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Abstract
In this study, the mineralisation of 2-nitroaniline was investigated using the eco-friendly subcritical water oxidation method 
and the effective oxidising agent, H2O2. Central composite design was utilized to examine the effect of temperature, oxidant 
concentration, and treatment time on the mineralisation of 2-nitroaniline, to optimise the experimental process and to propose 
a theoretical equation of the chemical oxygen demand removal percentage. ANOVA test was performed to evaluate the reli-
ability of the process. F and p values were obtained as 23.03 and < 0.0001, respectively. R2 and adjusted R2 were obtained 
as 0.9540 and 0.9126, respectively. Artificial neural network modeling was used to determine the predicted values. The 
efficiency of central composite design and artificial neural network was statistically compared as well as by closeness of their 
predicted values to the experimental values. The maximum chemical oxygen demand removal percentages of 2-nitroaniline 
at 473 K of temperature, 30 min of treatment time, and 30 mM of H2O2 concentration were found to be 80.15 and 78.03% 
according to the predicted results of central composite design and artificial neural network. Removal of 2-nitroaniline was 
also followed using UV–Vis, FT-IR, and NMR spectroscopy. 2-Nitroaniline was removed by 99.88% at 473 K of tempera-
ture, 90 min of treatment time, and 120 mM of H2O2. Mineralisation and removal of 2-nitroaniline were also supported by 
FT-IR and NMR analyses.
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Introduction

In recent years, water pollution caused by industrial wastes 
is known to be an increasing problem [1–5]. The identifica-
tion of toxic hazardous compounds in such wastes and the 
removal of them from water sources is particularly a scien-
tific and environmental problem. It is known that one of the 
most important molecular groups that cause water pollution 
are nitroaromatic compounds [6]. This compound and its 
derivatives are used as an intermediate in the production of 

paint, agrochemicals, and some important polymers, as well 
as in the explosive and the pharmaceutical industry due to 
containing the nitro group [7–12]. Therefore, the nitroaro-
matic compounds, which are formed by the wastes generated 
in the above-mentioned industrial processes, seriously pol-
lute soil and water resources.

In fact, the environmental contamination caused by 
nitroaromatic compounds occurs due to their ability to be 
readily reduced to carcinogenic amine derivatives [10, 13]. 
In addition, azo dyes in wastewater are known to undergo 
variations into highly toxic aromatic amine groups such 
as nitroaniline under anaerobic conditions. In particular, 
2-nitroaniline (2-NA) and 4-nitroaniline compounds, which 
are well-known industrial pollutants due to their high sta-
bility and solubility, occupy the blood, liver, and central 
nervous system via the respiratory and digestive system and 
cause serious side effects on humans [14–17]. In addition, 
these nitroaniline compounds are used directly as intermedi-
ates in the production phase in many industrial fields [18, 
19]. Therefore, nitroaromatics and nitroanilines are at the top 
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of the priority pollutants of the list of United States Envi-
ronmental Protection Agency for which removal processes 
need to be improved [10, 11]. Essentially, 4-nitroaniline has 
been reported by National Environmental Protection Agency 
of China as one of the prior pollutants to be removed from 
water sources [20, 21].

Although several methods were applied for the removal of 
nitroaniline compounds [22–27], they cannot effectively deal 
with resistant compounds such as nitroaniline and its deriva-
tives. Furthermore, the effectiveness of biological processes 
remains limited in the treatment of resistant contaminants 
such as p-nitroaniline [28]. Thus, it can be said based on 
all these limitations that new, efficient, and environmentally 
friendly methods are still in great demand. Herein, we pro-
pose a solution for the over mentioned issues via degrading 
2-NA by subcritical water oxidation (SWO) method in the 
presence of H2O2.

SWO is an environmentally friendly method besides 
defined as a process in which hydroxyl radicals and active 
oxygen species are thermochemically formed by taking the 
advantage of subcritical water [29, 30]. Subcritical water, 
which is provided by applying pressure to water heated 
between 373 and 647 K to keep it in liquid form, provides 
an unrivaled medium for degradation processes [31, 32]. The 
combined effect of subcritical water and innocuous oxidis-
ing agent, H2O2, offers favorable conditions for degradation 
of target molecules [30]. SWO has been proven to be a very 
effective method in the degradation of hazardous pollutants 
[32–36]. Another feature of this method, which is superior 
to conventional methods, is the short treatment time, which 
is an important parameter for process cost. Thus, it is clear 
that this performed method is an appropriate alternative to 
other methods in many respects.

