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Abstract Benzoylacetonitriles are easily available and

have high chemical reactivity due to the presence of three

active moieties; nitrile, carbonyl, and active methylene

functions. This review article represents a survey covering

the synthetic strategies leading to five six-membered het-

erocycles; pyrans, pyridazines, pyrimidines, pyrazines, and

triazine compounds; utilizing benzoylacetonitriles as

starting precursor since 1985. The reactions are subdivided

into groups that cover the synthetic methods of these

heterocycles.

Keywords Benzoylacetonitrile � Pyrans � Pyridazines �
Pyrimidines � Triazines

Introduction

Benzoylacetonitrile, known as phenacylcyanide or x-cy-

anoacetophenone, was named as 3-oxo-3-phenylpropaneni-

trile as using the IUPAC system. Benzoylacetonitrile is a

versatile and convenient intermediate for preparation of

various organic and, especially, six-membered heterocyclic

compounds possessing diverse biological activities and many

other practically useful properties, e.g. antimicrobial [1–5],

photochemotherapic [6], antimalarial [7], anti-inflammatory

[8], anti-HIV agents [9], anticancer agents [10], anti-T. cruzi

activity [11], anti-HCV, antioxidant, and peroxynitrite

inhibitory activity [12]; and as electron-transporting layer

[13, 14]. Despite this versatile importance, and in connection

to our previous review articles [15–19], benzoylacetonitrile

have not been previously reviewed. The present review aims

to demonstrate the synthetic potential of benzoylacetonitrile

in the synthesis of pyrans, pyridazines, pyrazines and triazine

compounds in the period from 1985 till now. The synthetic

methods of benzoylacetonitriles and its utility in synthesis of

pyridine derivatives were mentioned previously [18].

Pyrans and their fused derivatives

Michael addition reaction

The enantioselective Michael addition of 1 to a,b-unsatu-

rated trichloromethyl ketones 2 was reported with a

phenylalanine-derived bifunctional piperazine/thiourea

catalyst, a series of a-trichloromethyldihydropyrans 3 were

obtained with excellent yields (Scheme 1) [20].

Similarly, enantioselective Michael addition of 1 to (E)-

1,1,1-trifluoro-4-arylbut-3-en-2-one 4a,b gave (2S,4R)-

2-hydroxy-2-(trifluoromethyl)-3,4-dihydro-2H-pyran-5-

B. F. Abdel-Wahab

Applied Organic Chemistry Department, National Research

Centre, Dokki, 12622 Giza, Egypt

B. F. Abdel-Wahab

Preparatory Year, Shaqra University, Al-Dawadami,

Saudi Arabia

M. F. El-Mansy

Department of Chemistry, Marquette University,

P.O. Box 1881, Milwaukee, WI 53201-1881, USA

R. E. Khidre

Chemical Industries Division, National Research Centre,

Dokki, 12622 Giza, Egypt

R. E. Khidre (&)

Chemistry Department, Faculty of Science, Jazan University,

Jazan, Saudi Arabia

e-mail: rizkarein@yahoo.com; rizkkhidre@yahoo.com

123

J IRAN CHEM SOC (2013) 10:1085–1102

DOI 10.1007/s13738-013-0244-2



carbonitriles 5a,b in 71–95 % yield (Scheme 2) [21, 22].

The structure of compound 5b was established by the

X-ray diffraction analyses.

In a similar fashion, an asymmetric Michael addition of

1 to b,c-unsaturated a-keto ester to form chiral dihydro-

pyrans was reported. Thus Michael addition of 1 to (E)-

methyl 2-oxo-4-phenylbut-3-enoate 6 led to (2S,4R)-

methyl 5-cyano-2-hydroxy-4,6-diphenyl-3,4-dihydro-2H-

pyran-2-carboxylate 7 in 95 % yield (Scheme 3) [23].

