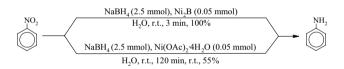
ORIGINAL PAPER



Rapid and green reduction of aromatic/aliphatic nitro compounds to amines with NaBH₄ and additive Ni₂B in H₂O

Behzad Zeynizadeh · Mehdi Zabihzadeh

Received: 6 October 2014 / Accepted: 22 December 2014 / Published online: 20 January 2015 © Iranian Chemical Society 2015

Abstract NaBH₄ with catalytic amounts of Ni₂B as an additive reagent reduced aromatic and aliphatic nitro compounds to the corresponding amines in high to excellent yields. Reduction reactions were carried out in H₂O within 3–30 min at room temperature or 75–80 °C. The catalytic activity of Ni₂B as an additive reagent was superior to using the *in situ* precipitated one. *Graphical Abstract*

Introduction

Amines are widely used as antioxidants and intermediates in the production of many pharmaceuticals, polymers, dyestuffs, agricultural chemicals, photographic and rubber materials, chelating agents and other industrially important products [1–5]. So, the particular immense interest has been devoted to the preparation of amines by many ways [6–12]. Amines can be prepared by reductive amination of carbonyl compounds, alkylation of ammonia and reduction of azides, amides, nitriles, oximes as well as nitro compounds. Among these,

Electronic supplementary material The online version of this article (doi:10.1007/s13738-014-0585-5) contains supplementary material, which is available to authorized users.

B. Zeynizadeh (⊠) · M. Zabihzadeh Department of Chemistry, Faculty of Science, Urmia University, 5756151818 Urmia, Iran e-mail: bzeynizadeh@gmail.com reduction of nitro compounds is one of the most important and straightforward methods for the preparation of amines.

During the past decades, NaBH₄ as a mild reducing agent has brought about revolutionary changes in the reduction of organofunctional groups in modern organic synthesis [9–12]. It is well known that the NaBH₄ alone does not reduce nitro compounds under ordinary conditions. However, the reducing power of this reagent or its polymeric analog (BER: borohydride exchange resin) undergoes a drastic change towards the reduction of nitro groups by the combination with metal, metal halides or other promoters. NaBH₄ in the presence of Pd/C [13], NiCl₂ [14, 15], FeCl₂ [16], CoCl₂ [17, 18], TiCl₄ [19], CuCl₂ [20, 21], CuBr·Me₂S [22], SbF₃ [23], SbCl₃ [24], BiCl₃ [24–26], ZrCl₄ [27], SnCl₂ [28], CuSO₄ [29], (NH₄)₂SO₄ [30], Ni(OAc)₂ [31, 32], Cu(acac)₂ [33], Me₃SiCl [34], Co(pyridyl)₂ [35], Se [36], Sb [37], Raney nickel [38], nickel o-aminothiophenol Schiff base complexes [39] and bromoethanol-assisted phthalocyanatoiron [40] and BER in the presence of (CuCl, Cu(OAc)₂, CoCl₂ and PdCl₂) [41] and Ni(OAc)₂ [42] are some of the combination systems which have been reported for reduction of nitro compounds. In addition, $PyZn(BH_4)_2$ [43] and NaBH₄/charcoal [44] have also been reported by our research group for the efficient reduction of various aliphatic and aromatic nitro compounds to the corresponding amines.

Along the outlined methodologies, herein, we wish to introduce an easy and practical protocol for rapid reduction of various aromatic and aliphatic nitro compounds to the corresponding amines with NaBH₄/Ni₂B (additive) system in H₂O at room temperature or 75–80 °C (Scheme 1).