In addition, response surface methodology (RSM) was 
utilized in this work to avoid waste of time, solvent, and cost 
[37]. Central Composite Design (CCD), which is one the 
several effective types of experimental design techniques of 
RSM, [32, 38, 39], was applied to optimise the experimental 
design. Furthermore, artificial neural network (ANN), which 
has been widely used and is an alternative modeling tech-
nique to RSM system [40, 41], was employed to model and 
optimise the experimental design. The basic advantage of 
ANN for being an alternative to RSM system is based on the 
ability of ANN to establish a non-linear relationship between 
the response and independent variables without any prior 
knowledge of the nature of this relationship [40–42]. The 
efficiency of CCD and ANN models in the estimation of the 
response was also statistically compared and both of the mod-
els were evaluated by their prediction capabilities over the 
coefficient of determination, R2, the root mean square error 
(RMSE), and the absolute average deviation (AAD) values.

We aimed to mineralise 2-NA in aqueous solution, 
which represents a model for water contaminated by 

2-NA, using SWO in the presence of H2O2. In this sense, 
the degradation rates were defined as removal percent-
age of chemical oxygen demand (COD) of treated sam-
ples. Furthermore, the removal of 2-NA was observed by 
UV–Vis, FT-IR, and NMR analyses. CCD was used to 
evaluate optimum experimental parameters of temperature, 
oxidising agent, and treatment time and their interactions 
on the response. Obtained predicted values, which were 
obtained by CCD and ANN models, were compared, and 
the efficiency of the models was statistically discussed.

Experimental

Reagents and apparatus

2-NA and H2O2 were purchased from Sigma–Aldrich (St. 
Louis, MO). Ethyl acetate and Na2SO4 were purchased 
from Merck (Darmstadt, Germany). N2 gas was obtained 
from Linde gas (Turkey). Millipore Milli-Q Advantage 
A10 apparatus (Darmstadt, Germany) was used to produce 
18 MΩ.cm (25 °C) ultra-pure water. Experiments were 
performed in BERGHOF BR-100 high-pressure reactor 
equipped with BLH-800 heating plate with built-in mag-
netic stirrer (Eningen, Germany). This reaction system is 
resistant to high pressure and provides safer working com-
pared to the one used in the previous study [40]. COD cell 
kits with measurement range of 0–150 mg/L were provided 
from Hach Lange (Düsseldorf, Germany). COD values of 
samples were measured using WTW Photolab 6100 Vis 
Spectrophotometer (Shimadzu UV-1601). Chebios Opti-
mum-One (Rome, Italy) UV–Vis spectrophotometer was 
used to measure the concentration of the samples. Perkin 
Elmer Spectrum-100 (Beaconsfield, England) was used 
to record FT-IR spectra of the samples. Bruker Ultrash-
ield Plus Biospin Avance III 400 MHz NaNoBay FT-NMR 
was employed to record NMR spectra. Heidolph Hei-VAP 
rotary evaporator (Schwabach, Germany) was used for the 
evaporation of the samples.

Degradation method

150 mL of initial 2-NA solution (100 ppm) was subjected 
to degradation in each experiment. CCD method was 
employed to assign treatment conditions such as tempera-
ture, treatment time, and the oxidising agent at three lev-
els, as demonstrated in Table 1. The initial internal pres-
sure of the high-pressure reactor (BERGHOF BR-100) was 
fixed to 30 bar by using N2. Fractions were collected at the 
end of each experiment for further analysis.
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Analysis methods

COD analysis

COD removal percentages were determined by COD cell 
kits. A specific amount of the collected fractions (treated 
samples) and the initial solution (untreated sample) were 
spectrometrically analysed and degradation efficiencies 
were calculated in terms of COD removal percentages 
(COD, %) by comparing their COD values according to 
Eq. 1:

In this formulae, Ci and Cf stand for COD values of the 
initial and treated samples, respectively.

