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Introduction

Benzenoid hydrocarbons are ubiquitous and are found in 
all classes of natural products, pharmaceuticals, and materi-
als. Benzenoid hydrocarbons containing two or more fused 
benzene rings are classes of organic pollutants that are 
produced during the incomplete burning of coal, oil, gas, 
wood, garbage or other organic substances that resulting 
from human activities. These compounds are widely found 
in the environment and foods such as vegetables [1–4]. 
Since, some common benzenoid hydrocarbons have been 
known to be potent carcinogens, this contaminant class is 
generally regarded as having high priority for environmen-
tal pollution regulation and in ecological risk assessment 
of industrial effluent discharges. In relation to water, most 
hydrophobic benzenoids will typically absorb strongly to 
particles and become generally more resistant to bacte-
rial degradation [5]. The most concerning matter on ben-
zenoid hydrocarbons is that they have shown to be highly 
carcinogenic in laboratory animals, and it’s also involved 
in different types of human cancers, mainly breast, lung, 
and colon cancer. The metabolic activations of these com-
pounds in mammalian cell to dioepoxides cause errors in 
DNA replication and mutation, which initiates the carcino-
genic process [6]. Some benzenoids have chemical stabil-
ity and spermatogenetic and mutagenic effects [3]. One of 
the most successful approaches to the prediction of phys-
ico-chemical properties and biological activities of com-
pounds is quantitative structure–property/activity relation-
ships modeling (QSPRs/QSARs) [7]. QSPRs/QSARs are 
mathematical models that attempt to correlate the molec-
ular structure of compounds to their biological, chemical, 
and physical properties. The main steps comprising this 
method are: data collection, molecular geometry optimiza-
tion, molecular descriptors generation, descriptor selection, 
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model development and finally model performance evalua-
tion [8, 9]. The main problems encountered in this kind of 
research are still the description of the molecular structure 
using appropriate molecular descriptors and selection of 
suitable modeling methods [10]. Currently, many types of 
molecular descriptors such as topological indices and quan-
tum chemical parameters have been proposed to describe 
the structural feature of molecules [11–13]. Ferreira mod-
eled seven properties and two biological activities of poly-
cyclic aromatic hydrocarbons (PAHs) by using partial least 
squares (PLS) regression and electronic descriptors such as 
energy of HOMO and LUMO orbitals, topological descrip-
tors and geometric descriptors such as molecular volume 
and surface area and heat of formation [14]. Lu et al. have 
predicted photolysis half-lives of polycyclic aromatic 
hydrocarbons using PLS and computed quantum chemi-
cal descriptors from Gaussian03 [15]. In another research, 
Nikolić created linear relationship between polarographic 
half-wave reduction potentials of benzenoid hydrocarbons 
and electron affinities and ELUMO as descriptors [16]. In 
addition, aqueous solubility of PAHs have been predicted 
using GA-SVM and GAs-RBFNs and molecular connectiv-
ity indices [3].

It has long been recognized that non-covalent interac-
tions are predominantly electrostatic in nature. Politzer 
et  al. have shown that a variety of condensed phase mac-
roscopic properties that depend on non-covalent interac-
tions can be expressed analytically in terms of statistically 
defined quantities that characterize molecular surface elec-
trostatic potentials and average local ionization energy and 
named their model, general interaction properties function 
(GIPF) [17, 18]. Prediction properties such as pKa that 
includes charge transfer need molecular surface average 
local ionization energy descriptors [19]. Molecular volumes 
consider polarizability effects because there exists a linear 
relationship between them [20]. Some properties depend 
on interactions that are non-covalent such as solubility in 
water, boiling point and so on; therefore, these descriptors 
can be used for predicting these properties. In this research, 
we attempted to develop QSPR/QSAR models for predict-
ing the physico-chemical properties and biological activi-
ties of benzenoid hydrocarbons using MLR and GIPF fam-
ily descriptors.

Materials and methods

Data for benzenoids

All experimentally determined physico-chemical prop-
erties and biological activities of benzenoid hydrocar-
bons including the boiling point at normal pressure (BP, 

in °C), retention index (RI) refers to the reversed-phase 
liquid chromatography on polymer, aqueous solubility 
(log Sw,l), lipophilicity or n-octanol/water partition coef-
ficient (log KOW), n-octanol/air partition coefficient (log 
KOA), soil sorption (log KOC), Henry’s law constant (log 
H), bioconcentration factor (log BFC), photo-induced 
toxicity (log 1/LT50), polarographic half-wave reduc-
tion potentials (E1/2), heat (enthalpy) of formation (�Hf) , 
photolysis half-lives (log t1/2) and the molecular reso-
nance energy (RE) were taken from the literature [14–16, 
21–26]. The experimental values of these properties and 
activities are listed in Table S1 of the supplementary 
information.

