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Abstract A highly efficient protocol for the synthesis of
1,2,3,4-tetrahydropyridines in the presence of nano-sphere
silica sulfuric acid (NS-SSA) was used for good yields
by one-pot multicomponent reaction (MCRs). The rea-
gent nano-sphere silica sulfuric acid (NS-SSA) has several
advantages, such as easy workup, nontoxicity, convenience
and high yields of products.

Keywords Tetrahydropyridines - Nano-sphere silica
sulfuric acid - Multicomponent reaction
Introduction

One of the basic and essential heterocycles are tetrahy-
dropyridines that have used to synthesize pharmaceutical
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compounds [1-7]. They have high biological activities
associated with antiparasitic, antimicrobial, antiviral, anti-
malarial, anticancer, herbicidal and antihypertensive prop-
erties [8—25]. In addition, some of the derivatives of these
compounds are used in a drug administered for the cause of
permanent Parkinson’s disease [26-28].

In recent decades, the use of solid-supported catalysts
such as silica, alumina and titania has gained considerable
attention both in industrial and academia research due to
their unique properties, such as selectivity, efficiency and
straightforward workup [29-36]. Considering the above
points and along the line of our studies in design and appli-
cation of new heterogeneous catalysts in chemical transfor-
mations [37—44], we report the synthesis, characterization
and catalytic application of nano-sphere silica sulfuric acid
(NS-SSA) that can be easily prepared from commercially
available materials, for the synthesis of tetrahydropyridines
by the one-pot multi-component reactions. This method
shows high atom economy and high selectivity and is envi-
ronmentally friendly as it reduces the number of synthesis
steps [45, 46]. (Scheme 1).

Results and discussion

Initially, the nano-sphere silica was prepared according to
the reported procedures.*> Then, the catalyst was synthe-
sized by the reaction of nano-sphere silica with chlorosul-
fonic acid in excellent yield (Scheme 2).

Nano-sphere silica sulfuric acid was characterized by
transmission electron microscopy (TEM), FT-IR, XRD,
EDS, N, adsorption—desorption techniques and thermal
analysis [43].

To optimize the reaction conditions for the synthe-
sis of tetrahydropyridine compounds, the reaction of
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NS-SSA (0.05 gr)

CH,CN, 65°C

Scheme 1 Synthesis of tetrahydropyridines using nano-sphere silica
sulfuric acid (NS-SSA)
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Scheme 2 Synthesis of nano-sphere silica sulfuric acid

Table 1 Synthesis of compound 2c using different catalysts

Entry Catalyst Yeild (%)
1 Citric acid 55

2 SSA 57

3 FeCl, 65

4 [Msim]Cl 63

5 NS-SSA 86

6 I, 50

Table 2 Optimization of reaction conditions

Entry Amount of Catalyst (g) Temp. (°C) Time (h) Yield (%)
1 - 65 6 -

2 0.005 65 3 46

3 0.01 65 4 62

4 0.03 65 4 68

5 0.05 65 3:20 86

4-bromoaniline, benzaldehyde and methyl acetoacetate
was selected as a model reaction to provide compound 2¢
(Table 4, entry 3).

At first, the reaction was examined in the presence of
20 mol % of different catalysts during 2 h. Higher yield of
product was obtained when nano-sphere silica sulfuric acid
was utilized as catalyst (Table 1, entry 5). The results are
summarized in Table 1.

In the next step, the model reaction was tested using
different amounts of NS-SSA at the same temperature

@ Springer

Table 3 The effect of various solvents on the synthesis of tetrahydro-
pyridines

Entry Solvent Time (h) Yield (%)
1 CH;CN 2 86

2 EtOH 4 46

3 MeOH 1 48

4 (CH,;),CO 24

5 Ethyl acetate 18 6

6 CH,Cl, 12 44

7 H,0 - 0

8 THF - 0

(Table 2). As it can be seen in Table 2, the best amount of
the catalyst was 0.05 g. Moreover, the product yield was
not changed by increasing the amount of the catalyst. The
best results were obtained when the reaction was per-
formed at 65 °C. Increasing the reaction temperature did
not improve the results (Table 2).

In another study, we studied the synthesis of tetrahydro-
pyridines in a variety of solvents. The results showed that
acetonitrile is the best solvent in terms of time and product
yield (Table 3).