UV–Vis analysis

To measure removal percentages of 2-NA in treated sam-
ples, concentration values of 2-NA were measured by 
UV–Vis spectrophotometer at wavelengths of 301 and 
417 nm, respectively. The removal percentages of treated 
samples were determined using calibration curves with R2 
values of 0.9986 and 0.9963, respectively. These curves 
are constituted using UV absorbances of a series of stand-
ard solutions in the working range against their concentra-
tions for both wavelengths mentioned above.

FT‑IR and NMR analyses

FT-IR and NMR analyses were performed to identify the 
remained functional groups (such as NO2 and NH2) in the 
treated samples and their degradation rate as well as to 
interpret the degradation of 2-NA. Treated samples were 
extracted with ethyl acetate, filtered through Whatman 
filter paper 4 and dried over Na2SO4. Finally, the organic 
phase was evaporated using a rotary evaporator. FT-IR 
spectra were recorded by Perkin Elmer Spectrum-100 
between 4000 and 650 cm−1 at room temperature using 
obtained solid specimen. 13C-NMR and 1H-NMR spectra 
were recorded using the CDCl3 solution of the mentioned 
solid.

(1)COD, % =
[

(Ci − Cf)∕(Ci)
]

× 100.

CCD modeling

RSM is a useful collection of statistical and mathematical 
techniques to optimise and model the processes [32, 33, 43]. 
It provides a variety of sophisticated models to reduce work-
load and cost, to evaluate the relationship between operat-
ing parameters and response, and to establish approximation 
equations. CCD is the most preferred one of these models. 
This method is used to build a full or fractional factorial sec-
ond-order RSM model consisting of three types of points in 
the experimental region [32, 44]. The number of the experi-
ments required in the CCD is given by N = 2k + 2k + C0, 
where k stands for the number of the variables and C0 is the 
replicate number of central points [33].

Appropriate ranges of the most influential experimen-
tal variables such as temperature (K), x1, treatment time 
(min), x2, and concentration of H2O2 (mM), x3, as the oxi-
dising agent were determined according to preliminary 
experiments and literature review. The effect of these 
three variables on the dependent variable, COD removal 
percentage, was investigated in subcritical water medium 
using H2O2 at five levels according to CCD, as demon-
strated in Table 1.

The experimental results were analysed by Design Expert 
9.0.6.2 version and the regression model was suggested. 
Results of 20 experiments, namely, experimental COD 
removal percentage of all runs, are depicted in Table 2 along 
with predicted values.

The correlation of response and independent variables 
was represented using linear or quadratic models (Eq. 2):

In this equation, Y depicts the response, x1, x2, and x3 
symbolize the coded independent variable effects, and x1

2, 
x2

2, and x3
2 represent the quadratic effects. x1x2, x1x3, and 

x2x3 demonstrate interaction effects. β1, β2, and β3 are the 
linear coefficients, and β11, β22, β33 are the quadratic coeffi-
cients. β12, β13, and β23 are the interaction coefficients. β0 and 
ℇ represent the constant and the random error, respectively 
[32, 34, 45]. ANOVA was performed to statistically evalu-
ate the employed quadratic model and its terms. In addition, 
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Table 1   Experimental design of 
the independent variables used 
in CCD

Factors Independent variables Coded levels

− α − 1 0 1 + α

x1 Temperature (K) 339 373 423 473 507
x2 Treatment time (min) 9.55 30 60 90 110.5
x3 Concentration of oxidising 

agent (mM)
9.55 30 60 90 110.5
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the adequacy of the model was assessed by regression coef-
ficients, (R2, R2

adj), Fisher’s ‘F’ test, and P values.

ANN modeling

The basis of ANN is established on the predicting the non-
linear relationship between independent variables (input 
layers) such as x1, x2, and x3, and response variables, Y [40, 
41]. ANN determines this relationship by the biological 
neural network model which generated from the idea of the 
mechanical function of the human brain [46, 47]. ANN does 
not require prior patterns to learn the interaction between 
interested samples [40–42]. This feature of the ANN makes 
it the unique model in the solution of complex problems in 
various applications [46].

