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Abstract
In organic solvents, water is the most frequently found impurity. It interferes with many reactions, so it can be a reason for 
importance of its determination. Karl Fischer titration is a commonly used method for this purpose. However, some disad-
vantages particularly the inability of continuous analysis limit its applications. The current study reviews the optical sensors/
nanosensors developed for the determination of water and demonstrates their applications in checking water impurity in 
organic solvents. Such optical sensors are highly demanded in the sensing procedures due to their simplicity and low price. 
Almost these methods do not need any expensive or complicated vehicles. This review focuses on optical sensors/nanosensors 
for the quantification of water content in organic solvents from 2016 to 2020 and is an update of Jung et al. work in 2016. 
The reported sensors/nanosensors are categorized into two types: spectrophotometry and spectrofluorimetry; each of them 
is classified based on the used materials for water sensing. The details of each reported method are explained in this review 
in detail, and their analytical characteristics are given as a table.

Keywords Sensor · Nanosensor · Water content · Organic solvent

Introduction

Water is the most common impurity in many organic sol-
vents, and its diagnosis is important to most fields such as 
laboratory chemistry, fine chemical industry, biomedical 
analysis and food processing. Karl Fisher titration is the 
popular method for water content quantification in organic 
solvents [1]. It is originally developed in the 1930s in which 
water reacts with a reagent and is converted to a non-conduc-
tive species. Although this technique has a lot of advantages 
including absolute measurement, high sensitivity, applica-
bility to both liquid and solid samples, low capital cost, and 
wide application range [2], some disadvantages including 
the need for specialized equipment and skilled operator limit 

its applications [3]. Electrochemical and electrophysical sen-
sors are other sensing mechanisms for the quantification of 
water content. Their robustness and ease of calibration and 
use caused to be employed in industrial sectors. However, 
limitations reported for these methods are a lack of enough 
precision and portability for real-time analysis and, owing 
to the electronic nature, are liable to electromagnetic radia-
tion [4]. Compared with above-mentioned techniques, the 
optical water sensing based on fluorophore or chromophore 
materials offers an alternative choice owing to numerous 
advantageous, including simple operability, high sensitivity, 
easy preparation, and convenient on-site detection.

The current work aims to review various optical sensors 
and nanosensors for the quantification of water content in 
organic solvents. The works reviewed here were obtained 
by searching the SCOPUS database for the years 2016–2020 
employing the below search phrases: “fluorometric sen-
sors for determination of water,” “colorimetric sensors for 
determination of water,” “nanosensors for determination of 
water,” and “water content in organic solvents.” A total of 
58 papers related to the subject were chosen for reviewing. 
This article is an update of Jung et al. work in 2016 [4]. 
They categorized the methods based on sensing mechanisms 
including intramolecular charge transfer, photo-induced 
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electron transfer, water-induced decomplexation of dyes, 
proton transfer, solvatochromism, water-induced interpoly-
mer π-stacking aggregation, etc., whereas we classify the 
reported sensors/nanosensors based on analytical techniques 
into two types: spectrofluorimetry and spectrophotometry; 
each of them is categorized based on used materials for 
water sensing. Herein, we provide some explanations for 
each method and give their characteristic features as table.

Developed optical sensors/nanosensors 
for the quantification of water content 
in the organic solvents

The optical techniques reported for the quantification of 
water content in organic solvents are classified into two 
types: spectrofluorimetry and spectrophotometry which are 
reviewed in detail in the following sections.

Spectrofluorimetric methods

In the sensors/nanosensors based on spectrofluorimetry, a 
fluorophore senses a variation in its environment and shows 
a response in either the emission intensity or the wavelength 
of probe emission. The fluorescence properties of a fluoro-
phore change in the presence of water through a variety of 
mechanisms including intramolecular charge transfer (ICT), 
photo-induced electron transfer (PET), excited state intra-
molecular proton transfer (ESIPT), water as a competitive 
ligand, aggregation-induced emission, aggregation-based 
monomer–excimer/exciplex switching, water-induced 
interpolymer π-stacking aggregation, and hydrogen bond 
interactions. PET is a dynamic quenching process in which 
an excited electron is transferred from donor to acceptor in 
the absence of an analyte (water in this case). PET-based 
system is generally composed of a receptor attached using 
a spacer to an energy matched fluorophore. After excita-
tion, charge recombination occurs as a result of the electron 
transfer process and causes the return to the ground state and 
thus quenches the fluorescence emission, whereas analyte 
precludes this procedure [5]. In ICT-based sensors, a recep-
tor attached to an energy matched fluorophore directly and 
results in fluorescence quenching after excitation of a fluoro-
phore. This procedure precludes in the presence of water due 
to variation in the dipole strength of the donor–acceptor cou-
ple [6]. ESIPT is observed in the planar organic molecules 
containing acidic and basic functional groups bounded by an 
intramolecular hydrogen bond (e.g., keto–enol tautomers). 
In ESIPT procedures and by considering the fact that water 
possesses both hydrogen bond donor and hydrogen bond 
acceptor properties, the water adding causes a disruption 
in the ESIPT systems [7]. Another feature of water is its 
action as a competitive ligand. Lanthanides show a strong 

