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Abstract
Deep neural networks have attained great success in handling high dimensional data, especially images. However, generating
naturalistic images containing ginormous subjects for different tasks like image classification, segmentation, object detection,
reconstruction, etc., is continued to be a difficult task. Generative modelling has the potential to learn any kind of data
distribution in an unsupervised manner. Variational autoencoder (VAE), autoregressive models, and generative adversarial
network (GAN) are the popular generative modelling approaches that generate data distributions. Among these, GANs
have gained much attention from the research community in recent years in terms of generating quality images and data
augmentation. In this context, we collected research articles that employed GANs for solving various tasks from popular
databases and summarized them based on their application. The main objective of this article is to present the nuts and bolts
of GANs, state-of-the-art related work and its applications, evaluation metrics, challenges involved in training GANs, and
benchmark datasets that would benefit naive and enthusiastic researchers who are interested in working on GANs.

Keywords Generative model · Convolutional neural network · segmentation · Object detection · Generative adversarial
network

1 Introduction

Generating quality images is a challenging task in the field
of computer vision and artificial intelligence, having numer-
ous applications and research scope. Supervised machine
learning and deep learning models require large and labelled
datasets to generalize the decisionmaking process. However,
the availability of large and labelled databases is questioned
in many domains like medical diagnosis, fault detection,
intrusion detection, etc. Hence, the research community
heavily depends on unsupervised learning. In unsupervised
learning, the model strives to learn the structure and extracts
the useful features of the data. Generative modelling is a sub-
field of unsupervised learning that work towards the goal of
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learning the structure of the data and generate data similar to
it. Generative models can be trained with high dimensional
probability distributions. They can also be used in rein-
forcement learning, semi-supervised learning, etc. In general,
generative models work on any one of these three principles:
inference approximation, maximum likelihood, and Markov
chains. LatentDirichlet distribution [7], restrictedBoltzmann
machines [36], deep belief networks (DBNs) [37], etc., are
the other generative models extensively used in the literature
to generate naturalistic data. These models operate on the
principle of maximum likelihood. However, these models do
not fit the data distributions completely.

Goodfellow et al. [23] introduced GANs, an unsuper-
vised generativemodel, worked on the principle ofmaximum
likelihood, and used adversarial training. Right from the
inception of generative adversarial networks (GANs), they
have been the most discussed and most researched domains
not only in the field of computer science but also in other
domains. GANs have been gained much popularity in gener-
ating high-quality realistic data. Thus, GANs also attracted
researchers as a data augmentation tool for imbalanced data
applications. Generative models, especially GANs, can be
deployed inmanymachine learning taskswheremultiple cor-
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Fig. 1 The architecture of GAN

rect answers can be inferred from a single input. GANs are
also used to attribute more information into the context than
it has originally. GANs are used to create models that help
researchers in generating artificial naturalistic images. Since
then, they have been used in diverse domains and diverse
applications. GANs have been leveraged in medical imaging
for disease diagnosis, semantic segmentation, image caption-
ing, image attacking to change the classifier decision, image
deblurring, image dehazing, synthesizing, face frontaliza-
tion, high-resolution images from low-resolution images also
known as super-resolution (SR), text to image generation
or scene generation, steganography, object detection, speech
recognition, fault diagnosis, industrial risk analysis, and nat-
ural language processing applications like text generation,
text summarization, style transfer, etc. However, one should
note that GAN is not just an image generation tool, but it
retrieves useful information from the training data so that
object detection, segmentation, and classification tasks can
be performed in various domains. The training data can be
any content of multimedia, for example, image, text, audio,
video, and animation. The GAN consists of a generator net-
work (G) and a discriminator network (D) as shown in Fig. 1.
The generator consumes a noise vector (z) as input and gen-
erates data distribution similar to real data distribution. The
discriminator discriminates between real and artificial data as
a binary classifier. During the training, the generator loss and
the discriminator loss are computed to compute the overall
loss (V). TheGAN loss is computed using the formula shown
in Eq. 1, and the motive of training is to minimize the gener-
ator loss and maximize the discriminator loss. x ∼ Pdata(x)
and z ∼ Pz(Z) represents x is an instance from real distri-
bution and z is an instance from prior distribution.

