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Abstract
Among molecular structures, colloidal molecules have attracted the attention of the scientific community because of their 
distinct geometry (topology, size on a nanometer scale). In this field, dendrimers are an example of colloidal polymeric mol-
ecules which have a specific size and are identified and regulated by repeating units as generations. The dendrimers are very 
similar to the colloidal particles in geometric form and size, which is more evident in the higher generations of the colloidal 
dendrimers. On the other hand, the unique structural features of these macromolecules resemble them as macromolecular 
colloids. These properties including the high degree of freedom, the controllable molecular size and weight, the need for no 
initiator, the presence of end groups, the high drug transfer capacity, etc., have made dendrimers applicable to a variety of 
fields such as medicine, biomedical, pharmaceutical, catalyst, and so on.
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Abbreviations
PPI  Poly(propylene imine) dendrimer
PAMAM  Poly(amidoamine) dendrimer
LC  Liquid crystalline dendrimer
Tecto  Core–shell dendrimer
MRI  Magnetic resonance imaging
EDA  Ethylenediamine
DAB  1,4-Diaminobutane
DOX  Doxorubicin
PLL  Poly(l-lysine) dendrimers
Tf  Transferrin
G  Generation
PEG  Polyethylene glycol
AuNPs  Gold nanoparticles
Cr  Chromium
DENs  Dendrimer nanoparticles
Pt  Platinum
Cu  Copper
Pd  Palladium

3D  3-Dimentional
MCF-7  Breast cancer
A549  Adenocarcinomic human alveolar basal epithe-

lial cells
BCSFB  Blood–cerebrospinal fluid barrier
BBB  Blood–brain barrier
Zn  Zinc
Fe  Iron
CT  Computed tomography
SM  Single molecule

Introduction

Dendrimers as globular nano-macromolecules are radially 
symmetric molecules with well-specified, uniform and inte-
grated structure including tree-like arms or branches [1–4]. 
The structure of these materials has a profound influence on 
their physical and chemical properties. Due to their unique 
behaviors, they are used in a broad range of biomedical and 
industrial applications. Unbeatable features of dendrimer 
such as the same size, the highest degree of branch forma-
tion, water solubility and presence of internal cavities make 
them attractive for various applications [5, 6]. In addition, 
some dendrimers have natural medicinal activities such as 
antibacterial, antiviral and antitumor activities [7].

Although research on dendrimers began in 1970s, no 
successful method was reported by the late 1970s. In 
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1978, Buhleier et al. [5] introduced a group of synthetic 
cascading molecules. In 1984–1985, Tomalia et al. [7] 
reported the first real dendrimers, and in 1990, Hawker 
et al. [8] published a report on preparation of spherical 
molecules. Unlike linear polymers, these macromolecules 
do not entangle [9, 10] and have unusual viscosity behav-
iors such as low solution viscosity and functional groups 
can be either protected or exposed [11, 12]. These unique 
macromolecules are made up of three basic parts, namely 
a central core with at least two identical chemical func-
tions, branches exuding from the core which are divided 
into several layers called generations and terminal groups 
which have important role in properties of dendrimers [13, 
14].

Synthesis approaches

Divergent method

In this approach, dendrimer begins to grow from a multi-
functional core through a step-by-step iterative addition of 
monomers [15, 16]. The advantages of this approach are 
the high rate of polymerization, modification and change 
in surface groups, and synthesis of high molecular weight 
dendrimers [17, 18]. However, side reactions occurring dur-
ing synthesis are the most important disadvantage of this 
approach, especially in poly(amidoamine) dendrimers. Also, 
incomplete reactions occur in the end groups and lead to 
structural defects [19]. Other disadvantages of this approach 
include formation of some low molecular weight molecules, 
lack of diversity in group’s outer layers and high reaction 
temperature sensitivity which can cause reversible Michael 
addition reaction [20].

Convergent approach

Convergent approach was introduced to overcome the disad-
vantages of divergent approach [20]. In this approach, highly 
pure dendrons are produced firstly and then connected by 
a multifunctional core. This approach has several advan-
tages including easy product purification and significant 
reduction in structural defect. Convergent approach suf-
fers from high number of steps, difficulty in the synthesis 
of dendrimers with higher generations and reduced returns 
due to reduced reactivity of the central dendrons [15]. In 
convergent approach, the formation of higher generations 
is so difficult due to the occurrence of spatial inhibition in 
the reaction between dendrons and molecular nucleus [4]. 
Scheme 1 schematically shows the synthetic path for diver-
gent and convergent approaches.

