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Abstract
TNF-α is a crucial cytokine in the process of inflammatory diseases. The adverse effect of TNF-α is mostly mediated by 
interaction of TNF-α with TNF-α receptor type I (TNFR1); therefore, discovery of molecules which can bind to TNFR1 
preventing TNF-α-receptor complex formation would be of great interest. In the current study, using GRID/GOLPE pro-
gram, a 3D-QSAR study was conducted on a series of synthetic TNFR1 binders, which resulted in a 3D-QSAR model with 
appropriate power of predictivity in internal (r2 = 0.94 and q2

LOO = 0.74) and external (r2 = 0.66 and SDEP = 0.42) validations. 
The structural features of TNFR1 inhibitors essential for exerting activity were explored by analyzing the contour maps of 
the 3D-QSAR model showing that steric interactions and hydrogen bonds are responsible for exerting TNFR1 inhibitory 
activity. To propose potential chemical entities for TNFR1 inhibition, PubChem database was searched and the selected 
compounds were virtually tested for anti-TNFR1 activity using the generated model, resulting in two potential anti-TNFR1 
compounds. Finally, the possible interactions of the compounds with TNFR1 were investigated using docking studies. The 
findings in the current work can pave the way for designing more potent anti-TNFR1 inhibitors.
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Introduction

Tumor necrosis factor-alpha (TNF-α, cachexin, cachectin) 
was first identified on the basis of its capability to induce 
in vitro shrinkage of tumor cells and hemorrhagic necrosis 
of transplantable tumors in mice [1]. Later studies demon-
strated the powerful pro-inflammatory effects of TNF-α [2] 
and revealed its key role as a mediator of endotoxic shock 
[3]. TNF-α is mostly produced by activated monocytes and 

macrophages upon stimulation of its secretion either by 
exogenous or endogenous factors, and subsequently interacts 
with its two distinct receptors namely TNFR1 and TNFR2 
[4]. At physiological levels, TNF-α regulates different bio-
logical processes such as body circadian rhythm, immune 
responses, remodeling and replacement of injured tissues 
and other important mechanism in the cell hemostasis [5]. 
However, overexpression of TNF-α has been implicated in 
the pathogenesis of different immune-dependent complica-
tions [2]. Inhibition of TNF-α activity is of great importance 
to alleviate the adverse effects originated from pathological 
amounts of TNF-α, which can be achieved by mechanisti-
cally different strategies. Most of the currently used biop-
harmaceuticals for controlling the effect of TNF-α in inflam-
matory diseases work based on direct binding to TNF-α and 
include etanercept (Enbrel, Amgen Incorporated, thousand 
Oaks, CA, Wyeth Pharmaceutical, Collegiville, PA), inflixi-
mab (Remicade, Centocor, Horsham, PA, Schering Plough, 
Kenilworth, NJ), adalimumab (Humera, Abbot Laborato-
ries, Abbot Park, IL), certolizumab, and golimumab [6–9]. 
Since these biological therapeutics bind to TNF-α, the physi-
ological processes regulated by TNF-α would be disrupted 
resulting in serious adverse effects such as increasing the 
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risk of lymphoma and infections (such as tuberculosis and 
hepatitis B) [10, 11]. Moreover, immunogenic responses to 
these proteins as well as their high cost and time-consuming 
production processes necessitate identification of new small 
anti-TNF-α agents with high stability and less adverse effects 
[12–14].

As mentioned above, TNF-α exerts its biological effects 
through TNFR1 and TNFR2 receptors, among which, 
TNFR1 is expressed by most of the somatic cells, while 
TNFR2 is found on particular immune cells and contributes 
to T-cell survival [15]. Both of these receptors belong to the 
TNF receptor family. The members of this family are clas-
sified into three major groups, based on their cytoplasmic 
sequences and signaling diversity [16]. It has been dem-
onstrated that the activation of TNFR1 contributes to the 
inflammation pathogenesis [17, 18], while, TNFR2 is impli-
cated in cell-mediated immunity [19, 20]. Based on these 
differences, much attention has been dedicated to discrimi-
nate the mode of interaction of TNF-α with its two distinct 
receptors to promote specific binding to a particular type of 
TNF-α receptor [21].