min
G

max
D

V (D,G) = Ex∼pdata(x)[log D(x)]
+Ez∼pz(z)[log(1 − D(G(z)))] (1)

The motive of this paper is to give a brief introduction
about GANs, nuts and bolts of GANs, various derivedGANs,
and applications of GANs pertaining to different tasks in
multiple domains. To this end, we collected 140 research
papers to give a detailed summary of generative adversarial
networks, especially in terms of applications. Figure 2 shows
the graph of the number of publications considered yearwise.
First, we identified the state-of-the-art works derived relat-

Fig. 2 Year wise number of applications

ing to different tasks are discussed in Sect. 2. The collected
paperswere segregated based on their objective and classified
into multiple applications, as presented in Sect. 3. Section
4 discusses various evaluation metrics used in the selected
papers to evaluate the GAN model. We discussed multiple
challenges involved in training a GAN in Sect. 5. Finally, the
paper concludes in Sect. 6.

2 The beginning

With the advent of GANs that work on the principle of
generative and adversarial manner, researchers can synthe-
size novel and quality images. However, the synthesizing
of images has not just started with GANs. There are a few
research works to synthesize images using convolutional
neural networks (CNN). Abdalmageed et al. [1] discussed a
CNN-based pipelined architecture for face recognition task
by detecting and correcting multiple poses using deep face
representation methods. Masi et al. [69] synthesized more
facial images using a deep convolutional model to make the
dataset better. The existing facial images are manipulated
in three variations pose, shape, and expression. The pose
and shape are simulated across three dimensions with closed
mouth expression. But, these are subjected to limitations in
terms of quality and diversity of images, thereby deterio-
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Fig. 3 The architecture of
conditional GAN

rating the performance generalization indirectly. Once the
principle ofGAN is formulated and achieved success inmod-
elling probability distributions, plenty of other GAN models
are derived for diverse applications and produced promising
results. Mirza and Osindero [71] introduced class label as an
additional input to both generator and discriminator to model
conditioned variant of GAN (CGAN). Since the class label
is given as other input, the CGAN is capable of generating
images specific to the class label. The architecture of CGAN
is shown in Fig. 3, and loss function is shown in Eq. 2.
Radford et al. [80] devised a GAN model named DCGAN
for learning unsupervised representations. Contrary to basic
GAN, DCGAN has convolutional layers to upscale the input
vector z of the generator module. Also, it employed regular
convolutional layers to classify generated and real images.

min
G

max
D

V (D,G) = Ex∼pdata(x)[log D(x |c)]
+Ez∼pz(z)[log(1 − D(G(z|c)))]

(2)

Wu et al. [107] modelled the generation of 3D objects
by mapping latent space to object space using 3D GAN.
They extended the 3D GAN using a variational autoencoder
(3D-VAEGAN) that maps a 2D vector space to 3D vec-
tor space using the VAE module and then mapped to 3D
object space by the GAN model. Liu and Tuzel [66] com-
puted the joint probability distributions of two domains using
two GANs. Each GAN learns the distribution of one domain
while training and also shares the high-level weights that
allow coupled GAN to compute the joint distribution. By
deploying multiple generators, kwak and Zhang [53] gen-
erated a composite generative system called CGAN. First,
every generator separately removes a complex part of the
image. These components are then summarized by a blending
process to generate a new image. Im et al. [41] demonstrated
a novel image generation method based on the recursive
adversarial model (GRAN). GRAN incrementally generates
high fidelity visual samples. A novel crossover evaluation
scheme is also introduced between generator and discrim-
inator networks. Zhu et al. [138] introduced an immersive
generative model that allows users to control the visual
content naturally and realistically. Perarnau et al. [77] per-
formed image editing operations like expression changing,

hair colour changing, gender-changing, etc., using invertible
conditional GAN (IcGAN). An encoder is placed to com-
press the input vector into a latent and conditional vector.
Yoo et al. [118] discussed a framework that transfers one
domain to another semantically in pixel-level. The frame-
work contains an encoder-decoder based generator and two
discriminators. The two discriminators are trained to learn
the semantic relations between the domains. Brock et al. [9]
introduced a neural photo editor that affects the semantic
changes requested by the user at ease. The intuitive idea
behind neural photo editor is that it back propagates the
requested changes to compute the change in latent param-
eters. Given two unlabelled and unrelated domains P and Q,
and a function f, a generative function G can be learned such
that a sample from P can be mapped to Q, i.e. G: P → Q and
f (x) ∼ G( f (x)) [93].
Arjovsky et al. [5] introduced a novel training model

