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Abstract
Most of existing methods solve cross-modal video and text retrieval via coarse-grained similarity computation based on global
representations or fine-grained cross-modal interaction. The former misses sufficient information, while the latter suffers from
inferior efficiency in inference. Furthermore, hierarchical features of transformer have not been fully utilized in cross-modal
contrastive learning. In this paper, we propose similarity-preserving self-distillation method (SPSD) to achieve video and
text alignment by cross-granularity and cross-layer ways. For cross-granularity self-distillation, fine-grained cross-modal
similarity based on video and text token-wise interaction is transferred to coarse-grained similarity based on global video and
text representations. To utilize hierarchical features of deep video and text transformer encoders, we propose cross-layer self-
distillation by regarding cross-modal similarity based on semantic features as teacher to provide soft label for the similarity
learning based on low-level features. Besides, we construct hierarchical contrastive loss and cross-granularity self-distillation
loss at both feature and semantic levels for training transformer-based video and text encoders. SPSD sufficiently utilizes the
fine-grained cross-modal interaction and hierarchical transformer features by generating distillation signals through network
itself in training stage. In retrieval inference, cross-modal similarity computation between video and text is based on semantic-
level global embeddings. Our SPSD achieves outstanding performance for video–text retrieval on MSRVTT, ActivityNet and
LSMDC datasets. Our code is available at https://github.com/Macro-1998/SPSD/.
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1 Introduction

As the development of short video applications, video has
become one of the most important media forms for peo-
ple to obtain information. Video–text retrieval has attracted
increasing attention. Due to the success of Transformer [1]
and Bert [2] in natural language processing field, there has
been a lot of transformer-based vision-language alignment
models for cross-modal retrieval [3–7]. Existing approaches
could be roughly categorized as global embedding-based
[3, 4, 8, 9] and fine-grained interaction-based methods [5,
7, 10–12]. Embedding-based methods usually lie in global
contrastive alignment of videos and texts. The embedding
learning for two modalities can be decoupled, and the rep-
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resentations for test data can be pre-computed offline. Thus,
embedding-based methods are efficient when retrieval infer-
ence is carried out. Thesemethodsmodel coarse cross-modal
interaction via the similarity of the global representations of
video and text.

To explore fine-grained interaction between heteroge-
neous data, a lot of studies [7, 11, 13–17] are proposed. Most
of them [7, 11, 13–15] fed visual and linguistic elements
(usually patches from image andwords fromsentence) simul-
taneously into a transformer-based network for cross-modal
interaction learning. This way could granularly align and
aggregate visual and linguistic clues. In retrieval inference,
pairwise video and text are required as input to network for
computing their relevance score. In addition, a late interaction
architecture is proposed to firstly compute the similarities
between tokens of video and text elements, and then, the
summation [16] or mean [17] of token-wise similarities is
calculated as the relevance score for the video and text. These
methods suffer from inferior efficiency in inference.

In this paper, we aim to achieve global embedding-based
inference; meanwhile, we expect the feature embeddings
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could obtain the characteristic of cross-modal fine-grained
interaction. Inspired by knowledge distillation [18–21], we
propose cross-granularity self-distillation method by dis-
tilling the token-wise fine-grained similarity of video and
text into coarse-grained similarity relationship based on
global embeddings. The fine-grained cross-modal similar-
ity is considered as soft label to guide the learning of global
embeddings, and thus, global features are actually enforced
to obtain the performance of fine-grained interaction. In
retrieval stage, we utilize global embeddings of video and
text for similarity computation and ranking to achieve effi-
cient retrieval.

According to the attention allocated characteristics of dif-
ferent transformer layers, the features in different layers focus
on different views [4, 7, 22–25]. For example, local syntax
is encoded at the lower layers and longer range semantics
at the upper layers [26]. A recent visual-language learn-
ing method [4] explored hierarchical features by adding
the feature-level (the first layer) and semantic-level (the
last layer) contrastive loss to learn the transformer-based
encoders. We consider discriminating the binary relation-
ship (similar and dissimilar) between cross-modal data in
contrastive learning may be too strict and difficult to low-
level features. To alleviate this problem and further explore
hierarchical features, we propose cross-layer self-distillation
method by regarding semantic-level similarity between video
and text as soft label and distilling it to the cross-modal sim-
ilarity based on low-level features. In this way, the model
could learn similarity-oriented low-level features for cross-
modal retrieval.

In this paper, we propose similarity-preserving self-
distillation (SPSD) method for video and text alignment
with cross-granularity and cross-layer self-distillation ways.
Figure 1 shows the framework. Two transformer-based
encoding modules are used to extract video and text fea-
tures. The global embeddings of video and text are used
to compute coarse-grained similarity. Meanwhile, the token
features of video and text are utilized to get token-wise
fine-grained similarity by late interaction way. Specifically,
we design a token screening module to adaptively select
important tokens for fine-grained similarity computation. To
mine hierarchical capacity of transformer encoders, we per-
form cross-granularity self-distillation with semantic-level
and feature-level representations. The cross-granularity and
cross-layer self-distillation losses are all based on KL diver-
gence. Together with the self-distillation losses, we employ
InfoNCE [27] to construct contrastive loss with hierarchical
features for training the model.

The cross-granularity self-distillation and cross-layer self-
distillation both generate distillation signals through the
network itself to help the encoders of video and text learn
better. They are applied in the training stage, so they will
not cause additional computational overhead in retrieval

inference. Experiments on three public datasets show the
effectiveness of SPSD.

