2) are almost identical, we only give a proof
for Holds( f, s1).

Base case: N = 1. Observe that Holds( f, s1) can be
derived in one step only if Holds( f, s1) is a fact in �(P,S).
The claim now follows from Lemma 5.

Inductive step: N = k > 1. Suppose that the claim is
true for all state-terms s1, s2 such that Holds( f, s1) was
derived in less than k steps using the rules in �(P,D).

Note that, after the first iteration, the Holds facts can be
derived only via the Forward Projection rules in �(P,S), so
examine this case.

Forward Projection: Suppose Holds( f, s1) was derived
by a ground instance of one of the following the rules:

Holds(b3, S)← Execute(α, S, Result (α, S)),
Execute(b1, S, S),
Execute(b2, Result (α, S),

Result (α, S))
Holds(b4, Result (α, S))← Execute(α, S, Result (α, S)),

Execute(b1, S, S),
Execute(b2, Result (α, S),

Result (α, S))

This implies that

– there is a P AD of the form b1 ⊗ α⊗ b2 → b3 ⊗ α⊗ b4

in P.
– Execute(α, s1, Result (α, s1)), Execute(b1, S, S) and

Execute(b2, Result (α, S), Result (α, S)) were added
to M in less than k derivation steps.

The cases where f is derived by either of the two forward
projection rules above are analogous, so, for concreteness,
we assume that f is derived by the first rule and that f is a
conjunct in b3.

Recall that, by assumption, P,S,d1d2 |� α, where d1 =
st2db(s1) and d2 = st2db(Result (α, s1)), and that, by the
inductive hypothesis, we have

– P,S,d1 |� b1

– P,S,d2 |� b2.

Since the antecedent of the aforesaid PDA b1 ⊗ α ⊗ b2 →
b3 ⊗ α ⊗ b4 is satisfied, the definition of satisfaction in TR
implies that P,S,d1 |� b3. Finally, since f is a conjunct in
b3, we conclude that P,S,d1 |� f. ��
Proposition 5 Let �(P,S) be an LP-reduction of a T RPAD

D

specification (P,S).Suppose�(P,S) |� Execute(φ, s1, s2)

where s1 and s2 are ground state-terms. Then

– st2db(s1) and st2db(s2) are defined and
– P,S, d1 . . . d2 |� φ, where d1 = st2db(s1), d2 = st2db
(s2)

Proof The proof is by induction on the number N of der-
ivation steps needed to conclude Execute(φ, s1, s2) ∈ M,

where M is the unique least model of �(P,S).
Base case. N = 1: Let s1 and s2 be ground state-terms.

Suppose Execute(φ, s1, s2) was derived in just one deriva-
tion step. This means that Execute(φ, s1, s2) ∈ �(P,S) and

it got into �(P,S) due to the premise d1
φ� d2 ∈ S, where

s1 = db2stS(d1) and s2 = db2stS(d2). This and Lemma 4
yields d1 = st2db(s1) and d2 = st2db(s2). By the sound-
ness of the Premise inference rule, P,S,d1d2 |� φ.

Inductive step: N = k > 1. Suppose that the claim of
the proposition holds for all state-terms s1, s2 for which
Execute(α, s1, s2) is derivable in less than k derivation steps
using the axioms in �(P,D).

The statement Execute(α, s1, s2) can be derived only via
one of the following axioms: Unfolding, Premises, Sequenc-
ing, Query and Hypothetical. We consider each case in turn.

Unfolding: Suppose Execute(φ, s1, s2) was derived via
a ground instance of the Unfolding rule in �(P,D):

Execute(φ, s1, s2)← Execute(ψ, s1, s2)

This implies the following:

– φ← ψ is a ground instance of an implication in P
– Execute(ψ, s1, s2) ∈ M, and it was derived before

Execute(φ, s1, s2), i.e., using less than k steps.

