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Abstract
Human action recognition (HAR) emphases on perceiving and identifying the action behavior done by humans within an
image/video. The HAR activities include motion patterns and normal or abnormal activities like standing, walking, sitting,
running, playing, falling, fighting, etc. Recently, it sparks the attention of researchers especially in 3D skeleton sequence. The
actions of human can be represented via sequence of motions of skeletal keyjoints, although not all the skeleton keyjoints
are informative in nature. Various approaches for HAR are used like LSTM, ConvLSTM, Conv-GRU, ST-LSTM, etc. Thus
far, ST-LSTM approaches have shown tremendous performance in 3D skeleton sequence tasks but the detection of irrelevant
keyjoints produce noise that deteriorates the performance of the model. So, the intent is to bring attention toward improving
the efficacy of the model by focusing on informative keyjoint coordinates only. Therefore, the research paper introduces a
new class of spatiotemporal LSTM approaches named as ConvST-LSTM-Net (convolutional spatiotemporal long short-term
memory network) for skeleton-based action recognition. The prime focus of proposed model is to identify the informative
keyjoints in each frame. The result of extensive experimental analysis exhibits that ConvST-LSTM-Net outperforms the
state-of-the-art models on various benchmarks dataset, viz. NTU RGB + D 60, UT-Kinetics, UP-Fall Detection, UCF101,
and HDMB51 for skeleton sequence data.
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1 Introduction

Human action recognition has turn out to be a prominent &
diligent research area in computer vision and image process-
ing, which includes classification and recognition of normal
& abnormal human activities of daily routine. It belongs
to the automated recognition of human activity (normal &
abnormal) in various application areas via analyzing the
sequence of observations. Nowadays, crowded places with
normal and abnormal activities are familiar due to popula-
tion increase that turn toward suspicious activities. So, HAR
has become an essential part in the automatic interpretation
of human environment interaction in various online-offline
applications such as auto-driving, intelligent surveillance
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[1–5], smart-gadgets analysis [6], object detection & track-
ing [7], video retrieval [8], and assisted daily living. Other
HAR applications firmly coupled with the daily activities
such as motion analysis [9–12], pose motion analysis [13,
14], health monitoring [15], classification or detection of
actions or motions [16], and understanding human action
behavior [17]. By recognizing and analyzing the human
actions from the videos, one can clearly distinguish between
normal and abnormal behaviors that can make significant
improvements in public safety. Withal, HAR remains an
ambitious challenge due to its clutter backgrounds, slight
interclass segregation, and wide intra-class deviation. The
main thing to recognize high accuracy & efficiency is to
conquer both static appearances within each frame of the
videos as well as temporal relationships throughout the mul-
tiple frames generated via videos. Some applications such as
monitoring suspicious detection and early reporting for fall
detection are also considered in human activity recognition.
However, various techniques are there for the representa-
tion of human action based on motion, such as RGB-based
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videos [18–20], RGBD-based videos [21–24], and skeleton-
based videos [25–30]. Skeleton-based action recognition has
become more prominent in recent times as it offers a focused
and concise approach. The representation of human skele-
tons in videos typically involves a series of joint coordinates,
which can be obtained through pose estimators or action pre-
diction methods. By focusing solely on the action poses and
disregarding contextual factors like background variations
and lighting changes, skeleton sequences provide a compact
and robust way to capture action information. On comparing
these techniques, all the skeleton-based methods represent:
(i) human motion via 3D coordinates positions for key-body
points and (ii) are more robust to problems like variations of
background clutter, observation viewpoints, illumination or
intensity conditions, and so on. These advantages of skeleton
motion sequences motivate researchers to develop new tech-
niques for exploring informative features for human action
recognition. These methods are gaining utmost importance
in HAR since skeletons represent a compact sequence of
data forms that depict dynamic motion within human body
movements [31]. In respect of annotation, i.e., capturing
the effective motion action representation from several unla-
beled skeleton samples, manual annotation founds to be very
expensive and challenging, nonetheless an unexplored area.
These days, sensors are used for collecting data for their
low-cost and high mobility. Some approaches are used for
tracking and calculating the skeleton keyjoints with feature
invariant to human key-body points, observation point, cam-
era viewpoint, and so on.

Some approaches are used for tracking and calculating the
skeleton keyjoints with feature invariant to human key-body
points, observation point, camera viewpoint, and so on. The
skeletal features within the human body are responsible for
recognizing all the normal & abnormal activities. Besides
this, they have also been used for evaluating (some activities
such as falling, discriminating between jogging and running)
the variation in the keyjoint coordinates between the center
mass of the body, acceleration motion, velocity motion, for
movement: angles between the keyjoint points within the
skeleton. Some new methods like ST-LSTM and ST-GCN
(spatiotemporal graph convolution network) are practices to
extract these features also. The movement of body parts and
the execution of various actions are made possible by the
human skeletal system. When it comes to data modality, the
use of skeleton-based information aligns with the structure
of the human anatomy, which enhances the interpretability of
ConvLSTM learning. This modality specifically focuses on
3D coordinates of keyjoints in the human body. By analyzing
these skeleton sequences, themodel is capable of recognizing
and understanding human movements. Another advantage
of the skeleton modality is its emphasis on privacy, as it is
considered to be more privacy-friendly compared to other
modalities.