Click chemistry

Click chemistry approach is another method for the rapid 
and reliable synthesis of dendrimers. One of the salient 
features of this method is the high chemical performance 
of the reaction. Also, simple reaction conditions, read-
ily available reagents, and benign used solvents are other 
features of this method [21].

Lego chemistry

Various methods have been discovered by scientists in 
order to simplify the synthetic method for the synthesis 
of dendrimers in terms of cost and synthesis time. Lego 
chemistry is one of the results of these excavations. This 
method has been reviewed several times, and the results 
showed that this method can increase the number of ter-
minal groups from 48 to 250 in one step [21].

Types of dendrimers

Dendrimers based on their shape, peripheral groups and 
inner cavity can be divided into several types including 
PAMAM dendrimer [22], PPI dendrimer [23], liquid crys-
talline (LC) dendrimers [24], chiral dendrimers [25], pep-
tide dendrimers [26], core–shell (tecto)dendrimers [27], 
glycodendrimers [28], etc. Herein, three types of dendrim-
ers as the most important ones have been widely reviewed.

PAMAM dendrimers

The first successful effort to create and design dendritic 
structures by organic synthesis was made by Vogtle and 
colleagues [5]. Then, Tomalia and colleagues succeeded 
in synthesis of PAMAM dendrimer in the early 1980s 
[7]. PAMAM dendrimers owing to the combination of 
superficial amines and interior amide bonds are used in 
many biological applications [29]. Ease of use, low-cost 
synthesis of doped PAMAM dendrimers than other bio-
logical molecules such as antibodies and proteins of the 
same size and biocompatibility have made them inter-
esting for biochemistry, nanotechnology and medicine 
[29–31]. These dendrimers are generally synthesized via 
divergent approach [5]. Core molecules which give rise to 
PAMAM dendrimers can vary but the most basic initiators 
are ammonia [32] and ethylenediamine [33]. As shown in 
Scheme 2, PAMAM dendrimers use the following iterative 
reactions to grow:
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(1) Michael addition of the amino-terminated compound 
onto methyl(meth)acrylate;

(2) Amidation reaction between amine-containing com-
pounds and product of stage (i) to achieve a new amino-
terminated compound.

It should be noted that focal points of convergent-syn-
thesized segment have been used to create unsymmetrical 
dendrimers [34] and dendrimers with various core func-
tionalizations [35]. Their functionality is readily tailored, 
and their uniformity, size and highly reactive surfaces are 
the functional keys to their application [36].

Poly(propylene imine) (PPI) dendrimers

The first poly(propylene imine) dendrimer was synthesized 
by Vögtle et al., according to a repetitive reactions consist-
ing of Michael addition of an amine to acrylonitrile and 
then reducing the nitrile groups to primary amines [37]. 
The fifth-generation PPI dendrimer is the highest genera-
tion that has been synthesized, and different cores such 
as EDA [38] and 1,4-diaminobutane (DAB) [39] are used 
to synthesize these dendrimers with different generations. 
Scheme 3 shows the synthesis steps of PPI dendrimer with 

Scheme 1  Synthetic path for divergent and convergent approaches Reproduced with the permission of RSC, 2020 [19]
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EDA core. Different methods have been used for reduction 
of nitrile groups to amines as follows:

• Using a heterogeneous hydrogenation catalyst (such as 
Raney nickel and cobalt), a pressure of 40 bar and a tem-
perature of 70 °C [40];

• Using hydrazinium monoformate and Raney nickel cata-
lyst [41];

• Using lithium aluminum hydride catalyst [42].

Phosphorous‑based dendrimers

Rich structures of silicon- and phosphorus-based dendrim-
ers are now available [44–48]. In recent years, because of 
the unprecedented attributes of phosphorous-based den-
drimers such as catalyzing, materials science and medicine, 
they have been considered significantly [49, 50]. Several 
groups have described phosphate-based dendrimers using a 
divergent method [51, 52]. The first method was described 
by Regan et al. in 1990 [53]. They have synthesized a new 
family of dendrimers consisting of a central core and many 

