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Abstract
A combination of the smoothly clipped absolute deviation (SCAD) method and the artificial neural network (ANN) was 
utilized as a novel methodology (SCAD-ANN) in the quantitative structure-retention indices relationship (QSRR). The pro-
posed SCAD method reduces the dimension of data before using the robust ANN modeling method. The efficiency of the 
SCAD-ANN methods was evaluated by the construction of a QSRR model between the most relevant molecular descriptors 
(MDs) and RIs for two sets of volatile organic compounds. The SCAD method was applied to training data, and effective 
MDs were selected in a λ with the lowest cross-validation error (λmin) and were defined as the inputs to the ANN modeling 
method. All ANN parameters were optimized simultaneously. Some statistical parameters were computed, and the obtained 
results indicate that the constructed QSRR models have acceptable values. Also, the applicability domain analysis reveals 
that more than 95% of the data are in the confidence range, indicating that the prediction results of the SCAD-ANN models 
are reliable.
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Introduction

It is well acknowledged that the properties of compounds 
are critically dependent on the structural features. There-
fore, in computational chemistry, finding the relationship 
between the structural characteristics of compounds and 
their properties is of interest to researchers. Among the vari-
ous computational chemistry approaches, the quantitative 
structure–property relationship (QSPR) study is a helpful 
tool to find such a relationship and has been widely used in 
various fields such as chemometrics, biological chemistry, 
and medicinal chemistry. QSPR has been established to be 
a potent tool for the analysis of chromatographic properties. 
Recently the calculation of the retention indices (RIs) has 

been reported in the literature [1–10]. As a kind of QSPR 
study, the study of chromatographic retention is defined by 
the general name of quantitative structure retention indi-
ces relationship (QSRR). The retention indices obtained 
using chromatographic phases can serve as physicochemi-
cal properties correlated to the structural features. RI is a 
quantitative criterion that indicates the relative retention 
of each sample component relative to the normal alkanes 
(hydrocarbons) on a stationary phase at a given temperature. 
RIs are mainly independent of the chromatographic param-
eters (such as column length, diameter, column gas flow) 
and allow comparing values measured by different analytical 
laboratories under different conditions. In general, RIs can 
be calculated using the GC technique. However, it should be 
noted that RI and mass spectra are not always suitable for 
providing structural profiles of compounds, and the meas-
urements with GC suffer from the following limitations. The 
compounds identification is often carried out by matching 
GC peaks of the analyte with the peaks of standards, while 
the pure standard samples are sometimes not available. Also, 
it is always challenging to determine the RI of chemicals 
due to the complexity of quantitative analysis methods. The 
GC technique also requires sample and column preparations 
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and parameter optimization, which are time-consuming 
and costly [2, 11]. Therefore, the introduction of efficient 
methods for predicting RI values for unknown compounds 
without any measurement or experiments is of interest [1]. 
The QSRR models can be used to predict the retention indi-
ces of chemical structures and have recently received much 
attention from researchers [1–3]. The QSRR model estab-
lishes a mathematical relationship between RI as a response 
of a chromatographic system and the molecular properties 
that describe the structure of the analyte to predict the RI 
parameter.

The main goal of the QSPR study is to find an accurate 
relationship between the structural characteristics and prop-
erties of the studied compounds. In this context, the per-
formed QSRR modeling consisted of the following steps: 
the definition of endpoints and coding the molecular descrip-
tors, selecting the optimal molecular descriptors using an 
unambiguous algorithm, appropriate measures of goodness-
of-fit, robustness, and predictability, a defined domain of 
applicability, the evaluation of models [12, 13]. Coding the 
structural properties and descriptors generation is crucial 
in QSPR studies, in which the empirical and computational 
information of structures is converted into experimental and 
theoretical descriptors [14]. Empirical descriptors can be 
calculated using the experimental results in the specific con-
ditions for each compound. The theoretical descriptors are 
calculated according to the structural features of the studied 
compounds using available software and online computa-
tional web tools [15–17]. With recent progress in compu-
tational chemistry, a large number of MDs could be calcu-
lated for a given chemical compound; therefore, the QSRR 
studies are encountered with high-dimensional data (HDD) 
[18]. Generally, HDD contains redundant and irrelative MDs 
without vital information. Correlated and redundant descrip-
tors do not add useful and relevant information to the QSRR 
studies and are the source of miss modeling and the com-
plexity of the QSRR models. Therefore, to construct QSRR 
models with the smallest MDs, the highest predictability 
power and appropriate interpretability are desirable. For the 
construction of QSRR models with the characteristics men-
tioned above, the irrelevant, redundant MDs should be omit-
ted from the data set. Therefore, introducing new and effi-
cient variable selection techniques is required to increase the 
modeling performance, improve the interpretability of the 
model, and decrease the computation complexity and storage 
needed [18, 19]. Variable selection approaches are generally 
distributed into different classes, including filter, wrapper, 
and embedded procedures [20]. The filter-based variable 
selection method ranks descriptors using a simple algorithm; 
this approach reduces descriptors based on a specific func-
tion: correlation coefficient, chi-square test, Fisher score, 
variance threshold, and other statistical parameters [21]. 
The wrapper-based variable selection approach attempts to 