In the next part, the generality and efficiency of nano-
sphere silica sulfuric acid in the synthesis of tetrahydro-
pyridines were explored under the optimized reaction
conditions by the reaction of various anilines and arylalde-
hydes with a broad range of electron-releasing substituents,
electron-withdrawing substituents and halogens on their
aromatic rings, and different p-ketoester in the acetonitrile.
As it can be seen in Table 4, all benzaldehyde derivatives,
anilines and different B-ketoester afforded the desired tet-
rahydropyridines in high to excellent yields. All the target
compounds were completely characterized by IR, 'HNMR,
BCNMR.

In summary, we have developed a method for the synthe-
sis of nano-sphere silica sulfuric acid (NS-SSA) as an effi-
cient and heterogeneous catalyst via the reaction of nano-
sphere silica with chlorosulfonic acid. NS-SSA showed
powerful activity in the one-pot multicomponent reaction
leading to tetrahydropyridines in good to high yield.

Experimental section
General procedure for the synthesis of tetrahydropyridines

B-ketoester (1.0 mmol), aniline (2 mmol) and 0.05 g nano-
sphere silica sulfuric acid (NS-SSA) in 10 ml CH;CN was
stirred at 65 °C for 20 min, aldehyde (2.0 mmol) was then
added and stirring was continued until the formation of a
solid. Then the reaction mixture was filtered and the solid
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Table 4 The synthesis of tetrahydropyridines using nano-sphere silica sulfuric acid (NS-SSA)

Product Time Yield M.P. (°C
Entry R Ry R, Product number (h) (%) (Foun((i)"e)”
1 H 4-Cl CH; 2a 4 88 (217-220)"!
Cl
oo
. [4]
2 4-CH; 4-C1 CH; L_ocn, 2b 3:30 80 (211-213)
: NH O
Cl
Br
3 H 4-Br CH, g N g 2¢ 2 86 (245-248)"
_~.OCH,
: NH O
Br
Br
O QO
4  4-CH; 4-Br CH, . OCH, 2d 3:30 80 (226-229)"
/©/NH o
Br
Br
Br. <> Br
O
. 91
5 4-Br 4-Br CH; L _ocn, 2e 4:30 74 (226-229)
/@/NH o
Br
Br
F <> F
O3
_ [18]
6 4-F 4-Br CH;3 . ome 2f 4 75 (239-241)
/@/NH o
Br
Br
pe i L,
191
7  3-Br 4-Br CH; . ome 2g 6 75 (223-226)
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Table 4 continued

8 H 4-OCH; CH;, 2h 3 78 (292-294)"!

cl
H,C <> CH,
.3

9 4-CH, 4-Cl CH,CH; A ~OCH,CH, 2i 1 92 (228-231)"

&
\Z@
O

OCH,CH.
10 4-F H CH,CH; s 2j 3 78 (215-218)"**

NH O

Y

Br
N

H,;C <> O CH;
11 4-CH; 4-Br  CH,CH, m o 2K 4:30 76 (239-241)"
2 3

(o]

Br

|
i g

2 H 4Br  CHCH, _K_ocH,cH, 21 5:30 89 @27-230)™
N

=
NH
r
: H O
Br
CH,4

13 H 4-CH;  CH,CH, 2m 6 75 (223-226)"*"

-
\ZO
O

OCH,CH,

so obtained was washed with acetonitrile. Since the solid 3086, 3063, 2949, 2868, 1651, 1600, 1504, 626 cm™'.
does not solve in chloroform, it was separated from nano- 'HNMR (600 MHz; CDCl;) = 2.709-2.665 (1H, m,
sphere silica sulfuric acid (NS-SSA) by the addition of J = 18 Hz), 2.87-2.82 (1H, m, J = 3 Hz), 3.937 (3H,
CHCI,;. Finally, a colorless powder resulted with filtering of  s), 5.1-5.09 (1H, d, J = 6 MHz), 6.176-6.154 (2H, d,
solution and evaporation. J =12 Hz), 6.434-6.412 2H, t, j = 12 Hz), 10.185 (S, 1H).

