ORIGINAL PAPER

Fe₃O₄@SiO₂@Pr-Oxime-(BuSO₃H)₃ synthesis and its application **as magnetic nanocatalyst in the synthesis of heterocyclic [3.3.3] propellanes**

Zohreh Kheilkordi1 · Ghodsi Mohammadi Ziarani1 [·](http://orcid.org/0000-0001-5177-7889) Alireza Badiei2 · Fatemeh Mohajer1 · Rafael Luque3

Received: 24 July 2022 / Accepted: 29 October 2022 / Published online: 15 November 2022 © Iranian Chemical Society 2022

Abstract

The modification of Fe₃O₄ nanomagnetic particles with inorganic and organic compounds was accomplished. The Fe₃O₄@ $SiO_2@Pr-Oxime-(BuSO_3H)_3$ as Brønsted acid was synthesized by functionalization of Fe₃O₄ in several steps and characterized by various techniques. Domino reaction of dimedone, anilines, ninhydrin, and malononitrile was investigated by a magnetic catalyst without using solvent at 80 $^{\circ}$ C. This method has many advantages including short reaction time, green conditions, ecofriendly, excellent yields of products, and easy separation by an external magnet.

Graphic abstract

Keywords Magnetic nanocatalyst · [3.3.3]propellane · Multicomponent reaction · Fe₃O₄@SiO₂@Pr-Oxime-(BuSO₃H)₃ · Domino reaction

 \boxtimes Ghodsi Mohammadi Ziarani gmohammadi@alzahra.ac.ir

 \boxtimes Rafael Luque rafael.luque@uco.es

- ¹ Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak Square, Tehran, Iran
- ² School of Chemistry, College of Science, University of Tehran, Tehran, Iran
- ³ Departamento de Quimica Organica, Universidad de Cordoba, Campus de Rabanales, Edifcio Marie Curie, 14014 Córdoba, Spain

Introduction

Recently, using nanoparticles as catalysts in organic reactions has attracted many researchers. Among them, magnetic nanoparticles such as $Fe₃O₄$ are so important [[1–](#page-6-0)[3\]](#page-6-1), because of their applications in many felds including drug delivery [[4,](#page-6-2) [5\]](#page-6-3), enzyme stabilization $[6, 7]$ $[6, 7]$ $[6, 7]$ $[6, 7]$ $[6, 7]$, food industry $[8]$ $[8]$, water refnery [\[9](#page-6-7)], hyperthermia [\[10](#page-6-8), [11](#page-6-9)], and magnetic nanocatalyst [\[12](#page-6-10)[–16](#page-6-11)].

 $Fe₃O₄$ nanoparticles have various advantages including high stability, simple synthesis, low toxicity, high surface era, easy separation, and good magnetic behavior [\[17](#page-6-12)[–19\]](#page-6-13).

Scheme 1 Propellane skeleton in natural compounds.

Propellanes have tricyclic systems, which are joined together by a carbon–carbon single bond [[20](#page-6-14)]. Propellane derivatives exist in the natural compound structures such as modhephene [[21](#page-6-15)], aspidohylline [[22\]](#page-6-16), and periglaucine A [\[23,](#page-6-17) [24\]](#page-6-18) (Scheme [1](#page-1-0)).

The propellanes have various properties such as anticancer [[25\]](#page-6-19), selective T-cell cytotoxicity [[26\]](#page-6-20), antibiotics [\[27\]](#page-6-21), and antibacterial [[28](#page-6-22)]. Different types of propellanes include thioxo[3.3.3]propellane, oxa[3.3.3]propellane, oxathiaza[3.3.3]propellane, and oxa*za*[3.3.3]propellane [[29,](#page-6-23) [30](#page-6-24)]. Propellanes are inert toward nucleophiles, but in the presence of free radical compounds, they have high activities. Also, the [3.3.3]propellanes are found in the natural product structures [[31–](#page-6-25)[33\]](#page-6-26).

Multicomponent reactions (MCRs) have attracted much attention due to their diferent advantages such as easy workup, reduction in reaction time, simple extraction, and purification in organic chemistry $[34, 35]$ $[34, 35]$ $[34, 35]$. In the past decades, they have been applied in the synthesis of various heterocycles. Therefore, various procedures for the synthesis of propellane compounds were published by many researchers $[29, 36-38]$ $[29, 36-38]$ $[29, 36-38]$ $[29, 36-38]$. In continuation of our previous works $[39-43]$ $[39-43]$, the surface of $Fe₃O₄$ core was improved by organic reagents for the synthesis of $Fe₃O₄@SiO₂@Pr-Oxime-(BuSO₃H)₃$ as Brønsted acid. Afterward, the $Fe₃O₄@SiO₂@Pr-Oxime (BuSO₃H)₃$ was used as a catalyst to give [3.3.3] propellanes *via* the domino reaction of anilines, dimedone, ninhydrin, and malononitrile under the solvent-free condition.

