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Abstract
Recently video retrieval based on the pre-trainingmodels (e.g., CLIP) has achieved outstanding success. To further improve the
searchperformance,most existingmethods usually utilize themulti-grained contrastivefine tuning scheme. For example, frame
features and word features are taken as fine-grained representations, aggregate features for frame features and [CLS] token for
textual side are used as global representations. However, the above scheme still remains challenging. There are redundant and
noise information in the raw output features of pre-training encoders, leading to suboptimal retrieval performance. Besides,
a video usually correlates several text descriptions, while video embedding is fixed in previous works, which may also
reduce the search performance. To conquer these problems, we propose a novel video-text retrieval model, named Local
Semantic Enhancement and Cross Aggregation (LSECA). To be specific, we design a local semantic enhancement scheme,
which utilizes global feature for video and keyword information for text to augment fine-grained semantic representations.
Moreover, the cross aggregation module is proposed to enhance the interaction between video and text modalities. In this
way, the local semantic enhancement scheme can increase the related representation of modalities and the developed cross
aggregation module can make the representations of texts and videos more uniform. Extensive experiments on three popular
text-video retrieval benchmark datasets demonstrate that our LSECA outperforms several state-of-the-art methods.

Keywords Video-text retrieval · Semantic enhancement · Cross aggregation · Multi-grained contrast

1 Introduction

With the rapid development of mobile device and Internet,
short videos are becoming more and more important in mod-
ern life. Therefore, Text to Video Retrieval (TVR), a typical
multi-modal task, has drown increasing attention [1–6]. The
aim of this task is to rank videos (or texts) within the col-
lection based on their relevance to a specific text or video,
which enables users to efficiently and precisely retrieve their
desired video content. In the past few decades, with the ongo-
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ing advancement of deep learning technology, remarkable
progress has been made in the field of video retrieval [7–
13]. However, due to the heterogeneity of text and video
modalities, how to reduce the modality gap and improve per-
formance is still an open problem.

To narrow this modality gap, some good methods have
emerged, among which the method based on fine-tuning the
pre-training models [14–16] has gained widespread atten-
tion. CLIP4Clip [17] is a notable method that leverages
the robust semantic extraction capabilities of pre-training
model CLIP [14] to align video with text in a shared fea-
ture space, enabling a direct comparison of video and text
features. Compared to previous works [1, 3–8, 18–20], this
method yields superior results. However, thismethod focuses
on global information while ignoring fine-grained informa-
tion. To mitigate the problem, some excellent works [21–25]
are proposed, which employ frame [26] and word features as
local information (as shown in Fig. 1a). For example,X-CLIP
[22] excavates local and global representations and leverages
cross-grained, coarse-grained and fine-grained contrastive
learning scheme to further improve retrieval performance.
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Fig. 1 Comparison of our proposed method with previous multi-
grained contrastive methods. a The framework of previous methods
(multi-grained retrieval), which uses the raw features of encoders
for fine-grained matching. b Our LSECA framework semantically
enhances the original fine-grained features via LSE (local semantic
enhancement) modules, but also takes into account the correspondence
between the two modalities to design the CA (cross aggregation) inter-
action module

However, the backbonemodel (e.g., CLIP [14]) is pre-trained
with image-text pairs, the extracted raw frame and word fea-
tures may not be suitable for video retrieval task, resulting in
suboptimal search results.

Despite the above problems, the text-video retrieval task
requires precise semantic alignment, but themulti-modal fea-
tures output by the raw encoder have a lot of redundant and
noisy information, which is a serious challenge for cross-
modal matching. Specifically, with regard to video, certain
frames in the sparsely sampled frames have high content
overlap (i.e., redundant information), and a few frames have
little semantic significance to the supplied text description
(i.e., noisy information). For textmodality, the given text con-
tains prepositions (e.g., ‘the‘, ‘in‘, ‘on‘, etc.) whichmay carry
less semantic information than entities and verbs. Although
these prepositions can help to understand the text, they have
litte impact in the process of fine-grained matching and even
lead to suboptimal performance. Besides, the video modality

usually corresponds to multiple descriptions in the retrieval
datasets [27–29], and videos often display more content than
text. Therefore, how to conditionally filter frame features and
enhance the interaction between the two modalities need to
be addressed.

To solve the above problems, we develop a novel text to
video retrieval model based on local semantic enhancement
and cross aggregation, named LSECA. Previous approaches
typically use more multimodal features [3] or more complex
cross-granularity alignment [22] to achieve finer seman-
tic matching. We use unimodal specific information (e.g.,
video global feature and keyword features) for local semantic
enhancement. The proposedmodel can augment fine-grained
semantic representation and facilitate interaction between
video and text (as shown in Fig. 1b). Specifically, for video
branch, we use pooled features as anchors to improve the
semantics of fine-grained frame features. Besides, due to the
uncertainty of frame content, we design an adapter-aware
module to estimate the weight of each fine-grained repre-
sentations. For text branch, we first extract the keywords of
corresponding description with KeyBert [30] model and the
fusion strategy between raw word and keyword representa-
tions is introduced to shift the focusmore to semantic content.
Local semantic enhancement is not enough and interaction
between modalities is also required. Thus in the coarse-
grained perspective,we further propose the cross aggregation
module that fuses the frame-level features based on the text
to enable interaction between two modalities. The above
module can significantly improve the discimination of video
and text representations. To demonstrate the effectiveness
of the proposed LSECA, we conduct some extensive exper-
iments on three mainstream text-video retrieval datasets,
including MSRVTT [27], MSVD [28], and LSMDC [29].
The results illustrate that our proposed LSECA achieves
significant improvment and outperforms several previous
state-of-the-art methods.

