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compounds [1–7]. They have high biological activities 
associated with antiparasitic, antimicrobial, antiviral, anti-
malarial, anticancer, herbicidal and antihypertensive prop-
erties [8–25]. In addition, some of the derivatives of these 
compounds are used in a drug administered for the cause of 
permanent  Parkinson’s disease [26–28]..

In recent decades, the use of solid-supported catalysts 
such as silica, alumina and titania has gained considerable 
attention both in industrial and academia research due to 
their unique properties, such as selectivity, efficiency and 
straightforward workup [29–36]. Considering the above 
points and along the line of our studies in design and appli-
cation of new heterogeneous catalysts in chemical transfor-
mations [37–44], we report the synthesis, characterization 
and catalytic application of nano-sphere silica sulfuric acid 
(NS-SSA) that can be easily prepared from commercially 
available materials, for the synthesis of tetrahydropyridines 
by the one-pot multi-component reactions. This method 
shows high atom economy and high selectivity and is envi-
ronmentally friendly as it reduces the number of synthesis 
steps [45, 46]. (Scheme 1).

Results and discussion

Initially, the nano-sphere silica was prepared according to 
the reported procedures.43 Then, the catalyst was synthe-
sized by the reaction of nano-sphere silica with chlorosul-
fonic acid in excellent yield (Scheme 2).

Nano-sphere silica sulfuric acid was characterized by 
transmission electron microscopy (TEM), FT-IR, XRD, 
EDS, N2 adsorption–desorption techniques and thermal 
analysis [43].

To optimize the reaction conditions for the synthe-
sis of tetrahydropyridine compounds, the reaction of 
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Introduction

One of the basic and essential heterocycles are tetrahy-
dropyridines that have used to synthesize pharmaceutical 
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4-bromoaniline, benzaldehyde and methyl acetoacetate 
was selected as a model reaction to provide compound 2c 
(Table 4, entry 3).

At first, the reaction was examined in the presence of 
20 mol % of different catalysts during 2 h. Higher yield of 
product was obtained when nano-sphere silica sulfuric acid 
was utilized as catalyst (Table 1, entry 5). The results are 
summarized in Table 1.

In the next step, the model reaction was tested using 
different amounts of NS-SSA at the same temperature 

(Table 2). As it can be seen in Table 2, the best amount of 
the catalyst was 0.05 g. Moreover, the product yield was 
not changed by increasing the amount of the catalyst. The 
best results were obtained when the reaction was per-
formed at 65 °C. Increasing the reaction temperature did 
not improve the results (Table 2).

In another study, we studied the synthesis of tetrahydro-
pyridines in a variety of solvents. The results showed that 
acetonitrile is the best solvent in terms of time and product 
yield (Table 3).

In the next part, the generality and efficiency of nano-
sphere silica sulfuric acid in the synthesis of tetrahydro-
pyridines were explored under the optimized reaction 
conditions by the reaction of various anilines and arylalde-
hydes with a broad range of electron-releasing substituents, 
electron-withdrawing substituents and halogens on their 
aromatic rings, and different β-ketoester in the acetonitrile. 
As it can be seen in Table 4, all benzaldehyde derivatives, 
anilines and different β-ketoester afforded the desired tet-
rahydropyridines in high to excellent yields. All the target 
compounds were completely characterized by IR, 1HNMR, 
13CNMR.

In summary, we have developed a method for the synthe-
sis of nano-sphere silica sulfuric acid (NS-SSA) as an effi-
cient and heterogeneous catalyst via the reaction of nano-
sphere silica with chlorosulfonic acid. NS-SSA showed 
powerful activity in the one-pot multicomponent reaction 
leading to tetrahydropyridines in good to high yield.