Results and discussion

A literature review shows that though the application of $NaBH_4$ in water or aqueous media has been reported for

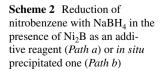
RNO₂
$$\xrightarrow{\text{NaBH}_4, \text{Ni}_2\text{B} (\text{additive})}{\text{H}_2\text{O}, \text{ r.t. or 70-80 °C}}$$
 RNH
R= alkyl or aryl

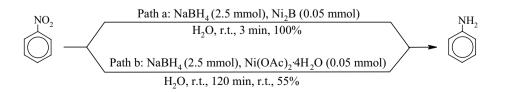
Scheme 1 Reduction of nitro compounds with NaBH₄/additive Ni₂B system

some reduction purposes [45-55], however, reduction of nitro compounds with NaBH₄ in H₂O as the sole solvent has not been reported yet. This subject and our ongoing attention to the development of modified hydroborate agents in organic synthesis [56-60] encouraged us to investigate the titled transformation in H₂O as an easily available and ecologically safe solvent.

In looking for the efficient and stable catalysts in medium of H₂O, we found that reduction of nitro compounds with NaBH₄ in the presence of NiCl₂ [14, 15] or $Ni(OAc)_2$ [31, 32] in wet aprotic or alcoholic solvents has been carried out through the catalysis of precipitated fine black nickel boride (Ni₂B). Moreover, the influence and catalytic activity of already prepared Ni₂B and using it as an additive reagent to the reaction mixture have not been investigated yet. Prompted by this idea, we decided to study the reducing capability of NaBH₄/Ni₂B (additive) system in H₂O as a green solvent for the reduction of nitro compounds.

The investigation was started by preliminary preparation of Ni₂B through the reaction of aqueous Ni(OAc)₂·4H₂O and NaBH₄ according to the reported procedure [61]. The


prepared Ni₂B was isolated, dried under air atmosphere and stored in a sealed bottle. The catalytic activity of this Ni₂B was studied through the reduction of nitrobenzene with NaBH₄ under different reaction conditions. The results of this investigation are summarized in Table 1.


Entries 1-7 show that reduction of PhNO₂ with NaBH₄ in the absence or presence of additive Ni₂B in protic and aprotic solvents such as MeOH, EtOH, THF, CH₃CN and CH₃CN/H₂O did not take place. However, using H₂O as the sole solvent dramatically accelerated the rate of reduction (entries 8-12). These observations revealed that H_2O was the best solvent choice and using a molar equivalent of 1:2.5:0.05 for PhNO₂, NaBH₄ and Ni₂B, respectively, was the optimum for complete reduction of nitrobenzene. Subsequently, aniline was obtained in 95 % yield within 3 min at room temperature (Table 1, entry 11) (Scheme 2, path a).

To show the difference between catalytic activity of Ni₂B as an additive reagent and the *in situ* precipitated one in the reaction mixture, we also performed reduction of nitrobenzene with 2.5:0.05 molar equivalents of NaBH₄ and Ni(OAc)₂·4H₂O in H₂O at room temperature. In this case, Ni₂B as a fine black precipitate was also prepared, however, reduction of PhNO2 encountered with low efficiency and aniline was obtained in 55 % yield after 2 h (Scheme 2, path b). These results definitely exhibited that the catalytic activity of already prepared Ni₂B as an additive reagent was superior to use it as the in situ precipitation in the reaction mixture.

Next, synthetic utility of NaBH₄/additive Ni₂B system in H₂O was further studied by reduction of structurally

Table 1Optimizationexperiments for reduction ofnitrobenzene to aniline withNaBH ₄ /Ni ₂ B (additive) systemunder different conditions	Entry	NaBH ₄ (mmol)	Ni ₂ B (mmol)	Solvent (mL)	Time (min)	Conversion (%) ^a
	1	2	_	MeOH	120	0
	2	2	_	H ₂ O	120	0
	3	2	0.02	МеОН	180	5
	4	2	0.02	EtOH	120	0
	5	2	0.02	THF	120	0
	6	2	0.02	CH ₃ CN	120	0
All reactions were carried out with 1 mmol of nitrobenzene in 2 mL solvent at room temperature ^a Conversions less than 100 % were determined on the basis of recovered nitrobenzene	7	2	0.02	MeOH-H ₂ O (1:1)	180	20
	8	2	0.02	H ₂ O	240	50
	9	3	0.02	H ₂ O	100	55
	10	3	0.05	H ₂ O	3	100
	11	2.5	0.05	H ₂ O	3	100
	12	2	0.05	H ₂ O	30	90