A feed-forward back propagation ANN model, based on 
multilayer perceptron (MLP), composed of input, hidden, 
and output layers was applied in the non-linear analysis 
of mineralisation of 2-NA. Many ANN architectures com-
posed of a various number of layers and nodes (neurons) 
in each layer and several transfer functions and learning 
algorithms were tested to achieve the best ANN model in 
the desired level of precision. The optimal three-layer feed 
forward ANN model is depicted in Fig. 1. As shown from 
this figure, the input layer consists of three neurons which 

represent three experimental variables, namely, x1, x2, and 
x3. In addition, only one hidden layer with 10 neurons was 
chosen in this study, because more hidden layers may lead 
to over-fitting problems [41]. An output layer that symbol-
izes the response (COD removal, %) was represented by 
one neuron.

The experimental data which are given in Table 2 were 
used to build an ANN model as utilized for CCD. Randomly 

Table 2   Experimental results of COD removal percentages and predicted values obtained by CCD and ANN

AD1 absolute difference between experimental values and CCD predicted values, AD2 absolute difference between experimental values and ANN 
predicted values

Run Temperature (K) Treatment time (min) Concentration of oxi-
dising agent (M)

COD removal, % AD1 AD2

Exp. CCD Pre. ANN Pre.

1 423 (0) 9.55 (− 1.682) 60 (0) 72.22 73.04 72.41 0.82 0.19
2 423 (0) 60 (0) 60 (0) 72.84 75.80 77.55 2.96 4.71
3 423 (0) 60 (0) 110.5 (+ 1.682) 67.90 69.91 65.08 2.01 2.82
4 473 (+ 1) 30 (− 1) 30 (− 1) 78.52 80.15 78.03 1.63 0.49
5 373 (− 1) 90 (+ 1) 30 (− 1) 60.49 59.68 60.79 0.81 0.30
6 339 (− 1.682) 60 (0) 60 (0) 40.99 44.70 41.34 3.71 0.35
7 373 (− 1) 30 (− 1) 30 (− 1) 51.23 49.21 51.45 2.02 0.22
8 473 (+ 1) 30 (− 1) 90 (+ 1) 77.61 77.02 77.03 0.59 0.58
9 423 (0) 110.5 (+ 1.682) 60 (0) 71.99 73.14 72.47 1.15 0.48
10 423 (0) 60 (0) 9.55 (− 1.682) 70.37 70.33 70.94 0.04 0.57
11 373 (− 1) 30 (− 1) 90 (+ 1) 63.37 61.84 62.04 1.53 1.33
12 507 (+ 1.682) 60 (0) 60 (0) 76.12 74.38 75.94 1.74 0.18
13 423 (0) 60 (0) 60 (0) 80.42 75.80 77.55 4.62 2.87
14 473 (+ 1) 90 (+ 1) 90 (+ 1) 66.05 66.67 66.14 0.62 0.09
15 423 (0) 60 (0) 60 (0) 72.84 75.80 77.55 2.96 4.71
16 423 (0) 60 (0) 60 (0) 74.69 75.8 77.55 1.11 2.86
17 473 (+ 1) 90 (+ 1) 30 (− 1) 79.67 79.8 79.97 0.13 0.30
18 423 (0) 60 (0) 60 (0) 77.78 75.8 77.55 1.98 0.23
19 423 (0) 60 (0) 60 (0) 76.54 75.8 76.58 0.74 0.04
20 373 (− 1) 90 (+ 1) 90 (+ 1) 65.33 62.31 65.24 3.02 0.09

Fig. 1   Optimal structure of three-layer feed forward ANN model
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selected 14 points (70% of all runs), 3 points (15% of all 
runs), and 3 points (15% of all runs) were utilized for train-
ing the network, for validation, and for testing the network, 
respectively. The Neural Network Toolbox of MATLAB 
software (R2015a ver. 8.6, The Mathworks, Inc., Massa-
chusetts, USA) was employed for ANN modeling.