Methyl 1-(4-chlorophenyl)-4-((4-chlorophenyl)amino)- BCNMR (150 MHz; CDCl;) = 33.4, 51.2, 55.27, 58.3,
2,6-diphenyl-1,2,5,6-tetrahydropyridine-3-carboxylate 98.4, 114, 121.1, 126.2, 127, 128.7, 129, 131.4, 136, 142,
(2a): White powder, mp 217-220 °C; IR(KBr): v = 3325, 143.2, 145.4, 168 .4.
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Methyl 1-(4-chlorophenyl)-4-((4-chlorophenyl)amino)-
2,6-di-p-tolyl-1,2,5,6-tetrahydropyridine-3-carboxylate
(2b): White powder, mp 211-213 °C; IR(KBr): v = 3248,
3087, 3023, 2950, 2857, 1651, 1605, 1585 cm™'. "HNMR
(600 MHz; CDCl,) = 2.34-2.31(6H, d, j = 18 Hz), 2.69-2.6
(1H, m,j = 18 Hz), 3.92 (3H, s), 5.06-5.05 (1H, d, / = 6 Hz),
6.19-6.17 (2H, d, j = 12 Hz), 6.43-6.41 (2H, d, j = 12 Hz),
10.18 (1H, s). *CNMR (600 MHz; CDCl,) = 20.99, 3347,
51.1, 55, 58, 98.1, 113, 121, 126.2, 127, 128, 131, 136, 137,
139, 140.1, 168.4.

Methyl 1-(4-bromophenyl)-4-((4-bromophenyl)amino)-
2,6-diphenyl-1,2,5,6-tetrahydropyridine-3-carboxylate
(2c): White powder, mp 245-248 °C; IR(KBr): v = 3256,
3084, 2948, 1651, 1599, 1578 cm™'. 'THNMR (600 MHz;
CDCl,) = 2.72-2.67 (1H, m, j = 3 Hz), 2.87-2.82 (1H, m,
j =3 Hz),3.93 (3H, s), 5.1-5.09 (1H, d, j = 6 Hz), 6.11-
6.09 (2H, d, j = 12 Hz), 6.39-6.37 (3H, d, j = 12 Hz),
10.17 (1H, s). >*CNMR (600 MHz; CDCl;) = 33.4, 51.2,
55.2, 58.2, 98.5, 108.4, 114.5, 119, 126.2, 127, 128.8,
131.5, 132, 136.8, 142.1, 143, 145.8, 168.4.

Methyl 1-(4-bromophenyl)-4-((4-bromophenyl)
amino)-2,6-di-p-tolyl-1,2,5,6-tetrahydropyridine-3-car-
boxylate (2d): White powder, mp 226-229 °C; IR(KBr):
v = 3240, 3091, 2951, 2861, 1650, 1603, 1586 cm™'.
'"HNMR (600 MHz; CDCl;)) = 2.33-2.31 (6H, d,
j = 12 Hz), 2.71-2.67 (1H, m, j = 24 Hz), 3.92 (3H, s),
5.06-5.04 (1H, d, j = 6 Hz), 6.13-6.11 (2H, d, j = 12 Hz),
6.39-6.36 (2H, d, j = 18 Hz), 10.17 (1H, s). 3*CNMR
(600 MHz; CDCl,) = 21, 33.4, 51.1, 55, 57.9, 98.6, 108.2,
114.5, 119, 126.2, 127.2, 129, 131, 136.1, 137, 139, 140,
145.9, 155.4, 168.4.

Methyl  1,2,6-tris(4-bromophenyl)-4-((4-bromophenyl)
amino)-1,2,5,6-tetrahydropyridine-3-carboxylate (2e):
White powder, mp 226-229 °C; IR(KBr): v = 3233,
3200, 2989, 1714, 1655, 1582 cm™'. "THNMR (600 MHz;
CDCly) = 2.1 (5H, s), 2.7-2.65 (1H, m, j = 3 Hz), 2.81-
2.79 (1H, m, j = 18 Hz), 3.92 (3H, s), 5.03-5.02 (1H,
d, j = 6 Hz), 6.30-6.26 (5H, m, j = 24 Hz), 7.13-7.11
(4H, m, j = 12 Hz), 10.18 (1H, s). >CNMR (600 MHz;
CDCl;) = 30.93, 33.4, 51.3, 54.9, 57.4, 98, 109, 114.5,
117.6, 119, 120.5, 121.3, 128, 131.8, 132, 136.5, 140.7,
142, 145, 155.1, 168.1.

