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Abstract
In this paper, our aim is to provide human understandable intuitive factual and counterfactual explanations for the decisions
of neural networks. Humans tend to reinforce their decisions by providing attributes and counterattributes. Hence, in this
work, we utilize attributes as well as examples to provide explanations. In order to provide counterexplanations we make
use of directed perturbations to arrive at the counterclass attribute values in doing so, we explain what is present and what
is absent in the original image. We evaluate our method when images are misclassified into closer counterclasses as well
as when misclassified into completely different counterclasses. We conducted experiments on both finegrained as well as
coarsegrained datasets. We verified our attribute-based explanations method both quantitatively and qualitatively and showed
that attributes provide discriminating and human understandable explanations for both standard as well as robust networks.

Keywords Explainable AI · Counterfactual · Explanations · Attributes · Classification · Adversarial examples

1 Introduction

Whendeployingmachine learning and computer visionmod-
els in the real world it is of utmost importance that we explain
the decisionsmade by thesemodels in human understandable
and intuitive way. The preferable procedure to provide such
explanations would be as humans explain their decisions. For
example, when a person classifies a bird into the “Cardinal”
class the reason provided by the person is because it has
a “Crested head” and a “Red beak”. Humans also tend to
support their decisions by providing counterexamples and
counterattributes such as, this bird would be classified into
the class “PineGrosbeak” if it will have a “Plain head” and a
“Black beak” as shown in Fig. 1. Inspired by human explana-
tions, in this paper we employ human understandable visual
attributes for providing factual and counterfactual explana-
tions.

A large bodyofwork in explainableAI focuses on explain-
ing the decisions of neural network-based classifiers using
saliency maps [35,42]. Saliency maps highlight the part of
the image which supports the classification however, the sup-
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port to the classificationmight be distributed across thewhole
image, ormight lie in the color or texture of the object.Hence,
it becomes difficult to localize the part of the image responsi-
ble for the classification especially for fine-grained datasets.
Furthermore, saliency maps tell us about what is present in
the image and do not provide any information about what is
absent i.e counterfactual information. Therefore in this work,
we focus on human nameable attributes for providing the rea-
soning behind specific decisions and perturbations to arrive
at attributes belonging to counterclasses to provide counter-
factual explanations.

In a closely related work [13], the authors provided
counterfactual explanations for classification decisions by
replacing the part of the original image with the similar part
from the distractor image belonging to the counterclass, such
that the class of the image changes. However, their method
is pixel-based, hence requires matching imaging conditions
such as pose and illumination. In contrast in this work, we
introduce perturbations in the images so that the attribute
values change to the counterclass attribute values.

In a recent work for the different purpose of enhanc-
ing the generalization power of visual question answering
systems [1] authors utilized counterfactuals and trained the
network with counterexamples. Similarly, in our work, we
improve the generalization and robustness of the neural
network-based classifier by training it with counterexamples.
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Fig. 1 We use attributes to explain why an image on the left is clas-
sified into the Cardinal class rather than the Pine Grosbeak class on
the right. And we use attributes with examples to explain when it will
be classified as a Pine Grosbeak by exploiting perturbed examples and
their attribute values. We show that when the predicted attributes for the
image change from “Crested Head” and “Red Beak” to “Plain Head”
and “Black Beak”, the image will be classified as Pine Grosbeak (color
figure online)

However, we go a step further and provide counterfactual
explanations for this network too.

We define the closeness of classes in the embedding space
based on the attribute similarity and evaluate our method
when images get misclassified into the closer counterclass
[37] as well as when we force them to be misclassified
into a distant counterclass [6]. We complement our attribute-
based explanations with counterexample-based explanations
by selecting the examples containing counterattributes.

Our main contributions are given as follows:

– We provide novel explanations for classification deci-
sions by utilizing intuitive factual and counterfactual
attributes and examples.

– We study the change in attribute values when images are
perturbed to provide counterfactual explanations from
any alternative counterclass as well as when images are
perturbed to provide counterfactual explanations from
our desired counterclass.

– We propose a novel method to assist our attribute-based
explanations with counterexamples, selected based on
these counterattributes.

We evaluate our attribute-based explanations quantitatively
and qualitatively for a standard as well a robust network.
Our results on three different datasets of varying sizes and
granularity show that attributes provide effective factual
and counterfactual explanations for classifier decisions. This
paper is an extended version of our conference paper [14].

2 Related work

Explaining the output of a decisionmaker is commonlymoti-
vated by the need to build user trust before deploying them
into a real world environment [11,15,26].

2.1 Explainability

Previous work for visual classification explanation is broadly
grouped into two types: (1) rationalization, that is, justify-
ing the network’s behavior and (2) introspective explanation,
that is, showing the causal relationship between input and the
specific output [10]. The first group has the benefit of being
human understandable, but it lacks a causal relationship
between input and output. The second group incorporates
the internal behavior of the network, but lacks human under-
standability. In this work, we explain the decisions of neural
networks in the human style of explanations by singling out
specific attributes for positive evidence when the image is
classified correctly and by following specific attributes for
negative evidence when the image is directed for misclassi-
fication in a counterclass.

An important group of work on understandibility focuses
on text-based class discriminative explanations [16,30], text-
based interpretationwith semantic information [9] and gener-
ating counterfactual explanations with natural language [17],
they all fall in the rationalization category. Text-based expla-
nations are orthogonal to our attribute-based explanations
as attributes tend to deliver the key-words in the sentence
and carry the quintessence for the semantic distinction. Par-
ticularly for fine-grained classification all sentences for all
classes tend to display the same structure hence, the core
of the semantic distinction between classes lies in attributes
where we put our emphasis. Generating sentences is valuable
but largely orthogonal to our approach.