Results and discussion

The values of the independent process variables and experi-
mental COD removal rates are given in Table 2. In addition, 
Table 2 shows predicted values of COD removal percentages 
that are obtained by CCD and ANN modeling. The inter-
actions between system variables and the response can be 
simply demonstrated using RSM. The highest experimental 
COD removal percentages were achieved at run 13, one of 
the 6 center point of the CCD design model, as 80.42%. The 
predicted values of COD removal percentages of this run 
were obtained as 75.80 and 77.55%, employing CCD and 
ANN, respectively. The lowest experimental COD removal 
rate was achieved at run 6, which was performed at the low-
est temperature of the design, as 40.89%. CCD and ANN 
predicted the COD removal rates for run 6 as 44.70 and 
41.34%, respectively.

Evaluation of the optimisation using CCD modeling

Experimental data, which are demonstrated in Table 2, were 
used to fit the second-order polynomial equation, as given in 
Eq. 3. The response of the process, namely, COD removal 
percentage, can be simply associated to independent vari-
ables using this equation. In addition, Eq. 3 can be used to 
predict the response under different conditions and to evalu-
ate the interaction between all variables:

In addition, the effects of the variables can be clearly seen 
in Fig. 2, which provides a comparison of the coefficient 
of the model terms. This figure demonstrates a graphical 
analysis of the effects of the variables, including positive, 
negative, quadratic, and interactive effects, on the inves-
tigated COD removal rates of 2-NA. Figure 2 shows that 
the most effective variable for the COD removal of 2-NA is 
temperature, x1, where its quadratic effect x1

2, is the second 
most effective variable that inversely affects the response. 
Nevertheless, the rank of interactive effects of the variables 
is x1x3 > x1x2 > x2x3. Treatment time, x3, and concentration 
of the oxidising agent, x2, are very ineffective factors on the 
COD removal of 2-NA.
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The evaluation of the fit of the experimental data was per-
formed by ANOVA analysis. Table 3 demonstrates ANOVA 
results of the quadratic model obtained for COD removal 
rates of 2-NA. It can be said, according to ANOVA terms, 
that F and p values of the model were obtained at an appro-
priate value. Thus, the values of F and p were obtained as 
23.03 and lower than 0.0001, respectively, which indicates 
that the model is statistically significant. There is only a 
0.01% chance that an F value this large could occur due to 
noise. In addition, considering that a value of p lower than 
0.05 is reasonable [32], it is clear that x1x3 > x1x2 > x2x3, x1

2, 
and x3

2 are the other significant terms of the investigated 
model.

Regression and correlation analysis of CCD model

The reliability of a quadratic model employed in this study, 
obtained by CCD, was evaluated in terms of regression and 
correlation analysis. The obtained coefficients and other val-
ues are tabulated in Table 4. The predicted residual sum of 
squares (PRESS) value can measure the level of model fit to 
each point in the design [32]. According to this definition, 
it can be said that the employed model adapts to every point 
and the reasonable difference was obtained between actual 
and predicted values over PRESS value of 391.70.

In addition, the R2 value, which is an indication of model 
conformity and is described between zero and one, was 
found to be 0.9540 for the CCD model. Thus, it can be said 
that the obtained model is significant over the R2 value that 
high value was obtained. Furthermore, adjusted R2 and pre-
dicted R2, which indicate the amount of variation around 
the mean presented by the employed model and variation 
in the new data explained by the used model, were found as 
0.9126 and 0.7928, respectively [32]. These values are in a 
quite close proximity, where closeness is desired to claim 
the determination of a high correlation level between experi-
mental and predicted results of the employed model.

Fig. 2   Graphical analysis of the effect of the CCD model
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2.95 value of standard deviation, which is also known as 
the square root of the residual mean square, is satisfactory, 
where low value is desired. C.V. % (Coefficient of variation) 
value, which is calculated by dividing the standard deviation 
by the mean and multiplying by 100, was found to be 4.22. 
A measure of the signal-to-noise ratio is expressed by the 
adequate precision value which is used in the comparison of 
the range of the predicted values and the design points to the 
average prediction error [30]. While the sufficient adequate 
precision value has to be higher than 4 to verify the utiliza-
tion of the model in the navigation of the design space, the 
mentioned value was found to be 16.997 in the performed 
CCD model [30, 32].