2 Related work

2.1 Cross-modal interaction learning

Existing approaches for cross-modal retrieval address fine-
grained interaction between video and text generally by
two ways, feeding video and text together into a single
stream network [7, 10–15, 28–30] or modeling the inter-
play based on dual stream network [5, 6, 16, 17, 31–35].
Our method is based on dual stream network. SCAN [32]
discovers the latent alignments using both image regions
and words in a sentence as context and infers image-text
similarity. T2VLAD [31] aggregates the multi-modal video
sequences and text features with a set of shared semantic
centers, and then, the local cross-modal similarities are com-
puted between the video feature and text feature within the
same center. MMT [5] computes the video-caption similarity
as a weighted sum of each expert’s video-caption similarity.
FILIP [17] achieves a cross-modal late interaction mecha-
nism with token-wise maximum similarity between visual
and textual tokens. In CRET [33], the text and video embed-
dings are aligned by learned transformer decoder centers.
In recent CMMT model [34], each raw video denotes a
pseudo-video class and a cross-modal fine-grained classifi-
cation task is conducted where the text queries are classified
with pseudo-video class prototypes. X-pool [35] utilized a
scaled dot product attention for a text to attend to its most
semantically similar frames, and then, an aggregated video
representation is generated conditioned on the text’s attention
weights over the frames. Jin et al. [36] used coarse-fine-
grained parallel attention model and feature fusion module
to learn effective video feature representation for video–text
retrieval task.

Different from all these methods, we make the similar-
ity of global representations have the ability of fine-grained
interaction characteristic by self-distillation learning. The
most related work to ours is FILIP [17] and MMT [5]. We
adopt the same expert features as MMT and the token-wise
fine-grained similarity proposed by FILIP as teacher in our
cross-granularity self-distillation learning.

2.2 Hierarchical alignment

A lot of studies have researched the different level features
of deep network [22–26] for cross-modal alignment [4, 6,
7, 37, 38] since deep architecture can learn representations
that vary with network depth from local syntax encoded
at the lower layers to longer range semantics at the upper
layers. COOT [38] proposes to align the representations at
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Fig. 1 The framework of SPSD. We propose a similarity-preserving
self-distillation method to align video and text. The different layer out-
puts of visual encoding module and text encoding module are, respec-
tively, utilized to compute feature-level and semantic-level related loss.
To get fine-grained similarity in a token-wise interactionway, we design
a token screening module to select important tokens for video and
text modalities. The fine-grained similarity is then distilled to coarse-

grained similarity which is based on global embeddings of video and
text. This operation goes on at both feature level and semantic level to
form hierarchical cross-granularity self-distillation loss. Besides, cross-
layer self-distillation loss is proposed by distilling the semantic-level
similarity to feature-level similarity. In this way, the learned semantic
representations for video and texts are utilized to compute distances
then ranked for cross-modal retrieval

frame–word, clip–sentence and video–paragraph three lev-
els. TACo [6] proposes to construct hierarchical contrastive
loss including token-level and sentence-level loss with the
output of individual video and text encoders before multi-
modal fusion network, and another sentence-level loss after
the multi-model fusion network. CrossCLR [37] also uti-
lizes a two-level hierarchy of transformers, where the loss is
applied at the clip–sentence level and video–paragraph level.
HiT [4] proposes to add feature-level and semantic-level con-
trastive loss to learn the video and text encoders based on
transformer architecture. Ji et al. [39] proposed a step-wise
hierarchical alignment network (SHAN) that decomposes
image–text matching into multi-step cross-modal reasoning
process including local-to-local alignment at fragment level,
global-to-local and global-to-global alignment at context
level. Jiang et al. [40] explored multi-level cross-modal rela-
tionships among video–sentence, clip–phrase, and frame–
word for text–video retrieval based on the pre-trained CLIP.

They all utilize the different layer features to construct
cross-modal correlation for learning multi-modal encoders.

Besides the hierarchical correlation, we propose the cross-
layer self-distillation way to take advantage of hierarchical
features, i.e., the semantic-level similarity based on the last
output of transformer encoders is transferred to the low-level
feature learning.

2.3 Knowledge distillation

Knowledge distillation [41] is proposed to transfer the acti-
vation of individual example representation from a large
teacher network to a small student network. Some studies
have shown that transferring the mutual similarity instead
of actual representation is beneficial to student representa-
tion learning [19, 20, 42–44]. Park et al. [43] proposed to
transfer the relational information from teacher to student
by distance-wise and angle-wise distillation losses. Tung et
al. [19] proposed to guide the training of a student network
such that input pairs that produce similar (dissimilar) acti-
vations in the teacher network produce similar (dissimilar)
activations in the student network. Zhu et al. [20] selected
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a neighbor example from the teacher space as anchor and
encouraged the anchor–student relation to be consistent with
the anchor–teacher relation. Tian et al. [44] encouraged the
teacher and student to map the same input to close represen-
tations and different inputs to distant representations. Li et
al. [45] explore the merit of the student model in each time
step to guide the training process of the teacher model.