(WGAN) based on Wasserstein’s distance to avoid the mode
collapse problem that occurs in the training of traditional
GANs. Antipov et al. [3] introduced Age-cGAN that gen-
erates high-quality synthetic images in which an aged face
synthesized while preserving the person’s identity. Kim et
al. [50] learned the relations between two different domains
using DiscoGAN that consist of twoGANs coupled together.
Given an image in one domain DiscoGAN, can generate
the corresponding image in another domain. Li et al. [60]
have developed a GAN for detecting smaller image enti-
ties by reducing smaller objects representative margin to
larger objects. In [43], the authors have employed a condi-
tional GANmodel to translate an image to another analogous
image. For example, converting day-photo to night-photo,
converting to an aerial image to map design, etc. Karras et
al. [46] presented progressive growing GANs that generate
quality and high-resolution images. The idea behind progres-
sive growing GAN is that it extends the training process of a
normal GAN by adding new layers. A super-resolution GAN
(SRGAN) [55] model takes a low-resolution image as input
and increases the spatial resolution of the image by an upscal-
ing factor and produces a high-resolution image as output.
The applications are ranging from satellite imaging, medi-
cal imaging, media content, face recognition in surveillance
systems, etc. A StackGAN [126] that automates synthesiz-
ing realistic images from human-written descriptions. The
StackGAN works in two stages. Stage-1 GAN generates
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low-resolution images with initial shape and basic colours
of objects. Stage-2 GAN takes low-resolution images, text
descriptions as inputs and corrects the errors, completes the
details, and generates photo-realistic images with four times
better resolution. AnoGAN [87] an unsupervised generative
model that can detect diseases from medical image data at
early stages. Zhu et al. [139] explored a generative model
called Cycle GAN that translates images from one domain
to another domain. For example, take an image and creates an
image that looks like a painting of the first picture, convert-
ing a black-and-white picture to a colour image, etc. Yang et
al. [113] integrated the conventional acoustic loss function
with the discriminator loss function to model a multi-tasking
framework for text to speech synthesis.

Choi et al. [15] developed StarGAN that can translate an
image amongmultiple domains with superior quality. Grover
et al. [24] developed Flow-GAN that uses exact likelihood
estimation for training and achieved significant improve-
ments in log-likelihood scores. Wang et al. [102] introduced
a Residual-in-Residual Dense Block to the SRGAN [55] to
model enhanced SRGAN (ESRGAN). The model achieved
high-quality images with more natural and realistic textures.
Kupyn et al. [52] developed a conditional generative model
called DeblurGAN that deblurs a blurred image and detects
the objects that are blurred due to the motion. They used
content loss function to optimize conditional GAN. A con-
ditional generative adversarial framework is designed for
synthesizing 2048 × 1024 high-resolution photo naturalis-
tic images using semantic label maps [101]. Xu et al. [110]
proposed an AttnGAN that consists of attention models to
generate quality images from text descriptions. The authors
have incorporated an attentionmodule as a generator network
inwhich each attentionmodel create sub-regions in the image
based on the extracted features from the text. Zhang et al.
[128] modelled a self-attention GAN (SAGAN) that gener-
ates details using attention-driven and long-term dependency
modelling. The authors have also applied spectral normal-
ization to enhance the dynamics of training and achieved
significant results. Therefore, researchers have derived plenty
of GAN variants like CGAN, WGAN, ProgressiveGAN,
image-to-image translation GAN, Cycle GAN, SR GAN,
text-to-image GAN, face inpainting GAN, text-to-speech
GAN, etc., for various applications. The evolution of a few
popular GANs is illustrated in Fig. 4 with the help of the
timeline diagram. In the next section, we discuss the appli-
cations specific to these variants that were modelled recently
in detail.

3 Applications

In this section, we discuss diverse applications of GANs like
medical diagnosis, text generation, hyperspectral image clas-
sification, etc., in detail.