luminescence in the presence of organic ligands due to the 
antenna effect. However, the excited states of the lanthanide 
ions are more sensitive to ligation by water and result in 
quenching the corresponding luminescence and this effect 
is proportional to the number of water molecules in the 
lanthanide ion first coordination sphere [8]. Aggregation-
induced emission is observed for a compound with a highly 
conjugated structure with a high degree of rotational free-
dom which results in quenching the emission using this 
mechanism [9]. Aggregation with changes in environmental 
polarity results in the restriction in the structure rotation, 
thus eliminating the rotational (non-emissive) de-excitation 
pathway and recovered its fluorescence. Aggregation-based 
monomer–excimer/exciplex switching is normally observed 
in flat polycyclic aromatic hydrocarbons and has high affin-
ity for an identical molecule in the ground state for forming 
an excited dimer structure; their affinity is lowered, after the 
emission of a photon. Changing in polarity and the viscos-
ity of environmental leads to conformational changes that 
decrease or increase the intramolecular distance between the 
monomers and affect the ratios of monomer and excimer 
fluorescence. As emission profile of excimer differs from 
that of the monomer, it can be used for analytical purposes 
[10]. Polymers with a high π-conjugated system are sensitive 
to their environment and their physical and optical features 
differ when the environmental polarity is changed, so they 
can be used as a sensor for polar solvents such as water. 
Hydrogen bond interaction between a fluorophore and water 
molecules in an organic solvent can also change the optical 
properties of fluorophore in that solvent which can be used 
for water content monitoring. The employed fluorophores in 
the mentioned water sensing platforms may be (1) dye, (2) 
lanthanide, (3) upconversion (UC) materials, (4) nanomate-
rials and (5) other fluorescent compounds; examples of each 
of them are given in the following sections. The analytical 
features of the given methods are given in Table 1.

Fluorescent dyes

Kumar et al. [11] used a probe composed of the fluorescent 
reporter dansyl dye bounded to Fe (III) ion for quantifica-
tion of water content in tetrahydrofuran (THF), acetone and 
acetonitrile. Probe of dansyl dye attached with Fe (III) ion 
is a non-fluorescent species, and it shows a strong emission 
after adding a trace amount of water. The emission charac-
ter of ligand was regenerated in the presence of water due 
to probable displacement of iron from probe with water 
(Fig. 1). This method shows a linear response to water in 
the ranges of 0.0–0.049 wt% in THF, 0.0–4.975 wt% in ace-
tone and 0.0–7.729 wt% in acetonitrile. Ooyama et al. [12] 
reported a boron-dipyrromethene (BODIPY) sensor based 
on PET mechanism for determination of water content in 
toluene, 1,4-dioxane, THF, acetone and acetonitrile. They 
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show that BODIPY-MH-1 with a PhenylBPin unit can be a 
fluorescent sensor for low concentration of water with both 
fluorescence enhancement and attenuation systems. The 
fluorescence enhancement of MH-1 in acetone and acetoni-
trile with increasing water content in the solution can be 
related to the inhibition of the PET process by formation of 
MH-1(H2O), which is owing to the lowering of the HOMO 
level of tertiary amino group by the water adding. On the 
other hand, for nonpolar solvents including THF, 1,4-diox-
ane, and toluene, the emission decreasing by water adding 
to the solution is related to the disruption of B–N interac-
tion in MH-1(BN) along with the formation of ionic species 
MH-1(H2O) in the water/solvent mixture. Another similar 
work was performed by Tae-Il Kim and Youngmi Kim [13] 
and using 3,5-dimethyl BODIPYs for determination of water 
with LOD of 0.003% v/v in 1,4-dioxane, THF, acetone, ace-
tonitrile and dimethyl sulfoxide (DMSO). Kłucińska et al. 
[14] reported a 4-methylumbelliferone/Sudan I system for 
quantification of water content in the model solvent of hexa-
decane. The fluorescence spectrum of the donor molecule 
(4-methylumbelliferone) depends effectively on the water 
content—its position is affected by protolytic reactions 
occurring between water and fluorescent dye in lipophilic 
solvent media. So, the overlapping the emission band of the 
donor with absorption peak of the acceptor scales with the 
water amount and the increase of water contents in the sam-
ple leads to an increase in the emission intensity. For the 
maximum wavelength at 540 nm, a linear relationship of 
fluorescence intensity to water concentration was observed 
from 0.03 to 3.33% v/v. Other similar studies including using 
4ʹ-N, N-dimethylamino-4-methylacryloylamino chalcone for 
the quantification of water content in ethanol, acetone, and 
THF [15], using coumarin conjugate for determination of 
water content in DMSO, dimethylformamide (DMF), THF, 
acetonitrile, acetone and dioxane [16], using cyanostilbene 
derivative for quantification of water content in THF and 
dioxane [17] using rhodamine B for determination of water 

content in ethanol [18] and using acridinyl dyes for quanti-
fication of water in diethyl ether, THF, ethyl acetate, DMF, 
acetone and acetonitrile [19].

Lanthanides

Lu et al. [20] reported that Eu (III) in the complexation with 
phenanthroline shows a high sensitivity to solvent polar-
ity and the detection of trace amount of water through an 
“on–off” change. It is shown that the photoluminescence 
intensity of complex decreased substantially with the addi-
tion of water below 1%  (H2O/ethanol) and the red emis-
sion has also been completely quenched (> 90%). The pos-
sible mechanism is quenching of lanthanide excited states 
by high-frequency vibrations of  H2O molecules via non-
radiative energy transfer process. Additionally, the strongly 
coordinated  H2O molecules might cause a structural change 
or rearrangement of the europium complex, which would be 
unsuitable for energy migration from ligand to metal ions. 
The LOD for this method was reported to be 32.4 mg.L−1. Li 
et al. [21] reported a  Tb97.11Eu2.89-L1 metal-organic frame-
work (MOF) sensor that enables ratiometric quantification of 
water amount in acetonitrile.  Tb97.11Eu2.89-L1 shows variable 
colors at different water amounts (0% to 17.6%) with the 
naked eye. By excitation at 280 nm,  Tb97.11Eu2.89-L1 dis-
plays distinctive transitions of  Tb3+ and  Eu3+ ions in dry ace-
tonitrile. Similar to the fluorescence behaviors of Tb-L1 and 
Eu-L1, the fluorescence intensity of sensor enhanced upon 
contacting water in acetonitrile. Increasing water amount in 
acetonitrile causes a decrease in the fluorescence intensities 
of  Tb3+ and  Eu3+ and a rising in that of the ligand. With 
increase in water amount in the range of 0% to 2.5% (v/v%), 
the characteristic fluorescence displays an intensity reduc-
tion of 75% for the 5D0 →7F2 transition of  Eu3+, 18% for the 
5D4 → 7F5 transition of  Tb3+ and an increase of 345% for 
the ligand. Consequently,  Tb97.11Eu2.89-L1 MOF sensor pro-
vides a good linear regression between the emission ratios 