In this work, the prime objective is to efficiently combine
the important cues in CNN (convolutional neural networks),
and LSTM using spatiotemporal data with skeleton-based
recognition approaches call up as ST-LSTM. Here, a set
of extracted skeleton features in conjunction with skele-
tal keyjoint is fed as input to the model. The skeletal
tracking algorithmswere used for detecting the keyjoints fol-
lowed by the feature extraction that has been done through
RGB frame data (extracted from videos) for improvising
the efficiency of model. Some standard features, like angle
between the keyjoint coordinates, velocity motion, accelera-
tion motion, and human body position of the center of mass,
formovement: angles between the joint key points, have been
extracted from keyjoint coordinates of the human skeleton.

Once the feature extraction is done along with preprocess-
ing thereupon, the preprocessed data are feed to the model,
consisting of 17 extracted features among 25 skeleton coordi-
nates. The overall pipeline of proposed ConvST-LSTM-Net
model is illustrated in Fig. 1. The model exploits a spa-
tiotemporal network consisting of CNNs, ST-LSTMs& fully
connected dense layers. The model first detects the skeleton
keyjoints of the persons using the skeleton-based recognition
method. These keyjoints are fed to the CNN layers, followed
by ST-LSTMs for the extraction of spatial–temporal features.
Then, output from a hidden layer of ST-LSTMs is passed via
FC dense layer (fully connected) for classification.

The key contributions of the research work can be sum-
marized as follows:

1. A spatiotemporal ConvST-LSTM-Net model has been
proposed that utilizes human body keyjoint coordinates
from skeletal data obtained from RGB videos. The
keyjoints are fed as an input to CNN layers for extracting
the spatial–temporal features followed by ST-LSTM and
output is passed to the time-distributed FC dense layer.

2. Motivated by the advances in CNN, ConvLSTM, and
ST-LSTM, we have seamlessly combined the ideas of
these models and integrated them to propose a new
paradigm for skeleton-based action recognition termed
as ConvST-LSTM-Net. The model brings the attention
toward improving the efficacy by focusing only on infor-
mative keyjoint coordinates.

3. Among 25 keyjoints, a set of 17 extracted skeleton fea-
tures along with 21 skeleton keyjoint coordinates are fed
to the model as not all the skeleton keyjoints are infor-
mative in nature for recognizing the action classes.

4. The proposed ConvST-LSTM-Net model shows better
performance in comparison to the existing models by
using different modalities over various benchmarks, viz.
NTURGB +D dataset [32], UT-Kinect dataset [33], UP-
Fall Detection [34], UCF101 [35], and HDMB51 dataset
[36].
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Fig. 1 Process informatics pipeline of ConvST-LSTM-Net. At first, the
video frames are passed through the skeleton-based recognition feature
method to extract the skeleton keyjoint coordinates. Then, the obtained
keyjoint coordinates are fed to a modified ST-LSTM cell followed by

ST-LSTM layers to evaluate the spatiotemporal feature. Further, the
outputs are passed to FC dense layers. Ultimately, SoftMax shows the
framewise prediction scores of human action behaviors

The rest of this paper is systematized as follows: Sect. 2
describes an overview of relevant studies available in lit-
erature. Section 3 briefly introduces the key terms and
techniques along with the proposed methodology. Section 4
shows the experimental results and analysis. At last, the
Sect. 5 discusses about the conclusion and future perspec-
tive.

2 Related work

This section briefly discusses the work related to skeleton-
based RNN, LSTM & ST-LSTM for human action recogni-
tion.

2.1 Skeleton-based action recognition

Earlier, conventional skeleton-based recognition in the HRA
modal aimed at the handcrafted features [37, 38], a well-
knownmethod for describing and classifying image features.
However, it fails to classify the adequate semantic-labeling
information of the human body. Deep learning approaches
such as convolutional neural networks (CNNs) [39–43],
recurrent neural networks (RNNs) [44–49], and graph con-
volutional networks (GCNs) [50] have achieved the exotic
performance for learning more informative features about
skeleton sequence, which helps in HAR learning. Many

works have been introduced to achieve high performance
of the skeleton sequence model. Li et al. [41] introduced a
framework on convolutional co-occurrence feature learning
that gradually works on hierarchical methods to aggregate
contextual information on various levels. Vemulapalli et al.
[37] designed a rolling map based on relative 3D rotations
among different human body parts. Liu et al. [44] elongate
RNN-based technique into the spatial–temporal model for
revisiting the result based on the action-related performance
of human action. Zhu et al. [43] introduced a cuboid-CNN
in skeleton actions, ultimately concluding a human’s normal
keyjoint movements. Zhang et al. [51] implemented a view-
adaptivemodal for auto-regulate angle viewpoints during any
motion action & obtaining different viewpoint observations
of human actions. However, for skeleton sequences, these
models fail to extract the temporal–spatial correlation config-
urations& even fail to explore the graphical aspects of human
body structure. Due to the popularity of graph-based tech-
niques, Yan et al. [52] introduced an approach based on GCN
for the skeleton-based HAR, then introduced the ST-GCN
method for featuring the spatial& temporal dynamics config-
uration of keyjoint skeletons of humans synchronously. Song
et al. [53] worked on solving the occlusion issues and imple-
mented multi-stream GCN for extracting qualified features
for activated skeleton keyjoints in human action. Further-
more, they proposed a non-local technique [54] by using
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2-stream GCN approach: 2 s-AGCN for improving recog-
nition accuracy. Also, Shi et al. [55] worked on GCN fusion
feature and proposed themulti-stream architecture at the out-
put layer. Cheng et al. [56] worked on shift operation based
on graph and used the point-wise convolutions connected
layer for lowering its computational complexity. Ye et al. [57]
introduced novel work on DGCN (dynamic graph convolu-
tional network), an approach used for skeleton-based action
recognition under 2-stream-AGCN, which features global
dependency via achieving preeminent accuracy. Zhang et al.
[58] also work on GCN in the spatial attentive–temporal
dilated network for feature extraction in skeleton frame
sequences using distant spatial attention weights and tempo-
ral scales. In 2-Stream network, Shi et al. [59] confiscated on
bones, i.e., bone stream and joint stream, but entirely inde-
pendent of each other. Furthermore, directed graph neural
networks (DGNNs) [60], graph edge convolutional neural
networks (GECNNs) [61] were introduced, which depict the
relation among joints-bones in terms of action, but they fail
to represent the various methods to combine features in the
motion action transmission field.