The main contributions of this work are summarized as
follows:

• We propose a novel framework LSECA for text-video
retrieval, which not only enhances the fine-grained video
and text representations but also fully considers the inter-
action between two modalities.

• For local semantic enhancement, we propose two effec-
tive strategies for video and text branches respectively.
The cross aggregation module is introduced to achieve
sufficient interaction between two modalities.

• Extensive experiments on three text-video retrieval
datasets demonstrate the effectiveness of our method.
Our LSECA achieves state-of-the-art performance on
MSRVTT(47.1%),MAVD(46.9%), andLSMDC(23.4%).
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2 Related work

2.1 Text to video retrieval

With the promotion and popularization of short video appli-
cations, accurate video similarity search is becoming increas-
ingly important. Text-video retrieval task aims to find the
most relevant video based on the given text information.
However, unlike text-image cross-modal task, text-video
retrieval task need to consider temporal information, making
the retrieval task more diffcult. Some early approaches [3, 4,
6, 7, 11, 18, 31–34] extracted video as well as text features
by using convolutional neural networks or experts. Despite
these approches have demonstrated favorable outcomes, the
performance of these methods is still limited due to end-to-
end optimization issue. With the continuous development of
the pre-training models (e.g., CLIP [14], ALIGN [15], CoCa
[16], etc), the paradigm [17] of end-to-end video retrieval
by fine-tuning models directly from raw video (or text) has
gained a lot of attention. Numerous pretty works [17, 21, 22,
35–37] utilize the semantic extraction ability of CLIP learned
from 400M image-text pairs to adapt to video retrieval task.
CLIP4Clip [17] leverages the knowledge obtaiend from the
CLIP model and applies to the task of video retrieval. By
employing the contrastive learning to compute the similarity
scores, it achieves good performance and establishes a strong
baseline for future research endeavors. Based on CLIP4Clip,
CLIP2Video [36] proposes the temporal difference block and
temporal alignment block to enhance the optimization of
video and text representations. However, the above methods
only use the global feature for contrastive learning, ignoring
the semantic information and lack the interaction between
two modality. Different from these approahces, we not only
use fine-gained feature to improve the performance but also
design the cross aggregation module to enhance the interac-
tion between video and text.

2.2 Multi-grained representation learning

In recent years, there has been a proliferation of valuable
studies [21, 22, 32, 33, 38–40] that employ multi-grained
video and text representations to enhance retrieval perfor-
mance. Concretely, for the text branch, the common approach
[22] is to treat word embeddings as fine-grained features and
[CLS] token as global feature. For the video branch, tra-
ditional methods [32, 33] utilize task-specific networks or
experts to extract different types of features (e.g., object,
action, scene, audio, etc). However, these specific features
extracted cannot be well adapted to retrieval task due to the
end-to-end optimization issue. For example, T2VLAD [33]
achieves better retrieval results by aligning local features
though NetVlad and aligning global feature though aggre-
gation. Recent works extract frame features as fine-grained

representation of video by using image encoder due to the
rapid development of pre-training image-language model.
For instance, TS2-Net [21] proposes the token shiftmodule to
capture temporal movements and the token selection module
to select tokens that contribute most to fine-grained semantic
information. X-CLIP [22] presents the multi-grained con-
trastive learning to better utilize more semantic information
for improving retrieval performance.

The above methods utilzie the output of the raw encoders
for contrastive learning. However, the performance may be
limiteddue to the heterogeneity between thevideo and image.
In this paper, we utilize local semantic enhancement module
to improve the video and text fine-grained representations
and design the cross aggregation to enhance the interaction
between two modalities, resulting in notable enhancement in
retrieval performance.

3 Method

In this section, we detail the proposed LSECA, along with
providing specific details regarding the text to video retrieval
task. Concretely, in the retrieval task, given a set of descrip-
tions and the same number of video clips, our goal is to
obtain a semantic similarity matrix for the purpose of retriev-
ing the videos. The architecture of LSECA is shown in
Fig. 2. In Sect. 3.1, we firstly introduce the basic prelim-
inary which consists mainly of the extraction of text and
video features and the symbolic representation of each fea-
ture. We then elaborate the details of the proposed Local
Semantic Enhancement module in Sect. 3.2, which consists
of two parts, the video branch in Sect. 3.2.1 and the text
branch in Sect. 3.2.2, respectively. Immediately following the
Cross Aggregation module in Sect. 3.3. Finally, in Sect. 3.4,
we describe the calculation of the multi-grained similarity
and the objective function for optimization.