Fig. 1  Fluorescence off–on 
response and naked eye recogni-
tion of L.Fe(III) in dry and wet 
solvents such as THF, acetoni-
trile and acetone viewed under 
the UV lamp. Reproduced with 
permission from the publisher
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 (I543/I615) and the water amount in the range of 0%–2.5%, 
demonstrating that  Tb97.11Eu2.89-L1 MOF sensor is a help-
ful tool for the quantification of water amount in an organic 
solvent. With increasing water content, the emission inten-
sity of  Eu3+ quenches more effectively than that of  Tb3+, 
which consequently causes a rising in  I543/I615. Wu et al. [22] 
synthesized the p-carbon dots (p-CDs) with strong red-light 
fluorescence and encapsulated it into a MOF, followed by 
post-synthetic introduction with green-light-emitting Tb ions 
to produce two-color light-emitting hybrid  (Tb3+@p-CDs/
MOF). They reported that the synthesized dots are aggre-
gated easily in water, which leads to a very low fluorescence. 
When  Tb3+@p-CDs/MOF composites are irradiated with 
energy at an excitation wavelength of 360 nm, the material 
dispensed in the organic solutions (such as ethanol, DMF 
and cyclohexane) produces both red and green light, but 
the luminous intensity of the p-CDs is stronger and eventu-
ally shows a red fluorescent color, while dispensed in the 
aqueous media, owing to agglomeration impact, making red 
light quenching, finally leaving only green light and thus 
showing the green light color (Fig. 2). The ratio of emis-
sion intensity at 545 nm (related to  Tb3+) to that at 605 nm 
(related to p-CDs) increases linearly with increasing water 
amount in the range of 0.0% to 30.0% with LOD of 0.28%. 
Another similar work was done by Dong et al. [23] using 
nitrogen and sulfur codoped carbon-based dots encapsulated 
into red-light-emitting europium MOF for determination of 
water amount in ethanol in the range of 0.05 to 4% v/v with 
LOD of 0.03%.

Li et al. [24] prepared a dual-emitting fluorescent detector 
by incorporating a fluorescent dye Rhodamine 6G (R6G) 
with strong green light emission within a red-light-emitting 

Eu-MOF through “bottle around ship” technique. Fluores-
cence spectra of R6G@Eu-MOF in DMF (as an aprotic polar 
media) and methanol (as a protic polar media) were inves-
tigated. The emission intensity of R6G in R6G@Eu-MOF 
hardly changed within 70 s in DMF. After water adding, the 
fluorescence intensity of R6G in R6G@Eu-MOF enhanced 
rapidly, showing that water could improve the release of 
R6G from Eu-MOF in DMF, whereas the emission intensity 
of R6G increased to the maximum within 70 s in methanol, 
and it remained almost unchanged after water adding, which 
shows that part of R6G could be fast released from Eu-MOF 
in methanol. This fact is due to presence of an intramolecu-
lar hydrogen bonding impact between R6G and the protic 
polar solvent, which leads R6G partially released into the 
solvent. However, there is no hydrogen bonding between 
the aprotic polar solvent DMF and R6G. After water add-
ing, due to the hydrogen bonding between R6G and water, 
R6G was released slowly and the fluorescence gradually 
increases. These results showed that the R6G fluorescence 
of R6G@Eu-MOF displays two different ratiometric sensing 
modes in aprotic / protic polar media (Fig. 3). Majee et al. 
[25] synthesized a MOF  ([Y1.0Mn1.5(PDA)3(H2O)3]⋅3.5H2O), 
named 1, (PDA = 2,6-pyridinedicarboxylic acid) through 
hydrothermal process and doped it with 10 % terbium 
 ([Y0.9Tb0.1Mn1.5(PDA)3(H2O)3]⋅3.5H2O), 1:Tb. They 
reported that the weak metal center fluorescence intensity 
of dehydrated 1:Tb in organic solvents ethanol, methanol, 
acetonitrile, THF and n-heptane displayed a large turn-on 
by increasing water amounts in these solvents. The fluores-
cence intensity of  Tb3+ center was improved by several times 
with a LOD of 1.12 %(v/v), 0.47 %(v/v), 0.04 %(v/v), 0.13 
%(v/v) and 0.53 %(v/v), respectively. The studies show that 

Fig. 2  Mechanism of the 
photoluminescence response 
of  Tb3+@p-CDs/MOF toward 
water in organic solvents. 
Reproduced with permission 
from the publisher
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the light is absorbed by the ligand PDA and then by some 
non-radiative procedure, the energy is transferred to the  Tb3+ 
center, and eventually, it observes the green emission from 
the  Tb3+ center. So, it can be said that the enhancement has 
been facilitated by the entering water molecules in the lat-
tice of crystal and the coordination position of Mn. The Mn 
metal present in 1:Tb is coordinated to two water molecules, 
and other water molecules have produced a H-bonding net-
work among the PDA ligands and themselves. These existing 
coordinated and lattice molecules of water cause the struc-
ture to be rigid which is a prerequisite for a well enhance-
ment procedure.