By the inductive hypothesis,

– st2db(s1) and st2db(s2) are defined and
– P,S,d1 . . . d2 |� ψ, where d1 = st2db(s1),

d2 = st2db(s2)

From this and the definition of implication in TR, it follows
that

P,S,d1 . . . d2 |� φ
Sequencing: Suppose that φ = β ⊗ γ, and Execute(φ,

s1, s2) was derived via a ground instance of the sequencing
rule in �(P,D):

Execute(β ⊗ γ, s1, s2)← Execute(β, s1, s), Execute(γ, s, s2)
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This means that Execute(β, s1, s) and Execute(γ, s, s2)

have already been derived in a number of steps smaller than
k.

By the inductive hypothesis, it follows that st2db(s1),

st2db(s) and st2db(s2) are defined and

P,S,d1 . . . d |� β
P,S,d . . . d2 |� γ
where d1 = st2db(s1), d = st2db(s) and d2 = st2db(s2).

This and the definition of the serial conjunction ⊗ in T R
imply that

P,S,d1 . . . d2 |� φ
Decomposition: Suppose that φ is a fluent or an hypo-

thetical, and Execute(φ, s1, s2) was derived via a ground
instance of the decomposition rule in �(P,D):

Execute(φ, s1, s1)← Execute(g, s1, s1)

where s1 = s2. This implies the following:

– g is a conjunction of fluents and hypotheticals.
– Execute(g, s1, s1) ∈M, and it was derived before

Execute(φ, s1, s2), i.e., using less than k steps.

By the inductive hypothesis,

– st2db(s1) is defined and
– P,S,d1 |� g, where d1 = st2db(s1).

From this and the definition of serial conjunction in TR, it
follows that

P,S,d1 |� φ
Hypothetical: Suppose φ = ♦ψ, and Execute(φ, s1, s2)

was derived via a ground instance of the hypothetical rule in
�(P,D):

Execute(♦ψ, s1, s1)← Execute(ψ, s1, s)

where s1 = s2. By the inductive hypothesis,

– st2db(s1) and st2db(s) are defined and
– P,S,d1 d |� ψ, where d1 = st2db(s1), d = st2db(s)

Therefore, the definition of the hypothetical operator in
TR yields

P,S,d1 |� φ
Query Suppose Execute(φ, s1, s2) was derived via the

Query rule of �(P,S):

Execute(φ, s1, s1) ← Holds(φ, s1)

where s1 = s2, and Holds( f, s1) was derived in less
than k steps. This implies that φ is a fluent. Observe that

Holds(φ, s1) can be derived only by the rules Premises and
Forward Projection in �(P,S). If Holds(φ, s1) was derived
via the rule Premises, it means that Holds(φ, s1) is a fact in
�(P,S) and the claim follows from Lemma 5.

Suppose that Holds(φ, s1) was derived via the forward
projection rule. This means that φ is a primitive pre-effect or
a primitive effect of some P AD α. The proofs for pre-effects
and effects are similar, so we assume that φ is a primitive
pre-effect of α. It follows that there is a PAD of the form
b1⊗ α⊗ b2 → b3⊗ α⊗ b4 in P, φ is a conjunct in b3, and
Holds( f, s1) was derived by the forward projection rule in
�(P,S) associated with this P AD:

Holds(b3, s1)← Execute(α, S, Result (α, s1)),

Execute(b1, s1, s1),

Execute(b2, Result (α, s1),

Result(α, s1))

Recall from Sect. 5 that the aforementioned rules where
fluents like b3 can be complex formulas are just shortcuts
for sets of rules that are obtained by distributing ∧ through
Holds and eliminating conjunction in rule heads and dis-
junctions in rule bodies. Since φ is a conjunct in b3, one of
the rules obtained in this way will be

Holds(φ, s1)← Execute(α, s1,Result(α, s1)),

Execute(b1, s1, s1),

Execute(b2,Result(α, s1),

Result(α, s1))