3.1 Preliminary

In general, given a set of video-text pairs (V , T ) as the input
data. For the video branch, we sample the video frames uni-
formly for a video, usually at a sampling rate of 1 frame per
second. We use the image encoder of CLIP [14] which is a
vision transformer architecture and initialized by the public
checkpoints of ViT-B/32 to process frame image. Specifi-
cally, the frame image firstly is divided into multiple patches,
add [CLS] token and position tokens which make encoder
better extract semantic information from image. Finally, The
[CLS] tokens from the last transformer layer are extracted as
the frame-level features f = {

f1, f2, f3, ..., fN f

}
, and N f

is the number of frames in the video. For a description t ∈ T ,
similar to the video side, the text encoder of CLIP is used to
extract text features, the architecture of text encoder is also a
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Fig. 2 An overview of our LSECA for text-video retrieval. In LSECA,
We first extract the keywords of the given text description via the Key-
Bert [30] TransFormer. And we design two different local semantic
enhancement(LSE) schemes for text and video, respectively. With the

help of video representations and keywords, thus obtaining fine-grained
representations that are richer and more compact in semantic informa-
tion. In addition, to enhance the interaction between the twomodalities,
we propose the corss aggregation(CA) module

multi-layer transformer.Wefirstly split the given text descrip-
tion to word sequence by using the specific tokenizer [14].
Before being fed into the text encoder, the word sequence is
padded with [BOS] and [EOS] tokens at the start and end of
the sequence, respectively. Finally, the global textual feature
tEOS and word-level features w=

{
w1, w2, w3, ..., wNw

}
are

the output of the [EOS] token and correspondingword tokens
from the final layer of the textual transformer, where Nw is
the length of the description.

3.2 Local semantic enhancement

3.2.1 Visual fine-grained representation

Firstly, we need to obtain the feature of the entire video based
on the obtained frame features in Sect. 3.1. However, frame-
level features are extracted from separate frames without
considering the temporal interaction among frames, which
only include spatial features of each single frame. And it is
essential to be able to understand the video content correctly.
Therefore, we follow the [17] and utilize the temporal trans-
former to model the temporal relationships between frames.
Specifically, we add a position token for each frame feature
before fed into model and the outputs of the temporal trans-
former are average pooled to obtain final video-level features,
which can be formulate as:

f
′
i = TransEnc( fi + pi ), (1)

v = 1

N f

N f∑

i

f
′
i , (2)

mean

Concat LSTM

LSTM

LSTM

FC FCSA

Sigmoid

Fig. 3 The details of visual LSEmodule.We enhance the frame features
by utiling the pooled feature and design adapter-aware module to adjust
the enhanced features

where p is the added position tokens for frame features f , N f

is the number of sampled frames, and v is the final video-level
feature.

Earlier TVR works mainly focus on fine-grained and
coarse-grained contrastive learning, which compute similar-
ity using the rawoutput ofCLIP encoder.However, the output
of raw encoder may not be well suited for video retrieval task
due to the heterogeneity between the video and image. To this
end, we develop the visual semantic enhancement module in
the proposed LSECA, which differs from prior approaches.

The video frames obtained by uniform sampling con-
tain a lot of redundant information, which is detrimental to
cross-modal matching. Therefore, we adjust the local frame
features from a global perspective thereby achieving seman-
tic enhancement. As shown in Fig. 3, given the video-level

feature v and frame-level features f
′
=
{
f

′
1, f

′
2, f

′
3, ..., f

′
N f

}
,

we first concatenate global video feature v with each frame-

123



International Journal of Multimedia Information Retrieval (2024) 13 :30 Page 5 of 13 30

level feature fi , generating the input of the visual semantic
enhancement module f̂i = [v, f

′
i ]. Moreover, we utilize the

LSTM as main part of the visual local semantic enhance-
ment module to generatea sequence of global-guide frame

embeddings f g =
{
f g1 , f g2 , f g3 , ..., f gN f

}
. In addition, The

information across frame and video is partially matched, and
it is not appropriate to treat them equally. Thus, we propose
the adapter-aware module to adjust the enhanced features
and reduce the impact on the final similarity calculation. The
whole process can be formulated as:

f gi = LST M( f̂i ) · Wa, (3)

where f gi is the fine-grained feature after visual semantic
enhancement, Wa is the weights estimated by the adapter-
aware module, which add soft labels to video fine-grained
features to filter out unnecessary frames by comparing each
frame with its video context. To be specific, as shown in
Fig. 3, the adapter-aware module consists two linear FC lay-
ers, a self-attention layer, and a sigmoid activation function
layer to calculate the corresponding weights. In this case,
the self-attention layer is able to provide a global view of
the fine-grained features, and the sigmoid layer can generate
smooth adaptive weights for these features in the end.

3.2.2 Textual fine-grained representation

Due to the difference between two modalities, it is not advis-
able to adopt the same enhancement strategy as the video
branch. In real video retrieval scenarios, we usually focus
more on words with more semantic information, such as
entities, actions, scenes, and so on. In light of this, we pro-
pose the local semantic enhancement strategy that relies on
the utilization of keyword-guide. Specifically, we utilize the
KeyBert [30] transformer to extract keywords of correspond-
ing textual description, which is an effective and easy-to-use
keyword extraction technique that leverages BERT embed-
dings to create keywords and keyphrases. The formulation
can be represented as follows:

w
′ = KeyEnc(KeyBert(t)), (4)

where w
′
is the keyword features and KeyEnc(·) is the key-

word encoder that is a standard transformer encoder with
12 layers and 8 attention heads the same structure as text
encoder of CLIP [14]. With the exception of the final linear
projection layer, the weight parameters are shared between
keyword and text encoders.