Computer hardware and software

All calculations were performed on a 2.5  GHz Intel® 
CoreTM2 Quad Q 8300 CPU with 2 GB of RAM using all 
four available cores under Windows XP operating system. 
The ISIS/Draw version 2.3 software was used for draw-
ing the molecular structures [27]. Molecular modeling and 
geometry optimization were employed by HyperChem 
(version 7.1, HyperCube, Inc.) [28]. Gaussian98 program 
[29] was used to re-optimize the molecular structure. SPSS 
software (version 16.0, SPSS, Inc.) http://www.spss.com/ 
was used for elimination stepwise selection MLR analysis 
and other computations were performed in the MATLAB 
(version 7.0, Math Works, Inc.) environment.

Molecular descriptors generation and calculation

First we created and optimized 48 benzenoid hydrocar-
bon molecules in HyperChem 7.1 using AM1 method. 
Then re-optimization were implemented in Gaussian98 
software at B3LYP/STO-3G level. Next, these optimized 
geometries were used to compute the electrostatic poten-
tial V(r) on the molecular surfaces that is defined by the 
0.001 au contour of the electron density ρ(r). Molecular 
surface electrostatic potentials were computed at B3LYP/6-
31G* by Gaussian98 software. The grid control option was 
set to ‘‘cube = 100’’. Thus, for each molecule, Molecular 
surface electrostatic potentials were computed at approxi-
mately 1003 points. Then we used the WFA (wave function 
analysis) statistical analysis program to compute molecu-
lar surface electrostatic potential and average local ioniza-
tion energy descriptor using the produced CUBE file with 
Gaussian98 [29–32]. The electrostatic potential Vs(r) in the 
space around a molecule that is created by its nuclei and 
electrons is defined by Eq. (1):

(1)Vs(r) =
∑

A

ZA

|Ra − r|
−

∫
ρ
(
r′
)
dr′

|r′ − r|

http://www.spss.com/
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where ZA is the charge on nucleus A, located at RA. The first 
term on the right side of Eq. (1) is the nuclear contribution 
to V(r) which is positive, the second term is due to the elec-
trons and is negative [33, 34]. The average local ionization 
energy, I(r), is defined by Eq. (2):

ρi(r) is the electronic density of the molecular orbital at the 
point r, εi is its orbital energy and ρ(r) is the electronic den-
sity function. We interpret I(r) as the required energy, on 
average, to remove an electron from a point r in the space 
of an atom or a molecule [31, 35]. Vs(r) is effective for 
non-covalent interactions, which are largely electrostatic in 
nature, while Is(r) is more suitable when there is transfer 
of charge (electron pair donor–electron pair acceptor inter-
action) that is one of the forces responsible for separation 
of compounds in chromatography [31, 33, 36]. It might 
seem that Vs(r) could also predict sites for electrophilic and 
nucleophilic bond-forming attack, by means of its most 
negative and positive regions. However Vs(r) is not consist-
ently reliable in this respect, because the regions of most 
negative Vs(r) do not always correspond to the sites where 
the most reactive electrons are located. For example, the 
most negative Vs(r) in benzene derivatives such as aniline, 
phenol, fluoro- and chlorobenzene, and nitrobenzene are 
associated with the substituents, whereas electrophilic reac-
tion occurs on the rings. In contrast, Is(r) correctly predicts 
the ortho/para- or meta directing effects of the substituents, 
as well as their activation or deactivation of the ring [31].

Politzer et al. developed an approach which can be sum-
marized as Eq. (3) and named it, general interaction proper-
ties function (GIPF) [17, 31]:

(2)I(r) =

∑
i ρi(r)|εi|

ρ(r)

π is interpreted as an indicator of internal charge separa-
tion, which is present even in molecules having zero dipole 
moment due to symmetry, e.g. para-dinitrobenzene and 
boron trifluoride. δ2tot, δ

2
+, δ

2
− are respectively total, positive 

and negative variances and are computed as:

where ν is electrostatic balance parameter and is computed 
as [31, 33]:

In the summations above, t is the total number of points 
on the surface grid, m and n are the numbers of points at 
which V(r) is positive and negative, respectively. The fea-
tures of I(r) could be characterized analogously to those of 
V(r), that are extrema Is,max, Is,min, its average magnitude 
Is, average deviation (πIs

), and variance (δ2
Is
)—keeping in 

mind that I(r) only takes positive values [7, 31].