To tackle the similar task of explaining visual decisions,
there is the large body of work on activation maximiza-
tion [35,42], learning the perturbation mask [12], learning
a model locally around its prediction, and finding important
features by propagating activation differences [32,34]. They
all fall in the group of introspective explanations. All these
approaches use saliency maps for explanation. We observe
that saliency maps [33] are frequently weak in justifying
classification decisions, especially for fine-grained images.
For instance, in Fig. 2 the saliency map of a clean image
classified into the ground truth class, “red-winged black-
bird”, and the saliency map of a misclassified perturbed
image, look quite similar. Instead, by grounding the predicted
attributes, one may infer that the “orange wing” is important
for “red-winged blackbird” while the “red head” is important
for “red-faced cormorant”. Indeed, when the attribute value
for orange wing decreases and for red head increases the
image gets misclassified. Therefore, we propose to predict
and ground attributes for both clean and perturbed images to
provide visual as well as attribute-based interpretations.
Counterfactual explanations Explanations which consider
counterdecisions or counteroutcomes are known as coun-
terfactual explanations [25]. An interesting approach in a
recent paper [13] proposes to generate counterfactual expla-

123



International Journal of Multimedia Information Retrieval (2021) 10:127–140 129

Black Head
Black Beak
Orange Wing
Black Wing

Black Head
Black Beak
Red Head
Black Tail

Predicted class: 
Red winged blackbird 
True class:
Red winged blackbird 

Clean

Adversarial
Predicted class: 
Red faced cormorant 
True class:
Red winged blackbird 

Fig. 2 Fine-grained images are difficult to explain with saliency maps:
when the answer is wrong, often saliency-based methods (left) fail to
detect what went wrong. Instead, attributes (right) provide intuitive and
effective visual and textual explanations

nations by selecting a distractor image from a counterclass
and replacing the region in the input image with a region
from the distractor image such that the class of the input
image changes into the class of the distractor image. Pixel-
based replacements pose high restrictions on the similarity
of viewpoint, pose and scene between the two images, which
makes the selection and replacement of the patches difficult.
We follow the same inspiration of human-motivated coun-
terexamples. However, our approach focuses on attributes
for generating explanations, as they contain the semantic
core of the distinction between two competing classes and,
attributes can naturally incorporate large changes in imaging
conditions of size, illumination and viewpoint. Addition-
ally, we use perturbations to change the class of the input
image we analyze which attributes lead to the change in
class.

Another closely related work, [21], focuses on the multi-
modal complimentarity of text and image for explanations.
They maximize the interaction information between class
predictor and explanation generator by simultaneously train-
ing them using variational lower bound. However, by the
nature of their method their example-based explanations will
be visually completely different from the input image. In our
work, by using the method of directed perturbations and dis-
criminating attributes we are capable of selecting the most
critical counterexamples as the most effective explanations.

In [1], authors utilized counterfactuals for enhancing the
generalization and applicability of visual question answering
systems.However, in ourwork for providing explanationswe
increase the generalization and robustness of neural network
classifier by training it on counterfactuals. After robustifi-
cation we verify our method on the robustified network by
studying the change in attributes for it.

2.2 Adversarial examples

Untargeted methods Small, carefully crafted perturbations,
called adversarial perturbations, have been used to alter the
inputs of deep neural networks, which results in adversarial
examples. These adversarial examples drive the classifiers
to the wrong class [37]. Such methods of directed pertur-
bations include iterative fast gradient sign method (IFGSM)
[23], the Jacobian-based saliency map attacks [29], one pixel
attacks [36], Carlini and Wagner attacks [7] and universal
attacks [28]. Here, our aim is to utilize the directed noise
from adversarial examples to study the change in attribute
values. Therefore, we select the IFGSM-method which is
fast and strong for our experiments to lead images into coun-
terclasses.
Targeted methods When small adversarial perturbations are
introduced in the images to misclassify them into the desired
counter classes are called targeted attacks [8]. Targeted
attacks are stronger and more difficult to achieve than
untargeted attacks because the algorithm needs to find the
perturbations, which will misclassify the image into the
desired class instead of misclassification into any alternative
class [6] i.e untargeted attacks. Besides studying the change
in attribute values for untargeted attacks, here we also study
the change in the attribute values when images are directed
into desired classes. For this purpose we utilize the targeted
version of IFGSMmethod and compare the results for untar-
geted and targeted attacks to verify whether our proposed
attribute-based counterfactual explanations also function for
targeted attacks.

2.3 Adversarial examples for explainability

Adversarial examples have been used for understanding neu-
ral networks. [18] aims at utilizing adversarial examples for
understanding deep neural networks by extracting the fea-
tures which provide the support for classification into the
target class. In this paper instead of providing feature based
visualizations we focus on human understandable attributes
for providing explanations for decisions. In [20], the authors
proposed a data-path visualization module consisting of the
layer level, the feature level, and the neuronal level visual-
izations of the network for clean as well as for adversarial
images. In contrast, we focus on exploiting adversarial exam-
ples to generate intuitive factual and counterfactual human
understandable explanations with attributes and visual exam-
ples.