For the textual local semantic enhancement module, we
design a cross-attention strategy for raw word features w ={
w1, w2, w3, ..., wNw

}
and extracted features features w

′
={

w
′
1, w

′
2, w

′
3, ..., w

′
Nk

}
, where Nk is the number of keywords

So ftm
ax

V

K

Q

Softm
ax

V

K

Q

Textual LSE Module

Cross Aggregation Module

(a)

(b)

Fig. 4 Thedetails of textual LSEmodule and cross aggregationmodule.
The core algorithm of both modules is the cross-attention mechanism.
Enhanced text features and text-guided video aggregation features are
obtained through the guidance of keywords as well as text features,
respectively

in the description. As shown in Fig. 4a, the word features are
the keys and values and the keyword features are the queries,
and it can be formulated as follows:

wk = Cross Atten(w · WK ,w · WV ,w
′ · WQ), (5)

where Cross Atten(·) is the cross-attention mechanism
which dynamically assigns the importance of different ele-
ments of the input features based on the relationship between
twomodalities, thus better capturing their interdependencies.
And WQ , WK and WV are trainable projection matrices and
wk is the enhanced text fine-grained representations. Finally,
semantic content can be enhanced in term of word features
through keyword guidance.

3.3 Cross aggregation

In addition to local semantic enhancement, we also consider
the interaction between two modalities. Upon examina-
tion of the retrieval dataset, we find that a video typically
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corresponds to multiple descriptions. Besides, the video
embedding is fixed in previous approaches, whereas the
semantic focus of the different related texts is different.
Therefore, merely relying on global video features is insuf-
ficient for effectively cross-modal retireval.

Inspired by [37], we use the similar cross aggregation
module for enhanced frame features f g to interact with spe-
cific text feature tEOS . Specifically, as shown in Fig. 4b, the
enhanced frame features are projected as key and value by
two different linear layer and the query are the result of the
projection of text feature tEOS . Finally, the output of cross
aggregation module is the text-guided video aggregated fea-
ture vca , which can be formulated as follows:

v̂ = Cross Atten( f g · W ′
K , f g · W ′

V , tEOS · W ′
Q), (6)

vca = LN1(LN2(v̂) + Dropout(v̂)), (7)

where WQ , WK and WV are trainable projection matrices.
Similar to the Sect. 3.2.2, LN1(·) and LN2(·) are the Lay-
erNorm layers. Besides, Dropout is a dropout layer, which
not only makes train more stable but also prevents overfitting
risk.

3.4 Multi-grained similarity and objective function

After the above features processing, we obtain enhanced

frame features { f gi }N f
i=1, enhanced words features {wk

i }Nw

i=1,
aggregated video feature vca , and raw text feature tEOS . For
coarse-grained similarity calculation, we directly use matrix
multiplication between the video feature vca and text feature
tEOS , which can be represented as follows:

Scoarse = (vca)
� · tEOS . (8)

For fine-grained similarity calculation, the fine-grained
embeddings of video is the enhanced frame features f g =
{ f gi }N f

i=1, where the N f is the number of sampled frames.
The fine-grained embeddings of text is the enhanced text
features wk= {wk

i }Nk
i=1. Following the [41], we calculate a

similaritymatrixwhich is defined as A = [ai, j ]N f ×Nk , where
ai, j is computed from the cosine similarity of f gi and wk

j
and represents the fine-grained similarity score between the
f gi and the wk

j . Beisides, we choose the maximum value
max

j
ai j andmax

i
ai j in each row and column as the score that

each fine-grained feature contributes to the final similarity
calculation. At the same time we use the computed adaptive
weights to pool the corresponding scores over all frames and
words. Finally, it can be formulated as:

S f ine = 1

2

⎛

⎝
N f∑

i=1

ωi
f max

j
ai, j +

Nk∑

j=1

ω
j
t max

i
ai, j

⎞

⎠ , (9)

where [ω0
f , ω

1
f , ..., ω

N f
f ] = �( f g) and [ω0

t , ω
1
t , ..., ω

Nk
t ] =

�(wk) are the corresponding weights of the video frames
and text words and they facilitate fine-grained cross-modal
alignment. Specifically, �(·) and �(·) have the same struc-
ture, both consist of an FC layer and a Softmax layer. The
first term of the whole equation is to represent the video
to text retrieval similarity and the second term is opposite.
Therefore, the final similarity score S of LSECA contains
multi-grained contrastive similarity scores, which can be rep-
resented as follows:

S = αScoarse + (1 − α)S f ine, (10)

where α is the trade-off hyper-parameter of total similarity,
Scoarse and S f ine are the global and local similarity, respec-
tively.