3.1 Clinical diagnosis

MRI (magnetic resonance imaging), CT (computed tomogra-
phy) scan, PET (positron emission tomography), ultrasound
imaging (USI), electrocardiogram (ECG), and X-rays are the
widely used imaging techniques for clinical diagnosis and to
identify the severity of the disease in the medical domain.
MRI images the water molecules in the body with the help
of a very strong magnetic field. MRI images take the pictures
of the soft tissue of the organs and the bones. CT scanners
use a pencil-thick beam to take cross-sectional images of the
patient’s body. The beam rotates around the patient’s body.
The CT scan slices the patients’ body like a loaf of bread
and uses radiation to take the images. PET scanner captures
the images of minuscule changes in the body’s metabolism
caused by the growth of abnormal cells. The PET scan can be
used in combination with a CT scan that allows physicians
to identify the exact location, size, and shape of the diseased
tissue or tumour.

In [21], a cycleGAN-based unified framework is discussed
to standardize the intensity distribution of MRI images
with different parameters coming from multiple groups. The
framework consists of two kinds of paths: one forward path
using a one GAN and multiple backward paths using mul-
tiple GANs. They also employed two jump connections to
keep the features safe and to avoid any loss of resolution.
The effectiveness of the proposed method is investigated on
T2-FLAIR image datasets. Qi et al. [78] developed a model
using cascaded conditional GAN (C-cGANs) for automatic
bi-ventricle segmentation of magnetic resonance images of
the heart. The authors have divided the task of segmentation
into two subtasks. For each subtask, they used a specific C-
cGAN. In both the C-cGANs they used an encoder module,
MSAF module and a decoder module. The first C-cGAN
identifies the region of interest using the binary segmenta-
tion task. The second C-cGAN implements the bi-ventricle
segmentation task.

Analyzing ECG signals enables diagnosing cardiovascu-
lar diseases (CVDs) or heart-related diseases in advance
and helps to prevent them. Detecting abnormalities in ECG
signals is a class imbalance problem due to imbalance dis-
tribution among multiple classes. Wang et al. [99] proposed
a framework in which a classification model is incorporated
in between a GAN model. The generator and discrimina-
tor framework is inspired by the ACGAN model [72] to
support data augmentation.The classificationmodel is imple-
mented using a residual block and a long short-term model
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Fig. 4 Timeline for a few
notable GAN models

(LSTM). The proposed framework is tested on MIT-BIH
standard database for single beat detection and competition
database for successive beats detection. In [117], the authors
have addressed two issues while dealing with clinical data
for cardiac disease diagnosis using ECG signals. First, they
extracted the global features and then increased the stabil-
ity of training to extract high-quality diverse samples. The
authors have developed a sequential GAN (RPSeqGAN) in
which the generator consists of bidirectional gated recur-
rent units (GRU), and the discriminator is implemented as
a ResNet [32]-based ResNet-Pooling block (RPblock) that
extracts the global features. Authors have also employed a
policy gradient and Monte Carlo search algorithms to gain
stability in training. The proposed algorithm achieved qual-