find the optimal subset by iteratively selecting descriptors to 
improve the model performance. Some widely used meth-
ods, such as forward selection, backward elimination, and 
stepwise regression, belong to the wrapper category. How-
ever, these classical approaches suffer from high bias, insta-
bility, and false determination coefficient [20]. The embed-
ded method complements the filter and wrapper techniques 
and benefits from the advantages of both complemented 
techniques. These advantages are high computational speed 
and the existence of suitable learning algorithms. One of the 
most efficient embedded variable selection methods is the 
penalized regression approach [20, 21]. The least absolute 
shrinkage and selection operator (LASSO) is the first and 
widely used penalized method presented by Tibshirani [22]. 
LASSO minimizes the regression error same as the ordinary 
least square (OLS), except that a penalty parameter has been 
added to the squared error term of OLS, which constrains 
the coefficients of the irrelevant variables to zero according 
to the following equation [23]:

 where Y and X are the vector of the response variable and 
the design matrix of independent variables, respectively. β 
parameter represents regression coefficients, and λ is the 
tuning parameter and has a non-negative value (λ ≥ 0) that 
controls the quantity of penalty related to the magnitude 
of estimated coefficients. LASSO has well-known inherent 
advantages over OLS; therefore, it has been used to con-
struct successful linear QSPR models [24–30]. An excit-
ing and useful aspect of some penalized methods, such as 
LASSO, is their ability to select the most significant vari-
ables via shrinking the coefficients to zero. In this context, 
the important variables are selected according to the λ with 
the minimum cross-validation (CV) error value (λmin) [22]. 
Recently, LASSO as a first penalized method has been 
used as a variable selection technique coupled with MLR 
(LASSO-MLR) [31] and with stepwise regression (LASSO-
SR) [32] for the prediction of RT and retention factor at 5% 
acetonitrile (log kACN) with satisfactory results. However, 
LASSO suffers from drawbacks. It is biased and shrinks the 
coefficients more than needed; the parameters are severely 
underestimated [33]. Also, for HDD cases, where the num-
ber of variables (p) is higher than the number of sample 
points (n), LASSO only can select at most the number of n 
variables due to its convex optimization nature [33]. There-
fore, the LASSO ability is reduced due to these limitations, 
mainly when used as a variable selection method. To over-
come the limitations of LASSO, a new and concave penal-
ized technique called smoothly clipped absolute deviation 
(SCAD) has been proposed [33], in which two tuning param-
eters were added to the OLS function. SCAD estimates the 
regression coefficients using the following equation:

(1)𝛽LASSO = argmin
𝛽ℝp

{
Y − X𝛽2 + 𝜆𝛽

}
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which P(.;a, �) is the penalty function of SCAD and has 
the following three arguments form:

 where a > 0 and λ ≥ 0 are the penalty parameters and con-
trol the magnitude of the coefficients. Fan and Li proved that 
the optimal value of a is 3.7, using a Bayesian interpretation 
[33]. The SCAD method is an oracle, unbiased, and pre-
dictive model with fewer variables, preventing over-fitting. 
Therefore, as a powerful modeling method, SCAD has been 
used to construct a few linear and nonlinear QSRR models 
with satisfactory results [26, 30, 34]. Due to the exciting 
aspects of SCAD, such as sparsity and consistency, could be 
a good alternative for LASSO in the stable variable selec-
tion. Nevertheless, there is no report on using a SCAD-ANN 
in QSRR studies based on our best knowledge. Therefore, 
we decided to use the SCAD method as the variable reduc-
tion technique in the QSRR study of the RI values for some 
VOCs.

For the first time in this study, the SCAD method as a 
new variable selection method was coupled with the ANN 
method as powerful nonlinear modeling (SCAD-ANN) to 
predict the GC retention indices (RI) values of Volatile 
Organic Compounds (VOCs). VOCs are aliphatic and aro-
matic chemical compounds with low molecular weights and 
boiling points [35]. VOC sources include solvents, fuels, 
dyes, detergents, cigarettes, and foodstuffs. Most of the 
VOCs produced by the industries often contain benzene, 
toluene, xylene, furan, and chloroform, which are harmful to 
human health [36]. After calculating MDs for different sets 
of VOCs and screening the variables, tenfold cross-valida-
tion SCAD was performed, and the significant descriptors 
corresponded to the λmin (a λ with the minimum CV error) 
were extracted. Due to the complex and nonlinear relation-
ship between the dependent and independent variables, the 
ANN was used to establish a QSRR model. The performance 
of the developed SCAD-ANN models was evaluated using 
statistical parameters for the prediction of RIs of the test and 
validation sets and whole dataset through the leave-one-out 
(LOO) technique. Additionally, the suggested SCAD-ANN 
was evaluated using an applicability domain technique based 
on a leverage matrix computation. It was found that the non-
linear ANN modeling method combined with the penalized 

