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Abstract 
Currently, the high demand for energy results in a large amount of pollution, which is of great concern. To overcome this 
problem, a highly active and low-cost bifunctional electrocatalyst for the oxygen reduction reaction (ORR) and oxygen evo-
lution reaction (OER) is crucial to satisfy industrial criteria. Layered double hydroxides (LDH) attracted significant interest 
in several fields, including catalysis, storage of energy, delivery of druges, etc. A simple coprecipitation method for the 
preparation of highly active electrochemical Fex/CoNi LDH catalysts at room temperature was described here. In alkaline 
media, from series of prepared catalysts, the Fe8%/Co–Ni LDH shows superior electrocatalytic activity with an overpotential 
of 232 mV at 10 mA/cm2, and Eo 91 V and E1/2 0.83 V versus RHE comparable to both noble metal-based and noble-metal-
free OER/ORR catalysts recorded. Proper electronic structure and charging resistance that can facilitate the reduction of 
electron movement in the ORR/OER, are considered as two main factors in reducing the over-potential catalytic reaction.

Graphic abstract
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Introduction

The increasing demand for energy and environmental solu-
tions has prompted extensive studies into energy storage 
systems and methods of conversion, such as metal-air batter-
ies, water decomposition, carbon dioxide capture, fuel cells 
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[1–5]. Electrochemical reactions, such as oxygen evolution 
reaction (OER), oxygen reduction reaction (ORR), hydrogen 
reduction reaction (HER), and CO2 reduction, are the basic 
steps of these approaches [6–10]. Platinum group metals 
(PGMs) are active electrocatalysts, but their scarcity and 
high cost restrict their use in the energy conversion indus-
try [11–13]. Therefore, there is an urgent need to research 
high-performance and low-cost nonplatinum group metal 
electrocatalysts [14–16]. The production of appropriate and 
economic catalysts with high activity, such as non-noble 
metals/metal oxides and carbon-based materials, is, there-
fore, of great importance [17–19].

Both specifications can be met using layered double 
hydroxides (LDH), instead of the traditional anode and 
cathode materials used in energy systems [20–22]. LDHs 
are a class of natural and synthetic compounds, and the 
general formula is [M(II)1−xM(III)x(OH)2](yn−)x/n-yH2O, 
in which M(II) and M(III), respectively, represent divalent 
and trivalent metals, and Yn− is anion interlayer [23–25]. 
Divalent metals in today’s LDH materials may be Mg2+, 
Ca2+, Zn2+, Co2+, Cu2+, etc.; trivalent metals may be Al3+, 
Cr3+, Co3+, Fe3+, Mn3+, etc., [26–29]. Several anions can be 
used, including several organic anions, including Cl−, NO3

−, 
and CO3

2−[30–33]. LDH is also known as hydrotalcite-like 
compounds (because these are like minerals in structure) or 
anion clays [34–36]. These are structurally composed of [Mg 
(OH)2] brucite-like compounds, with a net positive charge 
due to partial substitution of divalent metal (M2)+ trivalent 
metal (M3); change usually results in X values between 0.2 
and 0.4 [37–40]. The positive charge is effectively distrib-
uted evenly on each substratum under the control of the posi-
tive charge center’s repulsion power [41–43]. Apart from 
water molecules, anions are often brought into the vacuum 
of the interlayer to equate the total positive charge with the 
negative charge. NiFe LDH has become one of the most 
promising OER catalysts under alkaline conditions thanks 
to its unique structure and high intrinsic catalytic activity, 
but its ORR activity is low [44–48]. Electrocatalyst based 
on LDHs can be used to efficiently and stably prepare the 
bifunctional electrocatalyst, which is of great importance for 
solving these problems. It should be noted that LDH materi-
als have low conductivity and a high propensity to form fast 
aggregation [49–52]. Therefore, designing high-performance 

bifunctional electrocatalysts by optimizing strategies such as 
deposition on the conductive substrate, morphology regu-
lation, composition change, and surface modification is of 
great importance according to the basic structural charac-
teristics of LDHs.