Descriptors selection

The GIPF family descriptors consisted of 14 surface elec-
trostatic potential, five average local ionization energies, 
Bader molecular volumes were calculated which have 
been listed in Table S2. Then 16 combinations of descrip-
tors were calculated from original GIPF descriptors that 

(5)
π =

1

t

t∑

i=1

∣∣Vs(ri)− Vs

∣∣

(6)

δ2tot = δ2+ + δ2− =
1

m

m∑

j=1

[
V+
s

(
rj
)
− V

+

s

]2
+

1

n

n∑

k=1

[
V−
s (rk)− V

−

s

]2

(7)ν =
δ2+δ

2
−[

δ2+ + δ2−
]2

(3)Property = f
(
Vmv,A

tot
s ,A+

s ,A
−
s ,Vs,max,Vs,min,V s,V

+

s , V
−

s ,π
tot, δ2tot, δ

2
+, δ

2
−,ϑ , Is,max, Is,min, Is, δ

2
Is
,πIs

)

In this equation, Vmv is the molecular volume and Atot
s , A+

s  , 
A−
s  are total surface area and the surface area over which 

Vs(r) is positive and negative, respectively. Vs,max,Vs,min , 
are maxima and minima of electrostatic potential on the 
molecular surface and V s, V

+

s  and V
−

s  are respectively, the 
overall average potentials and the average of positive and 
negative potentials are computed as:

 where π tot is the average deviation of overall potentials 
and is computed as: 

(4)

Vs =
1

t

t∑

i=1

Vs(ri),V
+
s =

1

m

m∑

j=1

V+
s

(
rj
)
, V̄−

s =
1

n

n∑

k=1

V
−
s (rk)

have been listed in Table S3. Therefore, we calculated 35 
descriptors that were used to build QSAR/QSPR mod-
els. In order to minimize the information overlapping 
in descriptors and to reduce the number of descriptors 
required in regression equation, the concept of non-redun-
dant descriptors (NRD) were used [37]. That is, when two 
descriptors are correlated by a linear correlation coef-
ficient value greater than 0.85, both descriptors are cor-
related with a dependent variables, the better correlation 
is used for the actual analysis, discarding the descriptors 
with a lower correlation. This objective-based feature 
selection left reduced and predictive descriptors for the 
studied compounds. Using these criteria for each phys-
ico-chemical property or biological activity, z descriptors 
out of 35 original descriptors were eliminated and 35-z 
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descriptors remained. In GIPF approach, properties/activ-
ities of molecules are related to a few number of descrip-
tors; therefore a variable reduction technique is needed. 
In this study, the most important variables are selected 
by elimination stepwise selection procedure, which com-
bines the forward selection and backward elimination 
approaches. Initially, we consider the descriptive variable, 
which has the highest correlation with the response. If the 
inclusion of this variable results in a significant improve-
ment of the regression model, it is retained and the selec-
tion continues. In the next step, the variable that gives the 
most significant decrease of the regression sum of squares 
is added to the model. After each forward selection step 
a backward elimination step is performed. In this step, a 
partial F test for the variables, already presented in the 
equation, is carried out. If a variable does not contribute 
significantly in the building of the regression model, then 
it will be removed. The procedure stops at the condition 
that no variables fulfill the requirements anymore to be 
removed or entered. After this selection procedure, classi-
cal MLR can be applied on the retained variables to build 
a predictive model [7, 38, 39].

Multiple linear regression (MLR)

An MLR model assumes that there is a linear relationship 
between the molecular descriptors of a compound, which is 
usually expressed as a feature vector X (where each entry 
indicates a descriptor), and its target property, y. An MLR 
model can be described using the following equation:

(8)
y = β0 + β1Xi1 + β2Xi2 + β3Xi3 + · · ·

+ βkXik + εi, i = 1, 2, . . . , n

where {Xi1,…,Xik} are molecular descriptors, β0 is the 
regression model constant, β1–βk are the coefficients cor-
responding to the descriptors Xi1 to Xik and y is dependent 
variable [39]. The values for β0–βk are chosen by minimiz-
ing the sum of squared vertical distances of the points from 
the hyper plane so as to give the best prediction of y from 
X. The molecular descriptors should be mathematically 
independent (orthogonal) to each other and the number of 
compounds in the training set should exceed the number of 
molecular descriptors by at least a factor of 4 [38, 40]. In 
this research, statistical parameters including R2, squared 
correlation coefficient, R2

adj, adjusted squared correlation 
coefficient, RMSE, root mean squared error; REP, relative 
error prediction and F, F test (Fischer’s value) were calcu-
lated for each model:

where SSE and SST are the sum of squared errors and the 
total sum of squares, respectively; and calculated as:

and other parameters were calculated as:

(9)R2 = 1−
SSE

SST

(10)SSE =

n∑

i=1

(yi − ŷi)
2 =

n∑

i=1

(yi − β̂0 − β̂1xi1 − · · · − β̂kxik)
2

(11)SST =

n∑

i=1

(yi − yi)
2

(12)R2
adj = 1−

(
1− R2

) (n− 1)

(n− k − 1)

(13)
RMSE =

√√√√1

n

n∑

i=1

(yi − ŷi)2

Table 1   Best models for the 
studied properties/activities 
and statistical parameters of 
benzenoids

Property/activity n Descriptors R2 R2
adj RMSE F R2

cv RMSEcv R2
max R2

cv,max

BP 23 A−
s V

+

s
0.986 0.985 15.3 1462.1 0.98 18.15 0.103 0.035

RI 33 A−
s V

+

s , Is,max
0.942 0.938 0.24 242.8 0.929 0.27 0.118 0.002

log Sw,l 15 A−
s V

+

s
0.932 0.926 0.52 177.2 0.914 0.59 0.177 0.085

log KOW 18 A−
s V

+

s
0.989 0.988 0.14 1453.8 0.987 0.16 0.098 0.019

log KOA 9 A
+
s δ

2
+

0.988 0.986 0.3 562.7 0.982 0.37 0.477 0.303

log KOC 9 A
tot
s 0.994 0.993 0.13 1176.8 0.99 0.18 0.46 0.357

log H 8 A−
s V

−

s
0.954 0.946 0.23 124.8 0.924 0.3 0.458 0.255

log BCF 11 V
+

s
0.887 0.875 0.24 70.9 0.844 0.29 0.27 0.096

log 1/LT50 9 δ2tot,A
+
s

0.802 0.752 0.14 16.2 0.62 0.2 0.479 0.261

E1/2 27 δ2−,Vs,max 0.665 0.637 0.18 23.9 0.609 0.19 0.122 0.034

ΔHf 20 A
−
s 0.985 0.984 8.15 1164 0.981 9.1 0.257 0.153

log t1/2 7 A−
s V

−

s
0.904 0.885 0.13 47.1 0.851 0.16 0.485 0.344

RE 20 (A−
s V

−

s )2 0.823 0.813 0.33 83.8 0.794 0.36 0.131 0.058
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In the mentioned equations above, n is the number of com-
pounds, k is the number of variables, yi is the experimental 
property/activity, ŷi is the average of experimental prop-
erty/activity and ŷi is the calculated property/activity from 
QSPR/QSAR model [41, 42]. These parameters have been 
listed in Table 1 for all models.

Model prediction‑validation

Model validation is a critical component of QSPR/QSAR 
development. A number of procedures has been established 
to determine the quality of models. In this research, a leave-
one-out cross-validation (LOO-CV) and Y-randomization 
test are used to validate the predictive ability and check the 
statistical significance of the developed models.

Leave‑one‑out cross‑validation (LOO‑CV)

In LOO-CV, each time a molecule was removed and vari-
able selection was performed for remaining molecules and 
a new model was built. This new model was used to pre-
dict the property (or activity) of removed molecules and 
this process was repeated for n times that n is the number 
of molecules that were used in the model building. Finally, 
the cross-validated squared correlation coefficient, R2

CV and 
root mean square error in cross-validation, RMSECV, were 
for each model calculated as:

where n is the number of training patters, yobs,i and ypred,i 
are the experimental, and predicted property/activity of the 
left-out benzenoid hydrocarbon i, respectively and yIobs is 
the average of experimental property/activity of molecules 
[43–46].

Y‑randomization test

The Y-randomization of response is another important 
validation approach that is widely used to establish model 

(14)REP (%) =
100

ŷi

√√√√1

n

n∑

i=1

(
yi − ŷi

)2

(15)F =
(n− k − 1)R2

k(1− R2)

(16)

R
2
CV = 1−

∑
N

i=1

(
ypred,i − yobs,i

)2
∑

N

i=1

(
yobs,i − yobs

)2 = 1−
PRESS

∑
N

i=1

(
yobs,i − yobs

)2

(17)RMSECV =

√∑N
i=1(ypred,i − yobs,i)2

N

robustness. In this test, dependent variable is reordered 
randomly and a new model is built. The procedure was 
repeated 100 times and the best model that has the maxi-
mum R2 (R2

max) and maximum cross-validated R2 (R2
cv,max) 

was selected. Small values of R2
max and R2

cv,max demonstrate 
that QSAR/QSPR model has not been obtained by chance 
[47–50]. These parameters have been listed in Table 1 for 
all models.