Upconversion materials

Pan et  al. [26] synthesized polyethylenimine-modified 
 NaBiF4:Yb3+/Er3+ UC nanoparticles (NPs) with a hollow 
structure and used it as a fluorescent probe to determine 
water amount in organic solvents. They reported that in pure 
ethanol, fluorescence intensity of UC NPs is the strongest 
and decreases with water content increase in used ethanol; 
so that in pure water, fluorescence intensity is the lowest and 
even is not detectable. Transmission electron microscopy 
(TEM) results showed that UC NPs were piled closely and 
maintain hexagonal in neat ethanol (Fig. 4a, d). However, 
when NPs were placed into a water–ethanol solution, the 
surface of the NPs was clearly decomposed into a zigzag 

and the piled nanoplates became separated (Fig. 4b, e). 
After placing in water or water–ethanol solution with a 
volume ratio of 1:1 for 12 h, UC NPs disintegrated hardly 
and hollow structures of them became more obvious and 
the nanoplates transformed into smaller NPs. This method 
can be monitored water amount in ethanol solution from 0.0 
to 10.0 % v/v. Zhang et al. [27] synthesized  BF4

–-modified 
 LiErF4: 0.5%  Tm3+@LiYF4 UC nanoprobe for quantifica-
tion of water amount in acetonitrile, DMSO and DMF. UC 
NPs exhibit a positive charge that is ascribed to the uncoor-
dinated rare earth metal  Er3+ cations related to the removal 
of organic ligands. The electron density of oxygen atom (O) 
in DMSO or DMF molecules is higher than that of nitrogen 
atom (N) in acetonitrile, so the interaction between the DMF 
or DMSO and the  BF4

–-coated NPs is stronger than that in 
acetonitrile. When the water amount is low, owing to the 
shielding effect of the inner DMF or DMSO molecules, the 
water molecules place far away the  Er3+ emission centers, 
so it is hard to decrease the emission, while in acetonitrile 
solutions, due to the weak interaction between acetonitrile 
molecules and  BF4

–-coated NPs, water molecules are more 
easily diffused and adsorbed on the probe NPs surface and 
cause to quench the fluorescence at very low water amount. 
The LOD in DMF, DMSO and acetonitrile was 58, 50 and 
30 ppm, respectively,

Wang et al. [28] developed a UC material composed of 
 NaGdF4:Yb,Er@NaGdF4:Yb,Nd nanoparticles with dye 

Fig. 3  Illustration of the fabrication of R6G@Eu-MOF and fluorescence detection of water content in organic medium. Reproduced with per-
mission from the publisher
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enhanced nanoprobe for determination of water amount in 
DMSO, methanol, acetone, acetonitrile and ethanol. They 
reported that by water adding to dye-UC NPs in organic 
solvents, the fluorescence lifetime of the dye-UC NPs–water 
became shorter than that of the dye-UC NPs, demonstrat-
ing that the energy transfer efficiency from the dye to the 
UC NPs was decreased. However, by adding different water 
amounts into the dye-UC NPs dispensed in organic solvents, 
the dye absorption in the supernatant increased, showing 
that the surface of the IR-808 dye connected to the UC NPs 
was affected by water. According to the mentioned results, 
the detection mechanism is mainly ascribed to the amount 
of NIR dyes adsorbed on the UC NPs surface that is affected 
by water, and the NIR dye transfer efficiency in water is far 
less than that in the organic phase. This method shows a 
linear response to water from 0.05% to 10% v/v with LOD 
of 0.018% v/v.

Nanomaterials

Wei et  al. [29, 30] synthesized carbon quantum dots 
(CQDs) with yellow emission for determination of water 
amount in ethanol, THF and 1,4-dioxane. They show that 
fluorescence of CQDs is quenched by water adding. The 

reported mechanism for this quenching is as follows: there 
is pyridinic-N in the structure of CQDs and as the electron 
density around pyridinic-N is higher, this atom acts as a 
stronger acceptor of hydrogen bonds, which raises the pos-
sibility of non-radiative relaxation of the excited CQDs and 
causes the quenching of the fluorescent emission in the pres-
ence of hydrogen bond donating molecules, such as water. 
In a word, the emission intensity reduction is ascribed to 
the specific water–fluorophore interaction and partially to 
the raising solvent polarity resulting in the water adding. 
This method can be used for determination of water in the 
concentration from 0.01 to 10% v/v with LOD of 0.01% 
v/v. Lee et al. [31] synthesized nitrogen-doped CDs using 
para-phenylenediamine and nitrilotriacetic acid by solvo-
thermal method. They reported that the emission proper-
ties of CDs are controlled easily by the polarity of solvents. 
Water molecules can induce fluorescence quenching by the 
disruption of the electronic state of CDs in the organic sol-
vents in three ways. First, by water adding to the organic 
solvents, the CDs are aggregated due to the low dispersion 
of CDs in water, which cause quenching resulting in the 
excessive resonance-energy transfer and π−π interaction. 
Second, the strong interaction between high polar solvents 
with para-phenylenediamine in CDs may enhance the rates 

Fig. 4  TEM images of PEI-UC NPs in pure ethanol (a, d), a mixture of water and ethanol (V:V = 1:1) (b, e) and a mixture of water and ethanol 
(V:V = 1:1) (c, f) after 12 h, respectively. Reproduced with permission from the publisher
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of non-radiative decay. Finally, water-induced swelling leads 
fluorescence quenching, because swelling and shrinking are 
typical procedures in graphene-like nanomaterials due to 
the conformational change of CD molecules. Furthermore, 
water molecules that are as hydronium ions in multilayers of 
CDs, have the role of an electron-withdrawing compound, 
which can cause fluorescence quenching. Two linear ranges 
from 0 to 40% and 40 to 100% water amount are observed 
for used probe for determination of water in acetonitrile, 
DMF and ethanol.