Methyl 1-(4-bromophenyl)-4-((4-bromophenyl)amino )-
2,6-bis(4-fluorophenyl)-1,2,5,6-tetrahydropyridine-3-car-
boxylate (2f): white powder, mp 239-241 °C; IR(KBr):
v = 3233, 3200, 2989, 1714, 1655, 1582 cm™'. 'HNMR
(600 MHz; CDCl;) = 2.68 (2H, s), 2.82-2.64 (1H, m,
j = 18 Hz), 3.82 (3H, s), 5.03-52.02 (3H, d, J/ = 6 Hz),
6.25 (1H, S), 6.32-6.30 (4H, m, j = 12 Hz), 10.18 (1H,s).
BCNMR (600 MHz; CDCly) = 30.9, 33.5, 51.3, 54.9, 57.4,
97.9, 114, 120, 121.2, 126.9, 128, 129, 131.5, 136, 140.8,
142.9, 144.1, 155, 168.16.

methyl 2,6-bis(3-bromophenyl)-1-(4-bromophenyl)-
4-((4-bromophenyl)amino)-1,2,5,6-tetrahydropyridine-
3-carboxylate (2 g): white powder, mp 223-226 °C;
IR(KBr): v = 3233, 3200, 2989, 1714, 1655, 1582 cm .
'THNMR (600 MHz; CDCl;) = 1.56 (4H, s), 2.71-2.66 (1H,
m, j = 3 Hz), 2.83-2.78 (1H, m, j = 3 Hz), 3.93 (3H, s),
5.05-5.04 (1H, d, j = 6 Hz), 6.31-6.28 (2H, d, j = 18 Hz),
7.16-7.13 (5H, m, j = 18 Hz), 10.17 (1H, s). *CNMR
(600 MHz; CDCl;) = 33.3, 51.3, 55, 57.7, 97.6, 109.2,
114.6, 119.8, 122.7, 125, 127.7, 129.2, 130, 131, 132,
136.5, 144.2, 145.2, 155.2, 168.1.

Methyl 1-(4-methoxyphenyl)-4-((4-methoxyphenyl)amino)-
2,6-diphenyl-1,2,5,6-tetrahydropyridine-3-carboxylate
(2 h): white powder, mp 292-294 °C; IR(KBr): v = 3233,
3200, 2989, 1714, 1655, 1582 cm™'. 'THNMR (400 MHz;
CDCI13) = 1.99 (3H, s), 2.14 (3H, s), 2.68-2.65 (1H, m,
j = 12 Hz), 2.68-2.65 (3H, d, J = 12 Hz), 3.78 (3H, S),
5.25-5.24 (1H, d, J = 4 Hz), 6.18-6.15 (2H, d, j = 12 Hz),
6.25-6.21(3H, t, J = 12 Hz), 6.74-6.72 (2H, d, J = § Hz),
6.89-6.87 (2H, d, J = 8 Hz), 7.09-7.07(3H, d, J = 8 Hz),
7.22-721(7H, d, J = 4 Hz), 10.01(1H,s). *CNMR
(600 MHz; CDCl;) = 19.6, 20.33, 33.2, 50.9, 54, 56, 97,
112, 124, 124.9, 126, 126.2, 126.26, 128, 128.3, 129,
129.4, 134, 143, 144, 144.2, 155, 167.

Ethyl 1-(4-chlorophenyl)-4-((4-chlorophenyl)amino)-2,6-
di-p-tolyl-1,2,5,6-tetrahydropyridine-3-carboxylate ~ (2i):
white powder, mp 228-231 °C; IR(KBr): v = 3230, 3173,
2979, 2864, 1646, 1604, 1504 cm™~'. 'THNMR (600 MHz;
CDCl,) = 1.47-1.43 (3H, t, j = 24 Hz), 2.7-2.67 (1H, m,
j = 18 Hz), 2.86-2.81 (1H, m, J = 3 Hz), 2.33-2.31 (6H,
d, j = 12 Hz), 4.34-4.29 (1H, m, j = 3 Hz), 5.06-5.05
(1H, d, j = 6 Hz), 6.43-6.4 (5H, m, j = 18 Hz). ?CNMR
(600 MHz; CDCly) = 14.7, 20.9, 21.1, 33.4, 55.5, 59.8,
98.8, 114, 121, 126, 128.9, 129, 131, 136, 137, 139, 140.2,
145, 155.3, 168.1.