The DABCO(1,4-diazabicyclo[2.2.2]octane)-catalyzed

(3 ? 3) annulations of 1 with 2-(acetoxymethyl)buta-2,3-

dienoate 8 smoothly proceeded to construct benzyl

5-cyano-2-methyl-6-phenyl-4H-pyran-3-carboxylate 9 in

excellent yields (Scheme 4) [24].

Three-component one pot reaction of compound 1,

3-acetyl-1-ethyl-4-hydroxyquinolin-2(1H)-one 10, and form-

aldehyde yielded 2-amino-3-benzoyl-6-ethyl-4H-pyrano[3,2-

c]quinolin-5(6H)-one 11 in 80 % yield [25]. Similarly,

6-amino-5-(2,3-dihydrobenzo[d]thiazol-2-yl)-2-phenyl-4H-

pyran-3-carbonitrile 12 was prepared by three-component

one pot reaction of compound 1, 2-cyanomethylbenzothiaz-

ole and, formaldehyde in refluxed ethanol containing

triethylamine as catalyst [26]. 3-Methyl-6-phenyl-1,4-dihy-

dropyrano[2,3-c]pyrazole-5-carbonitrile 13 was synthesized

via three-component one pot reaction of compound 1; 2,5-

dimethoxybenzaldehyde; and 3-methyl-1H-pyrazol-5(4H)-

one in refluxed ethanol containing piperidine as catalyst

(Scheme 5) [10].

Treatment of 1 with 2-[(3-oxo-3,4-dihydroquinoxalin-2-

yl)methylene]malononitrile 14 gave 2-amino-4-(3-oxo-3,4-

dihydroquinoxalin-2-yl)-6-phenyl-4H-pyran-3,5-dicarboni-

trile 15 in 79 % yield (Scheme 6) [27].

Benzylidenemalononitrile 16 was reacted with 1 in

refluxed ethanol in the presence of piperidine to yield

2-amino-4,6-diphenyl-4H-pyran-3,5-dicarbonitrile 17

(Scheme 7) [28].

Pyrano[2,3-c]pyrazole-5-carbonitrile 19 was obtained

from Michael addition cyclocondensation of 1 to 4-(furan-

2-ylmethylene)-3-methyl-1H-pyrazol-5(4H)-one 18 in

refluxed ethanol in the presence of piperidine (Scheme 8)

[29].

Michael addition of compound 1 to 2,6-di(m-nitrophe-

nylmethylene)cyclohexanone 20 followed by 6-exo-dig

cyclization furnished (2-amino-8-(3-nitrobenzylidene)-

4-(3-nitrophenyl)-5,6,7,8-tetrahydro-4H-chromen-3-yl)

(phenyl)methanone 21 in 73 % yield (Scheme 9) [9].

The asymmetric Michael addition of 1 to a-cyanocin-

namate 22 gave (R) 23 and (S) 2-amino-5-cyano-4,6-

diphenyl-4H-pyran-3-carboxylate 24 in moderate diaste-

reomeric mixture and good yield (Scheme 10) [30].
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4-(2-Oxo-1,2-dihydroquinolin-3-yl)-2,6-diphenyl-4H-

pyran-3,5-dicarbonitrile 26 was synthesized via Knoeve-

nagel reaction between 1 and 2-chloroquinoline-3-carbal-

dehyde 25 followed by Michael addition of second

molecule of 1 and cyclization. The structure of compound

26 was confirmed by the X-ray diffraction analyses

(Scheme 11) [8].

The mechanism of formation 26 probably takes place

through a consecutive Michael addition of second molecule

of compound 1, to the initially formed a,b-unsaturated

carbonyl compound 27 followed by cyclization and elim-

ination of a molecule of H2O and HCl to afford the target

compounds 26 as describe in Scheme 12.

Cycloaddition reaction

Recently, enantioselective synthesis of substituted pyrans

using compound 1 was reported. A variety of substituents

compound, prepared from condensation of 1 and aldehyde,

were well tolerated in Cinchona-based primary amine

catalytic system, providing the substituted pyran adducts

35 in high yields, high diastereoselectivity (up to 9.0:1) and

excellent enantioselectivities (up to 96 %) (Scheme 13)

[31].