2.2 Skeleton-based action recognition using LSTM’s
and RNN’s approaches

Currently, the deep learning areamainly focuses on recurrent
neural network (RNN)-based techniques, since it manifests
its growth in skeleton-based action detection. In ConvST-
LSTM network, the basic principle of this proposed model
is familiarized from the ST-LSTM approach, i.e., a sequen-
tial fusion of CNN followed by the spatiotemporal method
with LSTM is also known for the extension version of
RNNs. In this subsection, a brief survey is provided on RNN
approaches and LSTM approaches since they are the basic
building blocks of the proposed methodology. Veeriah et al.
[62] worked on LSTM and introduced a differential gating
method to affirm the rate of information change. Du et al.
[63] work on the HRNN network (hierarchical recurrent
neural network) approach for depicting skeleton structure
of human body along with its temporal dynamics coordi-
nates for keyjoints in 2D. In LSTM network, Zhu et al. [64]
implemented a mixed regularization technique for normal-
ization toward learning the co-occurrence of skeletal joint
features. Meanwhile, they introduced a network for trained
termed as ‘in-depth-dropout mechanism.’ Shahroudy et al.
[32] worked in LSTM to learn long-term contextual rep-
resentations of different body parts individually termed as
part-aware LSTMmodel. Liu et al. [44, 65] intended a frame-
work network based on 2D spatiotemporal LSTM for both
temporal and spatial domains to explore the hidden input
layer’s information-related context in the human body. For
3D coordinates of skeletal joints, they proposed a ‘trust-
gate-mechanism’ [44] to trade on imprecise 3D-coordinates

inputted via depth sensors devices. Nowadays, skeleton-
based action RNN and LSTM approaches also adapt toward
action forecasting and detection [66, 67].

3 ConvST-LSTM-Net: the proposed
methodology

This section briefly canvasses crucial terms and approaches
used in proposed ConvST-LSTM model that is divided into
three models, namely CNN, ST-LSTM, and ConvST-LSTM-
Net. The proposed methodology has been executed with the
review of CNN along with the construction of skeleton body
with coordinates and ST-LSTM, respectively.

Initially for dataset preparation, the human body frames
from raw RGB videos are used to train the network and
meanwhile track the 3D skeleton jointkey coordinates. For
preprocessing, the 3D joint normalization method is applied
that is helpful in making a bounding box above the tracked
human body. Some features have been extracted for deter-
mining different activities, features such as velocity motion
(ν), acceleration motion (a), weight (w), depth (), height
(H), angle (θ ) within the consecutive skeleton joints, etc.
After training, the feature extraction is done for input
human activity behavior. Following subsections elucidates
the whole network architecture of the ConvST-LSTM-Net
model.

3.1 Keypoint detection and preprocessing

In preprocessing technique for RGB videos, the frames are
inputted into the ST-LSTM network to evaluate the keyjoint
locations of human body frames from skeleton coordinates.
Figure 2 represents the 25-skeleton keyjoint coordinates,
which have been tracked at each joint. Only 17 skeletal
keyjoints are covered (since they are the informative skeletal
keyjoints to specify the normal and abnormal human activ-
ities) and these are the right knee, right hip, left knee, left
hip, left foot, left ankle, right foot, right ankle, head, spine
mid, left wrist, spine base, right shoulder, left shoulder, right
wrist, right elbow, and left elbow. Each frame tracked the
human skeleton comprising X, Y, Z coordinates of human
body keyjoints. After getting the 3D skeletal coordinates,
normalization technique has been applied on 3D keyjoints
to generate bounding boxes over the tracked human skele-
ton, which may vary as per the person’s movement in the
video.