Ye et al. [32] synthesized carbon nanodots (CDs) by one-
step solvothermal technique and used them for quantification 
of water amount in ethanol. They found that by adding small 
water amount, the luminescence of the CDs solution presents 
a very significant reduction owing to reducing the surface 
oxidation states. The method offers a good linear response in 
the water concentration range of 0–1% with LOD of 0.006%. 
Li et al. [33] reported a smartphone-based ratiometric lumi-
nescence device for quantification of trace water in hydro-
phobic organic solvents such as n-hexane, dichloromethane 
and toluene. By water adding, part of  Cs4PbBr6 nanoclus-
ters (NCs) (non-fluorescent) was converted to  CsPbBr3 NCs 
(strong fluorescent). The hydrolysis degree of  Cs4PbBr6 NCs 
in a short time (< 1 h) is increased proportional to increasing 
water amount. This method shows a good response for water 
with LOD of 0.031, 0.043, and 0.057 μL  mL−1 in n-hexane, 
dichloromethane and toluene, respectively.

Other studies include using lignin-derived red-emitting 
CDs for quantification of water amount in ethanol, acetone, 
DMSO, THF, DMF and ether [34], using glutathione-
stabilized copper nanoclusters for quantification of water 
amount in DMF, acetonitrile and THF [35], using a sol-
vent-dependent CDs for quantification of water amount in 
acetone, THF and acetonitrile [36], using silyl-protected 

copper NCs quantification of water amount in acetonitrile, 
THF, DMF, dioxane and ethanol [37], using hydrochromic 
CDs quantification of water amount in acetone, acetonitrile, 
isopropyl alcohol, butyl alcohol and THF [38] and using 
luminescent nanospheres of europium (III) mixed complex 
with 2-thenoyltrifluoroacetone and 1,10-phenanthroline for 
determination of water amount in ethanol [39].

Other fluorescent compounds

Yin et al. [40] prepared a guest-encapsulation MOF with 
2-aminoterephthalic acid,  AlCl3 and Ru(bpy)3

2+ (Ru@MIL-
NH2) by a simple one-pot technique and used it as a probe 
for quantification of water amount in ethanol. Ru@MIL-NH2 
shows dual emission at 465 and 615 nm under single exci-
tation of 300 nm. Ru@MIL-NH2 have a lot of hydrophilic 
active sites like as aluminum cluster and free –NH2, so water 
molecules enter cages easily. Water displaced ethanol mole-
cule and produced the hydrated form of Ru@MIL-NH2 with 
water adding. The LUMO and HOMO of π-conjugate system 
of Ru@MIL-NH2 changed to produce the changed blue fluo-
rescence. The emission at 465 nm was increased gradually, 
whereas the emission around 615 nm kept stable relatively 
under single excitation of 300 nm with water adding from 0 
to 100% v/v. Kumar et al. [41] synthesized a dansyl-based 
non-fluorescent metal complex 1.Cu (Fig. 5) and used it for 
the quantification of a water amount in organic solvents. 
1.Cu is a non-fluorescent compound that its fluorescence 
intensity increased dramatically in the presence of water in 
the range of 0.1 to 3.6 % in methanol, acetone, acetonitrile 
and THF (Fig. 5).

Hu et al. [42] synthesized rhodamine B-based sensor (RS) 
by a combination of the spironolactone rhodamine B (fluo-
rophore) and multidentate chelates (thiophene and triazole). 

Fig. 5  Structures of receptor 1.Cu, fluorescence off–on behavior of probe 1.Cu as a function of water in methanol, acetone, acetonitrile and THF 
at λex = 345 nm. Reproduced with permission from the publisher
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They show that  Hg2+ ions can easily form a complex with 
this compound and have a “turn-on” effect on it. The pro-
posed mechanism is the chelation of  Hg2+ with RS which 
induces the spirolactam opening and causing the emission 
of fluorescence. However, fluorescence of RS-Hg complex 
can be quenched by adding various concentrations of water 
(1–5% v/v).

Georgiev et al. [43] proposed a fluorescent probe based 
on 4-amido-1,8-naphthalimide for quantification of water in 
ethanol and acetonitrile solvents. The diagnosing mechanism 
is based on excimer-monomer switching mechanism. Water 
adding leads to a reduction in the excimer emission centered 
at about 560 nm and an increase of the monomer emission 
at 460 nm (Fig. 6). This curious fact could be easily ration-
alized based on this suggestion that the water protonates 
probe generating cations with strong repulsive fields, thus 
destabilizing the excimer formation. The linear range of the 
observed with this probe for water was 0–30% in acetoni-
trile and 0–40% in ethanol. Sun et al. [44] synthesized thia-
zole derivative 2-(4-nitrophenyl)-6-(1,2,2-triphenylvinyl)
benzo[d] thiazole  (TBTNO2) based on tetraphenylethene 
(TPE) and used it as a probe for quantification of water 
amount in THF, dioxane, ethyl acetate and diethyl ether. 
 TBTNO2 shows a strong fluorescence peak in the investi-
gated solvents, and its emissions were effectively quenched 
when the water amount reached 2% (v/v) due to twisted ICT 
mechanism linearly with the increase in the water amount in 
the range of 0.1%–0.3% for THF, 0.05% to 1% for dioxane, 
0.3% to 0.9% for ethyl acetate and 0.15% to 0.7% for diethyl 
ether, respectively.