Experimental section

General procedure for the synthesis of tetrahydropyridines

β-ketoester (1.0 mmol), aniline (2 mmol) and 0.05 g nano-
sphere silica sulfuric acid (NS-SSA) in 10 ml CH3CN was 
stirred at 65 °C for 20 min, aldehyde (2.0 mmol) was then 
added and stirring was continued until the formation of a 
solid. Then the reaction mixture was filtered and the solid 
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Scheme 2  Synthesis of nano-sphere silica sulfuric acid

Table 1  Synthesis of compound 2c using different catalysts

Entry Catalyst Yeild (%)

1 Citric acid 55

2 SSA 57

3 FeCl3 65

4 [Msim]Cl 63

5 NS-SSA 86

6 I2 50

Table 2  Optimization of reaction conditions

Entry Amount of Catalyst (g) Temp. (°C) Time (h) Yield (%)

1 – 65 6 –

2 0.005 65 3 46

3 0.01 65 4 62

4 0.03 65 4 68

5 0.05 65 3:20 86

Table 3  The effect of various solvents on the synthesis of tetrahydro-
pyridines

Entry Solvent Time (h) Yield (%)

1 CH3CN 2 86

2 EtOH 4 46

3 MeOH 1 48

4 (CH3)2CO 24 0

5 Ethyl acetate 18 6

6 CH2Cl2 12 44

7 H2O – 0

8 THF – 0
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Table 4  The synthesis of tetrahydropyridines using nano-sphere silica sulfuric acid (NS-SSA)
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so obtained was washed with acetonitrile. Since the solid 
does not solve in chloroform, it was separated from nano-
sphere silica sulfuric acid (NS-SSA) by the addition of 
CHCl3. Finally, a colorless powder resulted with filtering of 
solution and evaporation.

Methyl 1-(4-chlorophenyl)-4-((4-chlorophenyl)amino)-
2,6-diphenyl-1,2,5,6-tetrahydropyridine-3-carboxylate 
(2a): White powder, mp 217–220 °C; IR(KBr): υ = 3325, 

3086, 3063, 2949, 2868, 1651, 1600, 1504, 626 cm−1. 
1HNMR (600 MHz; CDCl3) = 2.709–2.665 (1H, m, 
J = 18 Hz), 2.87–2.82 (1H, m, J = 3 Hz), 3.937 (3H, 
s), 5.1–5.09 (1H, d, J = 6 MHz), 6.176–6.154 (2H, d, 
J = 12 Hz), 6.434-6.412 (2H, t, j = 12 Hz), 10.185 (S, 1H). 
13CNMR (150 MHz; CDCl3) = 33.4, 51.2, 55.27, 58.3, 
98.4, 114, 121.1, 126.2, 127, 128.7, 129, 131.4, 136, 142, 
143.2, 145.4, 168.4.

Table 4  continued
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Methyl 1-(4-chlorophenyl)-4-((4-chlorophenyl)amino)- 
2,6-di-p-tolyl-1,2,5,6-tetrahydropyridine-3-carboxylate 
(2b): White powder, mp 211–213 °C; IR(KBr): υ = 3248, 
3087, 3023, 2950, 2857, 1651, 1605, 1585 cm−1. 1HNMR 
(600 MHz; CDCl3) = 2.34–2.31(6H, d, j = 18 Hz), 2.69–2.6 
(1H, m, j = 18 Hz), 3.92 (3H, s), 5.06–5.05 (1H, d, J = 6 Hz), 
6.19–6.17 (2H, d, j = 12 Hz), 6.43–6.41 (2H, d, j = 12 Hz), 
10.18 (1H, s). 13CNMR (600 MHz; CDCl3) = 20.99, 33.47, 
51.1, 55, 58, 98.1, 113, 121, 126.2, 127, 128, 131, 136, 137, 
139, 140.1, 168.4.