Afterward, a feedforward network has been used based on
a multi-CNN layer followed by ST-LSTM that takes input in
the form of keyjoints coordinates from video frames using
skeleton-based recognition. It learns the affiliation among the
body parts of individuals within the frames. Table 1 presents
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Fig. 2 The 25-skeleton keyjoints for the human body track detection and preprocessing

Table 1 Detail of tracked skeletal keyjoint coordinates, derived fea-
tures, and action class

Label Description

Skeleton
keyjoints

Right Hip, Left Hip, Left Foot, Right
Foot, Right Knee, Left Knee, Right
Ankle, Left Ankle, Head, Right Wrist,
Left Wrist, Right Shoulder, Left
Shoulder, Left Elbow, Right Elbow,
Spine mid, Spine Base

Derived
features

� θ ,ν,α, hd, d,w,H(Geometric &
Kinematic features)

Action class Sit, Stand, Walk, Run, Stand

the details of tracked skeletal keyjoints, a set of derived fea-
tures, and action class. In this work, for normalizing the
convergence of loss function, minimum–maximum normal-
ization technique (i.e., min–max norm) has been used. Here,
X indicates the training dataset, then normalization can be
achieved as:

Xnoramlize � X − Xmin

Xmax − Xmin
(1)

3.2 Construction & evaluation of feature vector:
geometric & kinematic features

The skeleton keyjoint coordinates are used for constructing
and calculating features vectors. The keyjoints coordinates
of the human body that are tracked for different activities
of humans are actually decided by using feature vectors. For
particular activities, different features are utilized. These fea-
tures and their evaluation are as follows:

� θ (Angle between keyjoints of skeleton coordinates):
Among 25 keyjoints coordinates, we consider those coor-

dinates which are connected via straight line and then a
skeleton structure of tracked human body is drawn using
these coordinates as shown in Fig. 3. Accordingly, only 10
keyjoint comes out to be the most relevant ones, viz. left
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Fig. 3 Illustration for calculation of angle from the left side of the skele-
ton between left shoulder, neck, and mid-hip

shoulder, spine mid, right shoulder, spine base, left knee,
right knee, left hip, right hip, left ankle, and right ankle are
used for calculating the value of angle θ . It is the illustration
for evaluating the keyjoint angles between the left shoulder,
neck, and mid hip. If A, B, C are considered as the distance
between the coordinate, then values are formulated as A 1

� x 1 −y 1, B 1 � x 2 −y 2, and C 1 � x 3 −y 3, then θ can
be evaluated as follow:

θ � ABC
AB ∗ BC

(2)

where ABC � (A1 ∗ A2 + B1 ∗ B2 + C1 ∗ C2)

AB �
√
A2
1 + B2

1 + C2
1 and BC �

√
A2
2 + B2

2 + C2
2 (3)

Velocity motion estimation (ν):
Velocity motion is calculated by taking the distance of

positions of humans at time frames t and t + 1 in x, y, z-
dimension. So, velocity of the tracked person is given by:

ν � d
t

(4)

where d indicates distance of the tracked person between
frames and t indicates the frame time.

acceleration motion estimation (α):
The rate of changes of velocity between consecutive

frames in x, y, z-directions at time frame t. It is given by:

α � v

t
(5)

where α is the acceleration of motion of the person. ν indi-
cates the velocity motion of tracked person between the
frames. t indicates the frame time.

Head-floor distance (hd):
It measures the distance between the head keyjoint coor-

dinate & the floor where tracked person’s location found.
Head-depth distance():
The distance measured from first camera view to the adja-

cent object is termed as depth. So, head-depth is calculated
via the head keyjoint’s coordinates in the z-dimension of a
tracked person within the frame.

Width (w):
Width is defined as the difference between maximum of

right-left keyjoint (RjMax − LjMax) coordinates of tracked
person. The extreme left keyjoint width is estimated using
a left elbow, left hip, left knee, left shoulder, left ankle, left
foot, and head keyjoint values. In the same way, the right
extreme keyjoints can be calculated by using all the right-
side keyjoint coordinates. It is calculated as follows:

W � ∣∣RjMax − LjMax

∣∣ (6)

where R j indicates the right keyjoint coordinates, L j indi-
cates the left keyjoint coordinates.

Height (H):
Height is the measure between utmost bottom keyjoints

and utmost top keyjoints of body coordinates. In extreme
bottom, it includes keyjoint coordinates like left ankle, right
knee, left knee, right ankle, right foot, left ankle, left foot, and
right ankle and in utmost top, it includes keyjoint coordinates
like head, right ankle, right elbow, left ankle, left elbow, right
knee, and left knee keyjoints coordinates.

H � ∣∣T j − B j
∣∣ (7)

where Tj indicates the top keyjoint coordinates, Bj indicates
the bottom keyjoint coordinates.

3.3 ConvST-LSTM: the proposedmodel

In this section, the final preprocessed 3Dkeyjoint coordinates
are inputted into the proposed deep learning network. We
have used the sequential fusion of CNNs, Conv-LSTM &
ST-LSTM to propose the ConvST-LSTM network.

3.3.1 Convolutional neural network architecture

Initially, the human action recognition has been executed by
applying CNNs approach [68]. Consider, X0

t � [X1, X2,
X3, . . . . . . . . . . . . , Xn] as the input vector, where n indicates
the input samples and output of convolutional layers can be
defined as follows:

Cl , j
i � σ

(
Bj +

M∑
m�1

W j
m ∗ X0, j

i+m−1

)
(8)
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here l corresponds to an index of convolutional layer; σ

depicts the nonlinear sigmoid-activation function; whereas
B represents the bias vector corresponds to jth feature-map;
filter size of CNN is indicated by M; indicates the weight
metrics for the jth feature map is indicated byW j

m ;mth is the
filter index.