Experimental

Synthesis of Fe₃O₄, Fe₃O₄@SiO₂, and Fe₃O₄@SiO₂@ Pr-NH₂

It is reported in supporting information [[44](#page-6-33), [45](#page-6-34)].

Synthesis of Fe₃O₄@SiO₂@Pr-Oxime

First, $Fe_3O_4@SiO_2@Pr-NH_2 (1 g)$ in dry toluene (25 mL) was sonicated for 1 hour to give $Fe₃O₄@SiO₂@Pr-Oxime$ nanoparticles. Then, 1,4-diacetyl-monooxime-one (5 mmol, 0.5 g) was added to the colloidal mix and refuxed for 36 h. Finally, by an external magnet, the magnetic nanoparticles were separated, washed with EtOH, and dried.

Fe₃O₄@SiO₂@Pr-Oxime-(BuSO₃H)₃ synthesis

First, $Fe_3O_4@SiO_2@Pr-Oxime (1 g)$ in dry toluene (25 mL) was sonicated for 1 h. Then, 1,4-butane sultone (5 mmol, 5 mL) was added to the colloidal mix and refuxed for 36 h. Finally, the magnetic nanocatalyst was separated by an external magnet, washed with CH_2Cl_2 , and dried.

Synthesis of [3.3.3]propellane

The reaction of dimedone (1.0 mmol, 0.14 g) and 4-bromoaniline (1 mmol, 0.16 g) by $Fe₃O₄@SiO₂@Pr-Oxim (BuSO₃H)₃(0.01 g)$ at 80 °C after ten minutes gave enaminone, which was reacted with ninhydrin (1 mmol, 0.16 g) and malononitrile (1 mmol, 0.66 g) and stirred under the same conditions. The reaction progress was monitored by TLC in EtOAc/*n*-hexane (8:2). The reaction mixture was dissolved in hot EtOH, and the nanomagnetic catalyst was separated using an external magnet. The pure product was obtained by cooling alcoholic fltrate. The products were investigated using melting point and FTIR spectra. The NMR and mass spectra of the new compound were characterized.

(4b*R***,9b***S***)‑11‑((l2‑azaneylidene)‑l3‑methyl)‑ 12‑amino‑5‑(3,4‑dimethylphenyl)‑7,8‑dihy‑ dro‑5H,10H‑4b,9b‑(epoxyetheno)indeno[1,2‑b] indole‑9,10(6H)‑dione (5k)**

Yellow powder; **m.p.** 233-235 ˚C; **IR (KBr, cm-1):** 3418, 3342, 3229, 3184, 2962, 2942, 2920, 2191, 1717, 1636, 1596, 1502, 1435, 1391, 1323, 1271, 1218, 1188, 1017, 799. ¹H NMR (DMSO, 500MHz): 1.84-1.90 (m, 2H, CH₂), 2.05-2.10 (d.t, 1H, CH₂), 2.20-2.22 (t, 2H, CH₂), 2.24 (s, 3H, Me), 2.29 (s, 3H, Me), 2.42-2.49 (d.t, 1H, CH₂), 6.75-6.77 (m, 1H, Ar), 7.04-7.05 (d, 1H, Ar), 7.12 (s, 1H, Ar), 7.27-7.28 (d, 1H, Ar), 7.48 (s, 2H, NH₂), 7.63-7.66 (m, 2H, Ar), 7.84-7.86 (m, 1H, Ar). Mass (m/z)= 423 (M+), 395, 381, 340, 350, 323, 309, 270, 254, 240, 227, 190, 177, 164, 139, 128, 103, 90, 77.