branch points with quaternary phosphonium ion sites. In 
1994, DuBois et al. [54] synthesized the first small dendrim-
ers containing a phosphine at each branching point for elec-
trochemical  CO2 reduction. In 1999, Kakkar and colleagues 
obtained larger dendrimers containing phosphine group at 
any point in the branching process [55]. In 1994, Majoral 
and colleagues presented the first neutral phosphorus den-
drimers [45]. They used the following two basic steps: the 
reaction of hydroxybenzaldehyde and a core with P–Cl or 
aldehyde functions and condensation of aldehyde groups 
with a phosphorhydrazide [56, 57]. The attendance of alde-
hyde end groups or P(S)Cl2 at each step can develop reac-
tions [58–65]. However, the synthesis of these dendrimers is 
time-consuming. Majoral and colleagues succeeded in trans-
forming the synthesis process into a single step using the 
classical method [65, 66]. They used (S)P(OC6H4CHO)3 as 
a core (G0). Thus, in the first step, G1 was easily synthesized 
with six terminal groups of diphenylphosphino end groups 
using reaction between core (G0) and three equiv. of  AB2 
(monomer 1). In the second step, G2 was synthesized (with 
12 aldehyde terminal groups), using Staudinger reaction 

Scheme 2  Synthetic route of 
PAMAM dendrimer Repro-
duced with the permission of 
RSC, 2020 [4]
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Scheme 3  Synthetic route of PPI dendrimers Reproduced with the permission of Springer, 2020 [43]

Scheme 4  Structure of phos-
phorus-containing dendrimers 
[67]
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between G1 and six equiv. of the azide (monomer 2). Den-
drimers were formed up to the fourth generation using these 
two monomers in four steps. Scheme 4 shows the structure 
of phosphorus dendrimers.

Applications

In contrast to linear polymers, which are often randomly 
formed, dendrimers have a specific structure that comprises 
a central core with branches that are located radially. In 
the higher generations (above 4), their structure changes to 
three-dimensional and quasi-spherical. The major intramo-
lecular forces in the dendrimer are covalent bonds, but other 
types of interactions (such as hydrogen bonds) are known 
as well. They also have the ability to trap guests within the 
molecular space because of the ability to move their branch 
structure. Although many other nanostructures provide a 
high surface area and can be used for drug delivery [68, 
69], dendrimers have good control and flexibility for this 
purpose. These macromolecules are very useful for carrying 
materials and can be organized into different dimensions. 
Indoor spaces such as surface end groups can be used as 
centers for the integration of chemical functional groups. 
This characteristic of dendrimers makes them useful for 
various applications such as catalysts [70], medicine [71], 
drug delivery [72] and synthesis of nanoparticles [73].

Catalysis

In recent decades, researchers have performed many differ-
ent works in the field of catalysts [74–83]. Dendrimers are 
unique macromolecules that can be accessed using chemical 
compounds from a variety of building blocks. Metal com-
plexes as catalytic groups can be located in the dendrimer 

core to exploit microenvironment and selectivity factors of 
the dendritic shell [84]. Reymond and co-workers reported 
the first catalytic peptide dendrimers for an ester hydrolysis 
reaction [85]. Dendrimers are used to prepare a particular 
microenvironment to simplify catalyst separation and recov-
ery [86, 87]. In recent studies, researchers have examined 
peptide dendrimers such as protein mimics, antiviral and 
anticancer agents, vaccines and drug and gene delivery 
systems [88, 89]. Douat-Casassus et al. [90] synthesized 
different peptide dendrimers based on the Fmoc-protected 
3,5-diami-nobenzoic acid as a building block for the branch-
ing unit and bearing the catalytic triad amino acids serine, 
histidine, and aspartate at variable positions on the den-
drimer branches. As catalysis is relatively easy to tune the 
structure, size and location of catalytically active sites, it 
can be one of the most promising applications of dendrimers 
[91]. Host dendrimers for metal nanoparticles are catalyti-
cally active for the following reasons [92]:

• Dendrimers have a relatively uniform structure and com-
position;

• Nanoparticles are stabilized within the dendrimer inter-
nal cavity, which prevents their aggregation during the 
catalytic reaction;

• Nanoparticles inside the dendrimers are maintained by 
steric effects so that there is a significant portion of their 
inactive levels to participate in the catalytic reactions;

• To control the access of small molecules to the encapsu-
lated (catalytic) nanoparticles, the branches of dendrimer 
can be used as selective gates;

• The hybrid nanocomposite solubility can be controlled 
with the dendrimer periphery.