Methyl 1-(4-bromophenyl)-4-((4-bromophenyl)amino)-
2,6-diphenyl-1,2,5,6-tetrahydropyridine-3-carboxylate 
(2c): White powder, mp 245-248 °C; IR(KBr): υ = 3256, 
3084, 2948, 1651, 1599, 1578 cm−1. 1HNMR (600 MHz; 
CDCl3) = 2.72–2.67 (1H, m, j = 3 Hz), 2.87–2.82 (1H, m, 
j = 3 Hz), 3.93 (3H, s), 5.1–5.09 (1H, d, j = 6 Hz), 6.11–
6.09 (2H, d, j = 12 Hz), 6.39–6.37 (3H, d, j = 12 Hz), 
10.17 (1H, s). 13CNMR (600 MHz; CDCl3) = 33.4, 51.2, 
55.2, 58.2, 98.5, 108.4, 114.5, 119, 126.2, 127, 128.8, 
131.5, 132, 136.8, 142.1, 143, 145.8, 168.4.

Methyl 1-(4-bromophenyl)-4-((4-bromophenyl)
amino)-2,6-di-p-tolyl-1,2,5,6-tetrahydropyridine-3-car-
boxylate (2d): White powder, mp 226-229 °C; IR(KBr): 
υ = 3240, 3091, 2951, 2861, 1650, 1603, 1586 cm−1. 
1HNMR (600 MHz; CDCl3) = 2.33–2.31 (6H, d, 
j = 12 Hz), 2.71–2.67 (1H, m, j = 24 Hz), 3.92 (3H, s), 
5.06–5.04 (1H, d, j = 6 Hz), 6.13–6.11 (2H, d, j = 12 Hz), 
6.39–6.36 (2H, d, j = 18 Hz), 10.17 (1H, s). 13CNMR 
(600 MHz; CDCl3) = 21, 33.4, 51.1, 55, 57.9, 98.6, 108.2, 
114.5, 119, 126.2, 127.2, 129, 131, 136.1, 137, 139, 140, 
145.9, 155.4, 168.4.

Methyl 1,2,6-tris(4-bromophenyl)-4-((4-bromophenyl)
amino)-1,2,5,6-tetrahydropyridine-3-carboxylate (2e): 
White powder, mp 226–229 °C; IR(KBr): υ = 3233, 
3200, 2989, 1714, 1655, 1582 cm−1. 1HNMR (600 MHz; 
CDCl3) = 2.1 (5H, s), 2.7–2.65 (1H, m, j = 3 Hz), 2.81–
2.79 (1H, m, j = 18 Hz), 3.92 (3H, s), 5.03–5.02 (1H, 
d, j = 6 Hz), 6.30–6.26 (5H, m, j = 24 Hz), 7.13–7.11 
(4H, m, j = 12 Hz), 10.18 (1H, s). 13CNMR (600 MHz; 
CDCl3) = 30.93, 33.4, 51.3, 54.9, 57.4, 98, 109, 114.5, 
117.6, 119, 120.5, 121.3, 128, 131.8, 132, 136.5, 140.7, 
142, 145, 155.1, 168.1.

Methyl 1-(4-bromophenyl)-4-((4-bromophenyl)amino)-
2,6-bis(4-fluorophenyl)-1,2,5,6-tetrahydropyridine-3-car-
boxylate (2f): white powder, mp 239-241 °C; IR(KBr): 
υ = 3233, 3200, 2989, 1714, 1655, 1582 cm−1. 1HNMR 
(600 MHz; CDCl3) = 2.68 (2H, s), 2.82–2.64 (1H, m, 
j = 18 Hz), 3.82 (3H, s), 5.03–52.02 (3H, d, J = 6 Hz), 
6.25 (1H, S), 6.32-6.30 (4H, m, j = 12 Hz), 10.18 (1H,s). 
13CNMR (600 MHz; CDCl3) = 30.9, 33.5, 51.3, 54.9, 57.4, 
97.9, 114, 120, 121.2, 126.9, 128, 129, 131.5, 136, 140.8, 
142.9, 144.1, 155, 168.16.