Results and discussion

Preparation of Fe₃O₄@SiO₂@Pr-Oxime-(BuSO₃H)₃

First, Fe₃O₄ nanomagnetic particles were synthesized *via* the reaction of $FeCl₃$.6H₂O and $FeCl₂$.4H₂O in an ammonia solution (25%) /H₂O at 100 °C under a nitrogen atmosphere. Then, nanomagnetic particles were coated with tetraethyl orthosilicate at room temperature to provide $Fe₃O₄@SiO₂$ nanoparticles, which were modifed by 3-(triethoxysilyl) propan-1-amine to provide $Fe₃O₄@SiO₂@Pr-NH₂$ nanoparticles, followed by the modifcation with 1,4-diacetylmonoxime-one *via* Schiff base reaction. Finally, the Fe₃O₄^{$@$} $SiO₂@Pr-Oxime$ nanoparticles were functionalized with acidic groups of $BuSO₃H$ *via* the reaction of the surface amine group with 1,4-butane sultone to obtain $Fe₃O₄@$ SiO_2 @Pr-Oxime-(BuSO₃H)₃ (Scheme [2](#page-2-0)) [\[46\]](#page-6-35).

Characterization of Fe₃O₄@SiO₂@ Pr-Oxime-(BuSO₃H)₃

The FTIR spectra of the Fe₃O₄, Fe₃O₄@SiO₂, Fe₃O₄@ $SiO_2@Pr-NH_2$, Fe₃O₄@SiO₂@Pr-Oxime, and Fe₃O₄@ SiO_2 Pr-Oxime-(BuSO₃H)₃ are shown in Figure [1.](#page-2-1) The Fe–O, SiO4, and Si–O–Si group vibrations were shown at around 574 cm⁻¹, 800 cm⁻¹, and 1080 cm⁻¹, respectively. The C-H stretching vibrations of alkyl groups, acidic group (SO_3H) ,

Fig. 1 FTIR spectra of **a** Fe₃O₄, **b** Fe₃O₄@SiO₂, **c** Fe₃O₄@SiO₂@ Pr-NH₂, **d** Fe₃O₄@SiO₂@Pr-Oxime, and **e** Fe₃O₄@SiO₂@Pr-Oxime- $(BuSO₃H)₃$.

and OH agent in the silica shell were indicated in the area 2931 and 3442 cm^{-1} , respectively.

The XRD of (a) Fe₃O₄ and (b) Fe₃O₄@SiO₂@Pr-Oxime- $(BuSO₃H)₃$ is shown in Fig. [2,](#page-3-0) which demonstrated the specifc peaks at 2θ= 30.12°, 35°, 43.17°, 53.58°, 57.10°,

Scheme 2 Synthesis of Fe₃O₄@SiO₂@Pr-Oxime-(BuSO₃H)₃

Fig. 2 XRD pattern of **a** Fe₃O₄ and $bFe₃O₄@SiO₂@Pr-Oxime (BuSO₃H)₃$.

Fig. 3 EDX spectrum of Fe₃O₄@SiO₂@Pr-Oxime-(BuSO₃H)₃.

62.65°, and 74.28° corresponding to the (220), (311), (400), (422), (511), (440), and (533) planes.

The EDX analysis of $Fe₃O₄@SiO₂@Pr-Oxime (BuSO₃H)₃$ is shown in Fig. [3,](#page-3-1) which demonstrated the different elements such as C, N, O, Si, S, and Fe in the structure of nanocatalyst. The SEM image of $Fe₃O₄@SiO₂@$ Pr-Oxime-(BuSO₃H)₃ nanoparticles is shown in Fig. [4,](#page-3-2) which demonstrated its spherical structure with an average size of 80–100 nm.

The thermal stability of magnetic nanoparticles including Fe₃O₄@SiO₂@Pr-NH₂, Fe₃O₄@SiO₂@Pr-Oxime, and $Fe₃O₄@SiO₂@Pr-Oxime-(BuSO₃H)₃ was characterized in$ the range of 25 to 1000 $^{\circ}$ C as shown in Fig. [5.](#page-3-3) The mass loss of 2% and 5% was related to the desorption of water on the surface of nanoparticles, which occurred below 200 °C. Also, the decomposition of organic parts occurred in the range of 200–700 °C, which was around 11 %, 21 %, and 26% for $Fe₃O₄@SiO₂@Pr-NH₂Fe₃O₄@SiO₂@Pr-Oxime,$ and $Fe₃O₄@SiO₂@Pr-Oxime-(BuSO₃H)₃$, respectively. The obtained amount of the organic compound on the nanoparticle surface was about 0.40 mmol g^{-1} .

The magnetic properties of nanoparticles of $Fe₃O₄$, $Fe₃O₄@SiO₂$ and $Fe₃O₄@SiO₂@Pr-Oxime-(BuSO₃H)₃$

Fig. 4 SEM image of $Fe₃O₄@SiO₂@Pr-Oxime-(BuSO₃H)₃ nanopar$ ticles.