Based on the above schemes, given a batch of B text-
video pairs, our LSECA can calculate a B × B similarity
matrix during the training process. The InfoNCE loss based
the similarity matrix is used to optimize the whole LSECA,
which can be formulated as:

Lv2t = − 1

B

B∑

i=1

log
exp(Svi ,ti /τ)

∑B
j=1 exp(Svi ,t j /τ)

, (11)

Lt2v = − 1

B

B∑

i=1

log
exp(Svi ,ti /τ)

∑B
j=1 exp(Sv j ,ti /τ)

, (12)

L = (Lv2t + Lt2v)/2, (13)

where B is the pre-set batch size, τ is a temperature hyper-
parameter which makes the training process converge more
rapidly. The loss function L is utilized to increase the simi-
larity of the positive pairs and decrease the similarity of the
negative pairs, thereby shortening the distance between rele-
vant video-text representations and separating the irrelevant
text-video representations during the training process.

4 Experiments

4.1 Experimental settings

We conduct experiments on three mainstream text to video
retrieval datasets to demonstrate the effectiveness of our
LSECA.
MSRVTT [27] contains about 10KYouTube video clips, each
with 20 caption descriptions. The duration of each video clip
in this collection varies between 10 and 40s. Following the
dataset splits from [3], we train models with associated cap-
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tions on the Training-9K set and report results on the test
1K-A set.

MSVD [28] contains 1,970 videos with 80K captions, with
about 40 captions on average per video. Videos tend to be
40s or less in length.There are 1,200, 100, and 670 videos in
the train, validation, and test sets, respectively. The training
as well as the inference on this dataset is in multi-sentence
mode, which is slightly different from the other two datasets
and can be found in the source code.

LSMDC [29] contains 118,081 videos and captions, which
are extracted from 202 movies. The length of each video
ranges from 2 to 30s. We follow the split of [3] and there are
109,673, 7,408, and 1,000 videos in the train, validation, and
test sets, respectively.

Evaluation Metrics To evaluate the performance of our pro-
posed LSECA, we choose recall at Rank K (R@K, higher
is better), median rank (MdR, lower is better), and mean
rank (MnR, lower is better) as retrieval performance met-
rics. To be specific, R@K refers to the percentage of the first
K retrieved videos that correspond to the text description
among all the videos to be retrieved, i.e., the ability of the
model to find the target video during retrieval. Referring to
previouswork [17], we use R@1, R@5 andR@10 as specific
recall metrics As a result, the higher R@K indicates better
performance. Median Rank (MdR) is the median retrieved
rank of the ground truth. Similarly, Mean Rank (MnR) is the
mean retrieved rank of the ground truth. Thus, the lowerMdR
and MnR indicate better performance. In addition, we added
SumR (R@1+R@5+R@10) as a composite metric.

Implementation Details We conduct extensive experiments
on 2 NIVIDIA GeForce RTX 3090 24GB GPUs using
PyTorch library. Following the previouswork [17],we initial-
ize the text encoder and video encoder by using the public
CLIP checkpoint (ViT-B/32). The frame sampling rate of
videos is 1 FPS. The text description length is set to 32, the
video length is set to 12 for all datasets and the number of
keywords is 5. The initial learning rate for text encoder and
video encoder of CLIP is 1e-7 and the initial learning rate for
other modules is 1e-4. Then we decay the learning rate using
the cosine schedule strategy and use the Adam optimizer to
optimize the whole model. We train the model for 5 epochs
with above settings and set the temperature τ is 0.01.We con-
duct ablation, comparison and qualitative experiments on the
MSR-VTT dataset, which is more popular and competitive
compared with other datasets.

4.2 Comparison with state-of-the-art

In this subsection, we compare the proposed LSECAwith the
previous state-of-the-art (SOTA) works on the three datasets,
namelyMSRVTT,MSVDandLSMDC.Results of the exper-
iments on these datasets are presented in Tables 1, 2, 3.
We can see that the LSECA obtains significant improve-
ment on all three datasets. Furthermore, Table 1 shows the
retrieval results of our method and comparisons with other
SOTA model on MSRVTT 1K. To be specific, compared to
the baseline CLIP4Clip-seqTransf [17], LSECA obtains 47.1
R@1 (5.9% improvement) and gets higher performance in all
other metrics(e.g., 74.9 R@5, 5.0% improvement) in text to
video retrieval with ViT-B/32 checkpoint. Comparing with
other SOTA methods we also get the highest SumR. There-
fore, our LSECA has significantly improved compared to
the baseline [17], and also obtains competitive performance
compared to other SOTAmodels. Tables 2 and 3 show results
for the MSVD dataset and LSMDC dataset, respectively.
Our LSECA also achieves good performance improvement
compared to CLIP4Clip-seqTransf [17], which demonstrates
the effectiveness and generalization ability of our proposed
LSECA. The proposed LSECA can achieve good perfor-
mance may be attributed to the following reasons:

• We optimize the fine-grained features compared to some
previousworks [21, 22, 32, 35–37]. For the video side,we
utilize the video representations to semantically enhance
the frame features so as to filter out irrelevant infor-
mation and make the corresponding local information
more prominent. For the text side, we process word fea-
tures with KeyBert [30] extracted keywords as anchors
to reduce the impact of irrelevant words on retrieval per-
formance.

• We consider the uncertain matching problem between
text and video, that is, video usually corresponds to
multiple text descriptions, and a single text can only cor-
respond to a portion of the elements in the video. Thus
we design the cross aggregation module to alleviate this
problem well, so as to obtain good performance.