(2)𝛽SCAD = argmin
𝛽ℝp

{
Y − X𝛽2 + 𝜆

p∑
i=1

P
(||𝛽i||

)
;a, 𝜆

}

(3)P(t;a, 𝜆) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

𝜆t, 0 ≤ t ≤ 𝜆
2a𝜆t−t2−𝜆2

2(a−1)
, 𝜆 < t < a𝜆

𝜆2(a+1)

2
, t ≥ a𝜆

variable selection technique produced accurate QSRR mod-
els for the prediction of VOC retention indices (RIs).

Materials and methods

Dataset

In order to develop QSPR models, several datasets were 
used. The first dataset consisted of Kovats RI of 132 VOCs 
consisting of alkanes, alkenes, amines, ethers, alcohols, 
alkyl-benzenes alkyl-halides. The RIs of studied compounds 
of dataset 1 were measured using a modified Packard Becker 
(Delft, the Netherlands) Model 439 GC equipped with two 
thermal conductivity detectors. The stationary phase was 
C67 with the chemical name of 19,19-Diethyl-14,24 – ditri-
decylheptatricontane, and GC data for about 132 VOCs were 
measured on C67 at 130 °C [37]. The second dataset con-
sists of the RI values of 52 VOCs, including pyrazines, pyri-
dines, furans, etc. The RIs of studied compounds of dataset 
2 were extracted using automatic solid-phase microextrac-
tion (SPME) onto the headspace coated fiber. The SPME 
fiber was inserted into the GC injection port to desorb the 
VOCs for 5 min at 270 °C. The Varian CP-3800 GC column 
is fitted with DB-5 ms (30 m × 0.25 mm × 0.25 mm). The 
oven temperature was adjusted in the range of 40 to 280 °C 
with an increment rate of 4 °C/min. Helium was used as 
a carrier gas with a flow rate of 1.0 ml min−1. Mass spec-
trometer (MS) analysis was performed using the ion trap 
mass spectrometer (Varian Inc., Walnut Creek, CA) [38]. 
The structures of compounds were converted to a simpli-
fied molecular-input line-entry system (SMILES) format 
file. Tables S1 and S2 summarize the chemical names and 
SMILES format of studied structures with the corresponding 
RI values. RI values for all compounds in their own category 
were measured under the same conditions. It should be noted 
that the two data sets did not have homogeneity to be com-
bined in one dataset, so due to the homogeneity in their own 
category, they were used as two separate datasets for further 
studies. Therefore, each dataset has enough homogeneity 
for a QSRR model with low experimental outliers. RI val-
ues were considered as the dependent variable in the whole 
study. The dataset was divided into the train set (60 percent 
of the entire dataset), validation set (20 percent of the entire 
dataset), and test set (20 percent of the entire dataset) with 
the Kennard‐Stone (KS) algorithm based on Euclidean dis-
tance using R-package [39].

Optimization of three‑dimensional structures

The three-dimensional structures of all VOCs were sketched 
using HyperChem software [40]. The structures were 
optimized and reached a minimum state of energy. The 
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optimization process was performed using the semi-empir-
ical AM1 method. The optimization process was continued 
until the root mean square (RMS) value of the energy gradi-
ent reached 0.001 kcal/mol. Optimal structures were used as 
DRAGON inputs for the descriptor computation [16].

Screening and descriptor generation

The MDs were calculated from the optimized structures. 
The optimum structures of compounds were subjected to 
the DRAGON 5.5 software [16], and 3224 MDs were cal-
culated. The calculated descriptors belong to 22 different 
classes, which are: constitutional indices, topological indi-
ces, walk and path counts, connectivity indices, informa-
tion indices, 2D autocorrelations, edge adjacency indices, 
Burden eigenvalues, topological charge indices, eigenval-
ues based indices, Randic molecular profiles, geometrical 
descriptors, RDF descriptors, 3D-MoRSE descriptors, 
WHIM descriptors, GETAWAY descriptors, functional 
group counts, atom-centered fragments, charge descriptors, 
molecular properties, 2D binary fingerprints, and 2D fre-
quency fingerprints [16].