Fig. 5 Thermogravimetric analysis of **a** $Fe₃O₄@SiO₂@Pr-Oxime (BuSO₃H)₃$, **b** Fe₃O₄@SiO₂@Pr-Oxime, and **c** Fe₃O₄@SiO₂@ $Pr-NH₂$.

were studied by VSM. According to Fig. [6](#page-4-0), the magnetization properties of Fe₃O₄, Fe₃O₄@SiO₂ and Fe₃O₄@SiO₂@ Pr-Oxime- $(BuSO₃H)₃$ were obtained at about 60 emu/g, 48 emu/g, and 20 emu/g, respectively.

Application of Fe₃O₄@SiO₂@Pr-Oxime-(BuSO₃H)₃ **in the synthesis of [3.3.3]propellanes**

The catalyst activity of Fe₃O₄@SiO₂@Pr-Oxime-(BuSO₃H)₃ was investigated for the synthesis of [3.3.3]propellane **5a** as a reaction model (Scheme [3](#page-4-1)). According to Table [1](#page-4-2), the efects of catalyst, solvent, and temperature were studied in the reaction model. Diferent conditions such as solvent-free

Fig. 6 Magnetization curves of **a** Fe₃O₄, **b** Fe₃O₄@SiO₂, and **c** $Fe_3O_4@SiO_2@Pr-Oxime-(BuSO_3H)_3$

system, reflux in EtOH, H_2O , H_2O /EtOH (1:1), and without a catalyst were tested. Therefore, among the examined conditions, the best result was provided via the domino reaction under the solvent-free condition at 80 °C using Fe₃O₄[@] $SiO_2 \otimes Pr-Oxime-(BuSO_3H)_3$ as nanocatalyst.

The synthesis of [3.3.3] propellane derivatives by $Fe₃O₄@$ $SiO_2@Pr-Oxime-(BuSO_3H)_3$ under the solvent-free conditions at 80°C was studied (Scheme [4](#page-5-0)). According to Table [2,](#page-5-1) electron-donor groups such as methyl on the aniline structure led to the increase in the reaction velocity. Therefore, diferent derivatives of [3.3.3]propellanes were obtained in a high yield and a short reaction time. The new structure was characterized and confrmed by melting point, IR, and ¹H NMR spectra.

The possible mechanism for the synthesis of [3.3.3] propellane **5a** by $Fe_3O_4@SiO_2@Pr-Oxime-(BuSO_3H)_3$ is reported in Scheme [2](#page-2-0). Initially, carbonyl groups of dimedone **2a** and ninhydrin **3** were protonated in the presence of $Fe_3O_4@SiO_2@Pr-Oxime-(BuSO_3H)_3$ as Brønsted *acid*. Then, the nucleophilic addition of 4-bromoaniline **1a** to protonated dimedone **2a** gave an intermediate **6**. Besides, the

Knoevenagel reaction of malononitrile **4** with ninhydrin **3** created intermediate **7**, which was reacted with enamine **6** through the Michael addition to provide intermediate **8**. In the next stage, *via* the proton transfer, intermediate **8** was cyclized, to provide the compound **9**, which was transferred to [3.3.3]propellane **5a** *via* intramolecular O-cyclization and tautomerization reaction (Scheme [5](#page-5-2)).

 $Fe₃O₄@SiO₂@Pr-Oxime-(BuSO₃H)₃ nanoparticles were$ washed several times with hot EtOH, distilled water, and diluted sulfonic acid solution and dried. Then, it was applied in the reaction model for four times as given in Table [3](#page-6-36).

According to Table [4](#page-6-37), the catalyst activity of $Fe₃O₄$ @ $SiO₂@Pr-Oxime-(BuSO₃H)₃$ toward other reported conditions was compared. This work has advantages including excellent yields, simple work-up, ecofriendly, purity products, short reaction time, and green condition. Also, the nanomagnetic catalyst was separated from the mixture by the magnet.

Conclusions

In summary, $Fe_3O_4@SiO_2@Pr-Oxime-(BuSO_3H)_3$ as a nanomagnetic catalyst was synthesized and characterized by diferent techniques such as EDS, VSM, SEM, and XRD. In the following, its catalytic activity was investigated in the synthesis of [3.33]propellanes in good yield and short reaction time.

Table 1 The reaction condition optimization in the synthesis of [3.3.3]propellane **5a**.