In [40], the authors investigated adversarially trained
robust convolutional neural networks by constructing input
images with different textual transformations while at the
same time preserving the shape information. They do this to
verify the shape bias in adversarially trained networks com-
pared with standard networks. Similarly, in [38], the authors
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showed that saliency maps from adversarially trained robust
networks align well with human perception. In our work, we
also provide explanations when an image is correctly classi-
fied with an adversarially trained robust network and verify
that the attributes predicted by our method with a robust net-
work still retain their discriminative power for explanations.
Adversarial examples and counterfactual explanations In a
closely related work [19] authors reveal the duality relation-
ship between adversarial examples and explanations. They
argue that adversarial examples could be generated from
counterexamples and counterexamples could be generated
from adversarial examples. We follow a similar idea but
instead propose to utilize adversarial examples for explana-
tions in the presence of human understandable attributes.

Similarly, [5] tries to solve the paradox that previous
research [39] shows that adversarial examples and coun-
terfactual explanations are equivalent, then where lies the
difference between them? They argue that this paradox could
be solved by properly studying the semantics (i.e., neuronal
activations) of counterfactuals for providing explanations.
In this paper instead of focusing on solving the paradox
between adversarial examples and counterfactual explana-
tions we make use of adversarial examples with attributes to
provide counterfactual explanations.

3 Method

3.1 Adversarial perturbations

Given n-th image xn and its respective ground truth class
yn predicted by a classifier f (xn), an image x̂n is gener-
ated by adding adversarial perturbations to it such that the
classifier f (x̂n) predicts y, where yn �= y, and xn and x̂n are
close according to some distancemetric. Next, we present the
method for generating adversarial examples through untar-
geted attacks [6] and targeted attacks [6,8].
Untargeted attacks We leverage IFGSM method [23] to
generate adversarial perturbations. The mechanism for gen-
erating adversarial examples through basic iterative method
is given by:

x̂0n = xn

x̂ i+1
n = Clipε{x̂ in + αSign(�x̂ in

L(x̂ in, yn))} (1)

where, x̂0n is the input image at step i = 0, �x̂ in
L is the

derivative of the loss functionw.r.t to the current input image,
α is the step size taken at step i in the direction of sign of the
gradient, and finally the result is clipped by Clipε .
Targeted attacks For targeted attacks we target our input
image to be misclassified into a specific class yt . Follow-
ing equations are used to create adversarial perturbations for

misclassification in to a target class.

x̂0n = xn

x̂ i+1
n = Clipε{x̂ in − αSign(�x̂ in

L(x̂ in, yt ))} (2)

In the targeted attacks we maximize the loss against ground
truth class yn and minimize the loss against target class yt .

3.2 Adversarial robustness

Adversarial training Adversarial training [37] is one of the
state of the art method for robustness against adversarial per-
turbations. In adversarial training the model f r (x̂n) finds
the worst case adversarial examples and trains the network
on these adversarial examples besides training it on clean
images to make it robust against adversarial perturbations.
Hence, this leads to an improvement in performance against
adversarial perturbations. The following objective function
is minimized in adversarial training:

Ladv(xn, yn) = γL(xn, yn) + (1 − γ )L(x̂n, y) (3)

where, L(xn, yn) is the classification loss for clean images,
L(x̂n, y) is the loss for adversarial images and γ regulates
the loss to be minimized.

3.3 Attribute prediction

Weuse class attributes availablewith the dataset to predict per
image attributes and provide explanations for classification.
The model is shown in Fig. 3. At training time our network
learns tomap image features closer to their ground truth class
attributes and farther from other classes in the embedding
space. During test time when clean image features are pro-
jected in the learned embedding space the image getsmapped
closer to the ground truth class attributes e.g. “Crested head”
and “Red beak” associated with the ground truth class “Car-
dinal”, see Fig. 3. However, an adversarially perturbed image
gets mapped closer to the wrong class attributes e.g. “Plain
head” and “Black beak” belonging to the counterclass ‘Pine
Grosbeak”, Fig. 3.

Given the n-th input image features θ(xn) ∈ X and
output class attributes φ(yn) ∈ Y from the sample set
S = {θ(xn), φ(yn), n = 1 . . . .N } we employ SJE [2]
to predict attributes in an image. SJE learns to map � :
X −→ Y by minimizing the empirical risk of the form
1
N

∑N
n=1 �(yn, �(xn)), where � : Y × Y → R estimates

the cost of predicting �(xn) when the ground truth label is
yn .

A compatibility function F : X × Y → R is defined
between input X and output Y space:

F(xn, yn;W ) = θ(xn)
T Wφ(yn) (4)
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Fig. 3 Interpretable attribute prediction-grounding model. After an
adversarial training step, image features of both clean θ(xn) and adver-
sarial images θ(x̂) are extracted using Resnet and mapped into attribute
space φ(y) by learning the compatibility function F(xn, yn;W )

between image features and class attributes. Attributes predicted by
attribute-based classifier Aq

xn ,yn are grounded by matching them with

attributes predicted by Faster-RCNN A
j
xn for clean and adversarial

images. Examples are selected based on attribute similarity between
adversarial image and adversarial class images for visual explanations.
Hence, clean image attributes lead to complemental explanations while,
adversarial image attributes lead to counterfactual explanations

Pairwise ranking lossL(xn, yn, y) is used to learn the param-
eters (W ):

�(yn, y) + θ(xn)
T Wφ(yn) − θ(xn)

T Wφ(y) (5)

At test time attributes are predicted for clean images by pro-
jecting image features on to the learned embedding space. It
is given by:

An,yn = θ(xn)W (6)

and for adversarial images by:

Ân,y = θ(x̂n)W (7)

The image is assigned the label of the nearest output class
attributes φ(yn).