Other studies for application of fluorescent compounds in 
the presence of water included using two new boron-fluorine 
derivatives bearing dimethylamino moieties, BOPIM-1 and 
BOPIM-2 for determination of water in five organic solvents, 
THF, 1,4-dioxane, isopropanol, acetonitrile, and acetone 
[45], using 7-dialkylaminocoumarin oxime for quantifica-
tion of water in DMF and acetonitrile [46], using Zn(hpi2cf)
(DMF)(H2O) MOF for quantification of water in methanol, 

ethanol, acetone, acetonitrile and THF [47], using anthra-
cene-based fluorescent water-content chemosensor contain-
ing a guanidine moiety (AMG) for quantification of water 
in ethanol, acetonitrile, DMF and 1,4-dioxane [48], using 
fluorescent Schiff-base macrocyclic mononuclear Sm(III) 
complex Sm-2g [Sm(HL2g)(NO3)2] for quantification of 
water in DMF, methanol and acetone [49], using fluorenone-
tetraphenylethene luminogens, 2-(4-(1,2,2-triphenylvinyl)
phenyl)-9Hfluoren-9-one (TPE-FO) and 2,7-bis(4-(1,2,2-
triphenylvinyl)phenyl)-9H-fluoren-9-one (TPE-FO-TPE) 
for determination of water in THF, 1,4-dioxane, and DMSO 
[50], using 9-methyl pyrido[3,4-b]indole-boron trifluoride 
complex (9-MP-BF3) for quantification of water content 
in acetonitrile [51], using a coumarin based Schiff base 
for determination of water content in DMSO [52], using a 
highly crystalline covalent organic frameworks produced 
by condensation of 1, 3, 5-tris (4-aminophenyl) benzene 
with 4, 40-biphenyldicarboxaldehyde for quantification of 
water content in methanol, DMF, acetonitrile and ethanol 
[53], using pentiptycene (P) and perylene bisimide (PBI)-
contained fluorescent dyad (P-PBI-P) for determination 
of water content in dioxane [54], using hemiindigo for 
quantification of water content in dioxane [55], using tri-
azaborolopyridinium derivatives for quantification of water 
amount in THF, acetonitrile, acetone and DMF [56], using 
spironolactone form of aminobenzopyranoxanthenes for 
quantification of water amount in THF [57], using indium 
metal−organic polyhedra  [In2(1,3,5-tri(4-carboxyphenoxy)
benzene (TCPB))2]·2H2O for quantification of water amount 
in acetonitrile [58], using a donor–acceptor–donor-type 
diketopyrropyrrole derivative (TPA-DPP-TPA) for quanti-
fication of water amount in THF and dioxane [59], using 
uranyl tris nitrato, i.e.,  [UO2(NO3)3]–, for quantification of 
water amount in acetonitrile [60], using spirocyclic form 
of rhodamine for quantification of water amount in ace-
tonitrile, THF, DMSO and DMF [61] using 4, 4′-diamino-
4″-methoxytriphenylamine for determination of water in 
DMSO, acetonitrile, ethanol and methanol [62] and using 

Fig. 6  Influence of the water 
content on the fluorescent spec-
tra (λex = 360 nm) of probe in 
acetonitrile (a) and ethanol (b). 
Reproduced with permission 
from the publisher
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fluorescent N,N‐dimethyl benzylamine–palladium(II) cur-
cuminate complex for water determination in DMSO, etha-
nol, methanol and acetonitrile [63].

Spectrophotometric methods

In the sensors/nanosensors based on spectrophotometry, the 
optical properties of a chromophore dissolved in organic 
phase change in the presence of water as an analyte. Water 
detection mechanism in these systems can be due to hyper-
chromism of absorbance band of chromophore with chang-
ing in solvent polarity after water adding, protonation of 
deprotonated form of chromophore, and dissociation of 
metal-ligand (chromophore) complex in the presence of 
water. Each of these processes leads to color changing in the 
utilized system which is detectable with spectrophotometry. 
The absorbance-based platforms for water sensing can be 
in both UV-Vis or near infrared (NIR) regions; examples of 
each of them are given below and the analytical character-
istics of the reported methods are summarized in Table 2.

UV–Vis spectrophotometric methods

Tiwari et al. [64] synthesized a simple Schiff base (E)-
1-(2,4-dinitrophenyl)-2-(1-(2-hydroxyphenyl)ethylidene) 
hydrazine-1-ide (DPH) and used it for a colorimetric plat-
form for the signaling of water amount in some water-mis-
cible aprotic organic solvents (acetonitrile and THF). They 
reported that DPH shows a red color in acetonitrile and THF 
solutions, whereas its solution in 8% aqueous acetonitrile 
exhibits dark yellow color and shows a band at 384 nm. 
The hyperchromism of the band at 363 nm by water add-
ing is related to the protonation of DPH and hence π → π* 
electronic transitions of HDPH become prominent at 384 
nm. Therefore, the conversion of deprotonated form (DPH) 
to protonated form (HDPH) by water adding can be used in 
the quantification of water amount in the range of 0–6% in 
aprotic organic solvents (Fig. 7).

Kumar et al. [65] reported colorimetric probes based on 
Alizarin Red S and Sudan-III for the determination of water 
content in organic solvents such as acetone, THF, DMSO 
and acetonitrile. These solutions are deprotonated by using 
fluoride anion and show dramatic color changes. However, 
the deprotonated forms of solutions are re-protonated by 
using a trace amount of water (Fig. 8). The LOD of water 
for Sudan- III was found to be 0.0042 %, 0.0119 %, 0.0058 
% and 0.0299 %, and for Alizarin Red S, the detection limits 
are 0.0221%, 0.0498 %, 0.0850% and 0.5592 % in acetone, 
acetonitrile, THF, and DMSO, respectively. This research 
group also used the 1,4-dihydroxy-9,10-anthraquinone or 
quinizarin-fluoride system with the same mechanism for 
quantification of water amount in acetonitrile and THF solu-
tions [66].