Catalyzed [4 ? 2] annulation between activated termi-

nal alkynes and oxo-dienes intermediated using triphenyl-

phosphine catalyst (20 mol %) was reported. Thus, Diels–
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Alder reaction between 1-phenylprop-2-yn-1-one 34 and

1-phenylprop-2-yn-1-one gave the corresponding highly

functionalized dihydropyrans 36 in good to excellent yields

(Scheme 14) [32].

Knoevenagel condensation of compound 1 with appro-

priate cycloalkanone 37 in refluxing toluene or xylene for

4–6 h in the presence of b-alanine and acetic acid as cat-

alyst gave 2-cycloalkylidene-3-oxo-3-phenylpropionitriles
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38. The cycloaddition reaction of compound 38 with enol

ethers 39 was performed in toluene solution at 110 �C for

24 h and the spiropyrans 40 were obtained in 78–93 %

yields (Scheme 15) [33].

The manganese(III) initiated oxidative free radical reac-

tion between 2-amino-1,4-benzoquinone 41 and 1 was

reported. When 5,6-dimethyl-2-(methylamino)-1,4-benzo-

quinone 41 was treated with 1 and manganese(III) acetate

in acetic acid at room temperature, a yellow product

1-(1-cyano-2-oxo-2-p-tolylethylidene)-2,7,8-trimethyl-6,9-

dioxo-3-p-tolyl-2-azaspiro[4.4]nona-3,7-diene-4-carboni-

trile 42 and 10,3,4-trimethyl-5-oxo-20,60-dip-tolyl-10H,5H-

spiro[furan-2,40-pyrano[4,3-b]pyrrole]-30,70-dicarbonitrile

43 were obtained in 55 % yield (Scheme 16) [34].

Initiation occurs with the manganese(III) acetate oxi-

dation of 1 to produce radical 1a. This radical intermediate

undergoes intermolecular addition to quinone ring fol-

lowed by oxidation to generate 44, which was then oxi-

dized by manganese(III) acetate to produce radical 45.

Radical 45 undergoes 1,2-carbonyl group migration fol-

lowed by oxidation and intermolecular nucleophilic addi-

tion of another molecule of 1a to give 46, which then

undergoes a further intramolecular condensation reaction

to produce 42. The solvent effects play an important role in

the manganese(III) acetate initiated oxidative free radical

reaction. Reaction between 1a and 41 was next performed

in other solvents. The change of solvent to benzene, 2,2,2-

trifluoroethanol, and acetonitrile gave 42 as the only
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product. It gave best result (69 % yield) when acetonitrile

was used as the solvent (Scheme 17) [34].

Reaction with 2-hydroxybenzaldehydes

Reaction of compound 1 with salicylaldehyde in isopropyl

alcohol in the presence of piperidine afforded 3-benzoyl-2-

iminocoumarin 52. Treatment of the latter compound with

HCl/EtOH gave the 3-benzoylcoumarins 53 (Scheme 18)

[35, 36]. The cyclocondensation reaction of 7-hydroxy-5-

methoxy-2-methyl-4-oxo-4H-chromene-6-carbaldehydes

54 with compound 1 in ethanol in the presence of piperi-

dine yielded 7-benzoyl-8-imino-5-methoxy-2-methylpyr-

ano[3,2-g]chromen-4(8H)-ones 55 (Scheme 18) [38, 39].

The reaction of 2-(allyloxy)benzaldehyde or 2-(allyloxy)-

1-naphthaldehyde 56 with compound 1 carried out at room

temperature gave rise to the formation of the Knoevenagel

aduct 57 in good yield. The intramolecular hetero-Diels–

Alder cycloaddition of 57 was accomplished in boiling

xylene and afforded 3-phenyl-tetrahydropyrano[3,4-c]pyran-

4-carbonitriles 58 in good yield (Scheme 19) [40].