In this study, Fe-doped Co–Ni LDHs (called Fex/CoNi 
LDHs) were synthesized by doping CTAB-capped Fe nano-
particles (NPs) on the surface of CoNi LDH as an excellent 
bifunctional electrocatalyst. The electrochemical results show 
that with Fe8%/CoNi LDH at a low overpotential of 232 mV, the 
current density of 10 mA cm−2 can be achieved. The efficiency 
of ORR (Eo 0.91 V and E1/2 0.81 V) is substantially improved 
compared with other catalysts and commercial Pt/C and RuO2. 
This work provides an effective technique of optimization by 
doping metal cations on LDHs for catalyst applications, flame 
retardants, ion exchangers, novel nanocomposites, etc.

Results and discussion

The Fex/CoNi LDHs were prepared by a simple coprecipita-
tion method at room temperature with low cost and earth-
abundant chemicals as raw materials. A simple two-step 
room-temperature reaction was used to synthesize a bime-
tallic CoNi LDH and various contents of doped CTAB-
capped Fe nanoparticles nanostructure (see “Experimen-
tal” section). Samples have been named according to the 
Fe content used. Co and Ni are in ratio constant (Table 1). 
X-ray diffraction (XRD) analyzed the as-prepared sample 
to analyses phase (Fig. 1). Fex/CoNi LDH diffraction peaks 
at 11.41°, 22.97°, 33.53°, 34.42°, 38.99°, 45.98°, 59.93°, 
61.25°, and 61.25° can be indexed to (003), (006), (001), 
(012), (015), (018), (113), and (116) crystal faces (JCPDS 
no. 40-0215). The diffraction peaks of all prepared LDHs are 
a clear indication that Fe doping induces no phase change 
and should suggest sampling without detectable impurities 
such as Fe2O3 and CoO, etc.

N2 adsorption–desorption isotherms identified the sur-
face area and porosity of the as-prepared materials and are 
shown in Fig. 2 and Table 2. As for all as-prepared sam-
ples, a type IV isotherm with a type H4 hysteresis loop, 
which defines a mesoporous content, may be observed. 
Brunauer–Emmett–Teller (BET) has a surface area of 108 

Table 1   Elemental composition 
of prepared layered double 
hydroxide

Catalysts Theoretical (wt%) EDX analysis (wt%)

Fe Co Ni Fe Co Ni

Co–Ni-LDH – 10 12 – 8.97 10.97
Fe4%/Co–Ni-LDH 4 10 12 6.72 7.88 9.51
Fe6%/Co–Ni-LDH 6 10 12 7.84 8.26 10.92
Fe8%/Co–Ni-LDH 8 10 12 10.19 12.34 8.02
Fe10%/Co–Ni-LDH 10 10 10 11.98 14.01 8.30
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m2 g−1 of Fe8%/CoNi LDH, relatively higher compared to 
CoNi LDH (86 m2 g−1), Fe4%/CoNi LDH (90 m2 g−1), Fe6%/
CoNi LDH (96 m2 g−1), and Fe10%/CoNi LDH (104 m2 g−1). 
These results indicate that the specific area increases with 
the Fe content increase. We noticed a change in the hyster-
esis loop because of the different composition of LDH. Fe8%/
CoNi LDH is closed at a relative pressure of approximately 
0.5 (P/P0) and has a small platform at a high P/P0 that is 
connected to the sample’s mesoporous properties [2, 8]. The 
higher specific surface area and special porous nanostructure 
will provide a higher catalytic activity for the LDH hybrid, 
due to the higher density of active centers on the surface of 
the catalyst and lower resistance to mass transfer [5, 11]. 

SEM images (Fig. 3) identified the various LDH powder 
morphologies. The SEM image indicates that the substance 
is lightweight and is dispersed around its surface with tiny 
loose little particles. The material morphology is usually 
uniform. The EDS shows the presence of Co, Fe, Ni, and O, 
and these elements are added as part of the salts (Fig. 3f). 
These results indicate that the LDH is pure. The small par-
ticles have a distinct form and appear to be made of stacked 
material. Doping and stirring may have contributed to the 
size of LDH particles. When applying LDH in ORR/OER, 
the small crystal sizes seen in this picture are helpful. The 
Na possibly derived from the synthesis reaction of NaOH, 
which was used as a protective agent in the synthesis reac-
tion. Figures S2–S7 show the mapping of elements of the 
synthesized LDH prepared by our new protocol. Such maps 
clearly show the nickel, cobalt, and iron present in the prod-
uct. As shown in the map of the elements, these elements 
are uniformly distributed in the final product, suggesting 
a uniform composition of the synthesized LDH. Although 
sharing very similar patterns of PXRD, all samples showed 