The relation between the actual and predicted values of 
COD removal rates of 2-NA is displayed in Fig. 3. The com-
patibility within the points which represent the actual and 
predicted values can be clearly seen from this figure. This 
compatibility was also stated above by showing the accord-
ance within R2 and adjusted R2 and predicted R2.

Figure 4 displays the plot of the CCD model for COD 
removal rates of 2-NA. The predicted values of COD 
removal percentage from the coded model for the combina-
tion of the − 1 and + 1 levels of any three independent varia-
bles are demonstrated in this figure. In addition, Fig. 4 facili-
tates the evaluation of data composed of three independent 

factors with the highest and the lowest value of them. In 
addition, further predictions in the experimental region and 
required conditions can be displayed by the aid of Fig. 4.

Evaluation of binary effects of the process variables 
on the mineralisation rates

Three-dimensional (3D) response surface plots were dem-
onstrated to evaluate the binary effects of variables on the 
COD removal percentages of 2-NA. Thus, the observation 

Table 3   ANOVA results of 
quadratic model obtained by 
CCD

Source Sum of squares df Mean square F value p value prob > F

Model 1803.17 9 200.35 23.03 < 0.0001
x1 1063.42 1 1063.42 122.26 < 0.0001
x2 0.013 1 0.013 1.508 × 10−3 0.9698
x3 0.21 1 0.21 0.024 0.8789
x1x2 58.48 1 58.48 6.72 0.0268
x1x3 124.11 1 124.11 14.27 0.0036
x2x3 50.05 1 50.05 5.75 0.0374
x1

2 475.93 1 475.93 54.72 < 0.0001
x2

2 13.17 1 13.17 1.51 0.2466
x3

2 58.00 1 58.00 6.67 < 0.0273
Residual 86.98 10 8.70
Lack of fit 42.43 5 8.49 0.95 0.5207
Pure error 44.45 5 8.91
Cor. total 1890.15 19

Table 4   Regression and correlation analyses of the obtained models 
by CCD

Regression coefficients

Standard deviation 2.95 R2 0.9540
Mean 69.85 0.9126
C.V. % 4.22 Predicted R2 0.7928
Press 391.70 Adequate precision 16.997

Fig. 3   Relation between the actual and predicted values of COD 
removal rates of 2-NA
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of the interactive effects of experimental variables on the 
response provides the evaluation of the response effectively.

The 3D plot of binary effects of oxidant concentration and 
treatment time on the COD removal percentages of 2-NA at 
a fixed temperature of 473 K is demonstrated in Fig. 5. As 
clearly seen from Fig. 5, the interaction effect of H2O2 con-
centration and treatment time is crucial on the COD removal 
rates of 2-NA at 473 K of temperature. However, when the 
conditions in Fig. 5 were kept the same, the decrease in the 

COD removal rates was observed by lowering the tempera-
ture from 473 to 423 and 373 K, respectively. Moreover, it 
was observed that there is no significant effect on the effi-
ciency to change treatment time and oxidant concentration 
below the moderate temperatures. However, it was observed 
that the concentration of H2O2 and the treatment time has 
a positive effect to a certain extent at high temperature, 
while higher concentration and treatment time decrease the 
efficiency. For instance, while COD removal percentages 
of 2-NA were observed from the CCD model as 80.93% 
at 30 mM of concentration of H2O2, and 60 min of treat-
ment time, it was observed that COD removal decreased to 
67.05% at 90 mM of concentration of H2O2, and 90 min of 
treatment time when keeping the temperature of reaction 
medium at fixed 473 K of temperature. This decline can be 
explained by the fact that, above a certain effective concen-
tration of H2O2, some of them transform into active radicals 
and enter into chain reactions among themselves rather than 
attacking and degrading 2-NA [30, 48]. It is also seen that 
increasing the treatment time in the presence of the high 
concentration of H2O2 at 473 K has a limited effect on COD 
removal efficiency.