From structural point of view, both TNF-α recep-
tor types contain six cysteine residues, which constitute 
four cysteine-rich domains (CRDs) [13]. In TNFR2, the 
turn motif of CRD3 (Ser107 to Cys112) fits to CRD2 by a 
disulfide bond between Cys104 and Cys112, while in TNFR1 
there is a space between the turn motif of the CRD3 and 
CRD2 resulting in generating of a binding pocket on 
TNFR1. One more difference between the structures of 
TNFR1 and TNFR2 arises from the longer loop structure 
in TNFR1 (highlighted by dashed oval in Fig. 1) compared 
to TNFR2, which is suspected for the formation of van der 
Waals interactions with TNF-α [21]. TNF-α initiates its 
most pathogenic effects through interaction with TNFR1. 
It has been shown that specific inhibitors of TNFR1 

provide satisfactory inhibition of TNF-α-induced patho-
logical effects, without interfering with the interaction of 
TNF-α with TNFR2 [22, 23]. In this context, the identifi-
cation of TNFR1-blocking agents seems a promising strat-
egy for achieving desired therapeutic effects due to inhibi-
tion of TNFR1-mediated effects of TNF-α, while leaving 
TNFR2 pathway unaffected. ATROSAB [24] and mouse 
TNFR1 antagonist (DMS5540) [25] are two anti-TNFR1 
antibodies which have been recognized with antagonizing 
effect on TNF-α-mediated cytotoxicity. ATROSAB is a 
humanized full antibody with a strong inhibitory activ-
ity on TNFR1-mediated signaling pathways [24], whereas 
DMS5540 is an anti-TNFR1 antibody resulted from the 
fusion of a mouse anti-TNFR1 domain antibody (dA) with 
an albumin-binding domain antibody [25]. Another class 
of anti-TNFR1 agents belongs to low-molecular weight 
inhibitors reported by Carter and co-workers from Bristol-
Myers Squibb company [26, 27].

The aim of this study was to gain insight into the struc-
tural features of the small synthetic anti-TNFR1 inhibitors 
by generating a 3D-QSAR model for a series of TNFR1 
inhibitors [26, 27]. To this end, alignment-dependent 
3D-QSAR study was performed [28, 29] in which after 
initial superpositioning of the compounds on a TNFR1-
bound ligand (IV703) [26], the aligned structures were 
introduced into GRID program to calculate molecular 
interaction fields (MIFs) [30–33]. Subsequently, the gen-
erated MIFs were transferred into GOLPE program [34] 
to perform the multivariate statistical analysis and model 
building. The produced 3D-QSAR model was statistically 
validated by both internal and external validation methods. 
Using the most potent compound, PubChem database was 
searched for the structurally similar compounds and the 
selected structures were evaluated for their anti-TNFR1 
activity based on the generated model. Moreover, using 
the developed model, the important structural features 

Fig. 1   Comparison of TNFR1 and TNFR2 structures. a TNFR1, b TNFR2. An extra loop is noticeable in TNFR1 structure
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affecting the biological activities of TNFR1 inhibitors 
were identified, which can be used for designing new drug 
candidates with TNFR1 inhibitory activities.

Methods

Dataset collection

A set of 47 5-arylidene-2-thioxodihydropyrimidine-
4,6(1H,5H)-diones and 3-thioxo-2,3-dihydro-1H-
imidazo[1,5-α] indol-1-ones derivatives was collected from 
the literature [26, 27] (Table 1). The binding affinity data 
for all compounds were experimentally determined as IC50 
(µM) through TNF-α–TNFR1 binding assay. These values 
estimate the concentration of ligands that inhibit 50% of 
TNF-α binding to a soluble form of monomeric TNFR1. All 
inhibitory activities expressed as IC50 values in molar scale 
were converted to pIC50 and used as the dependent variable 
in 3D-QSAR study. The 3D structures of the ligands were 
generated using the Built Optimum option of HyperChem 
software [35] (HyperChem™ version 8.0.8, Hypercube, Inc. 
Gainesville, FL, USA), followed by energy minimization 
using MM+ force field based on Polak–Ribiere algorithm 
[36]. Then the structures were fully optimized by semi-
empirical AM1 algorithm [37].