The input frames in the proposed model consist of three
input channels, namely sequences, keyjoint, and coordinates,
which resemble to the x, y, and z directions, respectively.
Each input frame has a resolution of 125 × 25 × 3 pixels
and contains information about the movement sequences,
keyjoint positions, and spatial coordinates. In convolution
layer, 6 filters are passed together with configured size of ker-
nel, padding, and SoftMax functions in the hidden layer in
order to avoid the vanishing gradient problem. Max-pooling
is used as a pooling operation to estimate themaximum value
for feature map, and diminish the processing time by reduc-
ing the dimensionality of the frame. Then, output from the
hidden layer has passed to FC dense layers. Finally, SoftMax
function shows the prediction score of the action classes.

3.3.2 Spatiotemporal LSTM

Before moving to ST-LSTM, let’s recap LSTM [69], which
consists of 3 memory cells (gates) and escape the vanishing
gradient issue. These are: (a) forget cell: a binary gate that
decides how much information to pass through. (b) Input
cell: decides whether the current information can be stored in
the unit cell and (c) Output cell: contains sigmoid-activation
gate, which decides which information to show as output.
Lastly, the tanh layer is used to pass the cell state and further
multiply it with the final output obtained from the output cell.

The equations which define the activity of each cell can
be formulated as follows:

i t � σ (WXi X t + WHi Ht−1 + WCi Ct−1 + Bi ) (9)

f t � σ (WX f X t + WH f H t−1 + WC f Ct−1 + B f ) (10)

ot � σ
(
WXoXt + WHoHt−1 + WC f Ct + Bo

)
(11)

Ct � f tCt−1 + i t tanh
(
WXcXt + WHc Ht−1 + Bc

)
(12)

Ht � ot tanh(Ct ) (13)

here, W i, W f, Wo indicates weight matrices of forget (f ),
input (i) and output (o) gates, respectively; Xt ∈ input fed to
LSTM cells unit at t time; σ depicts the sigmoid-activation
function, whereas tanh depicts the hyperbolic-tangent func-
tion (both nonlinear functions); Ct indicates memory cell
state within the LSTM. Bi, Bf, Bo, and Bc indicates the bias

Fig. 4 Illustration of ST-LSTMcell [44]. For spatial domain, the skeletal
keyjoints in each frame are aligned & feed sequentially. For temporal
domain, the skeletal keyjoints are feed sequentially over the frames

vectors on forget, input & output gates, and memory cell
c, respectively. Internal frame input keyjoint coordinates of
each cell in the ST-LSTM model are represented in Fig. 4.
The skeletal keyjoints are arranged in spatial direction and
input as a chain whereas the corresponding keyjoints are
inputted over various frames for temporal direction sequen-
tially. Especially, each ST-LSTM cell is feed for a new input
(x j , t ), where x ∈ new input feed for 3D position of body
keyjoint j in frame time t, the hidden layer (h j , t−1) of the
same keyjointj and the hidden layer (h j−1, t ) for the previ-
ous keyjoint j-1 in same frame t, here j indicates the indices
of keyjoint, i.e., j ∈ {1..j..J} and t indicates the indices of
frames, i.e.,t ∈ {1,..t..,T},. An ST-LSTM unit cell consists of
an input cell (i j , t ), 2-forget cells correspond to the sources of
context information, i.e., temporal dimension ( f Tj , t )& spatial

domain ( f Sj , t ), in conjunction with an output gate (o j , t ).
The equations for ST-LSTM are formulated as introduced

in [44]:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i j , t

f (S)j , t

f (T )j , t

o j , t

u j , t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

⎛
⎜⎜⎜⎜⎜⎜⎝

σ

σ

σ

tanh

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝W

⎛
⎜⎜⎜⎝

x j , t

h j−1, t

h j , t−1

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠ (14)

C j , t � i j , t � u j , t + f (S)j , t � c j−1, t + f (T )j , t � c j , t−1 (15)

h j , t � o j , t � tanh
(
c j , t

)
(16)

where c j , t indicates the cell state; h j , t indicates the hidden
input layer in ST-LSTM unit at the spatiotemporal steps for
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keyjoint j and frame time t; themodulated input frame is indi-
cated by u j , t ; � represents framewise product for each unit
and W indicates an affine transformation within the weight.

3.3.3 ConvST-LSTM-Net architecture

Several works [53, 54] have demonstrated that each action
sequence has a subset of informative keyjoints. In con-
trast, some keyjoints may be irrelevant in order to recognize
the action classes with proper information. Therefore, for
obtaining high accuracy in human action recognition the
informative skeletal keyjoints have been identified while
focusing on their features vector. At the same time in order
to recognize human behavior, we must preferentially con-
centrate on the informative keyjoints (coordinates for feed),
ignoring the features of the irrelevant keyjoints.

This model has been executed by taking a sequential
fusion of CNN, ST-LSTM (combination of LSTM and spa-
tiotemporal based recognition), and FC layers. Here, CNNs
are pre-owned for feature extraction, ST-LSTMs are used
in sequence prediction for spatiotemporal feature extraction,
and the features dense layers are used for mapping. For clas-
sification, the outputs from CNN’s hidden layer are fed to
the ST-LSTM layers and then GAP (Global Pooling Layer)
is used to flatten the data followed by FC layers within the
model.