methyl 2,6-bis(3-bromophenyl)-1-(4-bromophenyl)-
4-((4-bromophenyl)amino)-1,2,5,6-tetrahydropyridine-
3-carboxylate (2 g): white powder, mp 223–226 °C; 
IR(KBr): υ = 3233, 3200, 2989, 1714, 1655, 1582 cm−1. 
1HNMR (600 MHz; CDCl3) = 1.56 (4H, s), 2.71-2.66 (1H, 
m, j = 3 Hz), 2.83–2.78 (1H, m, j = 3 Hz), 3.93 (3H, s), 
5.05–5.04 (1H, d, j = 6 Hz), 6.31–6.28 (2H, d, j = 18 Hz), 
7.16–7.13 (5H, m, j = 18 Hz), 10.17 (1H, s). 13CNMR 
(600 MHz; CDCl3) = 33.3, 51.3, 55, 57.7, 97.6, 109.2, 
114.6, 119.8, 122.7, 125, 127.7, 129.2, 130, 131, 132, 
136.5, 144.2, 145.2, 155.2, 168.1.

Methyl 1-(4-methoxyphenyl)-4-((4-methoxyphenyl)amino)- 
2,6-diphenyl-1,2,5,6-tetrahydropyridine-3-carboxylate 
(2 h): white powder, mp 292-294 °C; IR(KBr): υ = 3233, 
3200, 2989, 1714, 1655, 1582 cm−1. 1HNMR (400 MHz; 
CDCl3) = 1.99 (3H, s), 2.14 (3H, s), 2.68–2.65 (1H, m, 
j = 12 Hz), 2.68–2.65 (3H, d, J = 12 Hz), 3.78 (3H, S), 
5.25–5.24 (1H, d, J = 4 Hz), 6.18–6.15 (2H, d, j = 12 Hz), 
6.25–6.21(3H, t, J = 12 Hz), 6.74–6.72 (2H, d, J = 8 Hz), 
6.89–6.87 (2H, d, J = 8 Hz), 7.09–7.07(3H, d, J = 8 Hz), 
7.22–7.21(7H, d, J = 4 Hz), 10.01(1H,s). 13CNMR 
(600 MHz; CDCl3) = 19.6, 20.33, 33.2, 50.9, 54, 56, 97, 
112, 124, 124.9, 126, 126.2, 126.26, 128, 128.3, 129, 
129.4, 134, 143, 144, 144.2, 155, 167.

Ethyl 1-(4-chlorophenyl)-4-((4-chlorophenyl)amino)-2,6- 
di-p-tolyl-1,2,5,6-tetrahydropyridine-3-carboxylate (2i): 
white powder, mp 228-231 °C; IR(KBr): υ = 3230, 3173, 
2979, 2864, 1646, 1604, 1504 cm−1. 1HNMR (600 MHz; 
CDCl3) = 1.47–1.43 (3H, t, j = 24 Hz), 2.7–2.67 (1H, m, 
j = 18 Hz), 2.86–2.81 (1H, m, J = 3 Hz), 2.33–2.31 (6H, 
d, j = 12 Hz), 4.34–4.29 (1H, m, j = 3 Hz), 5.06–5.05 
(1H, d, j = 6 Hz), 6.43–6.4 (5H, m, j = 18 Hz). 13CNMR 
(600 MHz; CDCl3) = 14.7, 20.9, 21.1, 33.4, 55.5, 59.8, 
98.8, 114, 121, 126, 128.9, 129, 131, 136, 137, 139, 140.2, 
145, 155.3, 168.1.