irregular agglomeration, indicating iron may boost LDH 
morphology. The change of particle size and morphology 
of LDH may be due to the different crystal growth behavior 
in the presence of Fe. The elemental composition of LDH 
samples was determined by EDS (Table 1), which shows that 
the actual molar ratio of Ni, Fe, and CO in the synthesized 
LDH is the same as that of the precursor. The EDX results 
are consistent with the initial content ratio.

TEM and STEM were also used to demonstrate the mor-
phological features of the as-synthesized LDHs to gain more 
insight into the LDH structures. The corresponding results 
(Fig. 4, S1) show the uniform distribution of CTAB-capped 
Fe nanoparticles in LDH, suggesting that Fe has been suc-
cessfully doped into the LDH. The HRTEM images show 
that the transparent lattice fringes with a lattice spacing 
of 0.19 nm are compatible with the crystal plane spacing 
(012), suggesting the generation of crystal LDH, which also 
corresponds to the PXRD. It is therefore clear that doping 
(by impregnation) not only affects the composition of the 
embedded metal nanoparticles in the LDH matrix but also 
directly affects their thickness, resulting in a higher degree 
of the nanostructure.

FTIR was also used for product characterization in LDH 
materials (Fig. S7). The large and small band observed 
about 3600–3200  cm−1 is correlated with a hydroxyl 
stretching band (OH) superposition resulting from metal-
hydroxyl groups and water molecules with hydrogen-
bonded interlay [25]. The hydrogen bonding between 
water and carbonate can be allocated to the arm in the 
interlayer, close to 2970 cm−1. Because of absorption, the 
water bending frequency is 1630 cm−1[15]. The bend-
ing mode of water molecules reveals that there is a small 
amount of interlayer water in the LDH, resulting in a low-
resolution band of about 1630 cm−1 due to the rich anions 
in the LDH compensating the positive charge of the layer 
[33]. The LDH spectrum reveals a wide band centered on 
3442 cm−1, which is the superposition of layered hydroxyl 
and interlayered hydrogen-bonded water molecules due to 
the OH stretching mode [42]. LDH appeared at 3500 cm−1 
approx. The electronegativity can alter the electron den-
sity of the O–H bond [19]. The interlayer anions and the 
water molecules are symmetrically bonded with hydro-
gen for the carbonate LDH formed by M(II) and M(III) 
[41–44]. At 1370  cm−1, only one band was observed, 
which means that the carbonate anion symmetry is identi-
cal to that of free anion, i.e., Symmetry D3h[21, 50]. There 
is a high-strength absorption band at 1385 cm−1, mean-
ing nitrate anion (NO3

−) is present in the LDH structure. 
At 1357 cm−1, there is no band, which proves that LDH 
again lacks CO3

2− anion [17–21]. At 3400 cm−1, the broad 
absorption band corresponds to the stretching vibration in 
LDH of unstable hydroxyl or physically adsorbed water 
molecules [4, 12]. The maximum water bending mode is 
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Fig. 1   Powder XRD patterns: a Co–Ni-LDH, b Fe4%/Co–Ni-LDH, c 
Fe6%/Co–Ni-LDH, d Fe8%/Co–Ni-LDH and e Fe10%/Co–Ni-LDH
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Fig. 2   N2 adsorption–desorption isotherms: a Co–Ni-LDH, b Fe4%/Co–Ni-LDH, c Fe6%/Co–Ni-LDH, d Fe8%/Co–Ni-LDH and e Fe10%/Co–Ni-
LDH. The inset graphs show the pore size distribution curves of the samples
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attributable to 1633 cm−1. The absorption peaks of the 
M–O-H and O-M–O bending and stretching methods are 
less than 800 cm−1 for brucite like materials [31–33]. 
However, the exchange cannot extract 100% of the parent 
compounds’ nitrate anions. This is evident from the pres-
ence of the characteristic peak (NO3) at 1384 cm−1 in the 
infrared spectrum of the compound [21–23].