Using MOE program [38] (Molecular Operating Envi-
ronment, Chemical Computing Group Inc. Montreal, QC, 
Canada) all the compounds were aligned on a co-crystal-
lized ligand bound to TNFR1, namely IV703 (PDB ID code: 
1FT4) [26]. To do so, the matching part of the compounds to 
the 5-Thioxo-5,6-dihydro-7H-thieno [2′, 3′:4, 5] pyrrolo[1,2-
c]imidazol-7-one core scaffold in IV703 (Fig. 2) was paired 
up using its conformation found in the crystallographic coor-
dinates and then letting the other parts of the molecules be 
aligned flexibly.

Grid calculations

The aligned compounds were introduced into GRID program 
[39] (version 1.2.2, Molecular Discovery Ltd, UK) in which 
the C3, OH2 and N1 (a neutral flat NH2) probes were used 
to mimic possible steric hindrance, hydrogen bond donor 
and hydrogen bond acceptor interactions of compounds with 
receptor. GRID analysis was performed using a grid box of 
31, 29 and 23 Å in X, Y and Z dimensions, respectively, with 
a grid spacing of 1 Å (NPLA = 1). The calculations were 
carried out on a Linux-based Cluster consisting eight nodes 
running CentOS (ver. 5.6) operating system.

Table 1   Structures and biological activities of TNFR1 inhibitors
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Table 1   (continued)
Table 1   (continued)
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Variable selection using GOLPE analysis

The calculated MIFs for the molecules and the corre-
sponding activity values were imported to GOLPE pro-
gram [40] (version 4.6.0, Multivariate Infometric Analy-
sis, Barcelona, Spain) running on a Silicon Graphics O2 
workstation, in which interaction values (X values) less 
than 1.0E-7 were removed automatically. The studied com-
pounds were randomly divided into train (37 compounds) 
and test (10 compounds) sets using SPSS (version 16.0) 
based on their activites. The additional pretreatment per-
formed on train set compounds were as follows: X vari-
ables less than 0.1 were set to zero for all probes, and 
those with variance lower than 0.1 were rejected (mini-
mum S.D. cut-off was regarded as 0.1). This pretreatment 
procedure reduced the number of variables to about 20% 
of that found in the previous step without considerably 
changing the model statistics. Based on the selected vari-
ables, primary PLS model was built to proceed with smart 
region definition (SRD) method with default number of 
seeds selected on the PLS weight space [41]. In SRD 
the variables were grouped within the distance of 2 Å to 
the seeds followed by collapsing the neighboring groups 
including the same information within the distances of 4 
Å. On the generated groups, the fractional factorial design 
(FFD) procedure was performed with 20% dummy vari-
ables. Finally, remained variables were used to generate 
PLS model [42]. FFD selection was applied several times 
until no further improvement in statistical parameters (q2 
and SDEP) was observed. The applicability domain analy-
sis on the train and test sets for the generated 3D model 
was carried out using the method developed by Roy et al. 
named “AD using standardization approach (version 1.0)” 
[43], where the PCA scores obtained from the 3D-QSAR 
were used as the X variables and the biological activities 
of the studied compounds were considered as Y variable 
[44]. The modeling process was repeated after excluding 
the identified outlier to develop the final 3D model. In an 
effort to evaluate the predictive power of the generated 

Table 1   (continued)

Fig. 2   IV703 chemical structure. The core center for superpositioning 
of all the compounds have been highlighted
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3D-QSAR model, internal validation methods such as 
leave-one-out (LOO), leave-two-out (LTO) and random-
groups-out (RGO) as well as external validation were used. 
Standard deviation of the error of prediction (SDEP) value 
was also used to assess the predictive power of the model.

Database search for identification of anti‑TNFR1 
candidates

PubChem database of chemical molecules was searched 
based on the 90% structural similarity to the most potent 
compound (i.e., compound 45) in our data set. The search 
resulted in 52 compounds. The 3D structures of these com-
pounds were retrieved and after superimpositioning on 
IV703, their activities were predicted using the proposed 
3D-QSAR model.

Molecular docking studies

To investigate the possible interaction mode of the inhibi-
tors with TNFR1, compounds IV703 and 45, and the two 
compounds with the highest predicted activities from the 
similarity search of PubChem database were docked into 
TNFR1 protein (PDB code: 1FT4) using GOLD docking 
program (version 5.0, CCDC, Cambridge, UK) running 
under LINUX operating system [45, 46]. LigPlot+ program 
[47] was used to extract the possible interactions between the 
best docking pose for each compound and TNFR1.