3.4 Attribute grounding

Thereafter, we ground the predicted attributes on the images
for better visual explanations using a pre-trained Faster-
RCNN as in [4]. The pre-trained Faster-RCNNF(xn)model
predicts bounding boxes b j . For each bounding box j in each
image xn it predicts a class Y

j
xn and an attribute A

j
xn [3].

b j
xn , A

j
xn , Y

j
xn = F(xn) (8)

where j is the bounding box index.
Attribute selection for grounding As all the attributes pre-
dicted for an image cannot be visualized due to visual

constraints. Therefore, we select the most discriminative
attributes for grounding on the images.Attributes are selected
based on the criterion that they change the most when the
image is perturbed with the adversarial noise. For clean
images we use:

q = argmax
i

(Ai
n,yn − φ(yi )) (9)

and for adversarial images we use:

p = argmax
i

(Âi
n,y − φ(yin)). (10)

where i is the attribute index, Ai
n,yn and Âi

n,y are attributes
predicted by SJE for clean and adversarial images, respec-
tively. φ(yi ), φ(yin) indicate the counterclass and ground
truth class attributes, respectively. q and p are indexes of
the most discriminative attributes selected based on our cri-
terion.

After selecting the most discriminative attributes pre-
dicted by SJE using Eqs. 9 and 10, we search for the selected
attributes Aq

xn ,yn ,A
p
x̂n ,y

in the attributes predicted by RCNN

for each bounding box A
j
xn , A

j
x̂n
. When the attributes pre-

dicted bySJEandFaster-RCNNarematched, that isAq
xn ,yn =

A
j
xn , A

p
x̂n ,y

= A
j
x̂n

we ground them on their respective clean
and adversarial images. As shown in Fig. 3, the attributes
“Crested head” and “Red beak” are grounded on the image
while “Plain head” and “Black beak” could not be grounded
because there is no visual evidence present in the image for
these attributes.
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3.5 Example-based explanations

Besides providing attribute-based explanations we propose
to provide counterexample-based explanations as shown in
Fig. 3. We compare the results for example-based explana-
tions by selecting examples randomly from the counterclass
with examples selected based on attributes Fig. 13.
Example selection through attributes The procedure for
example-based explanations using attributes is detailed in
the Algorithm 1 and the results are shown in Figs. 12 and
13. Given clean images classified correctly and adversarial
imagesmisclassified and their predicted attributes, we search
for attributes in the adversarial class which are most similar
to the attributes of the adversarial image and select these
images as counterexamples, i.e., a “Pine Grosbeak” image
with the attributes “Plain head” and “Black beak” is selected
as a counterexample Fig. 3.

Algorithm 1: Example Selection through Attributes
input : Adversarial images: x̂n,y , Clean images: xn,yn ,

Adversarial image attributes: Ân,y , Clean image
attributes: An,yn , Adversarial classes: y

output: Selected examples from adversarial class: xsn,y

1 for each adversarial image x̂n,y do
2 Select all the images from adversarial class xn,y
3 for each image in adversarial class xn,y do

4 s = argmin
i

‖ Â
i
n,y − Ai

n,y ‖2
5 end
6 end
7 return xsn,y

3.6 Attribute analysis method

Finally, in this section we introduce our techniques for quan-
titative analysis on the predicted attributes.
Predicted attribute analysis: standard network In order
to perform analysis on attributes in embedding space, we
consider the images which are correctly classified without
perturbations and misclassified with perturbations. Our aim
is to analyze the change in attributes in embedding space to
verify that attributes change with the change in the class.

We contrast the Euclidean distance between predicted
attributes of clean and adversarial samples:

d1 = d{An,yn , Ân,y} =‖ An,yn − Ân,y ‖2 (11)

with the Euclidean distance between the ground truth
attribute vector of the correct and adversarial classes:

d2 = d{φ(yn), φ(y)} =‖ φ(yn) − φ(y)) ‖2 (12)

where, An,yn denotes the predicted attributes for the clean
images classified correctly, and Ân,y denotes the predicted
attributes for the adversarial images misclassified with a
standard network. The correct ground truth class attribute
are referred to as φ(yn) and adversarial class attributes are
referred to as φ(y).

Predicted attribute analysis: robust networkWe compare the
distances between predicted attributes of only adversarial
images that are classified correctly with the help of an adver-
sarially robust network Âr

n,yn and classified incorrectly with

a standard network Ân,y :

d1 = d{Âr
n,yn , Ân,y} =‖ Âr

n,yn − Ân,y ‖2 (13)

with the distances between the ground truth class attributes
φ(yn) and ground truth adversarial class attributes φ(y):

d2 = d{φ(yn), φ(y)} =‖ φ(yn) − φ(y)) ‖2 (14)

3.7 Implementation details

Image features and adversarial examples We extract image
features and generate adversarial images using the fine-tuned
Resnet-152. Adversarial attacks are performed using the
basic iterative method with epsilon ε values 0.01, 0.06 and
0.12. The l∞ norm is used as a similarity measure between
clean input and the generated adversarial example. In order
to generate adversarial examples for untargeted attacks the
algorithm perturbs the images such that they get misclassi-
fied into any alternative counter class. In order to generate
adversarial examples for targeted attacks we direct adver-
sarial examples to be misclassified into randomly selected
classes.

Adversarial training As for adversarial training, we repeat-
edly computed the adversarial examples while training the
fine-tuned Resnet-152 to minimize the loss on these exam-
ples. We generated adversarial examples using the projected
gradient descent method. This is a multi-step variant of
FGSM with epsilon ε values 0.01, 0.06 and 0.12, respec-
tively, for adversarial training as in [27].