Catalytic performance is measurable by sustainabil-
ity, activity, selectivity, and recyclability. As shown in 

Scheme 5  Various dendritic architectures: catalyst located at the periphery (a), internal core (b), focal point of a wedge (c) and periphery of a 
wedge (d) Reproduced with the permission of Elsevier, 2020 [95]
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Scheme 5, this depends on the dendritic architecture includ-
ing distinguishing periphery-, core- and focal point-func-
tionalized dendrimers [93].

In 2000, Chechik and Crooks [94] reported Pd-encapsu-
lated dendrimer nanoparticles as highly selective and active 
fluorous biphasic catalysis. They showed that these catalysts 
could be easily recycled and used for multiple reactions. 
In 2001, Crooks et al. [95] synthesized metal nanoparti-
cles-encapsulated dendrimers and evaluated their catalytic 
applications. In 2006, Hoover et al. [96] used dendrimer 
nanoparticles (DENs) as precursors of Pt–Cu catalysts where 
the effect of particle composition on heterogeneous catalysts 
was investigated. Karakhanov et al. [97] reported thermo-
responsive ruthenium catalysts based on PPI dendrimers 
cross-linked with poly(ethylene glycol) diglycidyl ether. The 
results showed good chemical and physical attributes of the 
synthesized catalysts such as metal loading, mean particles 
size, surface structure, etc. Also, dendrimers-based catalysts 
have many other applications including membrane reactor 
[98–101], biphasic systems [102], “tea bag” [103] and ionic 
liquids [104, 105].

Medications and in pharmaceutical

Dendrimers are used for many medications and in pharma-
ceutical due to the well-defined 3D structure, surface func-
tional groups and low size besides predetermined molecu-
lar weight [106, 107]. They are combined with drugs and 
bioactive molecules, and their internal cavities can also be 
changed for combination of hydrophobic and hydrophilic 
drugs [108, 109]. Modified surface end groups have also 
been used to attach antibodies and bioactive substances and 
increase reactivity and solubility [110, 111]. Mechanisms of 
interactions between drugs and dendrimers like other poly-
meric structures are categorized into three main classes, 
namely encapsulation, electrostatic interactions and covalent 
conjugations [112–116].

Drug delivery systems

The central core and its internal units of dendrimers create 
cavities as environment for drug placement. The solubil-
ity and chemical behavior of these macromolecules can be 
controlled by binding the target functional groups to their 
surface [110]. In 1982, Maciejewski proposed the use of 
dendrimers as molecular containers [117]. In 2005, Patri 
and colleagues synthesized fifth-generation PAMAM 
dendrimer conjugates with folic acid and then examined 
the solubility of dendrimer conjugates and compared the 
efficacy of covalently bounded methotrexate (MTX) onto 
fifth-generation PAMAM dendrimer [118]. In 2012, Wang 
and colleagues used PPI dendrimer with varying degrees 
of acetylation and encapsulated drugs including sodium 

methotrexate and doxorubicin [119]. Acetylation of more 
than 80% of functional groups significantly reduced cell 
cytotoxicity in MCF-7 and A549 cell lines. They found that 
the loading capacity of drug was proportional to the degree 
of acetylation and increasing degree of acetylation resulted 
in higher loading capacity of the drug. In 2014, Keshar-
wani et al. [120] loaded third-, fourth- and fifth-generation 
PPI dendrimers with melphalan drug under identical condi-
tions. They found that increasing generation of dendrimer 
led to higher drug loading due to increased internal cavities 
of dendrimer [120]. In 2014, Pourjavadi et al. investigated 
pH-responsive magnetic nanoparticles to control the release 
of DOX. They have grown a third-generation PAMAM den-
drimer on the surface of magnetic iron oxide nanoparticles. 
Then, surface amines were modified with poly(ethylene 
glycol) dimethyl ester and then loaded the DOX onto the 
surface [121]. In 2017, Golshan et al. [122] functionalized 
fifth-generation PPI dendrimer with folic acid to target DOX 
delivery at different pH values. In other works, surfaces of 
gold nanoparticles and cellulose nanocrystals were modified 
with fifth-generation PPI dendrimer and release behavior of 
DOX was investigated at different pH values [123, 124]. In 
2019, Najafi et al. synthesized gold/dendrimer hybrid nano-
particles using fifth-generation PPI dendrimer and investi-
gated DOX release behavior and found that drug cumulative 
release was increased with increasing grafting density of 
dendrimer [23].