Another line ofwork is self-knowledgedistillation through
distilling knowledgewithin network itself [18, 21, 46]. Zhang
et al. [18] proposed to distill the classifier’s representations
in the deeper portion of the CNN networks into the shallow
ones. Hou et al. [46] exploited the activation-based CNN
attention maps from its own layers as the distillation targets
for its lower layers. Ji et al. [21] introduced an auxiliary self-
teacher network to enable the transfer of a refined knowledge
to the classifier network. Different from all these methods,
our SPSD transfers the fine-grained similarity relationship
between video and text to coarse-grained similarity based
on global features, which is intra a transformer layer, and
transfers high-level features’ similarity of video and text to
low-level features’ similarity, which is cross-two transformer
layers.

2.4 Others

Recently, a lot CLIP pre-trained-based models and con-
trastive learning are studied for video and text retrieval.
CLIP4Clip [47] transferred the knowledge of theCLIPmodel
to video-language retrieval in an end-to-end manner. CLIP-
ViP [48] utilized a video proxy mechanism to transfer CLIP
model to video domain and introduced an omnisource cross-
modal learning method to reduce the domain gap between
pre-training data and downstream data. Cross-modal adapter
[49] is proposed for parameter efficient fine-tuning with a
few parameterization layers. Huang et al. [50] proposed the
text–video cooperative prompt tuning model to efficient tune
the pre-trained CLIP for text–video cross-modal retrieval.
Wang et al. [51] proposed a diversity-sensitive contrastive
learning loss by adaptive negative pair weighting to capture
the fine-grained discrepancies among negative pairs. Better
pre-trainedmodel and contrastive learning loss achieve better
performance on cross-modal retrieval. Nevertheless, they are
not the focus of this paper. For the sake of fairness, we com-
pare with the models using expert features for video asMMT
[5] to validate our proposed cross-granularity and cross-layer
self-distillation method.

3 Method

As shown in Fig. 1, our model has several key components,
cross-granularity self-distillation, token screening module

and cross-layer self-distillation. We first introduce the pre-
liminaries and then describe the innovative points.

3.1 Preliminaries

3.1.1 Video encodingmodule

In our paper, video encoder is implemented by a stack of
4 self-attention layers and fully connected layers as the
architecture of the transformer encoder presented in [1, 5].
Inspired by recent work [4, 5, 9, 37], some expert features are
firstly extracted for video using pre-trained models such as
motion features from S3D trained onKinetics, audio features
extracted usingVGGishmodel trained onYT8Mand appear-
ance features from SENet-154 trained on ImageNet. The
input of video encoder contains the expert features, embed-
dings of the expert type and the embeddings of the time in
the video when the feature was extracted [5]. Expert features
are firstly, respectively, projected to the same dimension 512
by fully connected layers and L2 normalization.

For a video v, the n-th-type expert feature at k time is
denoted as Fn

k , where n ∈ [1, N ] and N = 7 is the total kinds
of experts as [5]. The global feature for a kind of expert is
obtained by max pooling on all times. The expert feature is
then represented as,

Fv = [F1
agg, F

1
1 , . . . , F1

K , . . . , FN
agg, F

N
1 , . . . , FN

K ]. (1)

To distinguish different types of expert and the time of the
extracted feature, 512-dimensional embeddings of expert
type and temporal information are learned as video encoder
inputs. They are denoted as,

Ev = [E1, E1, . . . , E1, . . . , EN , EN , . . . , EN ], (2)

Tv = [Tagg, T1, . . . , TD, . . . , Tagg, T1, . . . . . . . . . . . . , TD].
(3)

The summation of Fv , Ev and Tv is fed into a 4-layer
transformer-based video encoder to learn the video token
representations.

3.1.2 Text encodingmodule

We employ a pre-trained Bert-base-uncased model [2] as the
text encoder and fine-tune it. Each word in a text t is embed-
ded into a vector as token embeddings Ft . [CLS] and [END]
are placed on the first and last positions. Text Segment Mask
Mt is used to indicate the id of input sequence, which is
meaningless in our method since only one text is processed
every time. Text Position Embedding Pt is used to encode
the indexes of word in the text sequence. The final input for
text encoder is the sum of Ft , Mt and Pt , which is fed into
the pre-trained Bert model to get text token representations.
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3.1.3 Token aggregation

For video modality, we utilize mean pooling on all output
tokens of video encoding module to obtain the global video
representation and apply a linear fully connected layer to
project the representation into a vector with the same dimen-
sion drep with text data.

For textmodality, the text representation is got by applying
mean pooling on all word tokens, the output of text encoding
module. A linear fully connected layer is used to project the
text representation into the same dimension drep with video
data.

Then, we design a shared linear layer to project video and
text to a d-dimensional common space. It should be noted
that the expert models of video are fixed, the parameters of
text encoding module are fine-tuned, and other parameters
are learned from scratch in training stage.