Results and discussion

The best models were obtained by elimination stepwise 
selection regression algorithm and the statistical parameters 
for the models and their cross-validation tests were sum-
marized in Table  1. It is interesting to note that for these 
data sets the combination descriptors A−

s V
+

s  and A+
s V

+

s  
(as obviously, is demonstrated that positive and negative 
electrostatic potential regions of benzenoid hydrocarbons 
interact with each other or with solvent molecules) gives 
superior prediction power in the QSPR/QSAR models for 
several studied properties/activities. Also, among the thir-
teen obtained models, ten of them are mono-parametric and 
the rest are bi-parametric models. Finally, we predicted the 
values of all properties/activities for all benzenoids by cre-
ating the best models (selected in this paper) which have 
been listed in Table S4.

Boiling point (BP, °C)

The observed data of 23 benzenoids that have been listed 
in Table S1 were used to construct the QSPR model. After 
descriptors selection step, the following equation with a 
combinatorial descriptor was built:

According to this equation, if a benzenoid has more 
points with negative electrostatic potential and also more 
positive average potential in its surface so has more electro-
static attraction between its molecules and its boiling point 
increase. For benzenoids with more than two rings, balance 
parameter value (υ) is near to its maximum value that is 
0.25. This means that benzenoids can interact up to a simi-
lar extent (whether strongly or weakly) through its both 
positive and negative electrostatic potential regions [51]. 
Although for benzenoids A+

s
∼= A−

s , but positive electro-
static points on molecular surface do not centralize. Thus 
a region with negative and positive electrostatic potential 
points cannot coincide as can be seen in Figs. 1 and 2, so 
in the model V

+

s  has been selected rather than A+
s  is chosen. 

The resulting plot for the mono-parametric model is shown 
in supplementary information Fig. SA.

(18)BP = −61.104(±14.197)+ 0.433(±0.011)A−
s V

+

s
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Retention index (RI)

For 33 benzenoids, retention index data values were avail-
able that have been listed in Table 1 and after descriptors 
selection steps, the following model was created:

These descriptors have no collinearity (R2  =  0.3972). 
A+
s V

+

s  demonstrate that positive and negative electro-
static potential regions of benzenoids and stationary phase 

(19)

RI = 77.769(±14.438)+ 0.004323(±0.000216)A−
s V̄

+
s

− 5.7459(±1.0638)Īs,max

attract each other and this attraction is responsible for 
separation of benzenoids. Negative coefficient of another 
descriptor shows oppositional effect of this descriptor in 
the separation mechanism. The R2

adj for the model changed 
from 0.882 to 0.938 when Is,max was added to model. For 
dibenzo[a,h]pyrene molecule residual is more than twice 
the standard deviation of residual of retention index so this 
molecule is detected as an outlier. For the retention index 
of benzenoids, a good compatibility for the biparametric 
regressions is observed in supplementary information Fig. 
SB and also the resulted model suggests a mechanism for 
separation of benzenoids.

Fig. 1   a Calculated B3LYP/
STO-3G ionization energy on 
molecular surface of benzene. 
Ionization ranges in eV/mol: 
red more than 12.4640, yellow 
between 12.4640 and 11.2937, 
green between 11.2937 
and 10.1234, blue smaller 
than 10.1234, b Calculated 
B3LYP/6-31G* electrostatic 
potential molecular surface 
of benzene. Electrostatic 
potential ranges in Kcal/mol: 
red more than 4.6413, yellow 
between 4.6413 and −2.9282, 
green between −2.9282 and 
−10.4977, blue more negative 
than −10.4977

Fig. 2   a Calculated B3LYP/STO-3G ionization energy on molecu-
lar surface of dibenz[a,n]triphenylene. Ionization ranges in eV/mol: 
red more than 12.5615, yellow between 12.5615 and 11.2963, green 
between 11.2963 and 10.0310, blue smaller than 10.0310. b Calcu-

lated B3LYP/6-31G* electrostatic potential molecular surface of 
dibenz[a,n]triphenylene. Electrostatic potential ranges in Kcal/mol: 
red more than 10.8232, yellow between 10.8232 and 1.9934, green 
between 1.9934 and −6.8364, blue more negative than −6.8364
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Water solubility (log Sw,l)

For the water solubility of benzenoids (log Sw,l range −3.85 
to 3.28), the few available data allow only a moderate 
agreement between experimental and calculated values, the 
best-obtained model is:

In this equation, negative coefficient for descriptors is due 
to the repulsion forces between regions of water and ben-
zenoids molecules that have electrostatic potential with the 
same sign. In water and benzenoids, regions with negative 
electrostatic potential exist on oxygen atom and benzene 
rings (see Figs.  1, 2, 3) that cause repulsion. In addition, 
positive electrostatic potential on hydrogen’s atoms cre-
ate repulsion forces. Since positive electrostatic points on 
molecular surface of benzenoids have not been centralized 
(Figs. 1, 2) so in the model V

+

s  have been selected instead 
of A+

s . For benzenoids, charge separation is low rather 
than water (see Table S1; Fig. 3), so charge centers are not 
separated and repulsion forces between them overcome 
their attraction forces. For Eq.  (20) naphthacene is outlier 
and when this molecule is removed; R2 increases to 0.952. 
Fig. SC of supplementary information presents the result-
ing mono-parametric plot for log Sw,l of benzenoids. For 
the water solubility of benzenoids rather than boiling point, 
a few available data result in weaker agreement between 
experimental and calculated values, as can be seen in Fig. 
SC.

n‑Octanol/water partition coefficient (log KOW)

The data set for lipophilicity or n-octanol/water parti-
tion coefficient (log KOW range 2.23–7.19) were included 

(20)

logSw,l = 5.5908(±0.56275)− 0.00664(±0.000499)A−
s V

+

s

18 benzenoids which were modeled by mono-parametric 
equation:

Graph of electrostatic potential on surface of n-octanol 
shows that alkyl section has positive electrostatic poten-
tial between 20.9836 and 1.8806  kcal/mol that estab-
lish attraction force with negative region of benzenoids 
(Figs.  1, 2, 4). On the other hand, similar interactions 
between hydrogen atoms in benzenoids and oxygen atom 
in n-octanol exist. Selection of A−

s  demonstrates that 
there are many points with positive electrostatic poten-
tial in the surface of receptor (here n-octanol) that inter-
act with negative points of benzenoids (see Fig. 4). This 
equation shows interactions between many points with 
positive and negative electrostatic potential dissolves 
benzenoids in n-octanol. By removing tryphenylene and 
dibenz[a,h]anthracene that are outlier, R2 increases from 
0.990 to 0.996. As seen from supplementary informa-
tion Fig. SD, there exist very good agreements between 
experimental and calculated values.

Correlation between log KOW and log Sw,l

As can be seen from comparing Eqs. (20) and (21) for pre-
dicting of log Sw,l and log KOW, the combination selected 
descriptor is common to take opposite sign. This means 
that the lipophilicity and solubility of benzenoids act 
against each other [52]. According to Table S1 there are 
thirteen compounds in common between these two proper-
ties and the general relationship between log Sw,l and log 
KOW as variables were analyzed using regression analysis 
as following:

(21)

log KOW = 0.27607(±0.1475)+ 0.004805(±0.000126)A−
s V

+

s

(22)logSw,l = 6.258 (±0.550)−1.451 (±0.100)logKOW

Fig. 3   Calculated B3LYP/STO-3G electrostatic potential molecular 
surface of water. Electrostatic potential ranges in Kcal/mol: red more 
than 22.3931, yellow between 22.3931, and 2.1572, green between 
2.1572 and −18.0787, blue more negative than −18.0787

Fig. 4   Calculated B3LYP/STO-3G electrostatic potential molecu-
lar surface of octanol. Electrostatic potential ranges in Kcal/mol: 
red more than 20.9836, yellow between 20.9836 and 1.8806, green 
between 1.8806 and −17.2223, blue more negative than −17.2223
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n  =  13, R2  =  0.950, R2
adj  =  0.945, RMSE  =  0.441, 

F = 208.7, R2
CV = 0.937, RMSECV = 0.494

The values of R2
adj for this relationship and Eq. (21) are 

0.945 and 0.926, respectively which have no significant dif-
ference and demonstrate that the predictive power of A−

s V
+

s  
is almost the same as lipophilicity (log KOW) that is an 
experimental descriptor. On the other hand, this is a very 
good reason that proves that the solubility and the lipophi-
licity of compounds are related to the interactions between 
solute and solvent molecules that are electrostatic in nature.

n‑Octanol/air partition coefficient (log KOA)

The octanol–air partition coefficient is a key descriptor of 
chemical partitioning between the atmosphere and other 
environmental organic phases such as soil and vegetation 
[53, 54]. KOA data values were available for nine com-
pounds in the range between 5.13 and 13.91 log units which 
were used in this section and the best obtained model is:

The square correlation coefficient between A+
s δ

2
+ and 

A−
s V

+

s  is 0.9731, so these descriptors are collinear. Also 
by increasing the number of rings in benzenoids A+

s , δ2+ 
and thus A+

s δ
2
+ increase which indicates that the molecules 

become more lipophilic and more soluble in n-octanol. We 
mentioned interaction mechanism between benzenoids 
and n-octanol in n-octanol/water partition coefficient (log 
KOW) section. Fig. SE of supplementary information pre-
sents mono-parametric regression according to Eq.  (23) 
and there are very good agreements existing between cal-
culated and experimental values.