Brain tumor

Throughout the world, cancer has appeared as a basic cause 
of mortality in the world. Among the various types of cancer, 
brain tumor has the highest risk for life. Different types of 
dendrimers such as PAMAM [125, 126], PPI [127, 128] and 
PLL [129, 130] are used to treat and diagnose brain tumors 
and other cancers [131]. The greatest obstacle is often not 
drug potency but the physical barriers present at distin-
guished interfaces containing the blood vessels of the brain 
(blood–brain barrier, BBB), the choroid plexus (blood–cer-
ebrospinal fluid barrier, BCSFB) and the arachnoid layer of 
the meninges (blood–arachnoid layer), interpreting the typi-
cal circulatory routes of delivery as ineffective [132, 133]. 
Many chemotherapy drugs do not reach the brain because 
they are substrates of the efflux transporters at the BBB. To 
resolve this matter, delivering chemotherapy by nanocarri-
ers presents an attractive method [134]. Dendrimers can be 
easily delivering the drugs across the BBB due to their size, 
higher drug loading and controlled drug release [135]. Den-
drimers with targeting abilities cargoe drugs to the tumor 
sites and penetrate to brain after systemic administration 
[136]. Mishra et al. [137] demonstrated that hydroxyl-ter-
minated fourth-generation PAMAM dendrimers provided 
site-specific delivery of small molecular drugs across the 
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BBB and blood–CSF barriers. Xie et al. [138] synthesized 
PAMAM dendrimer composites and investigated the physi-
ochemical properties and biological effects to achieve nasal 
brain transport. Teow et al. [139] showed 12-fold increased 
permeability of PTX compared to free drug and evaluated 
cytotoxicity using third-generation PAMAM dendrimers 
loaded with PTX. Sk et al. [140] showed that PAMAM 
dendrimers as drug carries increased the bioavailability of 
natural podophyllotoxin and estramustine conjugated with 
PAMAM dendrimer and increased the inhibitory activity 
of antimitotic agents on tubulin polymerization of glioma 
cell survival. Patel et al. [141] synthesized PTX-conjugated 
PPI dendrimer for brain delivery and also showed that the 
prepared conjugate had a long-term efficacy and low cyto-
toxicity. Somani et al. [142] checked brain delivery of plas-
mid DNA as medicine using third-generation PPI dendrimer 
anchored with transferrin (Tf). Results showed increasing 
uptake of plasmid DNA via Tf-conjugated PPI dendrimers.

Photodynamic therapy

Peng et al. [143] improved the photodynamic efficacy of 
hydrophobic porphyrin using PAMAM dendrimer–porphy-
rin conjugates with minimized side effects. Kojima et al. 
[144] investigated interactions of photosensitizers between 
PEG-attached PPI and PAMAM dendrimers for photody-
namic therapy. Taratula et al. [145] showed that phthalocy-
anine-dendritic complex modified with PEG and targeting 
LHRH moiety had significant potential for NIR fluorescence 
image-guided drug delivery and photodynamic therapy. Nar-
sireddy et al. [146] conjugated fourth-generation PAMAM 
dendrimer with a peptide for targeted in vivo photodynamic 
therapy. Lee and Kim [147] reported a hydrophilic nanocon-
jugate to enhance PDT efficacy by improving water solubil-
ity and intracellular uptake of Ce6.

MRI

Dendrimers are a class of compounds with great potential 
for use as MRI diagnostic or theranostic agents [148]. In the 
early 1990s, the first in vivo diagnostic imaging applications 
using dendrimer-based MRI contrast agents were demon-
strated by Lauterbur et al. [149]. Wiener et al. introduced 
the first new class of dendrimer-based metal chelating as 
MRI contrast agent [149]. In 2001, Konda et al. [150] used 
folic acid-conjugated fourth-generation dendrimers as MRI 
contrast agent. Results showed longitudinal relaxation rate 
at T1 by over 100% in cells expressing the folate receptor, 
compared to untreated cells. Wang et al. [151] showed that a 
second-generation PPI dendrimer had higher relaxivity than 
the corresponding ammonia core PAMAM agent. Haribabu 
et al. used multifunctional G3 PAMAM dendrimers as T1 
and T2 contrast agents for MRI [152].

X‑ray contrast agent

X-ray is a useful imaging device for organs and tissues that is 
used in many clinical trials [153]. Guo et al. [154] modified 
fifth-generation PAMAM dendrimer with gold nanoparti-
cles in different concentrations, and results demonstrated 
that these nanoparticles were more effective than iodine-
based contrast agents for X-rays imaging. Liu et al. [155] 
offered the synthesis of fifth-generation PAMAM-stabilized 
silver nanoparticles for X-ray computed tomography (CT) 
imaging applications. Kojima et  al. developed AuNPs-
loaded PEGylated-PAMAM dendrimers for CT imaging 
[156–158]. Zhu et al. [159] used multifunctional AuNPs-
trapped PAMAM dendrimer as a template for efficient tar-
geting of cancer cells and X-ray attenuation.