ity images and maximum stability on MIT-BIH arrhythmia
dataset. In [88], the authors used a GAN model as a data
augmentation tool to generate synthetic data to tackle the
imbalanced classification of multi-class ECG data. Arrhyth-
mias MIT-BIH data has 15 ECG classes that can be divided
into five (N, S, V, F, Q) categories. Authors have proposed
two deep learning models for classification task on data-
augmented original data. First, a CNN-based end-to-end
approach is used to classify the heartbeat as one among the 15
classes. Second, another CNN-based hierarchical approach
has two stages. In the first stage, the model identifies one of
the five categories. In the second stage, any one of the five
classes is identified under the category identified in the first
stage.
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Two issues are addressed in [114] while extracting vein
features from low-contrast infrared images of fingers. First,
the existing CNN-based models increase the processing time
when handling low-quality finger vein images. Also, there is
a limitation on the size of finger vein images. Second, there
is a lack of feature representation about ground truth low-
quality finger vein patterns. The authors developed a finger
veinGAN (FV-GAN) framework that consists of two genera-
tors: an image generator that generates vein images fromvein
patterns using a UNET architecture and a pattern generator
thatmaps vein images to vein patterns using encoder-decoder
network. The discriminator finds the latent space between the
correct and wrong vein patterns. The model is evaluated on
two publicly available datasets: Tsinghua University Finger
Vein and Finger Dorsal Texture Database 2 (THU-FVFDT2)
and ShanDong University finger vein database (SDU) and
achieved significant results. Another useful resource for clin-
ical diagnosis is ultrasound imaging. Ultrasound imaging
techniques are profoundly used in the diagnosis of maternal-
foetal medicine, abnormality in body parts for example
breasts, liver cancer, identification of thyroids, etc. However,
capturing ultrasound images requires large infrastructured
devices that cannot be easily used in applications like rural
medicine, telemedicine, and community medicine applica-
tions. Thus, portable ultrasound imaging devices are used too
often in the above scenarios to improve global health care.
But the low quality of ultrasound images with these portable
devices questions the reliability of diagnosis is a limitation.
A two-stageGAN structure is devised in [136] to increase the
image quality of hand-held or portable ultrasound devices. A
U-Net model is placed as a front-end tool for the generator
at stage one. It extracts structural features at low frequencies
in the reconstructed images. In stage 2, a GAN network is
deployed to find the latent space between low-quality images
and high-quality images. The generator takes a pair of inputs:
a low-quality image and the output imageof theU-Netmodel.
The discriminator also takes a pair of inputs: reconstructed
generator images and high-quality images. The proposed 2-
stage model improved the image-quality of hand-held and
portable ultrasound devices.

MRI andPET images are fused in [116] to generate images
that have both tissue structure from MRI and functional,
metabolic information from PET. The motive behind fusing
multiple source images is to get rid of redundant information
and to get complementary information in one single image
to yield a better clinical diagnosis. The authors have pro-
posed an algorithm based on Wasserstein GAN (MWGAN)
to surmount the challenges involved in fusing images from
multiple sources. The GAN model consists of one generator
and two discriminator networks with a novel loss function.
The model can be extended for the fusion of MRI and CT
images also. The model is investigated on the publicly avail-
able dataset on the Harvard Medical School official page.

Pulmonary nodes in the lungs are examined for the diagnosis
of lung cancer at early stages. However, most of the medical
domain applications suffer from data scarcity problem. This
makes the application of deep learningmodels on limited data
resulting in wrong clinical diagnosis. A GAN-based unsu-
pervised approach is proposed on the principles of anomaly
detection for the diagnosis of lung cancer.Anencodermodule
is incorporated along with the GANmodel for the training of
benign pulmonary nodes. The GAN (MDGAN) consists of a
generator network and multiple discriminator networks. The
MDGAN computes the feature loss along with image recon-
struction loss to assign high scores to malignant nodes and
small scores for benign nodes. The performance of themodel
is evaluated onLIDC-IDRI dataset and proved effective com-
pared to supervised benchmarks [51]. Ghassemi et al. [22]
discussed a GAN-based model as a novel data augmentation
method for multi-class classification of MR images. First,
the GAN is fed with different MR image datasets to gen-
erate MR like images as the output of the generator. Later,
the data-augmented new dataset is given to the discriminator,
which is already trained during data augmentation phase for
multi-class classification. The proposed model has achieved
significant accuracy rates on MRI dataset compared to state-
of-the-arts. Decreasing the dose of radiation during chest
imaging adds noise to the generated image, thereby altering
clinical diagnosis. Kim et al. [48] devised a conditional GAN
(CGAN)-based denoising method that removes the noise in
reduced radiation chest images and enhances the image qual-
ity for clinical diagnosis. The generator and discriminator of
conditioned GAN model are built of convolutional layers.
Figure 5 shows the architecture of CGAN and the restored
and uncorrupted images. He et al. [34] modelled a label
smoothing GAN (LSGAN) for the classification of optical
coherence tomography (OCT) images that can help in detect-
ing and avoidingblindness at early stages. Themodel consists
of a generator, discriminator and a classifier. The generator
creates synthetic unlabelled OCT images. The discriminator
distinguishes between training OCT images and synthetic
OCT images while optimizing the performance of the gen-
erator to generate high-quality images. A label smoothing
strategy is embedded in the classifier that helps in labelling
unlabelled OCT images. The LSGAN model is evaluated
on UCSD publicly available dataset and a locally developed
HUCM dataset and achieved promising results.