A new strategy involving domino Knoevenagel hetero-

Diels–Alder reaction is described for the preparation of the

pyrano[3,4-c]chromene scaffold. Thus, reaction of 2-(prop-2-

ynyloxy)benzaldehyde 59 with compound 1 in the presence of

CuI and (NH4)2HPO4 afforded pyrano[3,4-c]chromenes 61,

via intermediate 60, with good yields (Scheme 20) [41].

The condensation reaction of ethyl 3-ethoxy-3-imino-

propanoate hydrochloride 62 with 1 gave ethyl 3-amino-4-

cyano-5-oxo-5-phenylpent-3-enoate 63. Then the latter

compound was reacted with salicylaldehyde to afford

3-amino-2-benzoyl-3-(2-oxo-2H-chromen-3-yl)acryloni-

trile 64 in 85 % yield (Scheme 21) [42].
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[2-imino-5-(2-phenylhydrazono)-2,5-dihydroindeno[1,2-

b]pyran-3-yl](phenyl)methanone 66 (Scheme 22) [43].

Miscellaneous methods

Treatment of 2-fluoro-5-nitrobenzyl bromide 67 with

compound 1 in the presence of excess potassium carbonate

led to the formation of 6-nitro-2-phenyl-4H-chromene-3-

carbonitrile 68 (Scheme 23) [44].

Elgemeie et al. [45] reported the reaction of 1 with

malononitrile in refluxing pyridine to give 2-phenylprop-1-

ene-1,1,3-tricarbonitrile 70. But Abdelrazek and Michael

[46] reinvestigated the same reaction and a mixture of two

products 69 and 70 was obtained (Scheme 24).

The formation of these two products 69 and 70 from

compound 1 and malononitrile involved Knoevenagel

condensation reaction which gave directly to compound 70

and Michael addition of the active methylene of malono-

nitrile to the cyano function of 1 will lead to the tauto-

merized intermediate 71a/71b which undergoes a 6-exo-

dig cyclization [47] to afford the iminopyran 69 as shown

in Scheme 25.

3-Benzyl-4-methyl-2-oxo-6-phenyl-2H-pyran-5-carbo-

nitrile 73 was synthesized via reaction between ethyl

Piperidine, DMF

S Ac
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O
1

96

97, 52%
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S

Me

Me
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2-benzylbuta-2,3-dienoate 72 and 1 through a tandem

nucleophilic addition/lactonization process (Scheme 26)

[48].

4-(Methylthio)-2-oxo-6-phenyl-2H-pyran-5-carbonitrile

75, showed very strong fluorescence in the solid state, was

synthesized via reaction of compound 1 with ketene

dithioacetal 74 in DMSO in the presence of sodium

hydroxide (Scheme 27) [49].

Pyridazines and their fused derivatives

Reaction with a-diazo-b-diketones

Cyclocondensation reaction of 1 with a-hydrazonopropanal

76, in refluxed ethanol containing pipreidine yielded pyri-

dazin-6-imines 77 (Scheme 28) [50–52].

Similarly, 2-(2-furyl)-hydrazonopropanal 78 was con-

densed with 1 in dioxane in the presence of piperidine to

yield 4-benzoyl-6H-pyridazino[1,6-a]quinazolin-6-one 80

via intermediate 79 (Scheme 29) [54].

6-(1H-Benzo[d][1,2,3]triazol-1-yl)-4-benzoyl-5-methyl-

2-phenylpyridazin-3(2H)-one 82 was obtained in 71 %

yield from reaction between 1 and benzotriazolhydrazone

81 in benzene in the presence of acetic acid and ammonium

acetate (Scheme 30) [55].

Ethyl 3-oxo-2-(2-phenylhydrazono)butanoate 83 was

reacted with compound 1 in the presence ammonium ace-

tate to yield 5-cyano-4-methyl-1,6-diphenylpyridazin-1-

ium-3-carboxylate 84 (Scheme 31) [56].