4.3 Ablation study

In this section, we provide detailed ablation studies to further
clarify the effects of each part of our design. The MSRVTT
dataset is selected as the testbed, the results and analyses are
as follows.
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Table 1 Retrieval performance comparison on the MSR-VTT 1K validation set

Model Text-to-video retrieval Video-to-text retrieval SumR

R@1↑ R@5↑ R@10↑ MdR↓ MnR↓ R@1↑ R@5↑ R@10↑ MdR↓ MnR↓
CE [4] 20.9 48.8 62.4 6.0 28.2 20.6 50.3 64.0 5.3 25.1 267.0

ClipBERT [5] 22.0 46.8 59.9 6.0 – – – – – – –

MMT [3] 26.6 57.1 69.6 4.0 24.0 27.0 57.5 69.7 3.7 21.3 307.5

Frozen [6] 31.0 59.5 70.5 3.0 – – – – – – –

HiT [7] 30.7 60.9 73.2 2.6 – 32.1 62.7 74.1 3.0 – 333.7

BridgeFormer [8] 37.6 64.8 75.1 – – – – – – – –

TMVM [18] 36.2 64.2 75.7 3.0 – 34.8 63.8 73.7 3.0 – 348.4

CLIP4Clip-MeanP [17] 43.1 70.4 80.8 2.0 16.2 43.1 70.5 81.2 2.0 12.4 389.1

CLIP4Clip-seqLSTM [17] 42.5 70.8 80.7 2.0 16.7 42.8 71.0 80.4 2.0 12.3 388.2

CLIP4Clip-seqTransf [17] 44.5 71.4 81.6 2.0 15.3 42.7 70.9 80.6 2.0 11.6 391.7

CenterCLIP [35] 44.2 71.6 82.1 2.0 15.1 42.8 71.7 82.2 2.0 10.9 394.6

CAMoE [32] 44.6 72.6 81.8 2.0 13.3 45.1 72.4 83.1 2.0 10.0 399.6

CLIP2Video [36] 45.6 72.6 81.7 2.0 14.6 43.5 72.3 82.1 2.0 10.2 397.8

X-Pool [37] 46.9 72.8 82.2 2.0 14.3 – – – – – –

X-CLIP [22] 46.1 73.0 83.1 2.0 13.2 46.8 73.3 84.0 2.0 9.1 406.3

TS2-Net [21] 47.0 74.5 83.8 2.0 13.0 45.3 74.1 83.7 2.0 9.2 408.4

UCOFIA [42] 47.1 74.3 – – – – – – – – –

TeachCLIP [43] 46.8 74.9 82.9 2.0 – – – – – – –

MSIA [44] 47.2 73.8 84.1 2.0 – – – – – – –

PromptSwitch [45] 47.8 73.9 82.2 2.0 14.1 46.0 74.3 84.8 2.0 8.5 409.0

UATVR [46] 47.5 73.9 83.5 2.0 12.3 46.9 73.8 83.8 2.0 8.6 409.4

LSECA (Ours) 47.1 74.9 82.8 2.0 14.9 47.5 75.4 83.4 2.0 12.3 411.1

The best results for each evaluation metrics are in bold
“↑” denotes that higher is better. “↓” denotes that lower is better. And the CLIP4Clip-seqTransf is the baseline

Table 2 Results of text-to-video retrieval on the MSVD

Model Text-to-video retrieval

R@1 R@5 R@10 MdR MnR

NoiseEst [47] 13.1 35.7 47.7 12.0 –

CE [4] 19.8 49.0 63.8 6.0 –

Multi Cues [48] 20.3 47.8 – – –

Frozen [6] 33.7 64.7 76.3 3.0 –

SUPPORT [49] 28.4 60.0 72.9 4.0 –

TT-CE+ [50] 21.6 48.6 62.9 6.0 –

CLIP [14] 37.0 64.1 73.8 3.0 –

TMVM [18] 36.7 67.4 81.3 2.5 –

BridgeFormer [8] 43.6 73.9 84.9 – –

CLIP4Clip [17] 45.2 75.5 84.3 2.0 10.3

CAMoE [32] 46.9 76.1 85.5 2.0 9.9

TS2-Net [21] 44.6 75.8 – 2.0 –

PromptSwitch [45] 46.3 75.8 – 2.0 –

LSECA 46.9 76.8 85.7 2.0 9.9

4.3.1 Ablation about components

To validate the effectiveness of each component, we con-
duct the ablation experiments with the 1k-A test split on the