different nitroarenes to amines. Table 2 summarizes the results of this investigation. As it is seen, all reactions were carried out successfully in H₂O with 2.5:0.05 molar equivalents of NaBH₄ and additive Ni₂B at room temperature or 75–80 °C. The corresponding arylamines were obtained in high to excellent yields within 5–30 min.

The study also showed that the chemoselective reduction of nitro group in the presence of carboxylic acid was achieved successfully through the reduction of 2-nitrobenzoic acid to anthranilic acid in 92 % yield (Table 2, entry 13). Molecules with the complexity of nitro and carbonyl groups did not show any selectivity, and both of the functional groups were reduced with the same reactivity. This fact was shown in the reduction of nitrobenzaldehydes and nitroacetophenones to their corresponding amino alcohols (Table 2, entries 15–19). By changing the solvent from H₂O to a mixture of H₂O-CH₃CN (1:1 mL) and decreasing the quantity of NaBH₄ to 0.5-1.5 molar equivalents, however, the selective reduction of carbonyl group versus nitro group was carried out successfully (Table 2, entries 14 and 20). Further examinations resulted that the present method was also efficient for the reduction of dinitroarenes using 3.5:0.1 molar equivalents of NaBH₄ and additive Ni₂B, respectively, in H₂O at 75–80 °C (Table 2, entries 21–23).

Capability of NaBH₄/additive Ni₂B system in the reduction of aliphatic nitro compounds was also studied by the reduction of 1-nitrohexane, 2-nitroheptane and nitrocyclohexane with 2.5:0.05 molar equivalents of NaBH₄ and Ni₂B in H₂O at room temperature. The results showed that as aromatic nitro compounds, this protocol was also efficient and the corresponding aliphatic amines were obtained successfully in 90–94 % yield within 10–15 min (Table 2, entries 24–26).

Brown in 1970 demonstrated that the combination system of NaBH₄ and aqueous nickel salts (chloride, sulfate or acetate) released hydrogen gas and various alkenes could be hydrogenated through the catalysis of highly reactive Ni₂B [62] (Eq. 1).

$$2\text{Ni}(\text{OAc})_{2} + 4\text{NaBH}_{4} + 9\text{H}_{2}\text{O} \rightarrow \\ \text{Ni}_{2}\text{B} + 4\text{Na}(\text{OAc})_{2} + 3\text{B}(\text{OH})_{3} + 12.5 \text{ H}_{2} \text{ (g)}$$
(1)

The literature review also shows that reduction of nitro compounds to amines has been carried out by catalytic hydrogenation in the presence of homogeneous [63] or heterogeneous [64–73] catalysts. The exact mechanism of NaBH₄/additive Ni₂B system in H₂O is not clear. However, we think that due to similar characteristics of the present protocol with Brown's method and our observation to vigorous releasing of H₂ gas on the surface of additive Ni₂B, the reduction of nitro compounds with NaBH₄/additive Ni₂B system may take place through catalytic hydrogenation as well as hydride transferring from NaBH₄.

In conclusion, we have shown that NaBH₄/additive Ni₂B system is an efficient protocol for rapid and green reduction of aliphatic and aromatic nitro compounds to the corresponding amines. Reduction reactions were carried out in H₂O at room temperature or 75-80 °C. Reduction of dinitroarenes was also performed efficiently by this reducing system. Chemoselective reduction of nitro group in the presence of carboxylic acid was achieved successfully. By changing the solvent and decreasing the molar equivalents of NaBH₄, the selective reduction of carbonyl group in the presence of nitro group was feasible. Simplicity of the method, availability of the reagents, mild reaction conditions, high yields and easy work-up procedure as well as using H₂O as an ecologically safe solvent are the advantages which make this protocol a useful addition to the present methodologies.

