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Abstract
Action prediction, also called early action recognition, is about recognizing an action in a video with partial observation.
Various methods have been developed to tackle either offline or early action recognition, including deep learning approaches.
In a family of deep learning methods, video frames or optical flow images are processed sequentially by the network. In
this paper, we present a learning framework that can be applied to such methods to make them more appropriate for early
recognition. We propose encouraging the learner to learn from earlier parts of the video and stop learning from some point
on. By focusing on the earlier parts, we can expect the model to take full advantage of the information lying in these early
parts. To this end, it is necessary to find a stopping point up to which enough information has been observed. We measure
the amount of information with the help of the loss function. We applied our framework to Temporal Segment Networks and
experimented on UCF11 and HMDB51 datasets. The results show that our method improves on Temporal Segment Networks
and outperforms other baseline methods.

Keywords Early action recognition · Action prediction · Deep learning · Two-stream networks

1 Introduction

Action recognition is an essential task in video processing
that finds applications in detecting crimes, sports video anal-
ysis, video retrieval [23], etc. It is essential to recognize an
action early in many applications so that necessary actions
can be taken.

For example, consider the case of driverless cars. If the
autonomous driving system cannot predict what a pedestrian
will do next, it will not be able to avoid possible accidents.
In surveillance systems, it is crucial to recognize criminal
actions early, so that necessary measures can be taken. An
elderlymonitoring systemmust raise the alarm in time before
something harmful happens to the subject.

In recent years, many techniques have been developed
for action recognition. A group of methods are based on
the bag-of-words (BOW) technique adapted from the text
mining bag-of-words. Such methods extract discriminative
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key points from the video and describe the neighborhood of
these points using descriptors. The descriptors are clustered
into prototypes or visual words. Different keypoint detectors
have been proposed. Laptev and Lindeberg [17] generalize
the Harris corner detector [7] to the spatio-temporal domain,
which is sensitive to significant changes in the video. Dollár
et al. [5] apply a filter to the video which is sensitive to both
dramatic changes and periodic motions. Chakraborty et al.
[2] introduce several methods to select a subset of detected
interest points.

Bag-of-words methods treat spatial and temporal dimen-
sions similarly while they are of different nature. Trajectory-
basedmethods have been proposed to takemore advantage of
temporal information [29–31]. In these works, features such
as histogram of gradient are extracted in a tube-like area
surrounding trajectories. Kantorov and Laptev [10] propose
to use motion vector information stored in the compressed
video file to estimate optical flow.

As depth sensors become more prevalent, it becomes
more feasible to extract 3D positions of human joints and
use them to model the skeleton. The moving pose descrip-
tor proposed by [37] is a combination of joint positions
(static information) and the first and second derivative of the
positions (dynamic information). Qiao et al. [22] introduce
“trajectorylet” descriptors, which consist of joint positions,
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displacements, and speed in a longer range than [37]. Such
methods are limited to situations where human body parts
can be distinguished clearly.

Works mentioned so far take advantage of handcrafted
features. The success of such methods is challenged by cam-
era movements, complex scenes, and limitations of human
detection and pose estimation techniques [38]. Deep learning
approaches, on the other hand, are based on automatically
extracted features. Among deep learning methods, two-
stream networks have been very successful. This kind of
network, first proposed in [26], is composed of two con-
volutional networks, for two modalities, i.e. RGB (spatial)
and optical flow (temporal). Frames are fed to the network in
sequence, and the results are combined. Wang et al. [33,34]
propose a kind of such network called Temporal Segment
Networks. In their works, instead of running the model on
the whole video, only a sparse sample of short snippets is
presented to the network.

In the action prediction literature, [25] proposes two
variants of bag-of-words methods, namely integral BOW
(IBOW) and dynamic BOW (DBOW). Another BOW-based
technique has been presented in [1]. Some of the methods are
based on a global-local model [11,12,16]. The local compo-
nent models an individual segment, whereas the global part
models several segments from the beginning. Deep architec-
tures have also been of interest for prediction. Reference [14]
proposes a generative adversarial network (GAN), [20] intro-
duces a long short-term memory network (LSTM), and [9]
uses a recurrent neural network (RNN) for action prediction.