X-ray photoelectron spectroscopy (XPS) was used to 
calculate the chemical states of LDH. The spectra can be 
deconvoluted into three peaks of oxygen in the area of O1s 
(Fig. 5), which corresponds to Fe–O (531.65 eV), Ni–O 
(529.80 eV) and Co–O (531.32 eV). The binding ener-
gies of Ni (II) and Ni (III) are closely linked to the peaks 
at 855.82 eV and 857.58 eV in this respect (Fig. 5d). The 
binding energy of peaks at 780.96 eV and 783.22 eV is due 
to the presence of Co (II), and Co (III) species in the LDH 
indicated by Co2P3/2 (Fig. 5c) within the high-resolution 
range of Co2p. It is worth noting that besides the Fe (III) 
peak (710.78 eV), another peak appears at the 712.78 eV 
binding energy, indicating the presence of Fe (IV) in the 
material.

ORR activities were first evaluated by CV in the 0.1 M 
KOH solution saturated with N2 and O2 at a scan rate 
of 50 mV s−1. Figure 7a displays the most active Fe8%/
CoNi LDH observed in O2 and N2 environments. In the 
O2-saturated electrolyte solution, which is not present in 
voltammograms reported under N2-saturated electrolyte, 
a well-defined irreversible cathodic peak in the potential 
range 0.6–0.8 V versus RHE is observed, confirming the 
ORR activity of Fe8%/CoNi LDH electrocatalyst. Second, the 
electrocatalytic properties of all ORR LDHs are investigated 
using a rotating disc electrode (RDE) using linear sweep 
voltammetry (LSV). Figure 6a displays the LSV curves at 
1600 rpm for the various registered LDHs. Most of the cal-
culations are listed in Table 3. These findings indicate that 
the presence of CTAB-capped Fe nanoparticles improves 
the electrocatalytic activity of these materials. Fe8%/CoNi-
LDH had the highest Eo (0.91 V) and E1/2 (0.83 V) levels 

compared to CoNi-LDH (Eo 0.85 V, E1/2 0.73 V), Fe4%/
CoNi-LDH (Eo 0.86 V, E1/2 0.77 V), Fe6%/CoNi-LDH (Eo 
0.88 V, E1/2 0.79 V), and Fe10%/CoNi-LDH (Eo 0.90 V, E1/2 
0.81 V), respectively (Fig. 6a,c, Table 3). To demonstrate 
the effect of iron content on LDH synthesis, LSV testing was 
performed for LDH synthesized under different iron content, 
and the data obtained are shown in Fig. 6. Results show that 
LDH with iron content of 8% has high electrocatalytic activ-
ity, and its current density is much higher than that of other 
LDHs. This is because of the increase in the basic surface 
area and the optimum iron content.

The LSV curve reported before and after 1000 cycles is 
shown in Fig. 7d. Since the 1000th cycle, the current limit is 
down slightly. Nonetheless, the strong electrocatalytic activ-
ity of Fe8%/CoNi-LDH may be attributable to the synergistic 
catalysis of their Co, Ni, and Fe species and strong specific 
surface area attributable to the same CO and Ni content and 
different Fe content of these materials. On top of that, the 
electrocatalytic behavior of the ideal ORR catalyst synthe-
sized in alkaline solution is equal to or better than that of 
several recently published electrocatalysts. Such defects 
regulate the catalyst’s electronic properties and boost the 
catalyst’s performance [27–29]. Coordination of unsaturated 
metal sites will, therefore, lead to vacancy deficiencies and 
engineering disorder, which will directly affect the electronic 
structure of the LDH hybrid, which in effect plays an impor-
tant role in optimizing the electrochemical properties of the 
active sites and achieving higher electrochemical efficiency.