Experimental

General

All reagents and substrates were purchased from commercial sources with high quality and they were used without further purification. IR and ${}^{1}\text{H}/{}^{13}\text{C}$ NMR spectra were recorded on Thermo Nicolet Nexus 670 FT-IR and 300 MHz Bruker spectrometers. The products were characterized by ${}^{1}\text{H}/{}^{13}\text{C}$ NMR and IR spectra followed by comparison of the obtained data with authentic ones [74–79]. All yields refer to isolated pure products. TLC was applied for the purity determination of substrates, products and reaction monitoring over silica gel 60 F₂₅₄ aluminum sheet.

Preparation of Ni_2B [61]

In a two-necked and round-bottomed flask (100 mL), a solution of Ni(OAc)₂·4H₂O (1.244 g, 5 mmol) in distilled water (50 mL) was prepared and the solution was stirred magnetically under N₂ atmosphere. A solution of NaBH₄ (10 mL, 1.0 M) in water was added to the prepared nickel acetate solution by a syringe over 30 s. When the gas evolution was ceased, a second solution of NaBH₄ (5 mL, 1.0 M) was again added. The aqueous phase was decanted and the residue fine black precipitate was washed twice with ethanol (25 mL). Drying the precipitate under air atmosphere affords Ni₂B in 85 % yield.

A typical procedure for reduction of nitrobenzene to aniline with NaBH₄/additive Ni₂B system

In a round-bottomed flask (10 mL) equipped with a magnetic stirrer, a mixture of nitrobenzene (0.123 g, 1 mmol) and H_2O (2 mL) was prepared. Ni₂B (0.006 g, 0.05 mmol)

Table 2 Reduction of aromaticand aliphatic nitro compoundswith NaBH4/additive Ni2Bsystem

Entry	Substrate	Product	Molar Ratio Subs./NaBH ₄ /Ni ₂ B	Condition	Time (min)	Yield (%) ^a
1		NH ₂	1:2.5:0.05	r.t.	3	95
2	H ₂ N-\O-NO ₂		1:2.5:0.05	r.t.	10	93
3	H ₂ N	H ₂ N-NH ₂	1:2.5:0.05	r.t.	6	93
4	CH ₂ OH NO ₂	CH ₂ OH NH ₂	1:2.5:0.05	r.t.	10	96
5	СH ₂ OH O ₂ N	СH ₂ OH H ₂ N	1:2.5:0.05	r.t.	12	94
6	O2N-CH2OH	H ₂ N-CH ₂ OH	1:2.5:0.05	r.t.	30	92
7	Br-	Br-O-NH2	1:2.5:0.05	oil bath	7	96
8	OH	OH	1:2.5:0.05	oil bath	8	94
9	HO-O-NO2	HO-O-NH2	1:2.5:0.05	oil bath	5	92
10		NH ₂	1:2.5:0.05	r.t.	6	96
11	Me Me	Me Me	1:2.5:0.05	oil bath	20	94
12	Me NO ₂	Me-NH ₂	1:2.5:0.05	oil bath	15	96
13	CO ₂ H	CO ₂ H	1:2.5:0.05	r.t.	10	92
14 ^b	CHO	CH ₂ OH	1:0.5:0.01	r.t.	0.5	97
15	CHO	CH ₂ OH	1:2.5:0.05	r.t.	10	95
16	OHC -NO ²	HOH ₂ C	1:2.5:0.05	r.t.	8	97
17	OHC-O-NO2	HOH ₂ C-	1:2.5:0.05	r.t.	10	93
18	O_2N	OH H ₂ N	1:3.5:0.05	oil bath	4	94
19	O2N-O	H ₂ N-OH	1:3.5:0.1	oil bath	15	92

Table ?