Results and discussion

Assessment of the model predictivity

TNF-α is an important cytokine which plays a key role in 
inflammatory processes. It has been shown that TNF-α-
associated pathogenesis is mostly mediated upon activation 
of tumor necrosis factor-alpha receptor type 1 (TNFR1). 
Therefore, inhibition of TNF-α interaction with TNFR1 
can be a promising approach to neutralize TNF-α induced 
adverse pro-inflammatory effect. In this regard, identification 
and development of new anti-TNFR1 candidates based on 
computational methods is of great importance. Ligand-based 
drug design is a strategy for lead identification and optimi-
zation using ligand–receptor three-dimensional structural 
information. On contrary to the structure-based drug design, 
this method uses structural features of the molecules that 
participate in receptor binding [48, 49]. In the current study, 
based on the crystal structure of a complex formed between 
a small molecule (i.e., IV703) and TNFR1 (PDB code: 
1FT4), ligand-based drug design approach was employed 
to build 3D-QSAR model for a series of TNFR1 inhibitors. 
The receptor-bound mode of the studied molecules was 
attained by aligning them on IV703 as the reference struc-
ture (Fig. 3) and the obtained conformations were introduced 
to GRID program in which C3, OH2 and N1 probes were 
used for the calculation of MIFs. The obtained MIFs were 
in turn transferred into GOLPE program for model building 

Fig. 3   The superposition of 
all studied molecule on crystal 
structure of IV703
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and statistical analyses. In general, most of the variables 
obtained from GRID calculation are irrelevant in correlat-
ing the chemical structures to the biological activities, and 
therefore, must be removed to improve the quality of the 
3D-QSAR model. Initially, the number of variables was 
decreased by 20% in pretreatment process. Then using SRD 
algorithm, the spatially close variables were grouped and the 
produced groups comprising the same energy information 
were collapsed to the regions. On the generated regions, the 
fractional factorial design (FFD) procedure was performed 
to weigh up the effects of individual regions. In each FFD, 
procedure only group of variables which had positive effect 
on the model more than the average dummy variable were 
retained. The selected variables were used for generating a 
PLS model based on three latent variables.

According to the rule of Organization for Economic Co-
operation and Development (OECD) [43, 50], the applica-
bility domain (AD) for the developed PLS model must be 
defined. The calculated PC values and the biological activi-
ties of the train and test set compounds were used for outliers 
identification as described previously [44]. This was done 
by Applicability Domain (using standardization approach) 
tool version 1.0 developed by Roy and co-workers [43]. The 
results of this analysis were identified compounds 15, 43, 
and 46 as the outliers in both data sets. It seems that the pres-
ence of two bulky phenyl groups on the dihydropyrimidine 
moiety in compound 15 may interfere with the appropriate 
three-dimensional arrangement of this compound compared 
to the rest of the data set. In the case of compounds 43 and 
46, the boat conformation of piperazine and the presence 
of a bulky substituent at the meta position of the phenyl 
group may be responsible for their structural differences to 
the rest of data set. By excluding compounds 15, 43, and 
46, the QSAR model was rebuilt as outlined above. Initially, 
58,500 variables were generated from MIF calculation in 
GRID, which was subsequently decreased to 10,156 during 

pretreatment process. Further variable selection was per-
formed using SRD method along with several rounds of FFD 
resulting in 1359 variables. The obtained model with three 
latent variables has a correlation coefficient value (r2) of 
0.94 (Table 2). The internal predictive power of the model 
was evaluated by LOO, LTO and RGO methods. The results 
show that the q2 of all internal cross-validation analyses are 
greater than 0.7 indicating good predictive power of the 
model in predicting the anti-TNFR1 activity of compounds 
(Table 2). Since relying on the internal cross-validation is 
not enough for model validation [51], in the current study 
external validation of the developed QSAR model was per-
formed. The results for experimental versus predicted val-
ues for the train and test compounds are depicted in Fig. 4. 
Table 3 shows the r2 and SDEP values for test set com-
pounds, which are 0.66 and 0.42, respectively, indicating 
its suitability. Further assessment of the 3D-QSAR model 
was performed by analyzing the errors observed for the pre-
dictive values. The mean absolute percentage error of the 
predictions (MAPE) for test and training set data are 5.63 
and 4.07%, respectively, showing acceptable level of errors 
in the prediction. On the other hand, the mean absolute error 
of the predictions for the test set was calculated to be 0.33 
which is more than 0.25 (i.e., 10% of the training set activity 
range) but still smaller than 0.49 (i.e., 20% of the training set 
activity range), indicating moderate prediction power of the 
built 3D-QSAR model based on MAE measure [52].