Entry	Catalyst (gr)	Solvent	Condition	Time (h)	Yield $(\%)$
1			r.t.	5	
2	Cat(0.01)	EtOH	Reflux	4	70
3	Cat(0.01)	H ₂ O	Reflux	5	50
4	Cat(0.01)	H ₂ O:EtOH	Reflux	4	60
5	Cat(0.008)		80 °C	50 min	90
6	Cat(0.01)		80 °C	35 min	92
7	Cat(0.01)		100 °C	35 min	50

Scheme 3 Synthesis [3.3.3]propellane **5a** as a reaction model

Scheme 4 Synthesis [3.3.3]propellane derivatives **5a–k**.

Scheme 5 Synthesis of [3.3.3]propellane **5a**.

² Springer

Table 3 The reusability of $Fe_3O_4@SiO_2@Pr-Oxime-$	Entry	Time (min) Yield $(\%)$	
(BuSO ₃ H) ₃		35	92
	$\mathcal{D}_{\mathcal{L}}$	35	90
	3	35	88
		35	84

Table 4 Comparison of reported conditions in the synthesis of compound **5a**.

Supplementary Information The online version contains supplementary material available at<https://doi.org/10.1007/s13738-022-02685-7>.

Acknowledgements We are grateful to the Alzahra University Research Council's support.