Table 2 continued	Entry	Substrate	Product	Molar Ratio Subs./NaBH ₄ /Ni ₂ B	Condition	Time (min)	Yield (%) ^a
	20 ^b	O ₂ N O	$\underset{O_2N}{\overset{OH}{\longleftarrow}}$	1:1.5:0.05	r.t.	1	98
	21	$O_2N - O_2 - NO_2$	H ₂ N-NH ₂	1:3.5:0.1	oil bath	22	93
All reactions were carried out in H_2O (2 mL) at room tempera- ture or under oil bath conditions (75–80 °C) ^a Yields refer to isolated pure products	22	O ₂ N-NO ₂	H ₂ N-NH ₂	1:3.5:0.1	oil bath	17	96
	23	O ₂ N- NO ₂ -Me	H ₂ N- NH ₂	1:3.5:0.1	oil bath	15	93
^b The reaction was carried out	24	1-Nitrohexane	1-Hexylamine	1:2.5:0.05	r.t.	10	92
in a mixture of H ₂ O–CH ₃ CN	25	2-Nitroheptane	2-Aminoheptane	1:2.5:0.05	r.t.	12	94
(1:1 mL) at room temperature	26	Nitrocyclohexane	Cyclohexylamine	1:2.5:0.05	r.t.	15	90

was then added and the mixture was stirred for 5 min. NaBH₄ (0.095 g, 2.5 mmol) was also added and the resulting mixture was continued to stirring for 3 min at room temperature. TLC monitored the progress of the reaction (eluent, n-hexane/Et₂O:5/3). After completion of the reaction, aqueous solution of KOH (2 %, 5 mL) was added and the mixture was stirred for 10 min. The mixture was extracted with EtOAc (3 \times 8 mL) and then dried over anhydrous Na₂SO₄. Evaporation of the solvent affords the pure liquid aniline in 95 % yield (0.088 g, Table 2, entry 1).

Acknowledgments The authors gratefully appreciated the financial support of this work by the research council of Urmia University.

References

- 1. T.C. Nugent, Chiral amine synthesis: methods, developments and applications (Wiley-VCH, Weinheim, 2010)
- 2. T. Farooqui, A.A. Farooqui, Biogenic amines: pharmacological, neurochemical and molecular aspects in the cns (Nova Science, New York, 2010)
- 3. S.A. Lawrence, Amines: synthesis, properties and applications (Cambridge University Press, Cambridge, 2004)
- 4. G. Booth, Ullmanns encyclopedia of industrial chemistry (Wiley-VCH, Weinheim, 2000)
- 5. S.C. Mitchell, R.H. Waring, Ullmanns encyclopedia of industrial chemistry (Wiley-VCH, Weinheim, 2000)
- 6. H.J. Arpe, Industrial organic chemistry, 5th edn. (Wiley-VCH, Weinheim, 2010)
- 7. J. Hagen, Industrial catalysis: a practical approach, 2nd edn. (Wiley-VCH, Weinheim, 2006)
- 8. A. Ricci, Modern amination methods (Wiley-VCH, Weinheim, 2000)
- 9. P.G. Andersson, I.J. Munslow, Modern reduction methods (Wiley-VCH, New York, 2008)
- 10. J. Seyden-Penne, Reductions by the alumino and borohydrides in organic synthesis, 2nd edn. (Wiley-VCH, New York, 1997)
- 11. A.F. Abdel-Magid, Reductions in organic synthesis, Vol. 641 (ACS Symposium Series, 1996)