Soil sorption (log KOC)

Nine benzenoids had soil sorption data and the selected 
descriptor was a total surface area that resulted to the fol-
lowing equation:

Atot
s  and A+

s δ
2
+ descriptors are collinear (R2 =  0.9123) 

and R2 between Atot
s  and A−

s V
+

s  is 0.9919 which demon-
strates that the mentioned interaction mechanism above 
(see “n-octanol/water partition coefficient (log KOW)” sec-
tion) exists between benzenoids and n-octanol. Fig. SF 
of supplementary information presents good agreements 
between calculated and experimental values. These results 
demonstrate that Atot

s  can completely describe the change 
in log Koc.

(23)

log KOA = −1.9464(±0.49588)+ 0.005708(±0.000241)A+s δ
2
+

(24)

log Koc = −2.6829(±0.22493)+ 0.032824(±0.000957)Atot
s

Henry’s law constant (log H)

Henry’s law constant data was available for eight benze-
noids and a combinatorial descriptor was selected and we 
obtained the following mono-parametric equation:

Negative coefficient of descriptors demonstrated that if 
in benzenoids we have more points with negative electro-
static potential with low average, electrostatic attractions 
between positive and negative regions will be stronger and 
less molecules can go to gas phase. Fig. SG of the supple-
mentary information shows good agreements between cal-
culated and experimental values.

Bioconcentration factor (log BCF)

Bioconcentration factor is the ratio of a substance’s con-
centration in an organism to its concentration in the ambi-
ent water [55]:

where Corg is the concentration in target organism (µg/
kg) and Cw is the concentration in pure water (µg/l). Bio-
concentration factor data was available for 11 benzenoids 
and after descriptors selection the following equation 
obtained:

Correlation between log BCF and V
+

s  demonstrates that 
there are molecules in organism that have regions with neg-
ative electrostatic potential which attract benzenoids mol-
ecule into organism. In Eq. (27) phenanthrene is an outlier 
and the removal of this molecule increase R2 to 0.926. Fig. 
SH of the supplementary information presents results for 
mono-parametric regression.

Photo‑induced toxicity (log 1/LT50)

This term is used for the phenomenon of increasing the 
toxicity of certain poly cyclic hydrocarbon such as benze-
noids when exposed to UV light due to the formation of the 
free radicals and subsequent damage of macromolecule and 
is calculated as:

(25)
log H = 2.7611(±0.2724)− 1.9777

× 10−6
(
±1.7706× 10−7

)(
A−
s V̄

−
s

)2

(26)BCF =
Corg

Cw

(27)
log BCF = −15.319(±2.2417)+ 2.2452(±0.26667)V

+

s

(28)Photo - induced toxicity = log

(
1

LT50

)
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where LT50 is median lethal time. Anthracene, pyrene, 
benzo[a]pyrene, dibenz[a,h]anthracene and benzo[ghi]per-
ylene are among the most phototoxic compounds whereas 
phenanthrene and tryphenylene are not phototoxic. Data 
set included nine benzenoids and after descriptors selection 
steps, a model with two descriptors created:

Negative coefficient for δ2tot shows more δ2tot, decrease 
photo-induced toxicity and positive coefficient of A+

s  dem-
onstrates that benzenoids with more rings have more photo-
induced toxicity because of being A+

s  and Atot
s  as collinear. 

As seen in Fig. SI of supplementary information there are 
moderate agreement between calculated and experimental 
values for biparametric correlation because of the scarcity 
data.

Polarographic half‑wave reduction potentials (E1/2)

Polarographic half-wave reduction potentials data (E1/2, 
in unit of volt) were available for 27 benzenoids, and two 
descriptors were selected and the following equation was 
obtained:

Larger δ2− decreases E1/2. this is reasonable because 
presence of points with more negative electrostatic poten-
tial repel the electrons. For Eq.  (30) benzo[a]perylene 
and dibenzo[a,i]pyrene are outliers and when they were 
removed, R2 increased to 0.822. These descriptors have no 
collinearity problem (R2 =  0.209). As it’s seen in Fig. SJ 
of supplementary information, there are weak agreement 
between calculated and experimental values for biparamet-
ric correlation because they do not depend on electrostatic 
interaction only.