Selection of the most significant descriptors

In order to reduce the instability of the developed model, 
the number of descriptors should be reduced. For this pur-
pose, a two-step strategy of variable screening and vari-
able selection using SCAD was implemented. MDs with 
constant and near-constant values (variables with variance 
lower than 0.001) were eliminated in the screening step. 
Also, among two descriptors with a correlation above 0.9, 
the descriptor with the lowest relevance to the response was 
eliminated. After the screening, the remaining descriptors 
were arranged in a data matrix and used in the subsequent 
variable selection method. At initially, MDs and RI values 
were considered as the independent and dependent vari-
ables, respectively. The test set data were uninvolved from 
the dataset; then, the new matrix was subjected to the SCAD 
method. The SCAD method was implemented using the ten-
fold cross-validation method, and CV errors were computed 
for all possible values of λ. The best λ value minimum CV 
error (λmin) was identified, and the MDs corresponding to 
such λ were considered as the most effective descriptors. 
In all SCAD calculations, the α parameter was adjusted to 
3.7 according to the bayesian study of Fan and Li [33]. The 
programs were written in R software [39] using the caret and 
ncvreg packages [41, 42].

ANN modeling

The relationship of the MDs and the RIs was established 
using a feed-forward ANN trained with the back-propagation 

algorithm using train set data. To evaluate the efficiency 
of the variable selection method combined with the ANN, 
two different training functions were used for ANN mod-
eling. The ANN models were constructed using the Leven-
berg- Mardquat (LM) training function for dataset 1 and the 
Bayesian regularization (BR) training function for dataset 2. 
After optimization and developing QSRR models, the ANN 
model with the LM training function (trainlm in MATLAB 
nnet toolbox) and logarithmic sigmoid as the transfer func-
tion (logsig in MATLAB nnet toolbox) was adopted as the 
best ANN model for dataset 1 (the SCAD-LM-ANN). Addi-
tionally, for dataset 2, the optimal ANN model was devel-
oped with the BR algorithm as a training function (trainbr 
in MATLAB nnet toolbox) and logarithmic sigmoid as the 
transfer function (logsig in MATLAB nnet toolbox), respec-
tively. The architectures of the optimal ANN models are 
10-2-1 and 7-4-1 for datase1 and dataset 2, respectively. The 
corresponding SCAD-ANN models were optimized using 
SCAD selected descriptors to minimize the root mean square 
error (RMSE) of the validation set. The superior models 
were applied to predict RI values of VOCs in the external 
test set.

Diversity analysis

The diversity analysis refers to the chemical space of the 
proposed model and shows the degree of similarity of the 
studied compounds [43, 44]. Therefore, the diversity analy-
sis was performed to investigate how the training, validation, 
and test set compounds are distributed and examine whether 
the test and validation sets are the suitable representation 
of the chemical space of train set data. In this context, the 
distance between the two compounds was calculated using 
the Euclidean distance norm (rij) according to the following 
equation [43]:

 where pij and qij are MD values for two compounds i and 
j. The Euclidean distance between 2 variables (rij) is equal 
to the summation from the first variable (k = 1) to the last 
variable (n). Euclidean distance is found by finding the dif-
ferences for each value of an individually variable (i value 
for the kth variable being pki and j value being qkj). Then, 
the mean Euclidean distances of each compound ( ̄rij ) was 
calculated and normalized ( 0 < rij < 1 ) [23].

Applicability domain

The applicability domain (AD) is recognized as an approach 
to QSRR model evaluation. AD validates part of the 

(4)rij = Pi − Qj =

√√√√ n∑
k=1

(pki − qkj)
2
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response or chemical space of structures of the compounds 
in which the model provides reliable predictions. The AD 
calculation aims to prove the applicability of the recom-
mended ANN model for the compounds of the datasets, 
similarly confirm the presence of the predicted RI values 
in the chemical space range, and prove the accuracy of the 
results. AD was calculated using the Mahalanobis distance 
to the center of the train set distribution through the leverage 
method. The leverage function was computed using the pro-
jection of RI on the predicted response. The leverage denotes 
the diagonal of the Hat matrix. The H values were obtained 
according to the equation as follows [45, 46]:

 where X corresponds to the MDs matrix of the training 
set compounds, xi is the row vector of each MDs for each 
compound, and T represents the transpose of matrix or vec-
tor. The threshold of leverage is defined as the following 
equation [44, 47]:

 where p refers to the number of the descriptors that par-
ticipated in the SCAD-ANN models, and N is the number 
of train set observations. AD approach can be illustrated 
using William's plot, which is obtained by plotting the H 
values versus the standardized residuals. If the H value is 
greater than the threshold of h*, it means that the studied 
compound is structurally very different from the training set 
compounds. Furthermore, if a compound exceeds the range 
of σ < -3 or σ > 3, it is not in the reliable range, and such a 
compound is known as an outlier.