Ethyl 2,6-bis(4-fluorophenyl)-1-phenyl-4-(phenylamino)-
1,2,5,6-tetrahydropyridine-3-carboxylate (2j): white pow-
der, mp 215-218 °C; IR(KBr): v = 3242, 3090, 3061, 3027,
2909, 1647, 1603, 1585, 1451 cm™'. 'THNMR (600 MHz;
CDCl;) = 1.485-1.45 (3H, t, j = 18 Hz), 2.71-2.67 (1H,
m, j = 18 Hz), 2.87-2.82 (1H, m, J = 3 Hz), 4.49-4.44
(1H, m, J = 3 Hz), 5.1-5.09 (1H, d, j = 6 Hz), 6.43-6.38
(1H, t, j = 3 Hz), 10.23 (1H, s). *CNMR (600 MHz;
CDClLy) = 14.7, 3348, 51.14, 55.07, 58.01, 98.58, 113,
121, 126, 127, 128, 129, 131, 136.1, 137, 139, 140, 145,
155, 168.4.

Ethyl 1-(4-bromophenyl)-4-((4-bromophenyl)amino)-2,6-
di-p-tolyl-1,2,5,6-tetrahydropyridine-3-carboxylate (2 k):
white powder, mp 239-241 °C; IR(KBr): v = 3234, 2922,
1647, 1603 cm™'. "HNMR (600 MHz; CDCl;) = 1.47-1.43
(3H, d, j = 3 Hz), 2.33-2.31 (6H, d, j = 12 Hz), 2.71-2.67
(1H, t, j = 24 Hz), 2.85-2.83 (1H, m, j = 3 Hz), 4.34-4.29
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(1H, m, j = 3 Hz), 5.06-5.05 (1H, d, j = 6 Hz), 6.14-6.12
(2H, d, j = 12 Hz), 6.39-6.37 (3H, m, j = 12 Hz), 10.22
(1H, s). *CNMR (600 MHz; CDCl;) = 14.7, 20.9, 21.1,
33.4, 55, 58, 59.9, 98.9, 108.2, 114.5, 118.9, 126, 127.2,
129, 131.5, 136.1, 137, 139, 140, 145, 155, 168.1.

Ethyl 1-(4-bromophenyl)-4-((4-bromophenyl)amino)-2,6-
diphenyl-1,2,5,6-tetrahydropyridine-3-carboxylate (2 1):
white powder, mp 227-230 °C; IR(KBr): v = 3256,
3084, 2948, 1651, 1599, 1578 cm~'. 'HNMR (600 MHz;
CDCl;) = 2.686-2.681 (1H, d, j = 0.3 Hz), 2.84-2.82 (1H,
d,j = 12 Hz), 4.33-4.31(1H, m, j = 12 Hz), 5.1-5.09 (1H,
d, j = 12 Hz), 7.29-7.27 (7H, m, j = 12 Hz), 10.2 (1H,
s). 3CNMR (600 MHz; CDCl,) = 14.7, 33.4, 55.2, 58.2,
59.9, 98.8, 108.4, 114.5, 119.1, 126.4, 127.2, 128.3, 131.6,
136.9, 142.1, 143.1, 145.5, 155.2, 168.1.

Ethyl 2,6-diphenyl-1-(p-tolyl)-4-(p-tolylamino)-1,2,5,6-
tetrahydropyridine-3-carboxylate (2 m): white powder, mp
223-226 °C; IR(KBr): v = 3239, 3024, 2919, 2854, 1617,
1649, 15942 cm™'. '"HNMR (600 MHz; CDCl;) = 1.44
(3H, s), 2.25 (3H, S), 2.14 (3H, S), 2.74-2.7 (1H, m,
J =24 Hz), 4.32-4.31 (1H, m, j = 6 Hz), 4.44-4.43 (1H,
m, J = 6 Hz), 6.16-6.14 (2H, d, j = 12 Hz), 6.88-6.85
(4H, m, j = 18 Hz), 10.19 (1H, s). >*CNMR (600 MHz;
CDCl,) = 14.8, 20.1, 33.5, 55.1, 58.2, 59.5, 97.7, 112, 125,
126.1, 127, 128, 129.3, 135, 143, 144, 156.4, 168.2.
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