In this work, we propose a new learning framework that
can be applied to many deep learning algorithms to make
them more suited for early recognition. More precisely, our
framework is applicable to those methods that process seg-
ments of video sequentially [26,33,34]. We approach the
early recognition problem from a novel viewpoint. To make
the model recognize actions early, we make it biased toward
early information of the video during the learning process.

When there is no earliness requirement, a learning algo-
rithm may well take advantage of information from any part
of the video, including the latter frames, while enough infor-
mation may exist in the early parts of the video. However,
in early recognition, the task is to classify the video when
a small part of the video has been observed. Therefore, the
algorithm must be able to take full advantage of the infor-
mation residing in the early parts of the clip. To this end, we
stop the learning process on a clip early, when the gained
information from the clip has reached a sufficient amount,
making the algorithm focused on the early parts. To quantify
the amount of information learned from a frame, we make
use of the loss value.

The rest of this article is organized as follows: In Sect. 2,
we review related work, In Sect. 3, the proposed method

is described, in Sect. 4, the experiments are presented, and
Sect. 5 concludes the paper.

2 Related work

In this paper, we propose a framework applied to a kind of
deep learning action recognition methods, called two-stream
networks, making themmore useful for the action prediction
task. Hence, in Sect. 2.1 we review prediction methods and
survey two-stream methods in Sect. 2.2.

2.1 Action prediction

The work by Ryoo [25] is one of the first attempts at early
action recognition. They introduce two techniques called
integral bag-of-words (IBOW) and dynamic bag-of-words
(DBOW).Theydefineper-class andper-progress-level action
models and find the optimal pair of action and progress
level pair using maximum likelihood. Integral bag-of-words
works by computing histograms for various progress levels.
DBOW computes the alignment between the query video
and models, posing a temporal constraint on the alignment.
After that, a dynamic programming approach is used to solve
the alignment problem efficiently. In their work, each class
and progress level model is obtained by averaging over the
videos’ histograms. When the number of videos is small
or outliers are present, this method will be prone to errors.
To better cope with these problems, [1] uses video feature
vectors as the bases of a sparse coding representation. This
representation is then used in place of the averaging strategy.

Some researchers follow a global-local paradigm, which
means that they combine both global and local models for
the early recognition task. The global component models a
partial video considering all of its segments, while the local
component models individual segments. In [12], the actual
model is a linear combination of global and local models.
Each model is a joint feature map, i.e. a function ψ of both
the predictor x and the target variable y whereψ(x, y) shows
how likely the observation x is from class y. This work was
further developed into a technique calledMax-MarginAction
Prediction Machine (MMAPM) [11] by adding composite
kernels. Lai et al. [16] argue that as more parts of the video
have been observed, the importance of segments (weights of
local components) can vary, and they formulate the problem
accordingly. They use a metric learning technique, which
makes their method extensible to new action classes.

Wang et al. [32] take advantage of “mid-level” features for
action prediction. First, they extract low-level features from
the video and then cluster them into mid-level features called
action units.

Some methods have been proposed based on deep learn-
ing. DeepSCN [13] generates a representation of videos
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considering a few constraints: representations of partial
videos are close to the complete video, representationswithin
the same class are similar, and features are robust to noise.
Layers of these representations are built on top of each other,
leading to a deep network that is trained layer-wise. The
authors improve their work in [14] (AAPNET), in which
Generative Adversarial Networks (GANs) are used to clas-
sify videos. While in DeepSCN, the representations are
learned independently of class labels, AAPNet learns the
representation in the classifier’s training, which improves the
discrimination power. Another work based on GANs is AP-
GAN [3]. It takes advantage of GANs for the prediction task.
The system comprises two components: the action prediction
module, where the GAN is used to predict (i.e., generate)
future skeleton poses from the previous ones, and the action
recognition module which classifies the sequence of poses.

Reference [20] uses Long Short-Term Memory (LSTM)
networks for action prediction. They incorporate two con-
straints into their training process: that the correct class score
is non-decreasing and that themargin between the score of the
correct class and other classes is non-decreasing, too. Weng
et al. [36] propose to use an LSTM for action anticipation
and use an “agent” to exclude some of the categories as more
parts of the video are observed. This agent is trained using
reinforcement learning. Furnari and Farinella [6] propose the
rolling-unrolling LSTM architecture which uses two LSTM
networks. The rolling network encodes observed snippets,
and the unrolling network predicts future representations.