Ethyl 2,6-bis(4-fluorophenyl)-1-phenyl-4-(phenylamino)- 
1,2,5,6-tetrahydropyridine-3-carboxylate (2j): white pow-
der, mp 215-218 °C; IR(KBr): υ = 3242, 3090, 3061, 3027, 
2909, 1647, 1603, 1585, 1451 cm−1. 1HNMR (600 MHz; 
CDCl3) = 1.485–1.45 (3H, t, j = 18 Hz), 2.71–2.67 (1H, 
m, j = 18 Hz), 2.87–2.82 (1H, m, J = 3 Hz), 4.49–4.44 
(1H, m, J = 3 Hz), 5.1–5.09 (1H, d, j = 6 Hz), 6.43–6.38 
(1H, t, j = 3 Hz), 10.23 (1H, s). 13CNMR (600 MHz; 
CDCl3) = 14.7, 33.48, 51.14, 55.07, 58.01, 98.58, 113, 
121, 126, 127, 128, 129, 131, 136.1, 137, 139, 140, 145, 
155, 168.4.

Ethyl 1-(4-bromophenyl)-4-((4-bromophenyl)amino)-2,6- 
di-p-tolyl-1,2,5,6-tetrahydropyridine-3-carboxylate (2 k): 
white powder, mp 239–241 °C; IR(KBr): υ = 3234, 2922, 
1647, 1603 cm−1. 1HNMR (600 MHz; CDCl3) = 1.47–1.43 
(3H, d, j = 3 Hz), 2.33–2.31 (6H, d, j = 12 Hz), 2.71–2.67 
(1H, t, j = 24 Hz), 2.85–2.83 (1H, m, j = 3 Hz), 4.34–4.29 
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(1H, m, j = 3 Hz), 5.06–5.05 (1H, d, j = 6 Hz), 6.14–6.12 
(2H, d, j = 12 Hz), 6.39–6.37 (3H, m, j = 12 Hz), 10.22 
(1H, s). 13CNMR (600 MHz; CDCl3) = 14.7, 20.9, 21.1, 
33.4, 55, 58, 59.9, 98.9, 108.2, 114.5, 118.9, 126, 127.2, 
129, 131.5, 136.1, 137, 139, 140, 145, 155, 168.1.

Ethyl 1-(4-bromophenyl)-4-((4-bromophenyl)amino)-2,6- 
diphenyl-1,2,5,6-tetrahydropyridine-3-carboxylate (2 l): 
white powder, mp 227-230 °C; IR(KBr): υ = 3256, 
3084, 2948, 1651, 1599, 1578 cm−1. 1HNMR (600 MHz; 
CDCl3) = 2.686–2.681 (1H, d, j = 0.3 Hz), 2.84–2.82 (1H, 
d, j = 12 Hz), 4.33–4.31(1H, m, j = 12 Hz), 5.1–5.09 (1H, 
d, j = 12 Hz), 7.29–7.27 (7H, m, j = 12 Hz), 10.2 (1H, 
s). 13CNMR (600 MHz; CDCl3) = 14.7, 33.4, 55.2, 58.2, 
59.9, 98.8, 108.4, 114.5, 119.1, 126.4, 127.2, 128.3, 131.6, 
136.9, 142.1, 143.1, 145.5, 155.2, 168.1.

Ethyl 2,6-diphenyl-1-(p-tolyl)-4-(p-tolylamino)-1,2,5,6- 
tetrahydropyridine-3-carboxylate (2 m): white powder, mp 
223-226 °C; IR(KBr): υ = 3239, 3024, 2919, 2854, 1617, 
1649, 15942 cm−1. 1HNMR (600 MHz; CDCl3) = 1.44 
(3H, s), 2.25 (3H, S), 2.14 (3H, S), 2.74–2.7 (1H, m, 
J = 24 Hz), 4.32–4.31 (1H, m, j = 6 Hz), 4.44–4.43 (1H, 
m, J = 6 Hz), 6.16–6.14 (2H, d, j = 12 Hz), 6.88–6.85 
(4H, m, j = 18 Hz), 10.19 (1H, s). 13CNMR (600 MHz; 
CDCl3) = 14.8, 20.1, 33.5, 55.1, 58.2, 59.5, 97.7, 112, 125, 
126.1, 127, 128, 129.3, 135, 143, 144, 156.4, 168.2.
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