Analysis of structural features of anti‑TNFR1 
compounds

In addition to predicting the biological activity, 3D-QSAR 
studies aim to identify the important structural molecular 
features contributing to the activity. In the current study, 
PLS coefficient plots generated in GOLPE program were 
analyzed to recognize the structural features of compounds 

Table 2   The statistical data of 
the built PLS model for TNFR1 
inhibitors

No. of variables No. of LVs r2
acc SDEC q2 LOO SDEP q2 LTO SDEP q2 R5GO SDEP

Initial models after pretreatment
 10,156 1 0.44 0.43 0.19 0.52 0.18 0.52 0.17 0.52

2 0.78 0.27 − 0.19 0.62 − 0.18 0.62 − 0.13 0.60
3 0.82 0.24 − 0.20 0.63 − 0.19 0.62 − 0.17 0.62
4 0.91 0.17 − 0.02 0.58 − 0.05 0.58 − 0.08 0.59
5 0.93 0.15 − 0.19 0.62 − 0.17 0.62 − 0.14 0.61

Models after SRD and FFD
 1359 1 0.88 0.20 0.65 0.34 0.64 0.34 0.60 0.36

2 0.93 0.15 0.74 0.29 0.74 0.29 0.69 0.32
3 0.94 0.14 0.74 0.29 0.73 0.30 0.70 0.32
4 0.95 0.13 0.73 0.30 0.72 0.30 0.69 0.32
5 0.96 0.12 0.70 0.31 0.69 0.32 0.64 0.34
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whose interactions with the given probes influence the activ-
ity significantly. To simulate the virtual receptor C3, OH2 
and N1 probes in GRID program were used to calculate the 
molecular interaction fields for the studied compounds. Sub-
sequently, the calculated fields were used by GOLPE pro-
gram to generate a 3D-QSAR model to predict the biological 
activity of TNFR1 inhibitors. The contour maps correspond-
ing to the interaction of the compounds with different probes 
were generated and illustrated using the PLS coefficients 
(Fig. 5). Totally five regions were identified as the key struc-
tural features having impact on the binding ability of the 
inhibitors. These regions are indicated with R1, R2, R3, R4, 
and R5 in Fig. 5, in which the most active compound (i.e., 
compound 45) was inserted in the maps for depicting the 
important structural features needed for inhibitory activity 
of the studied compounds.

R1 region

Based on the analysis of C3 contour map (Fig. 5a), it seems 
there is a pocket on the TNFR1 receptor which can accom-
modate a substituent on the inhibitor at the meta position of 
an aromatic ring (R1 region) distal to the core center of the 
molecule. Based on the substituents in different inhibitors, 
it seems that their interactions could be of van der Waals 
nature resulting in the increased biological activity. In some 
cases such as compounds 14, 23, 44, and 47, the nature of 
the substituent in terms of inductive effect on the aromatic 
ring affects the binding ability. The optimum biological 
effect is achieved where the electron-donating substituent 

Fig. 4   Experimental versus predicted pIC50 for compounds. Open 
squares indicate training set and filled circles show the test set com-
pounds

Table 3   Observed versus predicted inhibitory activities for TNFR1 
inhibitors used in this work