That is, Holds(φ, s1) was derived in less than k steps, Since
Execute(α, s1, Result (α, s1)) is in the body of the above
rule, it was also derived in less than k steps. By the inductive
hypothesis,

– st2db(s1) and st2db(Result (α, s1)) are defined and
– P,S,d1 . . . d |� α, where d1 = st2db(s1) and d =

st2db(Result (α, s1))

The claim now follows from Lemma 6. ��

Theorem 15 (Soundness) Let �(P,S) be an LP-reduc-
tion of a TRPAD

D specification (P,S). Suppose �(P,S) |�
Execute(α, s1, s2) where s1 and s2 are ground state-
terms. Then there exist relational database states d1, . . . , d2

(in LT R) such that the following holds:

1. P,S, d1 . . . d2 |� α
2. d1 = st2db(s1), d2 = st2db(s2)

3. P,S, d1 |� d(s1) and P,S, d2 |� d(s2)

Proof Suppose �(P,S) |� Execute(α, s1, s2). Claims 1
and 2 follow directly from Proposition 5. Claim 3 follows
from Claim 2 and Lemma 6. ��
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Theorem 16 (Completeness) Let �(P,D) be an LP-reduc-
tion of a T RPAD

D specification (P,S). Suppose P,S, d1 . . .

dn |� φ. Then the following holds:

– If n = 1, and there is a state-term s1 such that
db2stS(d1) = s1, then φ is a conjunction of fluents and
hypotheticals and

�(P,S) |� Execute(φ, s1, s1)

– If n > 1 and there are ground state-terms s1, s2 such
that db2stS(d1) = s1 and db2stS(dn) = s2, then

�(P,S) |� Execute(φ, s1, s2)

Proof The proof relies on the fact that T RPAD has a sound
and complete proof theory developed in Sect. 4.1.

We will prove the theorem by induction on the number N
of steps needed to derive

P,S,d1 . . . d2 � φ (30)

using the inference system F from Sect. 4.1. We will be refer-
ring to the inference rules using the same enumeration than
the one used in Definition 22.

Base Case: N = 1. In that case, (30) can possibly be
derived by the No-op axiom or the premise inference rule.
(Note that no other inference rules (even the hypothetical
rule) can be used to derive a sequent in the first inference
step.) We consider each case in turn.

– Suppose (30) was derived using the no-op axiom P,d1 �
(). Then the following must be true:

– the sequent (30) has the form P,S,d1 � ()
– φ is a the empty serial conjunction ()
– db2stS(d1) is defined

By the construction of�(P,S), Holds((), s1) ∈ �(P,S)
for any s1 = db2stS(d1). The claim now follows from
this by instantiating the Query rule Execute(F, S, S)←
Holds(F, S) in �(P,S).

– If (30) was derived via the premise inference rule of F , it
could be derived only using a state-premise or a run-
premise in S:

– Suppose (30) was derived using a state-premise d1�
φ ∈ S. Then the following statements are true:

• the sequent (30) has the form P,S,d1 � φ
• φ is a fluent literal
• db2stS(d1) is defined

By the construction of �(P,S), Holds(φ, s1) ∈
�(P,S) for any s1 = db2stS(d1). The claim now
follows from this by instantiating the Query rule
Execute(F, S, S)← Holds(F, S) in �(P,S).

– Suppose (30) was derived using a run-premise d1
φ�

d2 ∈ S and (30) has the form P,S,d1d2 � φ. From
the definition of db2stS it follows that db2stS(d1)

and db2stS(d2) are defined and if s1 = db2stS(d1),

then Result (φ, s1) = db2stS(d2). By the construc-
tion of �(P,S), the above run-premise in S ensures
that Execute(φ, s1, Result (φ, s1)) is in �(P,S),
which proves our claim.