3.1.4 Contrastive loss

For video–text retrieval task, the target of our method is to
obtain the global visual and textual embeddings by learn-
ing the model parameters. We employ contrastive loss [6,
27, 27, 37] to make the pairwise video and text similar
and unmatched samples dissimilar. Given a mini-batch of
N video and text pairs B = {vn, tn}Nn=1, where vn and tn
are pairwise video and its text description, we get their com-
mon space embeddings by video and text encoders as {rv

n }Nn=1
and {r tn}Nn=1, respectively. All pairs {vi , t j } with i �= j are
regarded as negative pairs. The similarity matrix S ∈ RN×N

between amini-batch examples is computed by inner product
of the embeddings, that is,

Si, j = (rv
i )T r tj , (4)

which is the similarity of the i-th video and j-th text. The
contrastive loss InfoNCE [27] for video–text retrieval on a
mini-batch is,

Lv2t
c = − 1

N

N∑

i=1

log
exp(Si,i/τ)

∑N
j=1 exp(Si, j/τ)

, (5)

where τ is a temperature hyper-parameter [52]. Similarly, the
loss for text–video retrieval on a mini-batch is,

Lt2v
c = − 1

N

N∑

j=1

log
exp(S j, j/τ)

∑N
i=1 exp(Si, j/τ)

. (6)

The two losses are combined as,

Lc = 1

2
(Lv2t

c + Lt2v
c ). (7)

By optimizing the contrastive loss, the similarities between
pairwise video and text embeddings in a mini-batch are max-
imized and that of the unmatched sample embeddings are
minimized.

3.2 Cross-granularity self-distillation

The every layer outputs of video and text transformer
encoders contain token features. For video, output tokens
contain the information of expert feature at a certain time.
For text, output tokens contain the information of every word
in the text. We employ token-wise late interaction [16, 17]
to obtain the fine-grained cross-modal similarity values. To
guarantee the effectiveness of late interaction, we propose
token screening module to select important tokens for video
and text alignment. At the same time, the coarse-grained
similarity between video and text is obtained according to
inner product of global embeddings, as Eq. (4). In train-
ing stage, the fine-grained similarity is used as soft label to
optimize coarse-grained similarity by the way of knowledge
distillation. In retrieval stage, cross-modal matching depends
on the inner product of global embeddings. In the way of
cross-granularity self-distillation, fine-grained global repre-
sentations of video and text are learned to achieve retrieval.

3.2.1 Token screening module

In [16, 17], all tokens are participated in fine-grained similar-
ity computation. It is time-consuming and sensitive to noisy
token. For example, given text “a dog is barking at women,”
three words “dog,” “barking” and “women” are obviously
critical to cross-modal matching, and thus, they should be
focused on rather than others. Nonsignificant tokens will
hinder the reliability of cross-modal alignment. Therefore,
we propose token screening networks for video and text,
respectively, to adaptively determine which tokens would
participate in cross-modal fine-grained interaction according
to the token features of video and text encoders.

Figure 2 shows the structure of our proposed token screen-
ing module. We denote the output of transformer encoders
(beforemeanpooling) as X = {xi |i ∈ [1, n]}, which could be
video or text tokens, and n is the number of tokens. The figure
shows 5 tokens as example. The n token vectors are succes-
sively fed into linear layer, ReLU, linear layer and softmax
layer to get normalized n probabilities, which are regarded
as the tokens’ importance measurement. Denote the ratio of
screening token as r , then the number of selected tokens is
k = �n × r�, where 0 ≤ r ≤ 1 and �·� represents taking
the integer portion. Our token screening module selects the
most important k tokens according to the adaptive probabil-
ities, and the selected token features are used to compute the
fine-grained cross-modal similarity.
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Fig. 2 The illustration of token screening module. Top k token features
are adaptively selected according to input token features themselves

3.2.2 Fine-grained similarity matrix

After token screening module, the selected token features of
video and text are projected to same dimension drep by a lin-
ear layer, respectively. Then, they are together projected to
a d-dimensional common subspace by a shared linear layer,
which is the same way as the processing of global embed-
dings. The features of i-th video and j-th text are denoted
as Rv

i ∈ Rn1×d and Rt
j ∈ Rn2×d , respectively, where n1 and

n2 are the selected number of tokens by video and text token
screening module, respectively. As [17], for a visual token
[Rv

i ]k , its similarity with text is the largest one among the
token with all textual tokens [Rt

j ]n2r=1. The token-wise fine-
grained similarity between the video and text is the average
on all video tokens. Then, the similarity value of the i-th
video to j-th text is formulated as,

FSv2t
i, j = 1

n1

n1∑

k=1

[Rv
i ]kT [Rt

j ]mv
k
, (8)

where mv
k = argmax0≤r≤n2 [Rv

i ]kT [Rt
j ]r . Similarity, the

similarity of the j-th text to i-th video is,

FSt2vi, j = 1

n2

n2∑

k=1

[Rv
i ]mt

k

T [Rt
j ]k, (9)

where mt
k = argmax0≤r≤n1 [Rv

i ]r T [Rt
j ]k . In this way, we

can obtain the fine-grained similarity matrix FSv2t ∈ RN×N

and FSt2v ∈ RN×N for video–text and text–video retrieval
with a batch cross-modal samples. It should be noted that
FSv2t �= FSt2v .

3.2.3 Cross-granularity loss

In the retrieval based on token-wise interaction method [17],
all token features need to be stored and the fine-grained sim-
ilarity is computed as above. We expect retrieval is achieved
by inner product of vectors yet has the effectiveness of
fine-grained cross-modal alignment. In this paper, we pro-
pose novel similarity-preserving self-distillation approach.
The fine-grained similarity matrix is regarded as teacher and
coarse-grained similarity matrix as student. The knowledge
is transferred from the teacher to the student by minimizing
their difference with KL divergence. Given two distributions
P = {pi | i ∈ [1,m]} and Q = {qi | i ∈ [1,m]}, the
formulation of KL divergence is as follows,

DKL [P||Q] =
m∑

i=1

pi [log(pi ) − log(qi )]. (10)