From the abovediscussion, it is observed that image recon-
struction, image synthesis (for example conditional image
synthesis and cross-modality image synthesis), segmenta-
tion, classification, abnormality detection, denoising, data
augmentation, etc., are the novel tasks that were solved using
GANs.
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Fig. 5 Images cropped directly from [48] a Architeccture of CGAN (b) a Gaussian noise corrupted noise image b CGAN restored image c final
uncorrupted image

3.2 Intrusion detection

Although the success of machine learning and deep learn-
ing in classification, adversarial examples attempt to get,
deep learningmodels tomiss-classify the images by inducing
small noise patterns. Yuan et al. [124] developed a random-
ized nonlinear image transformation method to alter and ruin
the advanced patterns of attacking noise partly in the adver-
sarial images. They employed a generative cleaning network
to retrieve the lost content of the original image during the
image transformation phase. The discriminator network is
used to defend the classification process and trained not
to detect any leftover noise patterns in the images. They
evaluated the proposed model using CIFAR-10 and SVHN

datasets. Zhang et al. [130] proposed an extended Monte
Carlo tree search (MTCS) algorithm using aGANmodel that
produces adversarial examples of cross-site scripting (XSS)
attack traffic data. They added adversarial examples to an
original dataset during the training phase.Also, they assigned
a probability value that bypasses the adversarial image from
the detector. Themodel is examined using an intrusion detec-
tion (CICIDS2017) dataset that contains up-to-date attacks
on real-world data. Huang et al. [40] modelled an imbalance
GAN (IGAN) framework to enhance the process of intrusion
detection in ad hoc networks. The architecture consists of a
feed forward network to extract the features, an IGAN with
a filter to synthesize the abnormal class samples and a deep
neural network to perform the classification task.
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3.3 Fault diagnosis

Fault detection is an important task in thefield of control engi-
neering to capture the malfunctioning of machine to avoid
machine failure and human loss. Shao et al. [89] devised a
model for monitoring of machine condition and fault diagno-
sis using sensor data. The model design is based on ACGAN
[72] architecture that consists of 1D convolutional layers.
Initially, the model is trained on the limited training data
during which it learns hierarchical representations and gen-
erates realistic, raw sensor signal data. Later the augmented
dataset is used for the classification of a machine fault. They
also used a novel quantitative method for the evaluation
of generated sensor signal data and used time domain and
frequency domain characteristics for assessing the diversity
of generated samples. Yan et al. [111] addressed the auto-
mated detection and diagnosis (AFDD) of fault training data
using an unsupervised framework. However, the number of
training instances for normal machine states is higher than
faulty machine states. They explored a conditioned version
of WGAN deployed to synthesize more training instances
of faulty state samples. The authors have deployed a multi-
layer perceptron model used as generator and discriminator
networks for AFDD. A support vector machine (SVM) is
trained as a binary classifier on the augmented dataset. In the
detection phase, it identifies the faulty state, and in the diag-
nosis phase, it classifies the type of fault. Wang et al. [103]
showed anotherGAN-based framework (CVAE-GAN) using
the conditional variational autoencoder (CVAE) for imbal-
anced fault diagnosis in a planetary gear box. The CVAE
consists of three modules encoder, decoder, and a sampling
network and considered as a generator network. It learns the
spectrum distribution features of vibrating signals to gen-
erate fault samples at different modes. The discriminator
network differentiates true fault sample with generated fault
sample and also classifies the variant of fault. Zhang et al.
[129] noted a framework that works in two stages for imbal-
anced fault diagnosis of rotating machines. A GAN model
that contains multiple generation modules is placed to gen-
erate samples for different fault conditions. A convolution
model that ends with fully connected dense layers is placed
as a discriminator network. A deep convolutional model is
used for the classification task on augmented data. Investiga-
tions on CWRU and Bogie datasets proved the effectiveness
of the proposed model. In [74], the authors have discussed
the semi-supervised and imbalanced fault bearing identifi-
cation in automation systems of industrial applications. A
deconvolutional network is employed as generator and a con-
volutional network is deployed as discriminator.