Koutecky–Levich (K–L) plots at 0.4 V to 0.7 V (Figs. 6c, 
7c, S9), which describe the relation between current den-
sity and rotational speed. The excellent linearity of the K–L 
diagram shows the first-order reaction being the catalytic 
ORR. The electron transfer number (n) during ORR is also 
found to be 3.9 based on the slope of the K–L plots, exactly 
matching the process of reduction of oxygen by 4 electrons. 
The 4-electron direction is the safest way to reduce oxygen 
from electrocatalytic [24, 39]. Based on previous studies, the 
ORR was heavily dependent upon the catalyst size, which 
is called the particle size effect [19]. At around the same 
time, the presence of two-electron or four-electron reducing 
pathways can be affected [25]. Hence the morphology of the 
electrocatalyst significantly impacted fuel cell performance. 
The increase in starting potential and the constraining cur-
rent found in the samples were due primarily to the more 
active sites [10]. Due to the difference in electronegativity, 
ORR increases due to changes in load density and spin den-
sity arising from the asymmetric charge distribution [8]. The 
layered prismatic structure of LDHs provides a high BET-
specific surface area for ion interaction, which is conducive 
to charging migration; abundant microporous defects cannot 
only produce rich active phases around the pores [14], but 
also significantly enrich the active phases, and provide a wet 

Table 2   Textural properties of the prepared catalysts

a Specific surface area according to BET
b Calculated according to BJH analysis (adsorption branch between 
1.7 nm and 300 nm diameters)
c Adsorption average pore width (4 V/A by BET)

Sample BET surface 
(m2g−1)a

Pore volume 
(cm3g−1)b

Pore size (nm)c

Co–Ni-LDH 86 0.28 12.91
Fe4%/Co–Ni-LDH 90 0.35 14.52
Fe6%/Co–Ni-LDH 96 0.35 14.52
Fe8%/Co–Ni-LDH 108 0.39 14.03
Fe10%/Co–Ni-LDH 104 0.17 6.61
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platform channel for ion penetration and intimate contact, 
which is necessary for significant immobility [45].

In addition to the excellent ORR process, prepared 
LDHs were also used for OER in the same electrolyte 
(0.1 M KOH), Fe8%/CoNi-LDH shows lower overpotential 
(232 mV, Fig. 8a, Table 4), and maximum current density 
(14.23 mA cm−2) among other samples (Fig. 8). This is 

comparable to the performance of recorded OER electrocat-
alysts (Table S1), and to summarized OER catalysts in Fig. 8 
and Table 4. The strong coupling effect between the LDH 
and the coordinately unsaturated Ni, Co, and Fe sites that are 
exposed to it can explain this. Therefore, more accessible Fe 
sites resulting from the hierarchical open-channel structure 
of the LDHs increased the OER activity. Compared to the 

Fig. 3   FE-SEM images: a Co–
Ni-LDH, b Fe4%/Co–Ni-LDH, c 
Fe6%/Co–Ni-LDH, d Fe8%/Co–
Ni-LDH, e Fe10%/Co–Ni-LDH 
and f EDX spectrum of Fe8%/
Co–Ni-LDH
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most active noble-metal-free catalysts, Fe8%/CoNi-LDH had 
the lowest starting potential as well as the fastest current 
performance. The overpotential fell as integration with Fe 
increased. Aside from the synergistic effects between the 
transition metal cations, high conductivity is another impor-
tant factor attributing to the superior OER activity of Fe8%/
CoNi-LDH. Taking these results into account, it can be con-
cluded that Fe8%/CoNi-LDH not only increased functional 

site activity but also increased the activity of the exposed 
sites by Fe and reverse micelles. Thus, the Fex/CoNi-com-
posite demonstrates the superior OER activity, which can be 
verified by the robust liberation of bubbles from the elec-
trode surface during the reaction process.

The durability of Fe8%/CoNi-LDH was calculated using 
chronoamperometric measurements at 1600  rpm in an 
N2-saturated 0.1 M KOH solution, as shown in Fig. 8f. Apart 

Fig. 4   TEM images: a CoNi 
LDH, b Fe4%/CoNi LDH, c 
Fe6%/CoNi LDH, d Fe8%/CoNi 
LDH (inserted HRTEM image) 
and e Fe10%/CoNi LDH
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from superior performance, Fe8%/CoNi-LDH also demon-
strated robust stability. It has preserved 92.1% of the exist-
ing capacity after continuous operation for the 80,000 s. By 
contrast, the current density of the commercial RuO2 catalyst 
showed a sharp decrease to 79.4%. After 1000 continuous 
scanning, there is practically no decline in both its starting 
potential and current density, and only a few negative shifts 
meet its half-wave potential. The exceptional electrochemical 
stability of catalyst can be due to the homogeneous hybridi-
zation of Fe nanoparticles and building blocks of LDH. The 
new functional sites are similarly exposed to keep the cata-
lytic efficiency constant after the degradation of the catalyst’s 
surface. The hydroxy-bridging relation, meanwhile, connects 