Miscellaneous methods

Knoevenagel condensation of compound 1 with malono-

nitrile afforded 2-phenylprop-1-ene-1,1,3-tricarbonitrile 70

which converted into 6-imino-1,4-diphenyl-1,6-dihydro-

pyridazine-3,5-dicarbonitrile 85 when treated with benzene

diazonium chloride followed by cyclization (Scheme 32)

[45].

Coupling of compound 63 with substituted benzene

diazonium chloride to give ethyl 3-amino-4-cyano-5-oxo-

5-phenyl-2-(2-arylhydrazono)pent-3-enoate 86. Then

treatment of 86 with NaOH gave aminopyridazinium car-

boxylates 87 (Scheme 33) [46].

Pyrimidines and their fused derivatives

Reaction with 3(5)-aminopyrazoles,

2-aminothiophenes, 2-aminobenzimidazoles

or 2-aminopyrimidines

Pyrazolo[1,5-a]pyrimidine 89 was synthesized by conden-

sation of compound 1 with 3-amino-1,5-dihydro-1-(p-

tosyl)pyrazole 88 in refluxed ethanol containing TEA [57].

Cyclocondensation of 1 with either ethyl 3,5-diamino-1H-

pyrazole-4-carboxylate 90a [58] or ethyl 5-amino-3-phe-

nyl-1H-pyrazole-4-carboxylate 90b [59] to give ethyl

7-amino-5-phenylpyrazolo[1,5-a]pyrimidine-3-carboxylate

91a,b; respectively. One pot three-component cyclocon-

densation reaction of compound 1, 4-(4-chlorophenyl)-5-

methyl-1H-pyrazol-3-amine 92, and triethylorthoformate

gave 3-(4-chlorophenyl)-2-methyl-7-phenylpyrazolo[1,5-

a]pyrimidine-6-carbonitrile 93 [60]. Pyrazolo[1,5-

a]pyrimidine 95 was synthesized in70 % yield via aza-

Wittig reaction of compound 1 with 5-(triphenylpho-

sphoranylideneamino)-3-phenylpyrazole 94 (Scheme 34)

[61].

2-(6-Acetyl-4-amino-5-phenylthieno[2,3-d]pyrimidin-2-

yl)-1-phenylethanone 97 was synthesized, as inhibit the
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production of mycotoxins and fungal growth, from reaction

of 5-acetyl-2-amino-4-phenylthiophene-3-carbonitrile 96

with compound 1 in DMF in the presence of piperidine

[62]. 5,6-Dimethyl-2-(2-oxo-2-phenylethyl)thieno[2,3-

d]pyrimidin-4(1H)-one 99 was prepared by treating ami-

nothiophenecarboxylate 98 with 1 at room temperature

(Scheme 35) [63].

2-Benzoyl-3-phenylacrylonitrile 132 was reacted with

2-aminobenzoimidazole 100 in refluxed ethanol in the

presence of pipredine to give 2,4-diphenyl-3,4-dihydropy-

rimido[1,2-a]benzimidazole-3-carbonitrile 101 in excellent

yield (Scheme 36) [64].

Three-component one pot cyclocondensation reaction of

compound 1, 1-(benzo[d]thiazol-2-yl)guanidine 102, and tri-

ethylorthoformate afforded 2-(benzo[d]thiazol-2-ylamino)-4-

phenylpyrimidine-5-carbonitrile 103 (Scheme 37) [65].

4-Phenyl-5-cyano-2-aminopyrimidines 106 were syn-

thesized and found to have potent vascular endothelial

growth factor (VEGF)-R2 kinase inhibitory activity. The

key step involved reaction of a vinylogous amide with a

guanidinium salt to form the pyrimidine ring. Specifically,

treatment of 1 with N,N-dimethylformamide diethyl acetal

(DMF-DEA) formed a vinylogous amide in situ that was

reacted with guanidine nitrate in DMF at 100 �C to form

the 2-amino-4-aryl-5-cyanopyrimidine 104. The Sand-

meyer reaction of the aminopyrimidine 104 was accom-

plished by treatment with antimony trichloride and

t-butylnitrite in 1,2-dichloroethane at 25 �C to smoothly

afford the 2-chloropyrimidine 105. The displacement of the

Cl of 105 with aliphatic amines proceeded at 25 �C and

with aromatic amines in refluxing THF to afford the

pharmacophores 106 (Scheme 38) [66].