Table 3 Results of text-to-video retrieval on the LSMDC

Model Text-to-video retrieval

R@1 R@5 R@10 MdR MnR

CT-SAN [51] 5.1 16.3 25.2 46.0 –

CE [4] 11.2 26.9 34.8 25.3 96.8

Frozen [6] 15.0 30.8 39.8 20.0 –

STG [52] 10.3 23.1 33.9 28.0 65.9

JS-Fusion [53] 9.1 21.2 34.1 36.0 –

MMT [3] 12.9 29.9 40.1 19.3 75.0

HiT [7] 14.0 31.2 41.6 18.5 –

BridgeFormer [8] 17.9 35.4 44.5 15.0 –

CLIP4Clip [17] 22.6 41.0 49.1 11.0 61.0

CAMoE [32] 22.5 42.6 50.1 – 56.9

TS2-Net [21] 23.4 42.3 50.1 10.0 56.9

QB-Norm [54] 22.4 40.1 45.9 11.0 –

LSECA 23.4 43.1 50.4 10.0 56.0

MSR-VTT 1K validation set. The results are shown in Table
4, andwe obtain some important observations:Wefirst inves-
tigate the impact of Visual Local Semantic Enhancement
(VLSE) module. The global video embedding is utilized
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Table 4 Component-wise evaluation of our framework on the MSR-VTT 1K validation set

Method Text-to-video retrieval Video to text retrieval

R@1↑ R@5↑ R@10↑ MdR↓ MnR↓ R@1↑ R@5↑ R@10↑ MdR↓ MnR↓
Baseline 44.5 71.4 81.6 2.0 15.3 42.7 70.9 80.6 2.0 11.6

+ fine-grained match 45.8 72.6 83.0 2.0 13.6 45.3 73.0 82.2 2.0 11.5

VLSE TLSE CA

� 46.7 74.3 82.5 2.0 12.8 45.6 73.6 82.6 2.0 11.3

� 46.5 72.9 82.8 2.0 14.0 45.8 74.0 82.8 2.0 11.1

� � 47.0 73.6 83.6 2.0 13.6 45.4 72.8 83.1 2.0 11.8

� � � 47.1 74.9 82.8 2.0 14.9 47.5 75.4 83.4 2.0 12.3

The baseline method is the CLIP4Clip-seqTransf [17], which only use the global features to calculate similarity between video and text. The “+
fine-grained match" is to retrieve videos based on the baseline using the original fine-grained features following the same fine-grained similarity
computation method to validate the effectiveness of our LSECA components

to assist frame-level features for obtaining more semantic
information. Similar to obtaining a synopsis, we use it to
adaptively enhance the semantic information of the sampled
frame features, which can be associatedwith entities, actions,
backgrounds, and other information in the synopsis. From
the experimental results in Table 4, it can be seen that our
proposed enhancement module significantly improves the
retrieval performance. Furthermore, we conduct experiment
to testify the impact of Textual Local Semantic Enhancement
(TLSE) module. In a real-world scenario, for videos, we tend
to summarize their content, but for text, we are more inclined
to extract its key points due to the heterogeneity between the
twomodalities. Therefore,we extract keywords to guide fine-
grained features of the text towards the semantic center. Not
disappointing our expectations, the experimental results in
Table 4 also fully support our design. In addition, we simulta-
neously enhance both video and text features to achieve better
retrieval performance. Finally, due to the fact that videos
represent more content than text, to retrieve more accu-
rately videos, we also consider the interaction between two
modalities and propose the Cross Aggregation (CA) module
based on the corresponding text. The results show that our
model achieves the better performance. It demonstrates that
the three parts are beneficial for semantic enhancement and
cross-modality interaction.

4.3.2 Effect of the number of keywords

The k controls the size of keywords features {w′
1, w

′
2, w

′
3, ...,

w
′
Nk

}. We start with a small size and increase it to large ones.
In Table 5, overall performance improves and then decreases.
By analysed, on the one hand, we find that fewer keywords
limit the ability to enhance fine-grained features. On the other
hand, the guidance ability of keywords decreases as the size
increases. From Table 5, We set the keywords size k = 5 to
achieve the better performance in practice.

Table 5 Ablation studies for the number of Keywords k on the MSR-
VTT 1K validation set

The number Text-to-video retrieval

R@1 R@5 R@10 MdR MnR

k = 1 45.7 73.1 83.1 2.0 14.3

k = 3 46.3 73.8 82.4 2.0 15.1

k = 5 47.1 74.9 82.8 2.0 14.9

k = 7 46.9 74.2 82.6 2.0 14.6

4.3.3 Effect of different visual local semantic enhancement
strategy

As shown in Fig. 5, we design four fusion schemes for frame-
level semantic enhancement. To investigate the effect of the
four fusion structures, i.e. “Sum + Trans", “Concat + Trans",
“Sum + LSTM" and “Concat + LSTM" on retrieval perfor-
mance, we perform some ablation experiments to compare
themwith each other in Table 6. “Sum"means that each fine-
grained frame feature is added to the global video feature to
obtain the combined features. “Concat" denotes to cascade
the frame features with the video feature to obtain a longer
feature which the dimension is 1024. “Trans" and “LSTM"
means the fusion network structures which can fuse pro-
cessed features thus achieving local semantic enhancement.
From Table 6, we summarize the following observations: 1)
When we use simple approach, Sum, compared to the Con-
cat Obtains poor retrieval results. This may be because our
goal is to use global features as anchors to guide semantic
enhancement, yet the Sum operation causes two features of
the same dimension to be confused together, damaging the
original semantic information, resulting in poor retrieval per-
formance compared to Concat. 2) From Table 6, we can also
find that using LSTM for semantic enhancement can achieve
better retrieval results compared to Transformer. By analyz-
ing LSTM, Transformer, and input features, concating the
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Fig. 5 Illustration of four fusion strategies. “Sum" and “Concat" repre-
sent the combination solutions between fine-grained frame features and
global video feature. “LSTM" and “TransFormer" the two feature fusion

architectures we apply. The effects of different combination solutions
and fusion architectures on local semantic enhancement are analyzed
experimentally