- 12. M. Hudlicky, Reductions in organic chemistry (Ellis Horwood, Chichester, 1984)
- 13. M. Petrini, R. Ballini, G. Rosini, Synthesis 713 (1987)
- 14. A. Nose, T. Kudo, Chem. Pharm. Bull. 29, 1159 (1981)
- 15. J.O. Osby, B. Ganem, Tetrahedron Lett. 26, 6413 (1985)
- 16. A. Ono, H. Sasaki, F. Yaginuma, Chem. Ind. (Lond) 480 (1983)
- 17. S.W. Heinzman, B. Ganem, J. Am. Chem. Soc. 104, 6801 (1982)
- 18. T. Satoh, S. Suzuki, Y. Suzuki, Y. Miyaji, Z. Imai, Tetrahedron Lett. 10, 4555 (1969)
- 19. S. Kano, Y. Tanaka, E. Sugino, S. Hibino, Synthesis 695 (1980)
- 20. J.A. Cowan, Tetrahedron Lett. 27, 1205 (1986)
- 21. T. Satoh, S. Suzuki, T. Kikuchi, T. Okada, Chem. Ind. (Lond) 1626 (1970)
- 22. H.V. Patel, K.A. Vyas, Org. Prep. Proced. Int. 27, 81 (1995)
- 23. B. Zeynizadeh, H. Ghasemi, J. Chem. Res. 542 (2006)
- 24. P.D. Ren, S.F. Pan, T.W. Dong, S.H. Wu, Synth. Commun. 25, 3799 (1995)
- 25. H.N. Borah, D. Prajapati, J.S. Sandhu, J. Chem. Res. 228 (1994)
- 26. P.D. Ren, X.W. Pan, Q.H. Jin, Z.P. Yao, Synth. Commun. 27, 3497 (1997)
- 27. K.P. Chary, S.R. Ram, D.S. Iyengar, Synlett 683 (2000)
- 28. T. Satoh, N. Mitsuo, M. Nishiki, Y. Inoue, Y. Ooi, Chem. Pharm. Bull. 29, 1443 (1981)
- 29. S.E. Yoo, S.H. Lee, Synlett 419 (1990)
- 30. S. Gohain, D. Prajapati, J.S. Sandhu, Chem. Lett. 24, 725 (1995)
- 31. D. Setamdideh, B. Khezri, M. Mollapour, Oriental J. Org. Chem. 27, 991 (2011)
- 32. H.H. Seltzman, B.D. Berrang, Tetrahedron Lett. 34, 3083 (1993)
- 33. K. Hanaya, T. Muramatsu, H. Kudo, Y.L. Chow, J. Chem. Soc. Perkin Trans. 1, 2409 (1979)
- 34. A. Giannis, K. Sandhoff, Angew. Chem. Int. Ed. Eng. 28, 218 (1989)
- 35. A.A. Vlcek, A. Rusina, Proceed. Chem. Soc. 161 (1961)
- 36. K. Yanada, H. Yamaguchi, H. Meguri, S. Uchida, J. Chem. Soc. Chem. Commun. 1655 (1986)
- 37. P. Ren, T. Dong, S. Wu, Synth. Commun. 27, 1547 (1997)
- 38. I. Pogorelic, M. Filipan-Litvic, S. Merkas, G. Ljubic, I. Cepanec, M. Litvic, J. Mol. Catal. A: Chem. 274, 202 (2007)
- 39. A. Vizi-Orosz, L. Marko, Transition Met. Chem. 16, 215 (1991)
- 40. H.S. Wilkinson, G.J. Tanoury, S.A. Wald, C.H. Senanayake, Tetrahedron Lett. 42, 167 (2001)
- 41. J.W. Chen, C.Q. Qin, React. Polym. 16, 287 (1992)
- 42. N.M. Yoon, J. Choi, Synlett 135 (1993)