Miscellaneous methods

Pyrido[20,30:3,4]pyrazolo[1,5-a]pyrimidine 108 was pre-

pared in 68 % yield by reaction of 1 with formamidine 107

(Scheme 39) [67].

The synthesis of substituted pyrazolo[1,5-a]quinazolin-

5(4H)-one 110, as potent poly (ADP-ribose)polymerase-1

(PARP-1) inhibitors, has been reported. Thus, compound 1

was reacted with 2-hydrazinylbenzoic acid hydrochlo-

ride 109 under microwave condition in acetic acid to

give 2-phenylpyrazolo[1,5-a]quinazolin-5(4H)-one 110

(Scheme 40) [68–71].
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Pyrimidinethiones 113 were synthesized from reaction of

3-amino-3-ethoxy-1-phenylprop-2-en-1-one hydrochloride

112 with isothiocyanate in refluxing acetone (Scheme 41)

[72].

Multi-component one pot reaction of compound 1,

hydrazine hydrate, benzaldehyde, and malononitrile gave

7-amino-5-phenylpyrazolo[1,5-a]pyrimidine-6-carbonitrile

114 in good yields (Scheme 42) [73].

Treatment of compound 1 with NaH-THF for 30-40 min

and then with trifluoroacetonitrile for 5 h gave 4-phenyl-

2,6-bis(trifluoromethyl)pyrimidine-5-carbonitrile 115 in

62 % yield (Scheme 43) [74, 75].

Pyrazines and their fused derivatives

Benzo[c][1,2,5]oxadiazole 1-oxides 116 were reacted with

compound 1 in different solvent, such as chloroform [7],

dichloromethane [11] ethanol [76] in the presence of tri-

ethylamine at room temperature to give 2-cyano-3-aryl-

quinoxaline 1,4-dioxide 117 in 45–61 % yield

(Scheme 44). Quinoxaline 1,4-dioxide derivatives showed

superior antimalarial [7] and anti-T. cruzi activity [11].

Nitrosobenzothiazoleacetonitrile 118 was reacted with

compound 1 in ethanol in the presence of triethylamine

to yield 4-imino-3-(phenylcarbonyl)-4H-pyrazino[2,1-

Ph
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+
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b][1,3]benzothiazole-1-carbonitrile 119 in 75 % yield

(Scheme 45) [77].

Triazines and their fused derivatives

Pyrazolo[5,1-c][1,2,4]triazines 121, 123, and 125 were

synthesized from coupling of compound 1 with pyrazole

diazonium chloride 120 [78], 122 [79], and 124 [80],

respectively (Scheme 46).

In a similar fashion, coupling diazotized of compound 1

with pyrazolediazonium chlorides 126, 128, and 130 in

ethanol in the presence of sodium acetate yielded pyraz-

olo[5,1-c][1,2,4]triazine 127, [81] 129, [82] and 131 [83]

(Scheme 47).

Cyclocondensation reactions of compound 1 with pyr-

azole diazonium salt 132 afforded substituted triazine 288

[84]. 2-Thiazolediazonium salt 134 underwent coupling

diazotized reaction with 1 to give ethyl 3-benzoyl-4-imino-

6-methyl-4H-thiazolo[2,3-c][1,2,4]triazine-7-carboxylate

135 (Scheme 48) [85].

Conclusion

This survey is attempted to summarize the synthetic

potential of benzoylacetonitrile in the synthesis five six-

memderd ring heterocycles, pyrans, pyridazines, pyrimi-

dine, pyrazines and triazine compounds, during the period

from 1985 till now. The literature survey of the synthetic

potential of benzoylacetonitrile in the synthesis of five-

memberd heterocycles was submitted as a separate review

article [19].
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