The test set compounds are characterized by asterisk

Compound Experimental pIC50 Predicted pIC50

1 5.54 6.07
2 6.46 5.84
3* 7.00 6.37
4 7.00 6.66
5 6.40 6.31
6 6.40 6.00
7 5.64 6.16
8* 5.43 5.82
9* 5.68 5.75
10* 4.89 5.70
11* 6.10 6.12
12 6.00 6.10
13 6.49 6.31
14 5.70 5.85
15 4.96 Outlier
16 6.52 6.32
17 5.55 5.82
18* 6.85 6.37
19 4.99 5.27
20 6.89 6.34
21 6.22 6.02
22* 6.40 5.90
23 5.26 5.73
24 5.47 5.46
25 5.35 5.39
26 4.85 5.06
27 5.68 6.04
28* 5.77 6.07
29 6.55 5.99
30 6.11 6.04
31 6.00 6.11
32 5.72 6.05
33* 6.17 6.21
34 6.55 6.54
35 6.41 6.41
36 6.51 6.35
37* 6.51 6.60
38 6.509 6.51
39 6.21 6.38
40 5.96 6.28
41 6.68 6.49
42 6.68 6.42
43 6.68 Outlier
44 6.57 6.51
45 7.30 6.82
46 7.30 Outlier
47 6.30 6.24
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is introduced on the aromatic ring. This explanation is sup-
ported by the data achieved from the PLS coefficients for 
OH2 and N1 probes. Figure 5b, c shows the contour maps 
of the PLS coefficients for the N1 and OH2 probes, respec-
tively, in which R1 region represents favorable interactions 
with positive PLS coefficients (positive interaction energy 
with probes), but leading to decreased inhibitory activities 
suggesting that the existence of electrostatic interactions at 
R1 region between the inhibitors and TNFR1 is unfavorable.

R2 region

In the case of R2 region in C3 probe, interactions between 
a substituent in the molecule and the C3 probe in the areas 
with both negative (shown in blue) and positive PLS coef-
ficients (shown in yellow) are noticeable. According to the 
C3 PLS coefficient maps, it seems that positioning of a 
methoxy group at R2 region (compounds 28, 29, and 30) is 
favorable for ligand–receptor interaction; however, the pres-
ence of more bulky groups may interfere with such favorable 
contacts. Analysis of the OH2 contour maps indicates that 
ligand–receptor interaction at R2 region with electrostatic 
nature is not favored supporting the idea that the hydropho-
bic contact at R2 region was well tolerated. In N1 contour 
maps, both favorable and unfavorable interactions are seen 
for R2 region. The establishment of favorable interactions 
by N1 region at R2 region can be attributed to the steric 
nature of N1 probe [53] showing the importance of spatial 
arrangement for ligand–receptor interaction at this region.

R3 region

Comparing the contour maps of different probes in R3 region 
shows that a steric repulsion at this region may prevent 
appropriate accommodation of inhibitors at the binding site 
of TNFR1. On the other hand, OH2 and N1 contour maps 
suggest negligible interaction due to electrostatic forces for 
the inhibitors. As it can be observed in Table 1, the com-
pounds with low activities in the data set (i.e., compounds 
10, 19, 25, and 26) are those in which the five-membered 
ring at R3 region is replaced with a relatively more bulky 
six-membered ring posing steric repulsion and significant 
loss of activity.

R4 region

Close inspection of R4 region indicates its significant effect 
due to hydrogen bond interactions. This information was 
deduced from contour maps of OH2 and N1 probes imply-
ing the positive influence of electrostatic interactions for 
TNFR1-binding ability of studied compounds. Addition-
ally, C3 contour map in R4 region shows that positioning 
hydrophobic substituents at this site can result in decreased 
activity indicating that this region is more likely to contrib-
ute to just electrostatic interactions rather than hydrophobic 
and steric contacts.

R5 region

R5 region is another important part of the molecule where 
the results show that the more bulky the substituents in 

Fig. 5   Contour maps for the PLS-coefficients (3LVs) illustrated for the most potent compound in the data set. a C3 probe; b N1 probe and c 
OH2 probe. Blue areas indicate negative coefficients and yellow areas indicate positive coefficients
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this region, the more active the compounds (Fig. 5a). The 
effect of this structural feature is more pronounced when 
the methyl group in compound 10 is replaced with ethyl and 
toluoyl groups in the compounds 13 and 12, respectively, 
leading to the increased activity. It can be hypothesized that 
TNFR1 inhibitors with a bulky substituent at this region 
form more proper interaction with the receptor.

Identification of anti‑TNFR1 candidates

To propose new compounds with potential inhibitory 
activity on TNFR1, the database of chemical molecules 
in PubChem was searched to identify the most structurally 
similar compounds to that of the most potent compound in 
our data set. Among the 52 selected structures, the predicted 
inhibitory activities of compounds 8a and 33a on TNFR1 
with one, two, and three latent variables were comparable 
with the experimental activities of the highly potent com-
pounds in the data set (Table 4). Based on these results, it 
seems that the compounds 8a and 33a can be considered as 
promising TNFR1 inhibitors.