- 43. B. Zeynizadeh, K. Zahmatkesh, J. Chin. Chem. Soc. 50, 267 (2003)
- 44. B. Zeynizadeh, D. Setamdideh, Synth. Commun. 36, 2699 (2006)
- 45. B. Zeynizadeh, D. Setamdideh, J. Chin. Chem. Soc. 52, 1179 (2005)
- A.S. Demir, I.M. Akhmedov, O. Sesenoglu, Turk. J. Chem. 23, 123 (1999)
- 47. C. Denis, B. Laignel, D. Plusquellec, J.Y. Le Marouille, A. Botrel, Tetrahedron Lett. **37**, 53 (1996)
- D. Mitchell, C.W. Doecke, L.A. Hay, T.M. Koening, D.D. Wirth, Tetrahedron Lett. 36, 5335 (1995)
- R. Sharma, G.H. Voynov, T.V. Ovaska, V.E. Marquez, Synlett 839 (1995)
- 50. R. Ballini, G. Bosica, Synthesis 723 (1994)
- 51. R. Rai, D.B. Collum, Tetrahedron Lett. 35, 6221 (1994)
- K. Hattori, K. Takahashi, N. Sakai, Bull. Chem. Soc. Jpn 65, 2690 (1992)
- Y. Hu, M. Uno, A. Harada, S. Takahashi, Bull. Chem. Soc. Jpn 64, 1884 (1991)
- Y. Kawajiri, N. Matohashi, J. Chem. Soc. Chem. Commun. 1336 (1989)
- R. Fornasier, F. Reniero, P. Scrimin, U. Tonellato, J. Org. Chem. 50, 3209 (1985)
- 56. B. Zeynizadeh, M. Kouhkan, Bull. Korean Chem. Soc. **32**, 3448 (2011)
- 57. M. Kouhkan, B. Zeynizadeh, Bull. Korean Chem. Soc. **32**, 3323 (2011)
- M. Kouhkan, B. Zeynizadeh, Bull. Korean Chem. Soc. 31, 2961 (2010)
- B. Zeynizadeh, D. Setamdideh, F. Faraji, Bull. Korean Chem. Soc. 29, 76 (2008)

- H. Firouzabadi, B. Zeynizadeh, Iranian J. Sci. Tech. Trans. 19A, 103 (1995)
- 61. C.A. Brown, H.C. Brown, J. Am. Chem. Soc. 85, 1003 (1963)
- 62. C.A. Brown, J. Org. Chem. **35**, 1900 (1970)
- 63. J.F. Knifton, J. Org. Chem. **41**, 1200 (1976)
- 64. G.S. Samuelsen, V.L. Garik, G.B.L. Smith, J. Am. Chem. Soc. 72, 3872 (1950)
- 65. C.F.H. Allen, J. van Allan, Org. Synth. Coll. 3, 63 (1955)
- 66. P.M.G. Bavin, Org. Synth. Coll. 5, 30 (1973)
- D.J. Collins, A.D. Smith, B.H. Davis, Ind. Eng. Chem. Prod. Res. Dev. 21, 279 (1982)
- S.L. Karwa, R.A. Rajadhyaksha, Ind. Eng. Chem. Res. 27, 21 (1988)
- F. Zhao, S. Fujita, J. Sun, Y. Ikushima, M. Arai, Catal. Today 98, 523 (2004)
- 70. A. Corma, P. Serna, Science 313, 332 (2006)
- 71. M.O. Sydnes, M. Isobe, Tetrahedron Lett. 49, 1199 (2008)
- 72. P.M. Reis, B. Royo, Tetrahedron Lett. 50, 949 (2009)
- 73. J. Wang, Z. Yuan, R. Nie, Z. Hou, X. Zheng, Ind. Eng. Chem. Res. 49, 4664 (2010)
- 74. Spectral database for organic compounds (SDBS), http://sdbs. db.aist.go.jp/sdbs/cgi-bin/cre_index.cgi. Accessed Oct 2014
- 75. NIST chemistry webbook, http://webbook.nist.gov/chemistry. Accessed Oct 2014
- 76. Aldrich catalogue of fine chemicals, 2013–2014
- 77. A. Clerici, O. Porta, J. Org. Chem. 50, 76 (1985)
- 78. Alfa Easar, http://www.alfa.com, Accessed Oct 2014
- 79. R. Imwinkelried, D. Dieter Seebach, Org. Synth. Coll. 8, 495 (1993)