Attribute prediction and grounding At test time the image
features are projected onto the learned attribute space and
attributes per image are predicted. The image is assignedwith
the label of the nearest ground truth attribute vector. Since
we do not have ground truth part bounding boxes for any of
the attribute datasets, the predicted attributes are grounded
by using Faster-RCNN pre-trained on the Visual Genome
Dataset [22] .
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4 Experiments and results

4.1 Datasets

We experiment on three datasets, Animals with Attributes
2 (AwA) [24], Large attribute (LAD) [41] and Caltech
UCSD Birds (CUB) [31]. AwA contains 37322 images
(22206 training/5599 validation/9517 test) with 50 classes
and 85 attributes per class. LAD has 78017 images (40957
training/13653 validation/23407 test) with 230 classes and
359 attributes per class. CUB consists of 11,788 images
(5395 training/599 validation/5794 test) assigned to 200 fine-
grained categories of birds with 312 attributes per class.
All three datasets contain real-valued class attributes rep-
resenting the degree of presence of an attribute in a class.
For the qualitative analysis with grounding we select 50
attributes that change their value most for the CUB, 50
attributes for AWA, and 100 attributes for the LAD dataset.
They are selected by Eqs. 9 and 10, since it is difficult
for humans to understand all the attributes grounded on the
images.

TheVisualGenomeDataset [22] is used to train the Faster-
RCNNmodel which extracts the bounding boxes using 1600
object and 400 attribute annotations. Each bounding box
is associated with an attribute and the class, e.g. a brown
bird.

4.2 Comparing general and attribute-based
classifiers

In the first experiment, we compare the general classifier
f (xn) and the attribute-based classifier �(xn) in terms of the
classification accuracy on clean images to see whether the
attribute-based classifier performs equally well.

We find that, the attribute-based and general classi-
fier accuracies are comparable for AWA (general: 93.53,
attribute-based: 93.83). The attribute-based classifier accu-
racy is slightly higher for LAD (general: 80.00, attribute-
based: 82.77), and lower for CUB (general: 81.19, attribute-
based: 76.90) dataset. The overall impression is that both
general and attribute-based classifiers perform equally well.

4.3 Attribute-based explanations: standard network

In the second experiment we study the change in attributes
with a standard network to demonstrate that by introducing
perturbations in the images the attribute values change such
that the class of the image changes to the counterclass and
hence provide intuitive counterexplanations. We study the
change in attribute values both when the counterclass is any
other class, i.e., untargeted, as well as when we direct the
image into a specific class, i.e., targeted.

4.3.1 By performing classification based on attributes

Untargeted attacks With untargeted adversarial attacks, the
accuracy of both the general and attribute-based classifiers
drops with the increase in perturbations see Fig. 4 (blue
curves). The drop in accuracy of the general classifier for
the fine-grained CUB-dataset is higher as compared to the
coarse-grained AWA dataset. For example, at ε = 0.01 for
the CUB dataset the general classifier’s accuracy drops from
81% to 31% , while for the AWA dataset it drops from
93% to 70% and for LAD dataset it drops from 80% to
50%. However, compared to the general classifier the drop in
accuracy with the attribute-based classifier for CUB dataset
is less ≈ 20%. For the coarse-grained datasets AWA and
LAD the drop is almost the same for both attribute-based
and general classifiers. The limited drop in accuracy for
the CUB dataset with the attribute-based classifier when
compared to the general classifier, is attributed to the fact
that for fine-grained datasets there are many attributes com-
mon among classes. Therefore, in order to misclassify an
image a significant number of attributes need to change
their values. For a coarse-grained dataset, changing a few
attributes is sufficient for misclassification. Overall, the drop
in the accuracy due to the perturbation demonstrates that the
attribute values change toward those that belong to the new
class. Hence, attributes explain the misclassifications into
the counterclasses well. This also concludes that attributes
contain the crucial characteristics for discrimination between
classes.
Targeted attacks In the untargeted attacks the algorithm mis-
classifies the image into any alternative class which could be
a closer class, i.e., a class with the majority of attribute val-
ues same as the ones from the ground truth class. In contrast,
targeted adversarial attacks force the image to be misclassi-
fied into a randomly selected desired class which could be
far away from the ground truth class, i.e., the attribute values
between both classes differ significantly, hence making the
targeting into this class difficult. We evaluate our method for
misclassification into a closer class as well as for a distant
class.

The accuracy of both general as well as attribute-based
classifiers drop with the increase in perturbations see Fig. 5
(blue curves). However, compared to the drop in performance
with untargeted attacks the dropwith targeted attacks is lower
see Figs. 4 and 5 (blue curves). This is due to the fact that
in untargeted attacks the images are misclassified into closer
classes while with the targeted attacks images get misclassi-
fied into distant classes.