Dendrimer as molecular probe

In 2005, Cotle et al. reported the ensemble and single-mol-
ecule (SM) dynamics of Forster resonance energy transfer 
in a multichromophoric rigid polyphenylenic dendrimer 
[160]. Kim et al. [161] synthesized biocompatible fluores-
cent dendritic nanoprobes containing multiple covalently 
linked organic dyes for fluorescence imaging.

Gene therapy

Human diseases which are transmitted to specific cells by 
genetic material are diagnosed and treated by gene therapy 
[162]. Dendrimers are used in gene delivery because of 
monodispersity, functional groups and multivalence struc-
tures [163, 164]. Haensler et al. [165] used dendrimers for 
gene therapy. Li et al. [166] modified gold nanoparticles 
with fifth-generation PAMAM dendrimer for a safe delivery 
system as controlled gene delivery for breast cancer ther-
apy. Wang et al. synthesized aptamer-conjugated PAMAM 
dendrimer nanoparticles for targeted gene delivery. Results 
showed that dendrimer improved cellular uptake in A549 
cell line and enhanced gene transfection efficiency [167]. 
Luong et  al. used PEGylated-PAMAM dendrimers for 
enhancing efficacy and mitigating toxicity for effective anti-
cancer drug and gene delivery [168]. Amreddy et al. [169] 
used folic acid-conjugated PAMAM dendrimer for targeted 
combined delivery of drug and gene to improve bioavail-
ability and enhance therapeutic effects.

Waste water treatment

Different methods are used to treat wastewater which include 
dialysis [170], reverse osmosis [171], ion exchange [172], 
electrostatic interactions [173, 174], etc. Many adsorbents 
for wastewater treatment have limitations such as low 
absorption capacity, lack of economics of operation and 
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fast adsorption rates [175–177]. Due to the large number 
of cavities between their branches, dendrimers have high 
absorbance properties for wastewater treatment [178], and 
also because of amine end groups, they are the best option to 
accumulate metal ions [177]. The first report for the removal 
of heavy metals from water and soil using dendrimers was 
presented by Diallo et  al. [179]. Peng et  al. [180] used 
amphoteric PAMAM dendrimers as a flocculent in treat-
ing wastewater. In 2013, Barakat et al. [181] synthesized 
PAMAM-modified  TiO2 and examined the critical param-
eters which affect the ion removal including batch reten-
tion time, pH and metal ion concentration. Yuan et al. [182] 
evaluated the heavy-ion adsorption capacity of PAMAM-
modified graphene oxide. Their results showed that dendrim-
ers had a great ability to adsorb heavy ions, including  Cu2+, 
 Zn2+,  Fe3+,  Pb2+,  Cr3+. In 2014, Hayati et al. [183] studied 
thermodynamic properties of dye removal from colored 
textile wastewater using PPI dendrimer. Results indicated 
that dendrimer was an environmentally friendly material and 
suitable for removing paint from colored textile sewage at 
various temperatures. In 2017, Peer et al. [184] examined 
the absorption of Cd(II), Pb(II) and Cu(II) from aqueous 
solution using PAMAM-modified graphene oxide. They 
also studied the effects of pH, the dose of adsorbent, the 
contact time, Cd(II), Pb(II) and Cu(II) ions concentration, 
temperature of aqueous solution and thermodynamic proper-
ties (enthalpy, entropy and Gibbs free energy).

Conclusions

Unlike linear polymers, dendrimers are nano-macromole-
cules which branch out of a core and all the branches even-
tually reach a central core. In synthesis of dendrimers, their 
molecular size and weight can be controlled. The presence of 
a large number of terminal branches increases the solubility 
and reactivity of the dendrimers. The solubility of dendrim-
ers is strongly influenced by the nature of the surface groups. 
Initiators are not used to construct dendrimers, which causes 
their low toxicity. Dendrimers also have a high drug deliv-
ery capacity. The unique properties of dendrimers such as 
controlled size, monodispersity and reactive surface groups 
make these molecules ideal for medical applications includ-
ing biomedical, drug delivery, catalysis, etc.
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