metal cations in the layers [19–21]. Lewis-acid cations can 
modulate the properties of certain hydroxy groups in the ligand 
fields [38]. Second, there may be one real impact in Fe’s elec-
tronic structure. The electronic structure of Fe is suitable for 
conductivity, the motion of ions, trapping of electrons, and 
chemisorption. These three factors contribute to the forma-
tion of a highly active catalyst for doped LDH CTAB-caped 
Fe nanoparticles [28–30]. Although similar positive effects 
on OER activity have recently been recorded in LDH, it is not 
well documented how structure and preparation approaches 
affect the electrochemical activity and interact with Ni or Fe in 
LDH materials as well as further study is desired, particularly 
in situ or ours results suggest.
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Table 3   ORR parameters of 
prepared catalysts

Catalysts Eo (E vs. RHE) E1/2 (E vs. RHE) MA (mA/mg) n

Co–Ni-LDH 0.85 0.73 1.45 3.2
Fe4%/Co–Ni-LDH 0.86 0.77 2.01 3.3
Fe6%/Co–Ni-LDH 0.88 0.79 2.35 3.5
Fe8%/Co–Ni-LDH 0.91 0.83 7.33 4.1
Fe10%/Co–Ni-LDH 0.90 0.81 2.125 3.8
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The excellent electrocatalytic activity of Fe8%/Co–Ni 
LDH is attributed to the following features: First, the mod-
ular 2D layered structure of LDH materials has favorable 
charge transfer due to the redox features of multivalent metal 
cations in the layers at certain potentials [5–13]. Intercalated 
anions migrate within the interlayer space to balance the 
dynamic change of the positive charges in the layers dur-
ing electrochemical reactions [19–22]. Second, enhancing 
electronic interactions within the metal hydroxide matrix 

typically has a positive effect on activity, with possible syn-
ergistic roles between redox-active cations (Ni, Fe, and Cr) 
and Lewis-acid cations (Fe and Cr) [25–29]. Redox-active 
cations with high oxidation states (Ni3+, Ni4+; Fe3+, Fe4+) 
are likely to be the effective active sites in catalysts [31–33]. 
The addition of Fe cations with Fe3+, and possibly Fe4+ oxi-
dation states can buffer the multielectron process necessary 
for water oxidation [39–42].
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The Fe8%/Co–Ni LDH electrocatalyst has a large surface 
area, due to the small size of the nanoparticles, which shorten 
the transport distance and increase the kinetics of the reac-
tions and high mesoporosity which boost the mass trans-
port of the reactants and products during the ORR catalysis 
resulting in the accomplishment of efficient reaction kinetics 
[23–26]. The structure of Fe8%/Co–Ni LDH could trap and 
transfer O2 molecule to catalytic sites due to the optimum 
composition, more uniform dispersed Fe nanoparticles and 
large specific surface area, while the uniformly dispersed Fe 
NPs provide adequate active sites to transform O2 leading to 
superior activity [23–27]. Importantly, Fe atoms-doping not 
only could work synergistically with metal species to provide 
more active sites but also induce the uneven charge distribu-
tion, resulting in superior performance [9–13]. These results 
suggest this trimetallic design is effective and could provide 
a general strategy to improve the activity, performance, and 
stability of the promising bifunctional catalysts in the future.

Conclusion

The results show that the CTAB-capped Fe NPs are highly 
active and stable electrocatalyst for both ORR and OER. 
Fe8%/CoNi-LDH catalyst has excellent ORR (0.91 V) and 
OER (232 mV) electrocatalytic activity. The high catalytic 
activity of Fe8%/CoNi-LDH may be due to the synergism 
between Ni, Fe and Co metals, as well as the modification 
of the electronic structure facilitated in the stable and rigid 
crystal structure of LDH materials. Such findings will open a 
new path for nanostructures to be adequately developed and 
produced as multifunctional electrocatalysts.
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