The transformation equations for ConvST-LSTM-Net can
be given as:

F
(T )
j , t � σ

(
WXF

X j , t + WHF
H j , t−1 + BF

)
(17)

F
(S)
j , t � σ

(
WXF

X j , t + WHF
H j , t−1 + BF

)
(18)

Ĩ j , t � σ
(
WX Ĩ

X j , t + WHĨ
H j , t−1 + B Ĩ

)
(19)

Õ j , t � σ
(
WX O Xt + WH O Ht−1 + Bo

)
(20)

C j , t � f j , t C t−1 + i j , t tanh(WXcX t + WHcH j , t−1 + Bc

(21)

u j , t � tanh(WXu ∗ Xt + WHu Ht−1 + Bu (22)

Ht � ot � tanh(Ct ) (23)

where Xj,t , Cj,t , Hj,t , Fj,t , I j,t indicates inputs states, cells
states, hidden states, forget cells, input cells for keyjoint j in
frame time t; ut input modulation gates and Õt is the output
cells; Ct is the memory cell used for aggregating the states
information controlled by the cells. Figure 5 depicts about
the ST-LSTM layer for each unit cell.

Fig. 5 The ConvST-LSTMnetwork for ST-LSTM layer in each unit cell

Model training ConvST-LSTM-Net was trained on the
frame samples obtained from the videos, keypoint recog-
nition, followed by the fusion of spatiotemporal model
consisting of ConvLSTMs. The model was trained on 150
epochs on a machine having AMDRyzen7 5800H processor,
8 GB RAM, and Graphics: NVIDIA GeForce RTX 3050 M,
GPU, having a learning rate of 0.001 after repeated hyperpa-
rameter tuning.

For setup,KerasAPI version 2.3 of Python alongwithTen-
sorFlow version 2.3.0 has been used in the backend to build
the spatiotemporal model. To increase the code’s reusability
and readability, some helper functions are initially defined
from the python libraries. Along with an optimum value has
been set for the user-defined hyperparameters like size, no.
of layers, iteration, epochs, no. of batch sizes, and learning
rate. The training sample data with various batch size is feed
to the model and get trained over 150 epochs. In first time-
distributed CNN layer, we use 32 filters with kernel size 3
and its output is then regularized to attain faster convergence.
Then, max-pooling is added to reduce computational costs.
Dropout layer benefited to avoid the overfitting where 50%
of weights are dropped randomly. For next time-distributed
CNN layers, different size of filters is practices after perform-
ing feature extraction, we apply an additional dropout layer
with a rate of 40%. At step 3, we use GAP layer through
which the output of CNN layer is flattened to 1*56 dimen-
sion.

Further, ST-LSTM is used to handle the sequential action
data of the tracked person’s keyjoints coordinates. The ST-
LSTM layer’s output is passed to the time-distributed FC
dense layer. At last, SoftMax layer gives the framewise
probabilities for each action classes. The architecture of the
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Fig. 6 Block architectural diagram of ConvST-LSTM-Net model for
human action recognition. Starting from left side, the input frames
clipped from videos; time-distributed convolutional layers including

max-pooling, GAP, ST-LSTMs, FC dense layer followed by SoftMax
function layer that results as a prediction of action

proposed ConvST-LSTM model is illustrated in Fig. 6. Fur-
ther, Adam optimizer is help in optimizing the cost function
and uses gradient clipping within the code. The hyperpa-
rameters such as checkpoint-path, saver-function, epochs,
iterations, filter size, kernel size, and test & train data have
been set for training purpose. Moreover, the proposed model
utilized the stopping criteria with the value of 50. That means
the training will be terminated only if there is no improve-
ment in the monitor performance measure for 50 epochs or
iterations in a row. This helps to prevent the entire model fall
in to local optima. It has been found that the performance is
excessively upgraded by using a sequential way.

4 Experimental results and analysis

This section discusses about the implementation trait of
the proposed model on various benchmarks with its train-
ing hyperparameters. We has evaluate the performance of
ConvST-LSTM-Netmodel on three publicly available bench-
marks, i.e., the NTU RGB + D 60 dataset [32], UT-Kinect
dataset [33], UP-Fall-Detection Dataset [34], UCF101 [35],
and HDMB51 dataset [36] for skeleton-based data.

4.1 Experiments on NTU RGB + D 60 dataset

The NTU RGB + D60 [32] is publicly available dataset used
for human action recognition consisting of total 56,880 sam-
ples having 60 activity classes collected over 40 subjects in it.

In this dataset, activities are classified into three categories
having 40 daily living activities (drinking, standing, read-
ing, happing, etc.), 9 medical conditions-related activities
(sneezing, staggering, falling, vomiting, etc.), and 11 com-
mon activities (punching, kicking, hugging, etc.) based on
multimodal information of the daily action characterization,
along with 3D skeletal keyjoint, RGB-videos, masked-depth
maps, full-depth maps, and infrared sequences data. The
annotations provide the 3D location in x, y, z-dimension of
each keyjoint in the camera coordinate system. It has total
25 key points per subject and each clip has 2 subjects. The
evaluation has done on two protocols: Cross-Subject (CS)
and Cross-View (CV).