The student similarity for a batch data is S, as computed in
Eq. (4). Teacher similarity matrices for video–text and text–
video retrieval are FSv2t and FSt2v , respectively, as shown
in Eqs. (8) and (9). The cross-granularity self-distillation loss
for video–text retrieval is defined as,

Lv2t
cg = 1

N

N∑

i=1

DKL [s(FSv2t
i )/τ ||s(Si )], (11)

where FSv2t
i and Si are, respectively, the i-th row of the

similarity matrix that is the similarity values between the i-
th video and all texts. τ is the temperature scaling parameter.
The s operation means softmax, used to normalize the row
of similarity matrix. Similarly, the distillation loss for text–
video retrieval is defined as,

Lt2v
cg = 1

N

N∑

i=1

DKL [s(FSt2vi )/τ ||s(S:,i )], (12)

where FSt2vi is the i-th row of the fine-grained similarity
matrix. S:,i is the i-th column of the coarse-grained simi-
larity matrix, which represents the similarities between all
videos with the i-th text. The whole cross-granularity self-
distillation is then formulated as,

Lcg = Lv2t
cg + Lt2v

cg . (13)

By optimizing Lcg , the student coarse-grained similarity is
preserved consistent with the teacher fine-gained similar-
ity. Thus, the global embeddings for coarse-grained video
and text alignment could learn the fine-grained interaction
by the similarity-preserving self-distillation way. The sim-
ilarity computations of two granularities are based on the
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representations from the same transformer layer, and the
cross-granularity loss is intra-layer self-distillation.

3.3 Cross-layer self-distillation

Different layers of deep network usually focus on features
with different degrees of abstraction [4, 6, 37, 38]. For exam-
ple, low-level layer tends to encode local visual content and
basic syntax, while high-level layer tends to capture more
complex semantics and obtain more abstract representation.
In other words, high-level features are more appropriate for
semantic task than low-level features. It is too difficult for
low-level features to achieve strict pairwise judgment. In this
paper,we propose cross-layer self-distillation to explore hier-
archical features by using semantic layer similarity providing
soft label for feature layer alignment.

Specially, we employ the last-layer representations of
video and text encoding modules to compute the similarity
as teacher, and the similarity of the first-layer representations
as student. The computation is as in Eq. (4). For a mini-batch
B, the teacher similarity matrix is denoted as Sh and student
similarity matrix as Sl . We obtain the distillation loss by KL
divergence for video–text retrieval as follows,

Lv2t
cl = 1

N

N∑

i=1

DKL [s(Shi /τ)||s(Sli )], (14)

where Shi and Sli are the i-th row of similarity matrix, respec-
tively, representing the similarities between the i-th video
and all texts. The distillation loss for text–video retrieval is
defined as,

Lt2v
cl = 1

N

N∑

i=1

DKL [s(Sh:,i/τ)||s(Sl:,i )], (15)

where Sh:,i and S
l
:,i are the i-th column ofmatrix, respectively,

representing the similarities between all videos with the i-th
text. And the whole cross-layer self-distillation loss is then
formulated as,

Lcl = Lv2t
cl + Lt2v

cl . (16)

By optimizing the loss function, the student similarity matrix
is preserved consistent with the teacher. That is, semantic
layer relationship provides soft label (similarity) for low-
level feature alignment, which helps make the learned hier-
archical features more suitable for video and text retrieval.

3.4 Objective function

Our objective function consists of three components, fea-
ture level, semantic level and cross-layer. The third one

is the above cross-layer self-distillation Lcl , as Eq. (16).
Feature-level loss includes two parts, contrastive loss and
cross-granularity self-distillation, respectively, computed by
Eqs. (7) and (13) based on the first-layer outputs of video and
text encoders. They are, respectively, denoted as L f

c and L f
cg ,

and then, the formulation of feature-level loss is,

L f = L f
c + λL f

cg. (17)

Semantic-level loss also includes two parts, contrastive loss
Ls
c and cross-granularity self-distillation Ls

cg based on the
last-layer outputs of video and text encoders, and the formu-
lation is,

Ls = Ls
c + λLs

cg, (18)

where λ is the trade-off parameter for contrastive loss and
cross-granularity self-distillation loss. Our final objective
function is calculated as follows,

L = Ls + αL f + γ Lcl , (19)

where α and γ are the trade-off parameters for semantic-
level, feature-level and cross-layer losses. By optimizing the
loss, our method SPSD could adequately take advantage of
hierarchical features and fine-grained interactions between
video and text tokens to alignment cross-modal data.

4 Experiments

4.1 Datasets and settings

We compare SPSD with state of the arts on three datasets
MSRVTT [53], LSMDC [54] and ActivityNet Captions [55].
Ablation experiments are conducted on MSRVTT.

MSRVTT dataset consists of 10000 videos collected from
YouTube with 257 queries. The length of each video is about
10–30s, and each video has 20manually tagged English sen-
tence descriptions. For the 10000 videos, we refer [30] and
divide this dataset into training set with 9000 videos and test
set with 1000 videos.

LSMDC dataset contains 118081 short videos truncated
from 202 movies. The length of each short video is about
45 s, and each video is equipped with a text caption from
the movie script or audio description. The test set consists of
1000 videos, from movies not present in the training set.