SSNet [19] is a convolutional neural network over the
temporal axis. The network jointly predicts both the action
class and the temporal extent of the action. The scale is used
to select the layer with a “proper” perception field, and then,
the class label predicted by this layer is considered the recog-
nition result. Hu et al. Hu et al. [9] propose the idea of soft
regression. As partially observed videos are ambiguous, a
soft label is used in training to model this uncertainty. This
label is defined as a coefficient multiplied by the one-hot
representation of the full video’s label. This coefficient is
learned jointly with the action predictor. A deep representa-
tion is used at the frame level, and the frame representations
are connected in a fashion similar to recurrent neural net-
works (RNNs).

2.2 Two-stream networks

Simonyan and Zisserman [26] propose two-stream convo-
lutional networks that process spatial and temporal streams
by two separate networks. Parts of the video are given to
these networks, and at the end, the results are aggregated.
The input to the spatial network is single frames, while the
input to the temporal network is stacks of motion images. A
motion image can be either an optical flow or a trajectory
image.

Reference [33] introduces Temporal Segment Network
(TSN). The input video is partitioned into equal-length seg-
ments, and from each segment, a snippet (a short sequence
of frames) is sampled and fed to the network. They also pro-
pose a cross-modality training, making it possible to use a
CNN trained on still images for the temporal stream. Ref-
erence [34] extends Ref. [33] in several ways. For example,
it introduces new aggregation schemes. Furthermore, it uses
the TSN to untrimmed videos, i.e. where the onset of action
in the video is unknown.

Reference [35] introduces a type of two-stream network
called two-stream SR-CNNs (Semantic Region CNN). They
replace the last pooling layer with a layer called region-
of-interest (ROI) pooling. This layer separates proposed
bounding boxes for different channels. The channels are
human, object, and the scene, where human and objects have
corresponding bounding boxes, and the scene simply corre-
sponds to the whole frame. Then, each channel is sent to a
separate network consisting of fully connected layers.

Reference [21] introduces a two-stream architecture based
on Faster R-CNN (Region CNN) [24]. R-CNN produces RoI
(region of interest) proposals and detects objects based on
them. The architecture proposed by [21] produces the RoI
proposals based on both appearance andmotion information.
An ROI fusion layer aggregates the ROIs of the two streams.

3 Proposedmethod

In this section,we describe our proposedmethod named early
stopped learning in detail. First, we explain why it might be
a good idea to stop training on a video early. Then, we pro-
pose a mechanism to decide at which point to discontinue
training. Finally, an overview of the learning algorithm will
be presented. We assume that many actions can be recog-
nized before full execution is observed, and consequently,
there must be discriminative information in the beginning
parts of the video. We hypothesize that models with smaller
recognition latency can be learned by focusing more on the
beginning parts of the video in the training procedure.

In this paper, we split the video into equal-length seg-
ments, and from each segment sample a single frame. Thus,
in the rest of the article, we use the terms frame and segment
interchangeably. The idea of early-stopped learning is to only
learn from a limited number of segments from the beginning
of the video. This, however, poses the question of how does
cropping out part of the video aid learning? To answer this
question, note that all parts of the video may include useful
information for classification, and this information may be
redundant. When there is no limitation as to which parts of
the video to learn from, the learner may prefer features that
are more informative than others but lie in the late parts of
the clip and ignore some features residing in the early parts.
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Fig. 1 Schema of the proposed
method. A set of frames are
passed through the network and
their losses are computer. Then,
based on the CLR value some of
the frames are selected for
training

This information may even be more helpful than other parts
of the clip when there is no earliness requirement. However,
when the learner is limited to the early parts, it is encouraged
to take full advantage of the features residing in the early
parts that might have gone unnoticed otherwise.

In video processing, there are several methods for apply-
ing deep networks. One of these methods is to use sequence
models such as RNNs and LSTMs [9,20]. Another approach
is to apply a convnet with 3D convolution operators [28].
Alternatively, the CNN architecture used in still image pro-
cessing can be applied to video processing. This is done
simply by applying the network to the individual frames or
segments and then fusing the individual outputs (e.g. by aver-
aging) [26,34].