Heat of formation (�Hf)

Heat of formation data (in unit of KJ/mol) was available 
for 20 benzenoids and finally the following model was 
obtained:

Larger benzenoids have larger A−
s  and this means larger 

benzenoids have more bonds that results in larger heat 
of formation. Correlation between A−

s  and Atot
s  is high 

(R2 = 0.998) that is a good reason for accuracy of Eq. (31). 
This correlation is slightly larger than the correlation 
between A+

s  and Atot
s  (R2 =  0.997). In Eq.  (31) benzo[a]

(29)
PIT = 2.9275(±1.3189)− 0.18886(±0.034743)δ2tot

+ 0.011162(±0.004434)A+
s

(30)
E 1

2
= 2.9672(±0.79989)− 0.16559(±0.024092)δ2−

− 0.06761(±0.025846)Vs,max

(31)(�Hf) = −44.756(±10.618)+ 2.3549(0.069023)A−
s

pentaphene is an outlier and the removal of this molecule 
increase R2 to 0.989. Also Fig. SK of supplementary infor-
mation shows very good agreements between calculated 
and experimental values for mono-parametric regression 
model.

Photolysis half‑live (log t1/2)

Photolysis is the most important decay process for PAHs. 
However, it is unlikely to quantify the photochemical trans-
formation for all PAHs because laboratory tests are expen-
sive and time consuming. QSPR models, which correlate 
the properties of pollutants with their structure descrip-
tors, may be used to study photolysis mechanisms and 
to efficiently predict photolysis reaction parameters. In 
this research, we used GIPF descriptors to create a QSPR 
model for prediction of benzenoids photolysis half-live. 
Photolysis half-live (in unit of hour) data set were included 
seven benzenoids and in descriptors selection steps, a com-
binatorial descriptor was selected that was resulted in the 
following model:

Equation  (32) shows that photolysis half-live decreases 
for benzenoid hydrocarbons with more positive electro-
static potential points that have high positive electrostatic 
potential average value. Since large benzenoids have more 
points with electron cloud deficiency, thus larger benze-
noids have less photolysis half-live (Table S1). While few 
molecules have data, Fig. SL of supplementary information 
shows good agreements between calculated and experi-
mental values.

Molecular resonance energy (RE)

Resonance energy data was available for 20 benzenoids 
and after descriptor selection steps, the following equation 
was obtained:

According to this equation, for benzenoids with more 
negative electrostatic potential area that their average is 
smaller, resonance energy increases. Benzenoids with more 
rings have greater A−

s  and so they have more resonance 
energy. For Eq.  (33) pentacene is an outlier and when we 
removed it R2 increased to 0.912. Fig. SM of supplemen-
tary information indicates a plot of the cross-calculated 
versus experimental RE values for all 20 compounds that 
are studied. From this Fig., it can be also seen that the 

(32)

log t1
/2

= 3.1673(±0.45628)− 0.00284(±0.000414)A+
s V

+

s

(33)
RE = 0.74732(±0.20896)

+ 9.01× 10−7
(
±9.85× 10−8

)
×

(
A−
s V̄

−
s

)2
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predicted values are comparatively in poor agreements with 
the experimental values, as shown by the R2

cv value (only 
0.794).

Correlation between RE and log H

For both Eqs. (25) and (33), independent variables are the 
same that this fact demonstrates these two properties are 
collinear. Five molecules had data for both properties and 
the following equation was obtained:

n  =  5, R2  =  0.9030, R2
adj  =  0.871, RMSE  =  0.1595, 

F = 27.9136, R2
CV = 0.7933, RMSECV = 0.2635.

Conclusions

The QSPR/QSAR methodologies based on general inter-
action properties function (GIPF) family descriptors were 
successfully applied for predicting the physico-chemical 
properties/biological activities of benzenoid hydrocarbons 
and these properties/activities depend on the forces that 
are electrostatic in nature. These compounds can interact 
through their both positive and negative electrostatic poten-
tial regions, up to a similar extent and are lipophilic. Mini-
mum and maximum of R2

adj for QSPR/QSAR models are 
0.637 (for E1/2) and 0.993 (for log KOC) and F values are 
between 16.2 (for log 1/LT50) and 1462.1 (for BP). QSPR 
model for boiling point has the maximum RMSE due to 
its large boiling points values. R2

max for five models were 
larger than 0.4 because a few number of molecules have 
data for these properties.
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