Another similar work was reported by Wu et al. [67] using 
hydroxyl-containing polyimides for determination of water 
contents in DMSO and DMF. The used system is polyimides 
and fluoride ion complex. Fluoride adding to the polyimides 
solution leads to the deprotonation of hydroxyl groups of 
polyimides and color changing to yellow. The deprotonation 
progress between  F− and OH is easily abrupt by little amount 
of water owing to high hydration energy of  F− in water. 
So, the addition of little amount of water into the DMF/
DMSO solutions of polyimides causes the UV–Vis absorp-
tion spectra to nearly recover to the original state of pure 
polyimides solutions and visual color changes. Other studies 
with similar detection mechanism include using coumarin 
phenylsemicarbazones for determination of water amount 
in the concentration range of 0–0.36 v/v% in acetonitrile 
[68], using adenine-linked naphthalimide for quantification 
of water amount in acetonitrile, THF, DMSO and acetone 
with LODs of 0.1086%, 0.1936%, 0.4012% and 0.3058% v/v, 
respectively [69], using diketopyrrolopyrrole-based lumino-
gen for determination of water content by ESIPT mechanism 
in THF, acetone and acetonitrile with LODs of 0.0064 %, 
0.042 %, and 0.192 %, respectively [70], and using indenop-
yrazine (1)/indenoquinoxaline (2) appended acylhydrazones 
for determination of water amount in DMF in the range of 
0–7.40% and 0–5.21% v/v, respectively [71].

Tan et  al. [72] synthesized a molecular sensor with 
chalcone segment that can attach to metal nitrates selec-
tively (metal =  Zn2+,  Ni2+,  Co2+,  Cd2+) with a significant 
color change from yellow to purple and the selected two-
component probe, probe/Ni  (NO3)2, can determine water 
amount in acetonitrile, acetone, isopropanol and ethanol 
solvents with re-changing color to yellow (Fig. 9) due to 
complex dissociation in water. This method shows a linear 
relationship with water content within the range of 0–10% 
with the LODs of 0.20%, 0.38%, 0.24% and 0.09% v/v in 
acetone, acetonitrile, ethanol and isopropanol, respectively. 
Kumar and Jose [73] synthesized a dabsyl-thiophene-based 
receptor (E)-4-((4-(dimethylamino) phenyl)diazenyl)-N,N-
bis(thiophen-2-ylmethyl)benzenesulfonamide (DABT) and 
used for quantification of water amount in THF, acetone, and 
acetonitrile. Based on ICT in the excited state, the receptor 
dabsyl-thiophene (yellow color) attached to the mercury ions 
(magenta color) to stimulate a colorimetric response. The 
mercury complex is utilized as a moisture probe owing to 
the dissociation of mercury from probe DABT-Hg by water 
adding. The sensor shows higher sensitivity to water in 
THF (LOD = 0.0041% w/w), acetonitrile (LOD = 0.1008% 
w/w) and acetone (LOD = 0.0144% w/w). Yoo and Kim 
[74] synthesized a stable water sensor by encapsulation of 
a functional organic azo dye ((E)-4-((4-(dimethylamino)
phenyl)diazenyl)-1-propylpyridin-1-ium bromide) in a rigid 
host  (AlPO4-5 nanochannel).  AlPO4-5 not only has a host 
role but also facilitated the dissociation of water molecules 
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chemisorbed in its framework. Azo dye is proton-sensitive. 
The produced  H+ protonated the encapsulated azo dye, 
leading to a color change which can be recognized with 
the naked eye. The degree of the color change of the azo 
dye would depend on the water amount in the nanochannel. 
Water content is investigated in methanol, ethanol, 1-butanol 
and 1-propanol. Sensitivity ranges for water determination 
are reported to be 0.0–12.9 wt% for methanol, 0.0–7.1 wt% 
for ethanol, 0.0–4.8 wt% for 1-propanol and 0.0–2.5 wt% 
for 1-butanol.

NIR spectrophotometric methods

van Kollenburg et al. [75] developed a handheld SCiO 
NIR spectroscopy for quantification of low-level of water 
contamination in methyl ethyl ketone with a precision of 
~0.01 wt% in the 0–0.25 wt% range. They demonstrate 
that the regression vector of the partial least squares 
(PLS) model exhibits the water band as the main feature, 
proving the model’s selectivity to the NIR water band. 
The benchtop FT-NIR system outperforms the SCiO sen-
sor according to determination of trace amounts of water, 
which is to a large extent owing to the existing the strong 
water combination band (ν1,3 + ν2) in the spectra of the 
benchtop FT-NIR system compared to the weaker second 
overtone of the O–H stretching band (3ν1,3) in the spec-
tra of the SCiO probe. Comparing the systems with PLS 
regression only on the data from the 870–1070 nm spec-
tral range (i.e., without considering the rest of the bench-
top range), the data from the FT-NIR benchtop instrument 
resulted in models with slightly worse RMSEC (0.013 
wt%) and RMSEP (0.101 wt%) values than those catch 
with the SCiO probe. It can be seen that the 3ν1,3 peak Ta

bl
e 

2 
 (c

on
tin

ue
d)

A
pp

lie
d 

m
at

er
ia

l
M

ea
su

re
d 

m
ed

ia
Li

ne
ar

 ra
ng

e
LO

D
R

SD
 %

Re
m

ar
ks

Re
f

M
ol

ec
ul

ar
 p

ro
be

 b
ea

rin
g 

ch
al

co
ne

 m
oi

et
y

A
ce

to
ne

, A
ce

to
ni

tri
le

, E
th

an
ol

Is
op

ro
pa

no
l

U
p 

to
 1

0%
 v

/v
0.

20
%

 v
/v

0.
38

%
0.