ActivityNet Captions dataset consists of 20K YouTube
videos temporally annotated with sentence descriptions. We
follow the approach of [4], where all the descriptions of a
video are concatenated to form a paragraph. The training set
has 10,009videos.Weevaluate our video–paragraph retrieval
on the “val1” split (4917 videos).
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Table 1 Comparison with
SOTA on MSRVTT (The bold
font indicates the best results)

Methods Video–text retrieval Text–video retrieval Rsum

R@1 R@5 R1@0 MedR R@1 R@5 R@10 MedR

Random 0.2 0.7 1.3 507.0 0.1 0.5 0.8 504.5 3.6

JSFusion [30] 9.5 28.6 40.2 18.0 9.6 29.8 42.1 20.0 159.8

CE [9] 20.9 48.8 62.4 6.0 20.6 50.3 64.0 5.3 267.0

MMT [5] 24.4 56.0 67.8 4.0 24.6 54.0 67.1 4.0 293.9

Support-set [8] 26.6 55.1 67.5 3.0 27.4 56.3 67.7 3.0 300.6

TACo [6] – – – – 26.7 54.5 68.2 4.0 –

HiT [4] 28.8 60.3 72.3 3.0 27.7 59.2 72.0 3.0 320.3

Jin [36] – 58.3 – 4.0 – 56.5 – 4.0

SPSD 29.7 61.1 73.8 3.0 29.3 60.9 72.8 4.0 327.6

Evaluation metrics include R@1, R@5, R@10, R@50,
MedR and Rsum. R@K is the percentage of test queries that
at least one relevant item is found among the top-K retrieved
results. TheMedRmeasures themedian rank of correct items
in the retrieved ranking list. We also take the sum of all R@K
as Rsum to reflect the overall retrieval performance. Larger
R@K and Rsum and smaller MedR indicate better retrieval
performance.

In training stage, AdamW [56] optimizer is used, the ini-
tialization learning rate is set to 5 × 10−5, and the weight
decay is set to 0.01. The learning rate is decayed by a multi-
plicative factor 0.95 every epoch, and the network is trained
for 60 epochs. The size of mini-batch is fixed to 128. In terms
of the hyper-parameters, the dimension of video and text rep-
resentation is drep = 512, and the dimension of shared space
for similarity computation is d = 1024. Temperature hyper-
parameter τ is set to 0.07.

4.2 Comparison with state-of-arts

For a fair comparison, we compare with the similar state-of-
the-art methods which also fuse multiple expert features for
video. The state-of-art methods include JSFusion [30], CE
[9], MMT [5], support-set [8], TACo [6], HiT [4], CrossCLR
[37] and Jin [36]. CE and support-set achieve retrieval based
on global representations. JSFusion, MMT and Jin are fine-
grained alignment methods for video and text. TACo, HiT
andCrossCLR are hierarchical contrastive learningmethods.
The performances of these methods are from their papers.

The results on MSRVTT dataset are shown in Table 1.
We can see that SPSD achieves the best performances at all
metrics except that SPSD gets the second place on text-to-
video taskwithMedR.Ourmethod achieves the performance
Rsum = 327.6%, which is 7.4% higher than the second
place HiT with Rsum = 320.3%. In practical applica-
tions, people tend to pay more attention on the top retrieval
results. The R@1 performance of SPSD is 1.1% and 1.6%
higher than the second place HiT on video-to-text and text-

Table 2 Comparison with SOTA on LSMDC (The bold font indicates
the best results)

Methods Text–video retrieval Rsum

R@1 R@5 R@10 MedR

Random 0.0 0.3 0.9 491.0 1.2

JSFusion [30] 9.1 21.2 34.1 36.0 64.4

CE [9] 11.2 26.9 34.8 25.3 72.9

MMT [5] 13.2 29.2 38.8 21.0 81.2

CrossCLR [37] 15.0 32.5 42.0 18.0 89.5

HiT [4] 14.0 31.2 41.6 18.5 86.8

Jin [36] – 30.8 – 18.1 –

SPSD 15.3 32.9 43.4 17.0 91.6

to-video retrieval, respectively. HiT [4] performs hierarchical
cross-modal contrastive matching with global features from
feature level and semantic level. In comparison, token-wised
fine-grained similarity and cross-layer interaction for self-
distillation learning explored in our method help our method
outperform HiT with most of the evaluation metrics. Our
method outperforms other global representation-basedmeth-
ods CE and support-set, fine-grained alignment methods
JSFusion, MMT and Jin, and hierarchical contrastive learn-
ing method TACo. This further proves that it is effective to
align video and text with cross-granularity and cross-layer
self-distillation losses.

On LSMDC dataset, we only conduct the text-to-video
retrieval since most compared methods only provide the
results on this retrieval task. The performances are shown in
Table 2. We can see that SPSD achieves the performances
R@1 = 15.3%, R@5 = 32.9%, R@10 = 43.4% and
MedR = 17.0, which are all the best performances among
the compared methods. The Rsum performance of SPSD
is 2.1% higher than the second place CrossCLR and 4.8%
higher than the third placeHiT on video-to-text retrieval. HiT
[4] performs hierarchical cross-modal contrastive matching
with global features from feature level and semantic level. In
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Table 3 Comparison with
SOTA on ActivityNet (The bold
font indicates the best results)