For performing experiments, we choose 5 action classes
(Stand, Sit, Run, Walk, Fall) contains 150 clips in each class.
The two benchmarks for evaluation are set as: (1) Cross-
subject (CS) contains 400 clips from 5 subjects, used for
training; and the 100 clips for validation. (2)Cross-view (CV)
contains 450 from 5 subjects used for training and 150 clips
for validation. The proposed ConvST-LSTM-Net model sur-
passes the ConvLSTM network in [68] by 4.3% with the CS
evaluation protocol and 3.1% with the CV evaluation pro-
tocol. This demonstrates that spatiotemporal skeleton-based
recognition approaches in LSTM networks bring significant
improvement. The comparative analysis for the results of
the proposed ConvST-LSTM-Net model with state-of-the-
art approaches is enumerated in Table 2.

The trade-off curves for training accuracy & loss and val-
idation accuracy & loss on the benchmark of NTU RGB +
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Fig. 7 Trade-off curves for model’s Training and Validation Accuracy versus Training and Validation Loss on the NTU RGB + D 60 benchmark
dataset

Table 2 Experimental Results on NTURGB+D 60Dataset for skeletal
sequence data

Methods CS (%) CV (%)

Deep-LSTM [70] 56.3 64.1

ST-LSTM [44] 69.2 77.7

ST-LSTM + Global(1) [71] 70.5 79.5

ST-LSTM + Global(2) [71] 70.7 79.4

Conv-LSTM [68] 76.2 83.2

Conv-GRU [72] 88.9 90.1

LA-GCN [73] 90.9 89.28

TD-GCN [74] 91.82 94.2

SkeletonGCL [75] 89.2 90.3

ConvST-LSTM-Net 91.72 90.5

D 60 dataset for its two-evaluation protocol, i.e., CS and
CV is illustrated in Fig. 7. Training and validation accuracy
increases with time as depicted in Fig. 7a, c and finally, the
growth rate reaches a steady-state value. Figure 7b and d
depict the loss curve, illustrating the gradual decrease of val-
idation loss with increasing epochs. To evaluate the model’s
performance, the weights are saved from the epochs that
achieve the highest validation accuracy. The loss curve is

shown in Fig. 7b and d, which demonstrates how the valida-
tion loss gradually decreases by increasing epoch. For testing,
the weights from the epochs with the maximum validation
accuracy are saved.

4.2 Experiments on the UT-Kinect dataset

The UT-Kinect dataset [34] is publicly available and was
taken through a single stationary Kinect comprised of total
10 subjects that took total 10 action types (walking, stand up,
pick up, carry, sit down, throw, push, pull, wave hands, clap
hands). Each subject performs each action twice. 3-channels
were captured for (i) RGB, (ii) depth, and (iii) skeleton
keyjoint locations. We have only recorded the frames when
the skeleton of human body was tracked. To assess the
proposed method on this dataset, the standard leave-one-out-
cross-validation protocol has been followed. Table 3 provides
the comparative result of the proposed ConvST-LSTM-Net
model with state-of-the-art approaches. The trade-off curves
for the model accuracy and loss on the UT-Kinect dataset has
been illustrated in Fig. 8. It is observed from these curves that
the proposed methodology offers exceptional accuracy dur-
ing training and moderate accuracy in the validation process.
For training process, the model causes low and for validation
process it causes moderate loss.
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Fig. 8 Trade-off curves for Model Training and Validation Accuracy & Model Training and Validation Loss on the UT-Kinect dataset

Table 3 Experimental Results on UT-Kinect

Method Accuracy (%)

Histogram of 3d joints [33] 88.9

ST-LSTM [44] 87.0

ST-LSTM + Global(1) [71] 91.9

ST-LSTM + Global(2) [71] 90.8

Conv-LSTM [68] 90.2

Conv-GRU [72] 89.99

ConvST-LSTM-NET 92.0

4.3 Experiments on the UP-fall detection dataset

The UP-fall detection [34] is the large-scale multimodal
dataset collected by using vision-wearable, and ambient sen-
sors. It includes Activity for Daily Livings (ADLs-850 GB),
collected by 17 healthy persons including 9 male, 8 females
individuals. It has total 11 actions, i.e., 6 basic actions for
daily living:walk, sit, stand, picking-up an item, laying, jump
and 5 fall-actions: fall-forward via knees, fall-forward via
hands, fall-sitting in an empty chair, fall backward and fall-
sideward). Two cameras were set up to capture the subject’s
front views aswell as its side views.A total of 589,418 sample
image frames are there taken from both cameras. Total size of
this vision dataset was 277 GB. For performing experiments,
we choose 5 action classes (i.e., Stand, Sit, Run, Walk, Fall)
contains 1000 clips in each class in which 800 clips used
for training, and the 200 clips for validation. Table 4 gives
the comparative results of the proposed ConvST-LSTM-Net
with various state-of-the-art methods.

Figure 9 illustrates the trade-off curves for (a) accuracy of
training and validation vs. (b) loss of training and validation.
It is observed from these curves that the proposed methodol-
ogy offers exceptional accuracy during training andmoderate

Table 4 Experimental Results on UP-Fall Detection Dataset

Method Accuracy (%)

GCA-LSTM [71] 88.5

Conv-LSTM [68] 87.6

Conv-GRU [72] 88.8

ConvST-LSTM 89.0

Table 5 Experimental Results of ConvST-LSTM on the UCF101
Dataset

Method Accuracy (%)

GCA-LSTM [71] 84.2

Conv-LSTM [68] 83.3

Conv-GRU [72] 86.28

PYSKL [76] 88.89

ConvST-LSTM 92.8

accuracy in the validation process. For training process, the
model causes low and for validation process it causes mod-
erate loss.