In this paper, we deal with the last approach. In Temporal
Segment Network (TSN) [34], a convnet is applied to a set
of sampled frames, and the final result is computed by aver-
aging the individual results (or using other types of fusion).
In this way, the backpropagation update operation is effec-
tively equal to back-propagate over the segments separately.
However, for the early recognition task, our goal is to focus
more on the beginning segments of the video. This is done by
back-propagating over only the early portions of the video.
In other words, we encourage our model to learn more from
the beginning parts.

Neural networks use backpropagation to flow the infor-
mation from training examples throughout the network and
update its weights. The loss value is used to measure the dis-
crepancy between the network’s actual output and the correct
output. By doing backpropagation on a training example, the

loss value is expected to drop. Therefore, the loss value can be
interpreted as “howmuchwe can learn” by back-propagating
on a particular example or “how far from perfect” we are at
the current point. In other words, the loss can show how
informative a training example (frame) can be.

The question is how many segments should be used for
training. We define the cumulative loss ratio (CLR) at index
i to be the sum of losses from the first segment to the i th one,
divided by the sum of losses of all segments, i.e.,

CLRi =
i∑

j=1

L j/

N∑

j=1

L j (1)

where N is the total number of segments.
This can be used to quantify how informative a partial

video is. We can use this measure to decide when to stop
learning on a video. In early-stopped learning, it is desired
to only learn from a limited number of segments from the
beginning of the video. We propose to stop learning when
the CLR exceeds a threshold θ which is a hyper-parameter
of the algorithm, i.e.

I ∗ = argmin
i

{1 ≤ i ≤ N | CLRi ≥ θ} (2)

where I ∗ is the segment index up to which learning is per-
formed. In summary, the algorithm for processing a video
can be described as follows: we have a set of sampled frames
for each video. The loss and CLR value are computed for
each frame, and the value of I ∗ is computed based on (2).
The frames 1 through I ∗ are used in training the network.
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In practice, this operation is performed in mini-batches, and
many frames can be processed in parallel. An overview of
the procedure has been presented in Algorithm 1 and shown
schematically in Fig. 1.

Input: B: batch of videos; W : model weights; η: learning rate; θ :
threshold

Output: W : updated model weights
1 |B| = number of videos in B
2 for k = 1 to |B| do
3 V = kth video of B
4 Nk = number of segments of V
5 for i = 1 to Nk do
6 Lki = loss of i th segment of V
7 end
8 for i = 1 to Nk do
9 CLRki = ∑i

j=1 Lkj/
∑Nk

j=1 Lkj

10 end
11 I ∗

k = argmini {1 ≤ i ≤ Nk | CLRki ≥ θ}
12 end

13 W = W − η 1
|B|

∑|B|
k=1

1
Nk

∑I ∗
k
j=1 ∇W Lkj

Algorithm 1: Processing of a mini-batch

4 Experiments

Weuse the Temporal SegmentNetwork [34] at the core of our
method. This architecture is of the two-stream network type
[26], which means it consists of two convnets, one of which
processes spatial and the other processes temporal stream.
The input to the spatial network is one or more frames, and
the input to the temporal network is a stack of frames, or opti-
cal flows, or trajectories. Various frames/segments are given
separately to the network, and the outputs of the network for
various frames/segments are combined. Finally, the results
of the two networks are fused together.

TSN samples some snippets (a small set of frames) from
the video as the input to the network. The network used for
each stream (called base network) is a convnet which can
be of any architecture such as the Resnet [8] or VGG [27]
family. The authors propose to pre-train the network on Ima-
geNet [4] data. The batch normalization used in the base
network is frozen (i.e. no longer updated) after pre-training,
except for the first layer. A dropout ratio of 0.8 and 0.7 is used
for the spatial and temporal network, respectively. We used
Resnet34 in our work, pre-trained on ImageNet. Another
choice would be Resnet152, but we did not use it because
of memory limitations. We only used the spatial component
in our work even though adding the temporal part is trivial.
The training process was run for 50 epochs, the learning rate
was set to 0.001, and ten segments per video were used for
training and 25 for testing.

Fig. 2 Results of tuning the threshold parameter

The following datasets were used in the experiments:
HMDB51 [15] which consists of 6849 videos divided into
51 classes, with each class consisting of at least 101 videos.
The classes are of five general types: facial actions, facial
actions with object manipulation, body movements, body
movements with object interaction, and body movements
for human interaction. The videos have been gathered from
movies, YouTube clips, etc. The data have been partitioned
into train and test sets in three different ways (called splits),
available with the dataset. We ran experiments on each split
and reported the average.