Results and discussion

Selection of relevant descriptors

Due to a large number of MDs, the presence of redundant 
descriptors is high; hence, a combination of a pre-processing 
and variable selection method was implemented on the total 
descriptors to reduce the data dimensions before the con-
struction of a predictive and straightforward ANN model. 
Therefore, in the pre-processing (screening) step, descriptors 
with constant and near-constant values (variance less than 
0.001) were removed. The descriptor with the lowest cor-
relation with response was omitted among two descriptors 
with a pair-wise correlation above 0.9. Before applying a 
variable selection technique, the dataset was splitted into the 
train (60 percent of whole datasets), validation (20 percent 
of whole datasets), and test set (20 percent of whole data-
sets), using the Kennard‐Stone (KS) algorithm and based on 

(5)H = xi(X
TX)−1xT

i

(6)h∗=
3(p + 1)

N

the Euclidean distance. In all variable selection and mod-
eling steps, the test set was discarded, and the variable selec-
tion was performed using the training and validation sets 
data. Due to the intrinsic limitations of OLS-based variable 
selection methods, SCAD as a novel penalized method with 
well-known advantages, such as sparsity and consistency, 
was used to reduce dataset dimension further. For this pur-
pose, the SCAD method was implemented to the remained 
descriptors of training and validation sets. At first, the α 
tuning parameter was adjusted to 3.7 [33], and the SCAD 
was performed using a tenfold cross-validation technique. 
The cross-validation errors for 100 different values of λ were 
computed. The tuning parameter of λ was selected based on 
a grid search approach between 0 and 100, and the λ value 
corresponded to 8 and 15 variables, with the minimum CV 
error was selected as the λmin for each dataset. Therefore, the 
most effective MDs with the highest relevance with RI were 
chosen in such λmin and used as inputs of the ANN models.

The selected MDs of the SCAD method were investigated 
for the existence of correlation and multicollinearity. In sta-
tistical contexts, the jth variance inflation factor (VIF) can be 
computed using VIFj =

1

1−R2
j

 , where R2
j
 is coefficient of deter-

mination for the regression of each descriptor on other 
descriptors. According to the recently published papers, 
VIF > 10 is a sign of severe multicollinearity. According to 
Table 1, all the VIF values are lower than 10. A comprehen-
sive explanation of VIF and significant values for detecting 
multicollinearity can be referred to the recently published 
papers [48–52].

Construction of SCAD—ANN‑based QSRR Model

The artificial neural network procedure does not involve any 
initial information of the mathematical architecture of the 
data. Therefore, the use of ANN is ideal for data analysis, 
in which there is a hidden nonlinear relationship or a com-
plex interdependence between independent and dependent 
variables. Given that nonlinear models are more suitable 
for simulating molecular properties in real situations [53], 
ANN modeling was adapted to create a nonlinear relation-
ship between RI and SCAD-selected MDs. In this context, 
a feed-forward neural network model learning with a back-
propagation error technique was considered for QSRR 
modeling. To obtain an optimal ANN model, the simul-
taneous optimization of all significant parameters such as 
the number of inputs, number of nodes in the hidden layer, 
training epochs, and the training and transfer functions is 
necessary. In most computational chemistry researches, the 
ANN model with a single hidden layer is satisfactory [53]. 
Hence, ANN models containing one input layer, a single 
hidden layer, and one output layer were used to optimize the 
ANN parameters. In the simultaneous optimization of ANN 
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parameters, ANN models with different architectures were 
designated by the use of two diverse training algorithms 
(Levenberg–Marquardt (LM) for dataset 1 and Bayesian 
Regularization (BR)for dataset 2) and logarithmic sigmoid 
as the transfer function. The linear purlin function is used as 
the output transfer function in the ANN training procedure. 
To optimize the number of ANN inputs, the number of input 
layer neurons was first defined from 2 to the whole number 
of SCAD selected descriptors in each dataset. Given that the 
number of subgroups that can be formed from this number 
of inputs is very large, not all of these subgroups can be 
used to train the ANN because it is very time-consuming. 
Thus, the ANN method was utilized to find the optimal 
combination of SCAD selected descriptors. The generated 
ANN models were optimized with respect to the total num-
ber of descriptors in the case of the examined datasets. The 
optimal node and the training epochs were obtained. Fol-
lowing that, all of the descriptors were randomized within 
their respective ranges of variation. Each time, a new set 
of descriptors concluding a manipulated descriptor in the 
presence of other actual descriptors was used to train the 
ANN constructed models. Therefore, the development of 
the ANN models was performed as the above procedure for 