By contrasting the drop in the accuracy of the general
classifier between three datasets using targeted attacks we
observe that the fine grained CUB-dataset leads to a higher
drop in the performance as compared to the AWA, and LAD
datasets Fig. 5 (blue solid curves). Although the drop with
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Fig. 4 Untargeted Attacks: Comparing the accuracy of the general
classifier and the attribute-based classifier for adversarial examples gen-
erated with untargeted attacks to investigate the change in attributes.We
evaluate both classifiers by extracting features from a standard network
and the adversarially robust network. The drop in the performance with

the increase in the level of perturbations shows that the attributes start
pointing toward the counter classes (blue curves). The improvement in
the performance with robustification shows that with an adversarially
robustified network the attributes again start pointing toward the ground
truth class (purple curves) (color figure online)

Fig. 5 Targeted Attacks: Comparing the accuracy of the general classi-
fier and the attribute-based classifier for adversarial examples generated
with targeted attacks to investigate the change in attributes. We evalu-
ate both classifiers by extracting features from a standard network and
the adversarially robust network. The drop in the performance with
the increase in the level of perturbations shows that the attributes start

pointing toward the counter classes (blue curves). However, the drop
is not significant when compared to untargeted attacks. Similarly, with
the adversarial robustness the performance improves and the attributes
start pointing toward the ground truth class, however the improvement
is also not as significant as for the untargeted attacks (purple curves)
(color figure online)

targeted attacks is lower than untargeted attacks but the over-
all behavior in the drop is the same for both untargeted and
targeted attacks. For instance, at ε = 0.06 the accuracy drops
from 81% to 39% for CUB-dataset, while for AWA dataset
it drops from 93% to 72% and for LAD dataset it drops
from 80% to 58%. While the drop in the accuracy with the
attribute-based classifier for CUB-dataset reduced to almost
half, i.e., ≈ 23% and increased for AWA and LAD dataset,
i.e., ≈ 25% and ≈ 29%, respectively. Similar to the gen-
eral classifier attribute based classifier for targeted attacks
also shows the same behavior as attribute based-classifier
for untargeted attacks. Hence, this further supports our argu-
ment that for fine grained datasets as there are numerous
attributes common among the classes therefore we need to
changemany of them in order to change the class and provide

explanations based on the attributes. While, for the coarse
grained datasets only by changing a few attributes we can
cause misclassification and explain it.

Overall, the lack in the drop of performance for an attribute
based classifier with the targeted attacks as compared to
untargeted attacks shows that the change in attribute values
towards the counterclass is less significant with the targeted
attacks. Hence, attribute values with untargeted attacks pro-
vide better counterexplanations than attribute values with the
targeted attacks.

4.3.2 By computing distances in the embedding space

Wecontrast theEuclideandistancebetweenpredicted attributes
of clean and adversarial samples using Eqs. 11 and 12. The
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Fig. 6 Attribute value distance plots for clean and adversarial images
with a standard network. The complete overlap for the CUB-dataset
shows that fine-grained datasets require change in significant no of

attribute to change the class. While the small overlap for the coarse-
grained AWA dataset shows that the change in a few attributes is
sufficient to change the class

results are shown in Fig. 6. We observe that for the AWA
dataset the distances between the predicted attributes for
adversarial and clean images d1 are smaller than the dis-
tances between the ground truth attributes of the respective
classes d2. The closeness in predicted attributes for clean and
adversarial images as compared to their ground truths shows
that attribute values change towards the wrong class but not
completely. This is due to the fact that for coarse classes only
a small change in attribute values is sufficient to change the
class.

The fine-grained CUB-dataset behaves differently. The
overlap between d1 and d2 distributions demonstrates that
attributes of images belonging to fine-grained classes change
significantly as compared to images from coarse categories.
As the fine-grained classes are closer to one another and
many attributes are common among fine-grained classes.
Thus it requires to change the attributes significantly to cause
misclassification. Hence, for the coarse-grained dataset,
the attributes change minimally, while for the fine-grained
dataset they change significantly.

4.3.3 Qualitative analysis

Untargeted attacks We observe in Fig. 8 that the most
discriminative attributes for the clean images are coherent
with the ground truth class however, for adversarial images
they are coherent with the wrong class thus explaining the
wrong class. For example “red head, black wing, black eye”
attributes are responsible for the classification of clean image
into correct class and when the value of “red head” attribute

Wolf
-Have claws (No grounding)
Is Grey

Perturbed                      

Black Tail (Wrong grounding)
Rosebreasted Grosbeak

Perturbed                      

Fig. 7 Explanation of a wrong classification due to wrong or missing
attribute grounding. For perturbed images attributes either get grounded
on wrong spots or are missing because their visual evidence is absent
in the image. (Perturbations magnified)

decreases and “grey beak, white underparts” increases the
image gets misclassified into wrong class. Figure 7 reveals
the results for the groundings on perturbed images. The
attributes which are not related to the correct class, the ones
that are related to the counterclass cannot get grounded or
get grounded at the wrong spots in the image as there is no
visual evidence that supports the presence of these attributes.
For example “black tail” is related to the counterclass and
is not present in the adversarial image. Hence, black tail”
got wrongly grounded. This indicates that attributes for the
clean images correspond to the ground truth class and for
adversarial images correspond to the counterclass. Addition-
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Perturbed
Example from Correct Class

(Correctly Classified) 

Head Color None
White Underparts
Black Wing
Grey Beak
Black Tail

Rosebreasted Grosbeak
Red Head 
Underparts Color None
Beak Longer than Head
Black Wing
Black Eye 

Redheaded Woodpecker
No White
Have claws
Is domestic 
Is Grey
Is black

Wolf
Is Big
Is Grazing
Is white 
Is black

Zebra

Perturbed
Example from Correct Class

(Correctly Classified) 

Head Color None
White Underparts
Black Wing
Grey Beak
Black Tail

Rosebreasted Grosbeak

Example from Counter Class 

No White
Have claws
Is domestic 
Is Grey
Is black

Example from Counter Class 

Wolf

Fig. 8 Untargeted: Qualitative analysis for change in attributes due
to directed perturbations with a standard network. The attributes are
ranked by importance for classification. Most discriminative attributes

for clean images correspond to the ground truth classwhile, those for the
perturbed image they compatible with the counter class thus explaining
the misclassification. (Perturbations magnified for better visibility)