We use a small subset of HMDB51 for parameter tuning
in this work, which we call SubHMDB. It consists of the ten
following classes: brush hair, cartwheel, catch, chew, clap,
climb, climb stairs, dive, draw sword, and dribble. Each class
consists of 70 training and 30 test videos chosen randomly.

UCF11 [18] contains 1600 videos grouped into 11 cate-
gories, namely: basketball shooting, biking/cycling, diving,
golf swinging, horseback riding, soccer juggling, swinging,
tennis swinging, trampoline jumping, volleyball spiking, and
walking with a dog. The videos are challenging due to vari-
ations in camera motion, scale, etc. Each category is divided
into 25 groups with more than four videos in each. Videos of
each group share properties such as actor and background.
We selected 70% of the data for training and the rest for
testing with stratified sampling.

The algorithm has a hyper-parameter θ (2), the threshold
for cumulative loss ratio which lies in the unit interval. We
tested the algorithm on SubHMDB with values of θ selected
from the set {0.3, 0.4, 0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9,
0.95}. The best result is achieved for θ = 0.65. Figure 2
shows the results for some selected values of θ .

We compare our work with some of the recent meth-
ods proposed in the literature. These include GLTS [16],
MTSSVM [12], SC [1], MSSC [1], and MMAPM [11]. As
our method is an improvement upon TSN [34], we also com-
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Fig. 3 Results on HMDB51.
Left: compared with several
baselines, including TSN, right:
compared only with TSN

Fig. 4 Results on UCF11. Left:
compared with several
baselines, including TSN, right:
compared only with TSN

pare our method with it. The difference between the two is
that we use a subset of segments of TSN, selected from the
beginning of the video as described in Sect. 3. To better high-
light the difference with TSN, we include a separate graph
for each dataset, including only TSN as the baseline.

Figure 3 shows the results on HMDB. Our method is of
the highest accuracy, followed by TSN and then GLTS. The
margin between our method and TSN is between 1 and 2%
when the observation ratio is above 0.3. GLTS is the closest
to our method among the baselines (except TSN). As can
be seen, there is a big difference between our approach and
GLTS when a small portion of the video has been observed
(approximately 13% difference).

On UCF11, the two TSN-based methods (ours and basic
TSN) outperform the other methods by a large margin of
approximately 25%. These two methods have more than
95% accuracy and can be considered nearly “saturated.” Our
technique performs better than TSN, especially at greater
observation ratios and performs slightly worse when the
observation ratio is small. In all cases, the difference between
them is around 1%. On average, our method is better. Like
HMDB, the difference between our method and GLTS is
more when the observation ratio is small. The results are
illustrated in Fig. 4.

In summary, our method is a modification to the learning
process of a deep learning-based action recognition method.
The benefit is that it can be easily applied to similar action
recognition methods to make themmore suited to action pre-
diction. The proposedmethod shows improvement compared
to other methods. On the other hand, the disadvantage is that

the enhancement of our technique compared to the baseline
TSN is marginal.

5 Conclusion

In this paper, we presented a novel deep learning framework
for early action recognition. Itmodifies howbackpropagation
is applied to individual frames in a deep learning algorithm,
making the algorithm more suitable for early recognition.
More specifically, it uses the loss value to measure how
informative a frame is and stops learning at a frame when
significant knowledge has been learned. We applied this
framework to an action recognition model, called tempo-
ral segment network, on two well-known datasets UCF11
and HMDB51. Experimental results show that our method
was able to boost the network’s performance in the early
recognition setup.We also compared our approachwith some
state-of-the-art methods, which showed that our method out-
performs them.

Acknowledgements The authors would like to thank Dr. Mohsen
Ramezani for reviewing themanuscript, and for his valuable comments.