24
%

0.
09

%

N
R

Pr
ob

e 
be

ar
in

g 
ch

al
co

ne
 m

oi
et

y 
bi

nd
 to

 m
et

al
 

ni
tra

te
s s

el
ec

tiv
el

y 
w

ith
 re

m
ar

ka
bl

e 
co

lo
r 

ch
an

ge
 fr

om
 y

el
lo

w
 to

 p
ur

pl
e 

an
d 

th
e 

se
le

ct
ed

 p
ro

be
/N

i(N
O

3)
2, 

ca
n 

de
te

ct
 w

at
er

 
co

nt
en

t i
n 

or
ga

ni
c 

so
lv

en
ts

 w
ith

 re
-c

ha
ng

in
g 

co
lo

r t
o 

ye
llo

w

[7
2]

D
ab

sy
l-t

hi
op

he
ne

-b
as

ed
 re

ce
pt

or
 D

A
B

T
TH

F
A

ce
to

ne
A

ce
to

ni
tri

le

0.
01

25
–0

.0
78

0%
 w

/w
0.

04
37

–0
.1

98
0%

0.
30

55
–2

.4
83

0%

0.
00

41
%

w
/w

0.
01

44
%

 <
 5.

0%
Th

e 
w

ea
k 

bi
nd

in
g 

of
  H

g2+
 w

ith
 D

A
B

T 
in

 w
et

 
so

lv
en

t i
s u

se
d 

a 
co

lo
rim

et
ric

 p
ro

be
 fo

r w
at

er
 

de
te

ct
io

n

[7
3]

A
zo

@
A

lP
O

4-
5 

na
no

ch
an

ne
l

M
et

ha
no

l E
th

an
ol

1-
Pr

op
an

ol
1-

B
ut

an
ol

U
p 

to
 1

2.
9 

w
t%

U
p 

to
 7

.1
%

U
p 

to
 4

.8
%

U
p 

to
 2

.5
%

–
N

R
A

lP
O

4-
5 

fa
ci

lit
at

ed
 th

e 
di

ss
oc

ia
tio

n 
of

 w
at

er
 

m
ol

ec
ul

es
 c

he
m

is
or

be
d 

in
 it

s f
ra

m
ew

or
k.

 A
zo

 
dy

e 
is

 p
ro

to
n-

se
ns

iti
ve

. T
he

 g
en

er
at

ed
  H

+
 

pr
ot

on
at

ed
 th

e 
en

ca
ps

ul
at

ed
 a

zo
 d

ye
, r

es
ul

t-
in

g 
in

 a
 c

ol
or

 c
ha

ng
e

[7
4]

D
ire

ct
 d

et
er

m
in

at
io

n 
w

ith
 N

IR
 sp

ec
tro

sc
op

y
M

et
hy

l e
th

yl
 k

et
on

e
U

p 
to

 0
.2

5 
w

t%
 ~

 0.
01

 w
t%

0.
01

%
–

[7
5]

N
R 

no
t r

ep
or

te
d

Fig. 7  The signaling of water content by DPH in acetonitrile and 
THF. Reproduced with permission from the publisher



20 Journal of the Iranian Chemical Society (2022) 19:1–22

1 3

at 980 nm cannot be positively identified in the FT-NIR 
spectra, while the SCiO probe seems to be optimized 
in this region. An additional parameter is the modes of 
determinations were not the same for both instruments: 

SCiO determinations were collected by transflection 
(optical path length 2 cm) and the FT-NIR spectra by 
transmission (optical path length 6.8 mm).

Fig. 8  Color changes of compounds 1 and 2 in acetone, acetonitrile, DMSO and THF after the addition of [(nBu4N)]F¯ and their reversible color 
changes by the introduction of a trace amount of water in the solvents. Reproduced with permission from the publisher

Fig. 9  The color changes of water titration toward two-component 
sensor C-1/Ni(NO3)2 in four organic solvents: a acetone, b acetoni-
trile, c ethanol and d isopropanol. The concentration of C-1 is 10 μM, 
and the concentration of Ni(NO3)2 is 50  μM, 20  μM, 20  μM and 
20 μM in acetone, acetonitrile, ethanol and isopropanol, respectively. 

The number in red color shows the content of water in organic sol-
vents (%). The photographs were taken after incubation for 10  min 
under room temperature. Reproduced with permission from the pub-
lisher
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Conclusion and future prospects

Development of inexpensive, rapid and sensitive alterna-
tive methods for the visualization as well as detection and 
determinations of water in organic solvents has been of 
great importance due to not only principal investigation 
in analytical photochemistry, chemistry and photophys-
ics, but also their potential uses to monitoring systems 
of quality control and industry. Various research groups 
have reported different sensors for the quantification of 
water amount in organic solvents. The current article 
reviewed the published analytical techniques reported 
from 2016 until 2020. The literature is classified according 
to employed methodology, instrumentation and used mate-
rials for sensing, and the analytical features of all reported 
techniques are given for comparison and easy access. 
Based on the results of this review, various compounds 
such as dye, lanthanide, UC materials and nanomaterials 
with different mechanisms can be used for visualization of 
water contents utilizing spectroscopy instruments. Spec-
troscopy methods provide robust data and are reliable ana-
lytical methods; however, these methods generally show 
a low selectivity and sensitivity for analytical purposes. 
The recent efforts have focused on using nano- and UC 
materials to improve selectivity and sensitivity which can 
make future analytical techniques exploiting these mate-
rials a good alternative to used monitoring techniques, 
including Karl Fisher titration and electrochemical meth-
ods. Thus, the offering new materials-based optical probes 
are expected to be a popular topic for years to come. We 
hope this study persuades the community of scientific into 
designing real-time and sensitive water probes by using 
new materials and present a guidance in the choosing suit-
able sensing platform for future applications.
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