References

- 1. G. Mohammadi Ziarani, M. Khademi, F. Mohajer, M. Anafcheh, A. Badiei, J.B. Ghasemi, Res. Chem. Intermed. **48**, 2111 (2022)
- 2. B. Tahmasbi, A. Ghorbani-Choghamarani, Catal Lett. **147**, 649 (2017)
- 3. M. Zarei, H. Sepehrmansourie, M.A. Zolfgol, R. Karamian, S.H.M. Farida, New J Chem. **42**, 14308 (2018)
- 4. L. Zhao, X. Song, X. Ouyang, J. Zhou, J. Li, D. Deng, ACS Appl. Mater. Interfaces **13**, 49631 (2021)
- 5. G. Mohammadi Ziarani, P. Mofatehnia, F. Mohajer, A. Badiei, RSC Adv. **10**, 30094 (2020)
- 6. S. Altaf, Z. Rabeea, Q.Z. Waqas, A. Shakil, Y. Khurram, S. Asad, J.K. Asim, B. Muhammad, A. Muhammad, Ecotoxicol. Environ. Saf. **226**, 112826 (2021)
- 7. J. Lu, Y. Li, H. Zhu, G. Shi, ACS Appl. Nano Mater. **4**, 7856 (2021)
- 8. L. Xu, Q. Ding, Anal. Methods. **13**, 5487 (2021)
- 9. H.R. Pouretedal, Z. Bashiri, M. Nasiri, A. Arab, Part. Sci. Technol. **39**, 971 (2021)
- 10. M. Cohen-Erner, R. Khandadash, R. Hof, O. Shalev, A. Antebi, A. Cyjon, D. Kanakov, A. Nyska, G. Goss, J. Hilton, D. Peer, ACS Appl. Nano Mater. **4**, 11187 (2021)
- 11. C. Caizer, M. Rai, *Magnetic nanoparticles in alternative tumors therapy: biocompatibility, toxicity, and safety compared with classical methods magnetic nanoparticles in human health and medicine: current medical applications and alternative therapy of cancer* (Wiley, 2021)
- 12. H. Karimi-Maleh, F. Karimi, Y. Orooji, G. Mansouri, A. Razmjou, A. Aygun, F. Sen, Sci. Rep. **10**, 11699 (2020)
- 13. H. Karimi-Maleh, B.G. Kumar, S. Rajendran, J. Qin, S. Vadivel, D. Durgalakshmi, F. Gracia, M. Soto-Moscoso, Y. Orooji, F. Karimi, J. Mol. Liq. **314**, 113588 (2020)
- 14. A. Lascu, *ARKIVOC* 2020, i, **272**, (2020).
- 15. V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara, J.M. Basset, Chem Rev. **111**, 3036 (2011)
- 16. D. Wang, D. Astruc, Chem Rev. **114**, 6949 (2014)
- 17. J. Meurig Thomas, R. Raja, Rev. Mater. Res. **35**, 315 (2005)
- 18. M.J. Yao, Z. Guan, Y.H. He, Synth. Commun. **43**, 2073 (2013)
- 19. Z. Nezafat, M. Nasrollahzadeh, J. Mol. Struct. **1228**, 129731 (2021)
- 20. R.W. Weber, J.M. Cook, Can. J. Chem. **56**, 189 (1978)
- 21. L. Zu, B.W. Boal, N.K. Garg, J. Am. Chem. Soc. **133**, 8877 (2011) 22. J.M. Huang, R. Yokoyama, C.S. Yang, Y. Fukuyama, A. Mer-
- rilactone, Tetrahedron Lett. **41**, 6111 (2000) 23. Y. Sugimoto, H.A.A. Babiker, T. Saisho, T. Furumoto, S. Inanaga,
- M. Kato, J. Org. Chem. **66**, 3299 (2001) 24. K. Weinges, P. Günther, W. Kasel, G. Hubertus, P. Güinther, Angew. Chem. **20**, 960 (1981)
- 25. M. Konishi, H. Ohkuma, T. Tsuno, T. Oki, G.D. VanDuyne, J. Clardy, J. Am. Chem. Soc **112**, 3715 (1990)
- 26. B.-W. Yu, J.-Y. Chen, Y.-P. Wang, K.-F. Cheng, X.-Y. Li, G.-W. Qin, Phytochemistry **61**, 439 (2002)
- 27. G.A. Ellestad, M.P. Kunstmann, H.A. Whaley, E.L. Patterson, J. Am. Chem. Soc. **90**, 1325 (1968)
- 28. J. Dugan, P. De Mayo, M. Nisbet, J. Robinson, M. Anchel, J. Am. Chem. Soc. **88**, 2838 (1966)
- 29. A. Rezvanian, A. Alizadeh, L.-G. Zhu, Synlett **23**, 2526 (2012)
- 30. A. Rezvanian, A. Alizadeh, Tetrahedron **68**, 10164 (2012)
- 31. A.M. Dilmaç, T. Wezeman, R.M. Bär, S. Bräse, Nat. Prod. Rep. **37**, 224 (2020)
- 32. A.M. Dilmaç, E. Spuling, A. de Meijere, S. Bräse, Chem. Int. Ed. **56**, 5684 (2017)
- 33. J.C. Leung, A.A. Bedermann, J.T. Njardarson, D.A. Spiegel, G.K. Murphy, N. Hama, J.L. Wood, Angew. Chem. Int. Ed. **57**, 1991 (2018)
- 34. K. Kumaravel, G. Vasuki, Curr. Org. Chem. **13**, 1820 (2009)
- 35. V.K. Ahluwalia, R.S. Varma, *Green solvents for organic synthesis* (Alpha Science International, 2009)
- 36. L.J. Zhang, C.G. Yan, Tetrahedron **69**, 4915 (2013)
- 37. A. Alizadeh, A. Rezvanian, L.G. Zhu, J. Org. Chem. **77**, 4385 (2012)
- 38. I. Yavari, A. Malekafzali, S. Skoulika, Tetrahedron Lett. **55**, 3154 (2014)
- 39. Z. Kheilkordi, G. Mohammadi Ziarani, A. Badiei, Polyhedron **178**, 114343 (2020)
- 40. G. Mohammadi Ziarani, Z. Kheilkordi, F. Mohajer, A. Badiei, R. Luque, RSC Adv. **11**, 17456 (2021)
- 41. Z. Kheilkordi, G. Mohammadi Ziarani, F. Mohajer, J. Iran. Chem. Soc. **17**, 247 (2020)
- 42. Z. Kheilkordi, G. Mohammadi Ziarani, S. Bahar, A. Badiei, J. Iran. Chem. Soc. **16**, 365 (2019)
- 43. Z. Kheilkordi, G. Mohammdi Ziarani, N. Lashgari, A. Badiei, Polyhedron **166**, 203 (2019)
- 44. S. Mahmoudi-GomYek, D. Azarifar, M. Ghaemi, H. Keypour, M. Mahmoudabadi, Appl. Organomet. Chem. **33**, e4918 (2019)
- 45. M. Rajabi-Salek, M.A. Zolfgol, M. Zarei, Res. Chem. Intermed. **44**, 5255 (2018)
- 46. A.R. Hajipour, M. Karimzadeh, S. Jalilvand, H. Farrokhpour, A.N. Chermahini, Comput. Theor. Chem. **1045**, 10 (2014)
- 47. L. Fu, W. Lin, Z.B. Huang, D.Q. Shi, J. Heterocycl. Chem. **52**, 1075 (2015)
- 48. H. Naeimi, S. Lahouti, Appl. Organomet. Chem. **31**, e3732 (2017)

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.