Inductive step: N = k > 1. Assume that whenever there
are ground state-terms s1, s2 such that s1 = db2stS(d1)

and s2 = db2stS(dn), and (30) can be derived by the proof
theory in less than k steps then�(P,S) |�Execute(φ, s1, s2).

To prove that the same holds also when (30) is derived
using k steps, note that the last step in the derivation must be
an application of one of these rules in F :

– A Horn inference rule.
– The Forward Projection rule.
– The Sequencing rule.
– The Decomposition rule.

We consider each of these cases in turn.

– A Horn inference rule: 1a or 1b.

– Rule 1a. The sequent (30) was derived because φ =
a ⊗ ψ, a ← η ∈ P, and P,S,d1 . . . d2 � η ⊗ ψ
was derived previously in less than k steps. Sup-
pose that db2stS(d1) and db2stS(d2) are defined.
By the inductive assumption, there are states s1 =
db2stS(d1) and s2 = db2stS(d2), such that �(P,S)
|� Execute(η ⊗ ψ, s1, s2). By the Sequencing rule
in �(P,S), it follows that there is some state-
term s such that �(P,S) |� Execute(η, s1, s) and
�(P,S) |� Execute(ψ, s, s2). But then, by the
Unfolding rule in �(P,S), we can derive �(P,S) |�
Execute(a, s1, s). Finally, using the Sequencing rule
again, we derive �(P,S) |� Execute(a⊗ψ, s1, s2).

– Rule 1b: The sequent (30) was derived because
φ = ♦β ⊗ γ, and both P,S,d1 . . . d′ � β and
P,S,d1 . . . d2 � γ were derived previously in less
than k steps. Suppose that db2stS(d1), db2stS(d2),

and db2stS(d′) are defined. By the inductive assump-
tion, there are states s1 = db2stS(d1), s′ =
db2stS(d′) and s2 = db2stS(d2), such that �(P,D)
|� Execute(β, s1, s′), and �(P,D) |� Execute
(γ, s1, s2). This and the rules for hypotheticals and
sequencing in �(P,S) yield �(P,S) |� Execute
(φ, s1, s2).

– The Forward Projection rule. Suppose (30) was derived
because there is a P AD b1⊗α⊗b2 → b3⊗α⊗b4 ∈ P,
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where φ is b3 or b4, and

P,S,d1 � b1

P,S,d2 � b2

P,S,d1d2 � α

were derived previously in less than k steps. Suppose that
db2stS(d1) and db2stS(d2) are non empty. The induc-
tive assumption ensures that there are states s1 = d1 and
s2 = db2stS(d2) such that

�(P,S) |� Execute(α, s1, s2)

�(P,S) |� Execute(b1, s1, s1)

�(P,S) |� Execute(b2, s2, s2)

Now the inductive claim follows from these facts and the
rules for forward projection, querying, and sequencing in
�(P,S).

– The Sequencing rule. Suppose the sequent (30) was
derived because

P,S,d1 . . . d � ψ
P,S,d . . . d2 � η

were derived previously, in less than k steps and φ = ψ⊗
η.Suppose that db2stS(d1), db2stS(d), and db2stS(d2)

are defined. By the inductive assumption, there are
states s1 = db2stS(d1) and s = db2stS(d) such that
�(P,S) |� Execute(ψ, s1, s) and there is a state s2 =
db2stS(d2) such that�(P,S) |� Execute(ψ, s, s2).The
inductive claim now follows from this and the sequencing
rule in �(P,S).

– The Decomposition rule. Suppose the sequent (30) was
derived because either P,S,d1 � φ ⊗ η or P,S,d1 �
η⊗ φ was derived previously in less than k steps. By the
inductive assumption, there is a state s1 = db2stS(d1),

we have�(P,S) |� Execute(φ⊗η, s1, s1)or�(P,S) |�
Execute(η⊗φ, s1, s1).The inductive claim now follows
from this and the Decomposition rule in �(P,S). This
concludes the proof of completeness. ��
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