Methods Video–text retrieval Text–video retrieval Rsum

R@1 R@5 R@50 MedR R@1 R@5 R@50 MedR

Random 0.01 0.1 1.02 2548 0.02 0.1 1.02 2458 2.26

CE [9] 17.7 46.4 90.9 6.0 18.2 47.7 91.4 6.0 312.3

Support-set [8] 25.5 57.3 93.5 3.0 26.8 58.1 93.5 3.0 354.7

MMT [5] 22.9 54.8 93.1 4.0 22.7 54.2 93.2 5.0 340.9

HiT [4] – – – – 27.7 58.6 94.7 4.0 –

TACo [6] – – - – 25.8 56.3 93.8 4.0 –

Jin [36] – 57.5 – 4.0 - 56.5 – 4.0 –

SPSD 26.6 59.9 97.0 4.0 23.7 56.7 96.8 4.0 360.7

Table 4 The performances of
cross-granularity self-distillation
on MSRVTT (The bold font
indicates the best results)

λ Video–text retrieval Text–video retrieval Rsum

R@1 R@5 R@10 MedR R@1 R@5 R@10 MedR

0 28.3 57.7 70.1 4.0 26.7 56.8 68.3 4.0 307.9

3 28.9 57.5 70.2 4.0 27.5 56.5 68.4 4.0 309.0

30 27.8 58.7 69.3 4.0 27.4 57.2 67.3 4.0 307.7

300 29.0 59.6 71.9 3.0 28.1 56.8 68.9 4.0 314.3

600 28.6 58.1 71.8 4.0 24.4 56.5 68.2 4.0 307.6

900 27.2 56.9 68.6 4.0 24.8 54.6 67.3 5.0 299.4

1200 26.0 56.2 68.4 5.0 23.8 52.9 66.1 5.0 293.4

comparison, token-wised fine-grained similarity and cross-
layer interaction for self-distillation learning explored in our
method help ourmethod outperformHiT. CrossCLR [37] uti-
lizes a two-level hierarchy of transformers, where the loss is
applied at the clip/sentence level and at the video/paragraph
level. In comparison, fine-grained interaction and hierar-
chical features are both explored in CrossCLR and our
method, and thus, cross-layer learning may be the reason
why our model outperforms CrossCLR. With cross-layer
self-distillation loss, the low-level features could be better
with the soft label provided by semantic layer features. Our
method outperforms other global representation-basedmeth-
odsCE,fine-grained alignmentmethods JSFusion,MMTand
Jin. This further proves that it is effective to align video and
text with cross-granularity and cross-layer self-distillation.

On ActivityNet dataset, we report the performances with
R@1, R@5, R@50 and MedR in Table 3. We can see that
the R@1, R@5 and R@50 performances of our method are
26.6%, 59.9% and 97.0% on video-to-text retrieval, respec-
tively, which are much better than others. The R@50 per-
formance of our method is 96.8% for text-to-video retrieval,
which is better than 94.7% of the second place HiT. But R@1
and R@5 performances of our method are worse than that of
HiT. Further optimization of our method is needed for text-
to-video retrieval on ActivityNet dataset. The Rsum of our

Table 5 The performances of token screening module on MSRVTT
(The bold font indicates the best results)

rt rv

0.25 0.5 0.75 1

0.25 315.1 315.0 312.6 315.7

0.5 313.8 312.0 318.5 317.0

0.75 315.0 315.7 314.7 316.4

1 315.2 313.1 313.9 314.3

method is 360.7%, which is better than 354.7% of the second
place support-set and 340.9% of the third place MMT. With
Rum, our method outperforms all the methods who realized
video-to-text and text-to-video retrieval.

The computation burden of our method’s retrieval pro-
cess is related to the embedding extraction for query, the
embedding dimension and the size of database. The average
retrieval time for a query is 0.1447s on MSRVTT, 0.1992s
on LSMDC and 0.4428s on ActivityNet dataset, which are
test with CPU. It is noted that we set the trade-off hyper-
parameters λ = 30, γ = 10, α = 1 of our model on
MSRVTT, LSMDC and ActivityNet for comparison with
others. The ratios for video and text token screening module
are, respectively, rv = 0.75 and rt = 0.5. It shows that the
hyper-parameter setting of our model is generalized.
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Table 6 The performances of
hierarchical contrastive loss on
MSRVTT (The bold font
indicates the best results)

α Video–text retrieval Text–video retrieval Rsum

R@1 R@5 R@10 MedR R@1 R@5 R@10 MedR

1 25.4 57.4 69.5 4.0 26.1 56.7 68.3 4.0 303.4

0.1 27.4 58.4 69.8 4.0 27.3 56.8 69.7 4.0 309.4

0.01 27.4 57.9 69.8 4.0 27.9 56.9 69.4 4.0 309.3

0.001 28.8 57.4 69.6 4.0 27.9 57.0 68.2 4.0 308.9

0 28.3 57.7 70.1 4.0 26.7 56.8 68.3 4.0 307.9

Table 7 The performances of
cross-layer self-distillation on
MSRVTT (The bold font
indicates the best results)

γ Video–text retrieval Text–video retrieval Rsum

R@1 R@5 R@10 MedR R@1 R@5 R@10 MedR

γ = 0 27.4 58.4 69.8 4.0 27.3 56.8 69.7 4.0 309.4

γ = 0.3 28.0 59.5 70.4 4.0 28.0 56.4 70.1 4.0 312.4

γ = 3 28.6 60.7 70.7 4.0 27.6 57.8 69.9 4.0 315.3

γ = 30 27.5 58.2 71.5 4.0 29.2 56.5 71.2 4.0 314.1

Table 8 The performances of
SPSD with different parameter
settings on MSRVTT (The bold
font indicates the best results)