Figure 6 demonstrates the interactive effect of treatment 
time and temperature on COD removal percentages of 2-NA 
at fixed oxidant concentration of 30 mM. The COD removal 
rate was found to be reasonably depend on the interaction of 
treatment time and temperature. Thus, when fixing the con-
centration of H2O2 at 90 mM, elevated COD removal effi-
ciency was obtained even at short treatment time, but at high 

Fig. 4   Cube plot of the CCD model for COD removal rates of 2-NA

Fig. 5   Binary effects of oxidant concentration (C) and treatment time 
(min) on the COD removal percentages of 2-NA at the fixed tempera-
ture of 473 K

Fig. 6   Binary effects of treatment time (min) and temperature (T) on 
the COD removal percentages of 2-NA at the fixed oxidant concentra-
tion of 30 mM
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temperatures. However, the interaction effect of treatment 
time and temperature on the efficiency tends to increase at 
medium levels of temperature and treatment time when fix-
ing the concentration of H2O2 at 60 mM. Furthermore, high 
COD removal rates were obtained at all levels of treatment 
time, above moderate temperatures and at a fixed H2O2 con-
centration of 30 mM. For instance, 79.35% of COD removal 
was found to decrease to 79.31 and 77.35%, respectively, 
at 433 K of temperature and 30 mM of the oxidising agent 
when decreasing the treatment time from 90 min to 60 and 
30 min, respectively. These findings support the fact that 
subcritical water oxidation method using H2O2 is a superior 
alternative to traditional methods, considering obtainable 
high efficiency even in the short treatment time and reason-
able concentration level of oxidising agent.

Figure 7 displays binary effects of oxidant concentration 
and temperature on the COD removal percentages of 2-NA at 
the fixed treatment time of 30 min. High temperature activates 
H2O2 to convert it into radical species and leads to effective 
degradation of the target molecule. However, though lower 
temperatures are sufficient to activate H2O2, the application of 
relatively higher temperatures for the mineralisation of 2-NA 
may be attributed to its degradation-resistant structure, similar 
to the structure of many other nitroaromatic compounds [28, 
49]. In addition, there is no need to increase the concentration 
of H2O2 in conditions, in which the low or high oxidant con-
centration values above the moderate temperatures during the 
30 min of treatment time do not make a significant difference 
in COD removal efficiency. It was obtained that COD removal 

was only increased from 75.15 to 77.14% when increasing 
H2O2 concentration from 30 to 90 mM at 433 K of tempera-
ture and 30 min of treatment time. However, when the treat-
ment time is increased to 90 min, the graphical area presenting 
high yield is sharply reduced and even H2O2 concentration has 
a negative effect on the yield under these conditions.

ANN modeling and comparison between CCD 
and ANN

ANN modeling was applied for the estimation of COD 
removal rates of 2-NA and obtained results of the predicted 
values of both models are given in Table 2. The lowest and 
the highest COD removal percentages which were obtained 
as 41.34% and 79.97%, respectively, in the run of 6 and 17, 
respectively, were found to be very close to the experimental 
value of each one, as demonstrated in Table 2. In addition, 
ANN predicted closer values to the experimental values at 
the center points of experimental runs than CCD. Thus, ANN 
showed better performance in these cases when comparing to 
CCD. Absolute differences between experimental values and 
ANN predicted values (AD2) were found to be higher than the 
absolute differences between experimental values and CCD 
predicted values (AD1) at factorial point such as run 17, at 
center points such as run 2, 15, and 16 at axial points such as 
run 3 and 10, whereas AD1 values were found to be higher than 
AD2 values in the all other points. AD1 and AD2 values were 
found to be quite close to each other at run8 and 17. Moreo-
ver, AD2 values were prominent at the center points, whereas 
remarkable AD1 values were obtained at the large part of the 
central points, following by axial and factorial points. These 
findings demonstrate that ANN provides a better accordance 
between predicted and experimental values.