Table 6 Ablation studies for the different visual local semantic
enhancement strategies on the MSR-VTT 1K validation set

The number Text-to-video retrieval

R@1 R@5 R@10 MdR MnR

Baseline 44.5 71.4 81.6 2.0 15.3

Sum + Trans 44.7 71.1 81.2 2.0 15.4

Concat + Trans 46.3 72.8 82.6 2.0 15.1

Sum + LSTM 45.1 72.2 82.1 2.0 14.2

Concat + LSTM 47.1 74.9 82.8 2.0 14.9

Table 7 Ablation studies for the adapter-awaremodule and the adaptive
weights on the MSR-VTT 1K validation set

Method Text-to-video retrieval

R@1 R@5 R@10

w/o adapter-aware module 46.9 72.4 82.8

w/o �(·) and �(·) 46.5 73.1 82.6

LSECA 47.1 74.9 82.8

features can enhance the increase in frame level feature sim-
ilarity, while Transformer, based on key, Query, andValue for
temporal interaction. As a result, the results of the semantic
enhancement effect does not align with initial expectations,
and it is not as effective as LSTM. In summary, the experi-
mental results show that proper fusion strategybetweenvideo
and frame features can obtain better fine-grained representa-
tions.

4.3.4 Effect of the adapter-aware module and the adaptive
weights

In Table 7, we testify the impact of the adapter-aware
module in visual LSE module and adaptive weights in
the Eq.9. There are decreases in overall performance after
removal. Specifically, after removing the adapter awaremod-

Table 8 Ablation studies for the cross-attention module in textual LSE
module on the MSR-VTT 1K validation set

Method Text-to-video retrieval

R@1 R@5 R@10

Replaced with Transformer 45.8 72.0 81.9

LSECA 47.1 74.9 82.8

Fig. 6 Effect of the trade-off hyper-parameters α on MSRVTT 1K
validation set

ule, R@5 decrease from 74.9% to 72.4%. And without
adaptive weights, R@1 also decreased by 0.6%. Therefore,
these two parts are helpful for representation learning as well
as cross-modal alignment.

4.3.5 Effect of the cross-attention module in textual LSE
module

As shown in Table 8, we further compare our method with
other interaction methods. For the transformer, we cascade
the word and keyword features, input them into the trans-
former, and output them as enhanced local text features.
From the experimental results, we can see that the values of
R@1, R@5 andR@10 degrade to some extent. Our approach
improves the representation of textual local features and
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Fig. 7 Our top-3 text-to-video
retrieval visualization results on
MSR-VTT. And we also
visualize the other
state-of-the-art
methods(UATVR [46] and
UCOFIA [42])

Query: a girl and a man are talking to each other.

Videos Keywords

girl

man

talking

Ours

Similarity

UATVR UCOFIA

31.65

29.11

30.89 29.65

27.54

29.29 30.20

29.85

30.02

obtains good retrieval performance by using keyword fea-
tures as queries and reassigning semantics in word features
through a cross-attention mechanism.

4.4 Parameter sensitivity analysis

The hyper-parameter α is used to trade off Scoarse and S f ine

in Eq.10. Intuitively the matching scores of different granu-
larity featuresmay contribute differently to the final retrieval.
So we conduct experiments with the value range setting
α ∈ [0.2, 0.8] as shown in Fig. 6. And we can observe that
our proposed LSECAachieves the best retrieval performance
when α = 0.6 is adopted.

4.5 Qualitative analysis

To visually validate the effectiveness of our proposed
LSECA, we show a typical text-to-video retrieval example
in Fig. 7 and make the comparsion with the UATVR [46] and
UCOFIA [42]. Our model can find the correct video based
on keyword guidance from similar videos. The similarity
between the third video and query calculated by UATVR
[46] is highest, leading to incorrect retrieval results. Although
UCOFIA [42] retrieves the correct video, it did not dis-
tinguish well between hard negative pairs. Local semantic
enhancement makes it possible to find key information about
videos and text, and cross aggregation aids in the process of
information filtering. Thus, LSECA performs well in visual
and textual content understanding, achieving good retrieval
results.

5 Conclusion

In this paper, we have proposed a new framework LSECA
which not only considers the interaction between twomodal-
ities but also enhances the fine-grained video and text
representations. For the heterogeneity between video and
text, we have proposed different local semantic enhance-

ment schemes, which utilzies global embedding of the video
and keywords of the text as anchors to guide fine-grained
features to highlight semantic information. Moreover, we
have also designed the cross interaction module for frame
and text features, which can achieve sufficient interac-
tion between two modalities. Experiments have shown that
LSECA achieves significant improvements on three standard
text-video retrieval datasets, verifying the effectiveness and
generalization of our proposed method. In this paper, the
design of the semantic enhancement module for text embed-
ding is slightly simplistic, and the keywords can bring much
more than that to the retrieval task, we are working towards
this direction in our future work.
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