Red Head
Black Wing
Black Tail

Black Tail
-Black Wing
-White upper Tail
-Solid Back
-Black Back

Brown Beak 
Black Eye
Brown Wing
Brown Tail
Brown Head

-White Throat
-Bill length same as head
-Solid Back
-Brown Back
-White underparts

Red Headed Woodpecker Pileated Woodpecker Pileated WoodpeckerBlack Billed Cuckoo White Breasted Kingfisher White Breasted Kingfisher
White Throat
Bill length same as head
White underparts

Black Tail
Black Wing

Perturbed
Example from Correct Class

(Correctly Classified) 
Example from
 Counter Class Perturbed

Example from Correct Class
(Correctly Classified) 

Example from 
Counter Class 

Fig. 9 Targeted: Qualitative analysis for change in attributes due to
directed perturbationswith a standard network.The attributes are ranked
by importance for classification. Grounded attributes are color coded
for the visibility. Those in gray color could not be grounded. Those
attributes common among ground truth and counter class are grounded

while those for which no visual evidence is found in the image could
not be grounded on the perturbed image hence, indicating the change
in the class. (Perturbations magnified for better visibility.) (color figure
online)

ally, only those attributes common among both the coun-
terand the ground truth classes get grounded on adversarial
images.

Hence, ourmethod provides explanations for both fine and
coarse-grained classifications when the images get misclas-
sified into similar classes or dissimilar classes.
Targeted attacks Figure 9 reveals the results for grounding
the attributes when the images are misclassified with tar-
geted attacks. As in the targeted attacks we direct images
into random classes we observe that images get misclassi-
fied into visually dissimilar classes. The attributes predicted
for perturbed images also correspond to visually dissimilar
counterclasses. Hence, it becomes difficult to ground pre-
dicted attributes on perturbed images because there is no
visual evidence present for those attributes in the images.
For instance in fig. 9 first example, “White Throat”, “Bill
length same as head” and “Solid Back” were responsible for

misclassification into the “White breasted kingfisher” class,
but as there is no visual evidence available for these attributes
in the image originally belonging to “Black billed Cuckoo”
class therefore, none of the attributes could be grounded on
the perturbed image. Hence, our results show that the visual
explanations provided by untargeted perturbations are much
more useful for human understanding as compared to tar-
geted perturbations.

4.4 Attribute-based explanations: robust network

We perform the same experiments with a robust network
to study the change in attribute values such that the class
of the perturbed image changes back to the ground truth
class.
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4.4.1 By performing classification based on attributes

Untargeted attacks Our evaluation on the standard and
adversarially robust networks shows that the classification
accuracy improves for the adversarial images when adver-
sarial training is used to robustify the network Fig. 4 (purple
curves). For example, in Fig. 4 for AWA the accuracy of
the general classifier improved from 70% to 92% and for
LAD it improved from 50% to 78% for adversarial attack
with ε = 0.01. As expected for the fine-grained CUB-
dataset the improvement is ≈ 31% higher than the AWA and
LAD datasets. However, for the attribute-based classifier, the
improvement in accuracy forAWA (≈ 18%) is almost double
and for LAD (≈ 22%) almost triple that of the CUB-dataset
(≈ 7%). This demonstrates that, attributes retain their dis-
criminative power for explanations with the standard as well
as robust networks.
Targeted attacksResults for the performance of standard and
adversarially robust networks against targeted attacks show
that the performance of the network improves for adversar-
ial images when tested on an adversarially robust network
Fig. 5 (purple curves). Different from untargeted attacks
for targeted attacks, the improvement in the performance
is not significant. For example, in Fig. 5 at ε = 0.06 for
AWA dataset the accuracy improved to ≈ 12%, for CUB
it improved to ≈ 14% and for LAD dataset it improved to
≈ 16% while with untargeted attacks the improvement in
the accuracy at ε = 0.06 is more than double of that with
targeted attacks. This shows that when images are misclas-
sified into visually dissimilar classes it becomes difficult to
correctly classify them with robustification as compared to
images misclassified into visually similar classes.

Similarly, for attribute-based classifier the improvement
in the accuracy is less for targeted attacks as compared to the
untargeted attacks Fig. 5 (purple dotted curves). The overall
behavior in the improvement of performance for each dataset
with targeted attacks is similar to that of untargeted attacks.
For instance, at ε = 0.06 the improvement in the accuracy for
the CUB-dataset is the least ≈ 11% following AWA ≈ 16%
and LAD≈ 21%datasets. This supports our argument that in
order to change the class of fine grained imagesmore number
of attributes need to be changed. Overall, our results reveal
that even for an adversarially robustified network untargeted
attacks provide better explanations as compared to targeted
attacks.

4.4.2 By computing distances in the embedding space

We also compare the euclidean distance between predicted
attributes for only adversarial images in the presence of a
standard network and a robust network as shown in Fig. 10.
The results reveal that with only adversarial images on robust
and standard networks we observe the same distance dis-

tribution as in Fig. 6. Thus, attributes explain the correct
classification of adversarial images in the presence of the
robust network.

4.4.3 Qualitative analysis

Finally, our analysis with correctly classified images by the
adversarially robust network shows that, adversarial images
and their predicted attributes with the robust network behave
like clean images and their predicted attributes as shown in
Fig. 11. This also demonstrates that the attributes for adver-
sarial images classified correctly with the robust network still
retain their discriminative power and provide complementary
explanations.