all SCAD selected descriptors. The RI values were predicted 
using the ANN models. The RMSEi value of the validation 
set was calculated in the presence of all selected descriptors 
with a manipulated ith descriptor. This process was repeated 
for the number of SCAD selected descriptions so that 15 and 
8 RMSE values were finally obtained for datasets 1 and 2, 
respectively. The higher RMSEi rate indicates that the ANN 
model suffers more errors in the absence of the descrip-
tor with the actual values. So ith descriptor with more error 
is more important than other descriptors. The descriptors 
were arranged decreasingly in terms of RMSE values and 
defined as the ANN inputs. So that the ANN was first trained 
with the first two descriptors with more importance until 
the ANN was optimized with the total number of impor-
tant descriptors. Subsequently, in optimizing the number of 
inputs of ANN models, arranged subsets with the different 
number of descriptors in the range of 2 to the maximum 
number of SCAD selected descriptors (15 and 8 MDs for 
dataset 1 and dataset 2, respectively) were designed and used 
as the ANNs inputs. Therefore, in the optimization of ANN 
conditions, the number of 14 subsets for dataset 1 and 7 
subsets for dataset 2 were used as inputs according to the 
importance of descriptors, while the number of neurons in 

Table 1   VIF values of SCAD 
selected MDs for both datasets

Descriptors Description VIF

Dataset 1
X1sol solvation connectivity index of order 1 1.43
F01CO Frequency of C—O at topological distance 1 1.04
BAC Balaban centric index 1.12
H047 H attached to C1(sp3)/C0(sp2) 1.10
Mor25m signal 25 / weighted by mass 1.36
H050 H attached to a heteroatom 5.58
Hy hydrophilic factor 7.62
BLI Kier benzene-likeliness index Topological indice 0.95
RDF060p Radial Distribution Function—060 / weighted by polarizability 1.13
GGI5 topological charge index of order 5 1.10
F03CN Radial Distribution Function—030 / unweighted 1.50
C025 R–CR–R 1.55
HATS5v leverage-weighted autocorrelation of lag 5 / weighted by van der Waals volume 1.16
TPSA(Tot) topological polar surface area using N,O,S,P polar contributions 1.96
E1m 1st component accessibility directional WHIM index / weighted by mass 0.99
Dataset 2
X2sol solvation connectivity index of order 2 3.21
F10CC Frequency of C—C at topological distance 10 1.55
Mor27u signal 27 / unweighted 1.9
Mor07e signal 07 / weighted by Sanderson electronegativity 2.47
TIC5 Total Information Content index (neighborhood symmetry of 5-order) 3.89
TIC1 Total Information Content index (neighborhood symmetry of 1-order) 2.27
G2e 2nd component symmetry directional WHIM index / weighted by Sanderson 

electronegativity
4.89

AMR Ghose-Crippen molar refractivity 1.34
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the hidden layer was changed in the ranges of 2 to 10 with a 
step size of 1. The designed ANN models were trained with 
training epochs of 5 to 50 (with step 5) using the training 
set data. Consequently, the trained model was applied to the 
prediction of RI values in the validation set. The optimiza-
tion goal was used to minimize the RMSE for the validation 
set. The best ANN model was selected according to the low-
est RMSE value of the validation set. The RMSE value was 
calculated using the following equation:

 where N is the number of validation compounds, and ŷi 
and yi parameters are the model predicted and actual values 
of RI, respectively. The best architectures of ANN models 
with different training and transfer functions according to 
the minimum RMSE values are summarized in Table 2. The 
obtained results showed that the ANN models with the men-
tioned optimum conditions have low RMSE values and were 
introduced as the superior model for predicting RI values for 
compounds in the external test set and further evaluations. 
The process of modeling steps is summarized in Fig. 1 for 
more clarity. The descriptor arrangement in order of their 
importance was summarized in Table S5 in the supplemen-
tary material file.

Validation of SCAD‑ANN modes

Predictableness of the superior SCAD‑ANN model

The predictability of the proposed models was estimated 
using different approaches. The SCAD-LM_ANN model 
with 10–2-1 architecture and the SCAD-BR-ANN model 
with the architecture of 7–4-1 were practical to predict RI 
of the test sets of dataset 1 and dataset 2, respectively. Using 
the obtained results, the predicted RI values were plotted 
against their corresponding actual values. The LOO tech-
nique was also used to predict the RI values of all com-
pounds. Each compound was excluded once as test data in 
this technique, and the optimal models were trained using 
the remaining data. After running the corresponding mod-
els, the RI values of all compounds were predicted, and the 
predicted values were plotted in terms of actual RI values 