In addition, comparison between the capabilities of ANN 
and CCD models in the optimisation and prediction of COD 
removal rates of 2-NA was exhibited by R2, RMSE, and AAD 
values, as given in Table 5. When considering the compari-
son between the values obtained by ANN model with the val-
ues obtained by the CCD model, it is seen that ANN is more 
superior than CCD model due to predicting closer values to 
the experimental values. Furthermore, R2 and RMSE values, 
which mean that the predicted values match with experimen-
tal values, supported this phenomenon. In other words, while 
AAD values were lower for CCD than for ANN, RMSE val-
ues were found to be 1.90 and 2.09, respectively, for ANN 
and CCD, where a lower value of RMSE indicates the best 

Fig. 7   Binary effects of oxidant concentration (C) and temperature 
(T) on the COD removal percentages of 2-NA at the fixed treatment 
time of 30 min

Table 5   Comparison between 
the performance of ANN and 
CCD models for prediction of 
COD removal rates of 2-NA

Source CCD ANN

R2 0.9540 0.9643
RMSE 2.09 1.90
AAD 7.47 7.90
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performance of the model [41, 43]. In addition, the R2 values 
were found to be 0.9643 and 0.9547, respectively, for ANN 
and CCD, where the higher of R2 shows the better data fitting 
performance [41, 43].

Evaluation of UV–Vis analysis

Figure 8 demonstrates the UV–Vis analysis results of the 
experimental runs done under the conditions, as given in 
Table 2. While COD removal is crucial in determining 
the rate of mineralisation, UV–Vis data are also impor-
tant in determining the removal rates of 2-NA. According 
to UV–Vis analysis, the removal of 2-NA was obtained 
as 55.61% at 301 nm and 64.12% at 417 nm for Run 6. 
Although these values are higher compared to the COD 
removal, it is relatively low compared to other removal per-
centages of 2-NA. The low level of the removal rate of run 
6 can be attributed to the presence of low H2O2 concentra-
tion in the reaction medium and low temperature, which 
may limit the formation of effective free radicals and the 
removal of 2-NA. Removal rates of other runs, except run 6, 
were obtained in the ranges of 91.60–97.95% at 301 nm, and 
98.66–99.88% at 417 nm. It has been shown that the 2-NA 
was efficiently removed from the aquatic environment based 
on the removal results. Thus, the efficacy of the subcritical 
water degradation method using H2O2 is also demonstrated 
by the removal results obtained by UV–Vis data.

Evaluation of FT‑IR and NMR analyses

COD and UV–Vis results were also supported by FT-IR 
and NMR analyses of the extracts obtained after extraction 
of the treated samples with EtOAc. The FT-IR and NMR 
spectra for untreated 2-NA and treated 2-NA samples were 
compared, respectively (this section was given in the Sup-
plementary material).

Conclusion

The mineralisation of 2-nitroaniline from the artificially 
contaminated water solution was achieved using the sim-
ple, effective, and eco-friendly subcritical water degradation 
method with the powerful oxidising agent, H2O2. The min-
eralisation rates were monitored by COD removal analysis. 
To determine the effects of all employed variables, namely, 
temperature, concentration of oxidising agent and treatment 
time, on the COD removal rates and interactions between 
themselves, CCD modeling in RSM was applied in this work. 
Optimum conditions for elevated mineralisation of 2-NA 
were determined and ANOVA and mathematical equations 
were provided for the applied CCD model of COD removal. 
While all chosen parameters were found to influence the 
mineralisation rate, temperature was proved to be the most 
effective one. 80.43% of COD removal was obtained under 
optimum mineralisation conditions, which were determined 
using CCD modeling, at 463 K of temperature, 53.4 mM of 
H2O2 concentration and 32 min of treatment time. In addi-
tion, the most preferred CCD and ANN models were used 
for prediction of the COD removal rates for further evalua-
tions and their efficiencies were compared by R2, RMSE and 
AAD values. The obtained results revealed that the ANN 
model is a superior method than CCD, predicting the closer 
values of COD removal rates to the experimental value than 
the values predicted by CCD. The removal rate, which was 
measured by UV–Vis spectrometric analysis, is an important 
parameter in the purification of waters due to showing how 
much of the contaminant is removed. Thus, removal of 2-NA 
was also analysed by measuring UV absorbances of treated 
samples. In addition, the degradation process is followed by 
FT-IR and NMR analyses by comparing the FT-IR and NMR 
spectra of untreated and treated samples, respectively. Thus, 
the degradation of the groups in the 2-NA structure was 
followed to support the mineralization and removal values 
revealed by COD and removal rates, and the effectiveness 
of subcritical water oxidation for the mineralisation of 2-NA 
was demonstrated.
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