4.5 Example-based explanations

In the final experimentwe demonstrate our visual example
and counterexample-based explanations when the attribute
values change with directed perturbations. For instance in
Fig. 12 when an image is classified correctly besides explain-
ing the classification decision with attributes we enhance our
explanations with the complemental example retrieved based
on these attributes. Similarly, when an image is misclassi-
fied into a counter class we also enhance our attribute-based
explanations by retrieving an image from the counter class.

Figure 13 reveals the importance of counterexample selec-
tion through attributes. In this example both the clean images
in first and second row belong to the same class the “Mal-
lard”. However, the clean image in the first row is male
Mallard and in the second row is female Mallard, they dif-
fer visually. Similarly, the male and female birds of the
counterclass “Redbreasted Merganser” also differ visually.
The results for the examples retrieval for both male and
female mallard show that, when images are retrieved through
attributes for the male Mallard the retrieved images are male
Redbreasted Merganser, while for the female Mallard the
retrieved images through attributes are female Redbreasted
Merganser. However, when we retrieve the images randomly
from the counterclass then the visual similarity can not
be ensured. Hence, our attribute-based example selection
method selects the visually similar examples to provide the
distinction between a clean image and a counter image from
the counter class under the presence of intra-class variation.

5 Discussion and conclusion

In this work we focused on providing the understanding of
neural networks decisions by exploiting counterattributes as
well as counterexamples which lead to the misclassification
in the counterclass.
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Fig. 10 Attribute value distance plots for only adversarial images with and without a robust network. The similarity with the plots in Fig. 6 shows
that adversarial image attributes in the presence of a robust network indicate to the ground truth class

Black Wing
-Blue Undertail
-Pointed tail
-Striped Wing

Blue Head
Black Wing

Perturbed (correctly classified 
robust network)          

Perturbed 
(misclassified standard network)                      

Head Color None
Black Wing
Yellow Underparts
White Beak

Blue Head
Black Wing 
Brown Underparts
Black Beak

Clean             
Example from Counter Class

(Correctly Classified) 
Example from Correct Class

(Correctly Classified)         

Blue Head
Black Wing 
Brown Underparts
Striped Wing

Lazuli Bunting Evening GrosbeakLazuli BuntingLazuli Bunting Evening Grosbeak

Fig. 11 Qualitative analysis for change in attributes due to directed
perturbations with a robust network. The attributes are ranked by impor-
tance for the classification decision, the grounded attributes are color
coded for visibility (the ones in gray could not be grounded). The over-

lap between the attributes of adversarial image with a robust network
and a clean image with a standard network shows that with a robust
network attributes change back to the ground truth class. (Perturbations
magnified for better visibility)

is classified as
Green Violetear
because of attributes 
● Green Eyes
● Iridescent Undertail
● Needle Shaped Bill
● Blue Throat

and looks like

will be classified as
Cape Glossy Starling
because of attributes 
● Olive Eyes
● Undertail Color None 
● Dagger Bill 
● Blue Throat

and will look like

and

Fig. 12 Qualitative analysis for Example-based explanations. Note that
when “green eyes, needle shaped bill” changes to “olive eyes, dagger
bill” the class of the image changes. These attributes are also comple-

mented with the image-based examples retrieved with these attributes.
(Perturbations magnified for better visibility)

Firstly, we showed that attribute-based classifiers perform
equally well as direct classifiers. We also showed that the
importance of attributes for providing explanations is higher

for the fine-grained classification as compared to coarse-
grained classification because the distinction between two
coarse-grained classes can bemade through a single attribute
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Perturbed Clean Selected examples (based on attributes) 

Mallard (Male) Redbreasted Mergensar Redbreasted Mergensar (Female)Redbreasted Mergensar (Male)

Mallard (Female) Redbreasted MergensarRedbreasted Mergensar (Female) Redbreasted Mergensar (Male)

Selected examples (randomly from counter class) 

Fig. 13 Qualitative analysis for Example-based explanations. Note that
both “Mallard” and “Redbreasted Mergensar” classes have intra-class
variability as the male and female birds in both classes look visu-
ally different. When we use attributes for retrieving image examples,

male Mallard retrieves male RedbrestedMergensar and female Mallard
retrieves female Redbrested Merganser thus incorporating the intra-
class variability. (Perturbations magnified for better visibility)

as compared to the fine-grained classes which require numer-
ous attributes for distinction between them.

Secondly, we demonstrated that by introducing adversar-
ial perturbations in the images we were able to change the
attribute values to those of counterclass attributes and hence
provided counterattribute-based explanations. Our results
showed that these attributes contain crucial characteristics
for the discrimination between classes.

Thirdly, we repeated all the experiments for the images
with perturbations introduced through targeted attacks. Our
results showed that, our attribute-based explanations work
better with untargeted attacks as compared to the targeted
attacks.

We also showed that when a network is robustified against
adversarial perturbations the predicted attribute values for the
perturbed images start indicating back towards the correct
class which further confirmed our attribute-based explana-
tions.

Finally, we demonstrated our attribute-based explanations
by providing causal reasoning “because the image contains
these attributes therefore it is classified into this class”. We
also assisted our counterattribute-based explanations with
counterexamples selected based on predicted attributes and
showed that ourmethod selectedmost precise and illustrative
examples even in the presence of intra-class variations.

Hence, we conclude that attributes provide intuitive
factual and in the presence of perturbations counterfac-
tual human understandable explanations especially for fine
grained classification. These explanations could also be
enhanced by retrieving visual examples through them.
Attributes retain their best discriminative power in the pres-

ence of untargeted attackswith standard aswell as robustified
networks.
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