(7)RMSE =

√√√√ 1

N

N∑
i =1

(ŷi − yi)
2

(Fig. 2). Q2
LOO for datasets 1 and 2 was equal to 0.94 and 

0.88, respectively. The prediction results of the model were 
also evaluated using standardized residual diagrams. For 
this purpose, the standardized residuals (ri) were calculated 
for the LOO predicted values according to the following 
equation:

 where ei is the difference between the observed and pre-
dicted responses for each observation i = 1, …, n, and sei 
represents the standard deviation of residual values. The 
standard residuals are plotted in terms of actual RI values in 
Fig. 2c, f. The obtained standardized residual graph (Fig. 2c, 
f) shows a reasonably random pattern. Thus, it implies that 
there was no systemic error in the developed ANN models as 
the spread of residuals was pragmatic on both sides of zero 
[54]. Different statistical parameters were also calculated for 
further evaluation of the prediction ability of the proposed 
SCAD-ANN models. As displayed in Table 3, the results 
specify the good generalizability and predictability of the 
developed model in predicting response values for test set 
data and entire data using the LOO technique. The formulas 
and values of the estimated statistical parameters are sum-
marized in Table 3. The values of statistical parameters and 
comparison with their acceptable values or ranges confirm 
the satisfactory prediction ability of the proposed SCAD-
ANN models.

Additionally, the SCAD efficiency as the variable selec-
tion for the ANN modeling was compared with different 
traditional and penalized methods. For this purpose, the pre-
diction power of the constructed SCAD-ANN models was 
compared with QSAR models derived from the combina-
tions of stepwise regression (SR) and LASSO, as a penalized 
variable selection method, with the ANN modeling method. 
In this regard, selected variables by SR and LASSO methods 
were individually entered into the corresponding optimal 
ANN models (named as (SR-LM-ANN and LASSO-LM-
ANN for dataset 1, and SR-BR-ANN and LASSO-BR-ANN 
for dataset 2, respectively) as the inputs. After the train-
ing and optimization, the RI values of the test set data and 
the whole data (using the LOO technique) were predicted 
using the corresponding ANN models with the architectures 
mentioned in Table 3. The calculated statistical parameters 

(8)ri =
ei

sei

=
(yi−ŷi)

sei

Table 2   The values of the different ANN parameters constructed by selected SCAD descriptors for both datasets

Dataset ANN topology Transfer function Training 
algorithm

Epoch RMSETrain RMSEvalidation RMSETest R
2

Train
R
2

validation
R
2

Test

Dataset1 10–2-1 logsig LM 20 0.02 0.02 0.04 0.96 0.95 0.92
Dataset2 7–4-1 logsig BR 10 39.87 22.38 84.35 0.97 0.98 0.89



2624	 Journal of the Iranian Chemical Society (2022) 19:2617–2630

1 3

for the predicted values are summarized in Table 3. The 
obtained results confirm that the developed SCAD-ANN 
models have good predictability compared to other models, 
indicating the high performance of SCAD in selecting sig-
nificant variables for ANN-based QSAR studies. Addition-
ally, the data distribution was illustrated using the plot of the 
normalized rij values versus the response values (Fig. 3). The 
results in Fig. 3 demonstrate the proper distribution of test 
and validation sets in the chemical space of the training set 
data. Also, in this study, the applicability domain (AD) of 
created models was investigated based on the calculation of 
leverage matrix (h), and the William plot was drawn for all 
developed models. According to Fig. 4, the values of h* for 
both datasets were equal to 0.31 and 0.77, respectively. The 
William plot indicates that more than 95% of the data are in 
the confidence range, meaning that the prediction results of 
the SCAD-ANN models are reliable.

For further investigation, an additional dataset (con-
cluding 206 chemical structures of VOCs) [54] was 
employed to validate the developed SCAD-ANN 

model. After the pre-processing step, 317 variables 
were defined as the input of the SCAD method. Four-
teen significant SCAD selected descriptors were 
arranged based on the ANN procedure and then 
defined as the ANN input. After simultaneous optimi-
zation of the parameters, the optimum LM-ANN with 
5-2-1 architecture was obtained. RI values ​​of the test 
set data were predicted using the optimum LM-ANN 
model. Several statistical parameters such as R2

test, 
CCC​2 test, R2

adj, MAEtest, and RMSEtest were equal to 
0.97, 0.97, 0.96, 24.66, and 31.41. The findings of the 
suggested SCAD-ANN model reveal that it has satis-
factory predictability and is comparable to the previ-
ously presented results.

Y‑scrambling test

The validity of the established relationship by the superior 
SCAD-ANN models was also evaluated using the 

Fig. 1   The process of modeling 
steps of QSRR models
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Y-scrambled data in which the manipulated RI values are 
used [55, 56]. This approach aims to prove that the relation-
ship between independent and dependent variables is not by 
chance. In this regard, about 1000 sets of RI as scrambled 
responses for the data set were randomly generated in their 
own range of variation. The proposed SCAD-ANN models 
were constructed using manipulated responses. The statisti-
cal parameters of the SCAD-ANN models using manipu-
lated responses ( R2

manipulated
 ) were calculated. The values of 

R2
manipulated

 values were plotted versus the times of runs. The 
obtained results in Fig. 5 show that the R2

manipulated
 values are 

significantly smaller than that of the test data set 

(R2
test = 0.89) and smaller than the acceptable value of 0.6 

[57]. Therefore, the results obtained prove that the estab-
lished QSRR relationship between the significant MDs and 
RI values is not random and created based on an accurate 
and reasonable relationship between the molecular descrip-
tors and RI values.