References

1. Cao Y, Barrett D, Barbu A, Narayanaswamy S, Yu H, Michaux A,
Lin Y, Dickinson S, Siskind JM, Wang S (2013) Recognize human
activities from partially observed videos. In: Proceedings of the
IEEE computer society conference on computer vision and pattern

123



International Journal of Multimedia Information Retrieval (2021) 10:219–226 225

recognition, pp 2658–2665. https://doi.org/10.1109/CVPR.2013.
343

2. Chakraborty B,HolteMB,Moeslund TB,Gonzàlez J (2012) Selec-
tive spatio-temporal interest points. Comput Vis Image Underst
116(3):396–410. https://doi.org/10.1016/j.cviu.2011.09.010

3. Cui R, HuaG,Wu J (2020) AP-GAN: predicting skeletal activity to
improve early activity recognition. JVisCommun ImageRepresent
73:102923. https://doi.org/10.1016/j.jvcir.2020.102923

4. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Ima-
genet: a large-scale hierarchical image database. In: 2009 IEEE
conference on computer vision and pattern recognition. IEEE, pp
248–255

5. Dollár P, Rabaud V, Cottrell G, Belongie S (2005) Behavior recog-
nition via sparse spatio-temporal features. In: Proceedings - 2nd
Joint IEEE international workshop on visual surveillance and per-
formance evaluation of tracking and surveillance, VS-PETS, vol
2005, pp 65–72. https://doi.org/10.1109/VSPETS.2005.1570899

6. Furnari A, Farinella G (2020) Rolling-unrolling LSTMs for action
anticipation from first-person video. IEEE Transactions on Pattern
Analysis and Machine Intelligence, p 1. https://doi.org/10.1109/
tpami.2020.2992889

7. Harris CG, Stephens (1988) A combined corner and edge detector.
In: Alvey vision conference, vol 15, pp 189–192

8. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for
image recognition. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp 770–778. www.image-net.
org

9. Hu JF, Zheng WS, Ma L, Wang G, Lai JH, Zhang J (2018) Early
action prediction by soft regression. IEEE Trans Pattern Anal
Mach Intell 41(11):2568–2583. https://doi.org/10.1109/TPAMI.
2018.2863279

10. Kantorov V, Laptev I (2014) Efficient feature extraction, encoding,
and classification for action recognition. In: Proceedings of the
IEEE computer society conference on computer vision and pattern
recognition, pp 2593–2600. https://doi.org/10.1109/CVPR.2014.
332

11. KongY, FuY (2016)Max-margin action predictionmachine. IEEE
Trans Pattern Anal Mach Intell 38(9):1844–1858. https://doi.org/
10.1109/TPAMI.2015.2491928

12. Kong Y, Kit D, Fu Y (2014) A discriminative model with multiple
temporal scales for action prediction. In: Fleet D et al (eds) ECCV
2014, Part V, LNCS 8693, Springer. pp. 596–611. https://doi.org/
10.1007/978-3-319-10602-1_39

13. Kong Y, Tao Z, Fu Y (2017) Deep sequential context net-
works for action prediction. In: 2017 IEEE conference on
computer vision and pattern recognition (CVPR), pp 3662–
3670. https://doi.org/10.1109/CVPR.2017.390. http://ieeexplore.
ieee.org/document/8099873/

14. KongY,TaoZ,FuY (2018)Adversarial action prediction networks.
IEEE Trans Pattern Anal Mach Intell 42(3):539–553

15. KuehneH, JhuangH,GarroteE, PoggioT, SerreT (2011)HMDB: a
largevideodatabase for humanmotion recognition. In: Proceedings
of the IEEE international conference on computer vision, pp 2556–
2563. https://doi.org/10.1109/ICCV.2011.6126543

16. Lai S, Zheng WS, Hu JF, Zhang J (2017) Global-local temporal
saliency action prediction. IEEE Trans Image Process 27(5):2272–
2285. https://doi.org/10.1109/TIP.2017.2751145

17. Laptev Li (2003) Space–time interest points. In: Proceedings ninth
IEEE international conference on computer vision, pp 432–439.
https://doi.org/10.1109/ICCV.2003.1238378

18. Liu J, Luo J, Shah M (2009) Recognizing realistic actions from
videos in the Wild. In: 2009 IEEE computer society conference on
computer vision and pattern recognition workshops, CVPR work-
shops2009, pp1996–2003. https://doi.org/10.1109/CVPRW.2009.
5206744

19. Liu J, Shahroudy A,Wang G, Duan LY, Kot AC (2018) Ssnet: scale
selection network for online 3d action prediction. In: Proceedings
of the IEEE conference on computer vision and pattern recognition,
pp 8349–8358