4.4 Experiments on the UCF101 dataset

The UCF101 [35] is a popular action recognition dataset that
contains 13,320 video clips from 101 action categories. The
action videos are clustered in 25 groups, where each group
contains 4–7 videos of an action. The action categories can
be classified into five distinct types, i.e., (a) Human-Object
Interaction (b) Body-Motion (c) Human–Human Interaction
(d) Playing Musical Instruments (e) Sports. For performing
experiments, we choose 5 action classes from body motion
categories contains total 17 body motion clips. Table 5 gives
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Fig. 9 Trade-off curves for Model Training and Validation Accuracy versus Model Training and Validation Loss on UP-Fall Detection dataset

Table 6 Experimental Results on the HMDB51 Dataset

Method Accuracy (%)

GCA-LSTM [71] 82.3

Conv-LSTM [68] 81.2

Conv-GRU [72] 80.8

PYSKL [76] 69.4

ConvST-LSTM 91.86

the comparative results of the proposed ConvST-LSTM-Net
with various state-of-the-art methods.

The trade-off curves for the model accuracy and loss on
the UCF101 dataset has been illustrated in Fig. 10, i.e., (a)
accuracy of training and validation versus (b) loss of training
and validation. For training process, the model causes low
and for validation process it causes moderate loss.

4.5 Experiments on the HMDB51 dataset

The HMDB51 [36] dataset is a commonly used benchmark
dataset for action recognition in videos, which consists of
video clips fromvarious sources likemovies, YouTube. From
2 GB, total 7000 clips distributed in 51 action classes. The
actions categories can be divided into five types: (a) General
facial actions. (b) Facial actionswith objectmanipulation. (c)
General body movements. (d) Body movements with object
interaction. (e) Body movements for human interaction. The
video clips have varying durations and resolutions. For per-
forming experiments, we select the general body movements
action classes in which 5 action clips are taken (i.e., Stand
up, Sit down, Run, Walk, Fall). Each action classes contains
minimumof 101 clips. Among them 80% are used of training
and 20% are used for validation. Table 6 gives the compara-
tive results of the proposed ConvST-LSTM-Net with various
methods.

Figure 11 illustrates the trade-off curves for (a) accuracy
of training and validation versus (b) loss of training and vali-
dation on HDMB51 dataset. Form this, it is observed that the
proposedmethodology achieves outstanding accuracy during
the training process and moderate accuracy during the vali-
dation process. The model exhibits low loss during training
and moderate loss during validation.

4.6 Multimodal analysis over standard performance
measures

This section discusses the results analysis gained on the pro-
posed ConvST-LSTM-Net. The performance of the model
has been measured on different performance metrics, i.e.,
Precision, Recall, F1-score, and Accuracy. Figure 12 dis-
plays the accuracy, precision, recall, and F1-score on various
benchmarks. The accuracies and losses are plotted for 150
epochs. The proposed ConvST-LSTM-Net results in a better
accuracy. The effectiveness of the proposed model is verified
on various benchmarks, i.e., NTU RGB + D 60, UT-Kinect,
UP-Fall Detection, UCF101, and HDMB51 datasets, where
the model outperforms state-of-the-art methods. Figure 13
illustrates the human action recognition results obtained in
different benchmarks datasetswith framing the bounding box
over the tracked human. We observed that the performance
of the model is sufficiently high.

5 Conclusions and future prospective

Human action recognition has gained a large prominence in
today’s era, but few limitations are there in their applica-
tion areas despite having networks that could achieve good
results. In this paper, we improved the internal cell structure
of the ST-LSTM unit and successfully proposed a ConvST-
LSTM having high accuracy & reliability. The model is
based on a spatiotemporal LSTMmodule, uses video frames
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Fig. 10 Trade-off curves for Model Training and Validation Accuracy versus Model Training and Validation Loss on UCF101 Dataset

Fig. 11 Trade-off curves for Model Training and Validation Accuracy versus Model Training and Validation Loss on HDMB51 Dataset

Fig. 12 Comparative Stats of Standard Performance Measure over different datasets
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Fig. 13 Illustration of the Human Action Recognition on various
benchmarks. Starting from left–right a NTU RGB + D 60
Dataset: Sitting, Standing b UT-Kinect Dataset: Standing, Walking c

UP-Fall Detection Dataset: Fall d UCF101 Dataset: Walking, Running
e HMDB51 Dataset: Running

and skeleton-based features and has the robust capability
for selecting the informative keyjoints in each frame while
ignoring the irrelevant keyjoints of the skeleton sequence.
The model is independent of the camera orientation, cloth-
ing, background noise, etc., which can effectively recognize
suspicious actions related to human activity. Finally, the
experimental results show better performance and achieve

good accuracy for skeleton-based anomaly activity recog-
nition. However, the consequences of growing population
and rise in ever-challenging activities fosters the need to
introduce a more promising predictive methodology for rec-
ognizing human behavior that proffers a practical alternative
solution for the security and protection of people from daily
risks in life. With the future perspective, we can use a graph
oriented spatiotemporal base data to represent humans and
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objects. Moreover, GCN can also be used for the classi-
fication and detection of unsuspicious activity of human
behaviors.
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