λ γ α Video–text retrieval Text–video retrieval Rsum

R@1 R@5 R@10 MedR R@1 R@5 R@10 MedR

30 10 0.1 28.1 59.2 71.1 4.0 28.2 57.2 70.4 4.0 314.2

30 10 0.5 28.0 61.5 73.9 3.0 30.2 59.6 72.4 4.0 325.6

3 10 1 28.0 59.0 70.2 4.0 27.1 57.2 69.2 4.0 310.7

300 10 1 28.8 60.5 73.2 3.0 28.2 57.3 71.0 4.0 319.0

30 100 1 27.8 58.8 72.1 4.0 26.8 57.1 69.9 4.0 312.5

30 1 1 28.5 58.8 72.3 4.0 29.0 58.3 72.1 4.0 319.0

30 10 1 29.7 61.1 73.8 3.0 29.3 60.9 72.8 4.0 327.6

4.3 Ablation studies

4.3.1 Cross-granularity self-distillation

Toevaluate the effectiveness of cross-granularity self-distillation,
we adopt the loss as shown in Eq. (18), which consists of
the cross-granularity self-distillation and contrastive loss
computed only on semantic-level features. The other hier-
archical losses are ignored in this experiment. The ratio
of token screening r is set to 1. We vary parameter λ, the
trade-off parameter of contrastive part and cross-granularity
self-distillation part in the loss. With λ = 0, only contrastive
loss is used for the model. The result is shown in Table 4. We
can see that the model with λ = 300 achieves the best overall
performance Rsum = 314.3% of video-to-text and text-to-
video retrieval, which is better than the model with λ = 0
(Rsum = 307.9%). And MedR = 3 obtained with λ = 300
is better than MedR = 4 with λ = 0 on video-to-text
retrieval. This validates the effectiveness of cross-granularity
self-distillation loss. In other words, the global representa-
tions could obtain information from fine-grained interaction
of video and text tokens.

4.3.2 Token screening module

To validate token screening module, which selects impor-
tant tokens for computing fine-grained similarity, we vary
the screening ratio based on the above experiment and λ

is set to 300. Since we have two token screening modules,
respectively, for video and text, rv for video and rt for text
are both varied, and the performances are shown in Table 5.
rv = 1, rt = 1 represents using all tokens for similarity
computation, with which the overall performance obtained
is Rsum = 314.3%. The model with rv = 0.75, rt = 0.5
obtains the best performance Rsum = 318.5%. This val-
idates that selecting 75% important visual tokens and 50%
important textual tokens are optimal for fine-grained similar-
ity computation. In following experiments, we fix rv = 0.75
and rt = 0.5.

4.3.3 Hierarchical contrastive loss

To validate the hierarchical contrastive learning, we ignore
the two similarity-preserving self-distillation losses and vary
the trade-off parameter α between contrastive loss of seman-
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tic level and feature level. The result is shown in Table 6.
When α = 0, only the semantic-level contrastive loss is con-
sidered in the model, which has the performance Rsum =
307.9%. When α = 1, the weights for semantic level
and feature level are the same, with which the model gets
Rum = 303.4%. We can see that the model with α = 0.1
achieves the best overall performance Rsum = 309.4%.This
explains that the low-level andhigh-level features of encoders
both contribute to retrieval performance, but improperweight
will hinder the performance. Relative to the low-level fea-
tures, the high-level features are more suitable for retrieval
task.

4.3.4 Cross-layer self-distillation

To further validate the cross-layer self-distillation, we set
the model without cross-granularity loss and α = 0.1 for
low-level contrastive loss. We conduct the experiments on
hyper-parameter γ for cross-layer self-distillation loss as
Eq. (19). The result is shown in Table 7, which shows that
the model with γ = 3 obtains the best overall performance
Rsum = 315.3%. Without cross-layer self-distillation, i.e.,
setting γ = 0, the model has the overall performance
Rsum = 309.4%. This declares it is effective to construct
cross-layer self-distillation loss by utilizing high-level sim-
ilarity to provide soft label to guide the learning of the
cross-modal similarity based on low-level transformer fea-
tures.

4.3.5 The trade-off parameters

The three components in the whole objective function in
Eq. (19) influence each other. We conduct the experiments
on the trade-off hyper-parameters of the function. The exper-
imental result in Table 8 shows that the model with λ =
30, γ = 10, α = 1 gets the best overall performance
Rsum = 327.6% and the best MedR = 3.0 on video-to-
text retrieval. The result states that the proposed two kinds
of similarity-preserving self-distillation and hierarchical loss
are effective to cross-modal retrieval.

5 Conclusion

In this paper, we introduce a similarity-preserving self-
distillationmethod for fine-grained video–text alignment and
hierarchical feature learning. The proposed cross-granularity
self-distillation can make the global representations of video
and text encoders obtain the fine-grained cross-modal inter-
action. Cross-layer self-distillation demonstrates that the
similarity learning based on low-level features benefits
from the soft label provided by the similarity of high-level
features. The hierarchical losses including hierarchical cross-

granularity self-distillation loss, hierarchical contrastive loss
and cross-layer self-distillation loss improve the perfor-
mances of video-to-text and text-to-video retrieval tasks. Our
method achieves outstanding performances on MSRVTT,
LSMDC and ActivityNet.
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