20. Ma S, Sigal L, Sclaroff S (2016) Learning activity progression
in LSTMs for activity detection and early detection. In: 2016
IEEE conference on computer vision and pattern recognition
(CVPR), pp 1942–1950. https://doi.org/10.1109/CVPR.2016.214.
http://ieeexplore.ieee.org/document/7780583/

21. Peng X, Schmid C (2016) Multi-region two-stream R-CNN for
action detection. In: Lecture notes in computer science (including
subseries lecture notes in artificial intelligence and lecture notes in
bioinformatics), pp 744–759. https://doi.org/10.1007/978-3-319-
46493-0_45

22. Qiao R, Liu L, Shen C, van den Hengel A (2017) Learning dis-
criminative trajectorylet detector sets for accurate skeleton-based
action recognition. Pattern Recogn 66:202–212. https://doi.org/10.
1016/j.patcog.2017.01.015

23. Ramezani M, Yaghmaee F (2016) A review on human action
analysis in videos for retrieval applications. Artif Intell Rev
46(4):485–514. https://doi.org/10.1007/s10462-016-9473-y

24. Ren S,HeK,GirshickR, Sun J (2015) Faster R-CNN: towards real-
time object detection with region proposal networks. In: Advances
in neural information processing systems, pp 2164–2173

25. Ryoo MS (2011) Human activity prediction: early recognition of
ongoing activities from streaming videos. In: Proceedings of the
IEEE international conference on computer vision, pp 1036–1043.
https://doi.org/10.1109/ICCV.2011.6126349

26. Simonyan K, Zisserman A (2014) Two-stream convolutional net-
works for action recognition in videos. In: Advances in neural
information processing systems, vol 1. Neural information pro-
cessing systems foundation, pp 568–576

27. Simonyan K, Zisserman A (2015) Very deep convolutional net-
works for large-scale image recognition. In: 3rd international
conference on learning representations, ICLR 2015 - Conference
Track Proceedings

28. Tran D, Wang H, Torresani L, Ray J, Lecun Y, Paluri M (2018) A
closer look at spatiotemporal convolutions for action recognition.
In: Proceedings of the IEEE computer society conference on
computer vision and pattern recognition, pp 6450–6459. https://
doi.org/10.1109/CVPR.2018.00675. http://openaccess.thecvf.
com/content_cvpr_2018/html/Tran_A_Closer_Look_CVPR_
2018_paper.html

29. WangH,Kläser A, SchmidC, Liu CL (2011) Action recognition by
dense trajectories. In: Proceedings of the IEEE computer society
conference on computer vision and pattern recognition, pp 3169–
3176. https://doi.org/10.1109/CVPR.2011.5995407

30. WangH,KläserA, SchmidC, LiuCL (2013)Dense trajectories and
motion boundary descriptors for action recognition. Int J Comput
Vis 103(1):60–79. https://doi.org/10.1007/s11263-012-0594-8

31. Wang H, Schmid C (2013) Action recognition with improved tra-
jectories. In: Proceedings of the IEEE international conference
on computer vision, pp 3551–3558. https://doi.org/10.1109/ICCV.
2013.441

32. Wang H, Yuan C, Shen J, Yang W, Ling H (2018) Action unit
detection and key frame selection for human activity prediction.
Neurocomputing 318:109–119. https://doi.org/10.1016/j.neucom.
2018.08.037

33. Wang L, Xiong Y, Wang Z, Qiao Y, Lin D, Tang X, van Gool L
(2016) Temporal segment networks: towards good practices for
deep action recognition. In: Lecture notes in computer science
(including subseries lecture notes in artificial intelligence and lec-
ture notes in bioinformatics), vol 9912 LNCS, pp 20–36. https://
doi.org/10.1007/978-3-319-46484-8_2