Contribution of MDs in the ANN model

Due to the nonlinear model developed, the contribution 
of MDs in the final model was investigated [23] using 
the optimal proposed to correspond SCAD-ANN mod-
els with 10–2-1 and 7–4-1 architectures. To calculate the 

Fig. 2   The graph of predicted versus actual RIs for both datasets (a,d) test set (b,d) LOO technique (c,f) Standardized residual plot for LOO



2626	 Journal of the Iranian Chemical Society (2022) 19:2617–2630

1 3

Ta
bl

e 
3  

es
tim

at
ed

 st
at

ist
ic

al
 fe

at
ur

es
 fo

r t
he

 re
co

m
m

en
de

d 
su

pe
rio

r A
N

N
 m

od
el

s a
ch

ie
ve

d 
by

 th
e 

pr
ed

ic
tio

n 
of

 R
I v

al
ue

s f
or

 c
om

po
un

ds
 in

 th
e 

te
st/

va
lid

at
io

n 
se

t a
nd

 L
O

O
 te

ch
ni

qu
e

1-
M

ea
n 

A
bs

ol
ut

e 
Er

ro
r, 

2-
 R

el
at

iv
e 

Er
ro

r o
f P

re
di

ct
io

n,
 3

- R
oo

t M
ea

n 
Sq

ua
re

 E
rr

or
, 4

- M
ea

n 
Re

la
tiv

e 
Er

ro
r. 
y
i i

s 
ob

se
rv

ed
 (e

xp
er

im
en

ta
l) 

va
lu

e,
 ŷ
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contribution percentage of each MDs, the values of each 
descriptor were randomized in the range of its own varia-
tions. The optimal SCAD-ANN models were developed each 
time in the presence of one MD with randomized values and 
other MDs with their actual values. The developed models 
were used to predict RI values in the validation set, and the 
RMSEi value of the validation set was obtained when ith 
MD had randomized values. This process was repeated until 
all RMSEi values were obtained for MDs that appeared in 

the final SCAD-ANN model. Finally, the contribution per-
centage of ith MD (Ci) was calculated using the following 
equation:

Figure  6 shows the calculated contribution percent-
age (%Ci) for all selected MDs. The negative or positive 

(9)Ci =

�
RMSEi∑
RMSEi

�
× 100

Fig. 3   The result obtained from the diversity analysis for both datasets

Fig. 4   The plot of the applicability domain for the proposed SCAD -ANN models for both datasets
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influences of MDs on the responses were determined using 
the sign of the standardized coefficients of the corresponding 
SCAD models for dataset 1 (Eq. 10) and dataset 2 (Eq. 11). 
The best fitted SCAD model was estimated as follows:

RI = 0.97 X1sol—0.002 F01CO—0.22 BAC—0.01 H047 
-0.03 Mor25m + 0.03 H050 + 0.03 Hy -0.25 BLI -0.02 
RDF060p -0.01 GGI5 + 0.015 F03CN + 0.016 C025 + 0.02 
HATS5V + 0.03 TPSATot + 0.001 E1m (10).

RI = 1.01 X2sol -0.005G2e—0.13 Mor27u + 0.027 
TIC5 + 0.006 TIC1 + 0.005 AMR -0.005 Mor07e (11).

Conclusion

For the first time in this study, the SCAD as an efficient 
penalized method was used to select important MDs, and 
the selected MDs were used to predict the RI values of 
VOCs using the nonlinear ANN model to construct the 
QSRR model. The proposed corresponding SCAD-ANN 
models simultaneously benefit from the advantage of 
SCAD, such as sparsity and extremely high prediction 

Fig. 5   The plot of Y-randomization for both datasets

Fig. 6   The contribution percentage of MDs appeared in the QSRR models
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ability of the ANN method due to the nonlinearity of 
the relationships between the MDs. The evaluation of 
the developed SCAD-ANN models using test set data, 
LOO techniques, and applicability domain revealed the 
high prediction power of the model. The results (Table 3) 
showed that all statistical parameters of the model for the 
test data and the whole data are acceptable. The value 
of Q2

LOO
 is greater than the acceptable value of 0.5, and 

the value of MAELOO is smaller than the allowable value 
(0.1 × RangeTrain), which indicates the accurate prediction 
of RI values.
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