Prediction of binding mode between TNFR1 and its 
inhibitors

To predict the possible interactions between TNFR1 and its 
inhibitors, compounds IV703, 45, 8a and 33a were docked 
into TNFR1 (Fig. 6). The obtained best pose for each com-
pound in complex with TNFR1 was analyzed using Lig-
Plot + program (Fig. 7) in an effort to identify interacting 
moieties of the inhibitors and TNFR1. The 2D analyses 
of the complexes revealed that all of the docked inhibitors 
follow the same interaction pattern with TNFR1. Detailed 
analyses showed that these compounds interact with residues 
Ser74, Lys75 and Arg77 in the extra loop region of TNFR1 
(Fig. 1) via R1 hydrophobic region identified by the grid 
analyses in our 3D QSAR study. The results are in agreement 
with previous studies suggesting this region of TNFR1 as 
part of the binding pocket for the inhibitors [21]. The other 
residue involved in the interaction between the docked mol-
ecules and the receptor is Ala62, which has been also sug-
gested to be part of TNF-α-binding site based on homology 
modeling of TNF-α–TNFR1complex [26]. In the case of 
R2 region in PLS-contour maps, it seems that hydrophobic 

Table 4   The structures and the 
predicted inhibitory activities 
for 8a and 33a anti-TNFR1 
inhibitors

The database of chemical molecules in PubChem was searched based on 90% similarity to the most 
potent compound in the data set and the selected compounds activities were predicted by the generated 
3D-QSAR model
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interactions are more favored at this part as (Fig. 5) the dock-
ing studies have proved such contacts between the inhibitors 
and Phe60, Asp91, Arg92, and Asp93 of TNFR1 (Fig. 7). 
Moreover, PLS-contour maps suggest that the formation of 
hydrogen bonds at R4 region between TNFR1 and inhibitors 
can improve the binding characteristics (Fig. 5), the idea 
which has been supported by the docking studies where 
compound 8a can form hydrogen bonds with Asp93 leading 
to an increased activity (Fig. 7c). Another point of agree-
ment between 3D-QSAR and docking studies is that the 
hydrophobic-interacting R5 region in the counter map can 
be mimicked by the residues Ala62 and Ser63, which are in 
hydrophobic contact with functional groups responsible for 
the generation of R5 region (Fig. 7). Taking all these infor-
mation into account, it can be concluded that the interaction 
mode presented in the current study may explain a logi-
cal way of ligand–protein complex formation. This binding 
mode is somewhat different from that shown in the crystal-
lographic data [26], where the introduced binding pocket 
on TNFR1 possesses less than ten residues and, therefore, 
rarely can be considered as a binding site [54]. Moreover, the 
LigPlot+ analysis of the solved structure of IV703 bound to 
TNFR1 revealed no interaction suggesting that the binding 

mode of IV703 in crystal structure (PDB code: 1FT4) may 
be the artifact of crystallization not representing the true 
ligand-TNFR1 interaction.

Conclusion

In the current work, we aimed to build a 3D-QSAR predic-
tive model for a series of TNFR1 inhibitors. The validity 
of the developed model was evaluated by the internal and 
external cross-validation methods. The generated model has 
reasonable statistical parameters in terms of predictivity. 
Structural similarity searching of PubChem chemical struc-
ture database using potent TNFR1 inhibitor as the query 
structure identified 52 compounds of which compounds 8a 
and 33a showed adequate predicted anti-TNFR1 inhibitory 
activities. Using 3D-QSAR PLS contour maps and dock-
ing studies, hydrophobic interactions and hydrogen bonds 
were identified as the key elements in ligand–receptor inter-
actions. The potent compounds from the data set used for 
QSAR model development and those identified by database 
similarity search showed similar docking poses on the recep-
tor adding to the validity of the proposed model. The result 

Fig. 6   3D-represantation of the 
inhibitors docked into TNFR1. 
a IV703, b compound 45, c 
compound 8a, and d compound 
33a. PyMol program (version 
1.7.0.0) was used to generate 
the images
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of this work can be useful for designing novel potent TNFR1 
inhibitors where blocking of TNFR1 is desired.
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