123

https://doi.org/10.1109/CVPR.2013.343
https://doi.org/10.1109/CVPR.2013.343
https://doi.org/10.1016/j.cviu.2011.09.010
https://doi.org/10.1016/j.jvcir.2020.102923
https://doi.org/10.1109/VSPETS.2005.1570899
https://doi.org/10.1109/tpami.2020.2992889
https://doi.org/10.1109/tpami.2020.2992889
www.image-net.org
www.image-net.org
https://doi.org/10.1109/TPAMI.2018.2863279
https://doi.org/10.1109/TPAMI.2018.2863279
https://doi.org/10.1109/CVPR.2014.332
https://doi.org/10.1109/CVPR.2014.332
https://doi.org/10.1109/TPAMI.2015.2491928
https://doi.org/10.1109/TPAMI.2015.2491928
https://doi.org/10.1007/978-3-319-10602-1_39
https://doi.org/10.1007/978-3-319-10602-1_39
https://doi.org/10.1109/CVPR.2017.390
http://ieeexplore.ieee.org/document/8099873/
http://ieeexplore.ieee.org/document/8099873/
https://doi.org/10.1109/ICCV.2011.6126543
https://doi.org/10.1109/TIP.2017.2751145
https://doi.org/10.1109/ICCV.2003.1238378
https://doi.org/10.1109/CVPRW.2009.5206744
https://doi.org/10.1109/CVPRW.2009.5206744
https://doi.org/10.1109/CVPR.2016.214
http://ieeexplore.ieee.org/document/7780583/
https://doi.org/10.1007/978-3-319-46493-0_45
https://doi.org/10.1007/978-3-319-46493-0_45
https://doi.org/10.1016/j.patcog.2017.01.015
https://doi.org/10.1016/j.patcog.2017.01.015
https://doi.org/10.1007/s10462-016-9473-y
https://doi.org/10.1109/ICCV.2011.6126349
https://doi.org/10.1109/CVPR.2018.00675
https://doi.org/10.1109/CVPR.2018.00675
http://openaccess.thecvf.com/content_cvpr_2018/html/Tran_A_Closer_Look_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Tran_A_Closer_Look_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Tran_A_Closer_Look_CVPR_2018_paper.html
https://doi.org/10.1109/CVPR.2011.5995407
https://doi.org/10.1007/s11263-012-0594-8
https://doi.org/10.1109/ICCV.2013.441
https://doi.org/10.1109/ICCV.2013.441
https://doi.org/10.1016/j.neucom.2018.08.037
https://doi.org/10.1016/j.neucom.2018.08.037
https://doi.org/10.1007/978-3-319-46484-8_2
https://doi.org/10.1007/978-3-319-46484-8_2


226 International Journal of Multimedia Information Retrieval (2021) 10:219–226

34. Wang L, Xiong Y, Wang Z, Qiao Y, Lin D, Tang X, Van Gool
L (2018) Temporal segment networks for action recognition in
videos. IEEE Trans Pattern Anal Mach Intell 41(11):2740–2755

35. Wang Y, Song J, Wang L, Gool L, Hilliges O (2016) Two-stream
SR-CNNs for action recognition in videos. In: Proceedings of
the British machine vision conference (BMVC), pp 108.1–108.12.
https://doi.org/10.5244/c.30.108

36. Weng J, JiangX,ZhengWL,Yuan J (2020)Early action recognition
with category exclusion using policy-based reinforcement learning.
IEEE Trans Circuits Syst Video Technol, p 1. https://doi.org/10.
1109/tcsvt.2020.2976789

37. ZanfirM, LeordeanuM, Sminchisescu C (2013) The moving pose:
an efficient 3D kinematics descriptor for low-latency action recog-
nition and detection. In: Proceedings of the IEEE international
conference on computer vision, pp 2752–2759. https://doi.org/10.
1109/ICCV.2013.342

38. Zhang HB, Zhang YX, Zhong B, Lei Q, Yang L, Du JX, Chen
DS (2019) A comprehensive survey of vision-based human action
recognition methods. Sensors 19(5):1005. https://doi.org/10.3390/
s19051005

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.5244/c.30.108
https://doi.org/10.1109/tcsvt.2020.2976789
https://doi.org/10.1109/tcsvt.2020.2976789
https://doi.org/10.1109/ICCV.2013.342
https://doi.org/10.1109/ICCV.2013.342
https://doi.org/10.3390/s19051005
https://doi.org/10.3390/s19051005

	Early-stopped learning for action prediction in videos
	Abstract
	1 Introduction
	2 Related work
	2.1 Action prediction
	2.2 Two-stream networks

	3 Proposed method
	4 Experiments
	5 Conclusion
	Acknowledgements
	References