3.4 Semantic segmentation

Semantic segmentation is one of the tasks from the computer
vision domain. Image segmentation divides the image into
different sub-parts and classifies each sub-part into a class. In
contrast to this, semantic segmentation classifies eachpixel of
the image to a specific class. Kim et al. [49] proposed amodi-
fied generative adversarial model to synthesize the images of
jellyfish to avoid jellyfish swarm in fisheries. They employed
an auto-encoder in parallel to GAN model. The generator
model is used for the synthesis of images. The discrimina-
tor takes two inputs: synthesized images from the generator
and real images from an autoencoder. The auto-encoder is
also used to generate images from the synthesized vectors
from the generator. They also estimated the density of jelly-
fish swarm using full convolutional and regression networks.
Wang et al. [100] discussed a model named multi-context
GAN (MCGAN) that completes the faces in the images with
random missing regions. The model considers the semantic
and high frequency features using parallel dilated learning
units (DLU). A stack of DLUs is then used to incorporate the
fine details using a larger receptive field. The performance of
DLUs and the entire model is investigated on CelebA dataset
and yielded satisfactory results. In [73] the authors proposed
an attentively conditioned GAN (AC-GAN) for semantic
segmentation. The generator model is used as a segmentor
to generate maps from images. The discriminator model is
used to differentiate the segmentor’s output from real labels.
Also, an attention network is deployed along with segmen-
tor to provide attention probability of each feature map. They
investigated the proposedmodel on PASCALVOC 2012 and
Cam Vid datasets.

The projective imaging nature of X-rays makes it a chal-
lenging device to use for clinical diagnosis. The image
capturing technique used for X-rays bypasses the 3D spa-
tial information between anatomies. It leads to difficulties in
semantic segmentation which in turn deteriorates the clin-
ical diagnosis performance. Also, the large availability of
data annotations is not possible in the medical domain. In
this context, [131] modelled task-driven GAN (TD-GAN) to
performmulti-organ segmentation task. First, synthetic digi-
tally reconstructed radiographs (DRR) are generated from3D
CT images and trained using digital image to image (DI2I)
module. Then, the task-driven GAN is deployed that per-
forms image synthesis and segments of multiple organs in an
unsupervised manner. Mammography is used extensively in
detecting abnormalities in women breasts to diagnose breast
cancer in the early stage. Radiologists leverage low energy
X-ray signals to find the variance in appearance, location,
size, shape, and texture of breasts. Singh et al. [91] modelled
a framework (cGAN) that employs a single shot detector [67]
to locate the region of interest (ROI) in breast mammograms
and surround it by a bounding box. Later, the ROIs are given
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as conditioned input to the generator that learns the inher-
ent features like edges, grey-level, gradients, shape, etc., of
unhealthy and healthy tissue. It also produces a binary mask
(segmentation) based on these features. The discriminator
network takes the ground truth and predicted masks as input
and indicates the real one. They also used a multi-class CNN
network for the classification of irregularities in breast shapes
(round, irregular, lobular, and oval). They investigated the
model using INbreast, DDSM public datasets and Hospital
Sant Joan de Reus private dataset and achieved significant
results. Figure 6a shows the workflow of cGAN for breast
tumour segmentation and classification. Figure 6b shows the
generator network and the discriminator network of cGAN.
Figure 6c shows the CNN architecture for classification of
type of tumour.

Bisneto et al. [6] employed a conditional GAN model to
perform semantic optic disc segmentation for automatic diag-
noses of neurodegenerative diseases. The CNN U-net [83] is
used as generator and PatchGAN [54] is used as discrimina-
tor network . [85] performed segmentation and quantification
of tumours simultaneously from CT images for diagnosis of
kidney tumours. A residual network that acts as multi-scale
feature extractor retrieves the tumour features. A multi-
tasking integrated network is used as generator network that
performs the semantic segmentation, object detection, and
direct quantification. A convolutional model is deployed as
a discriminator network to encourage the optimization pro-
cess. Han et al. [27] presented a GAN-based semi-supervised
model for segmentation of lesion in breast ultrasound (BUS)
images. It first makes use of annotated images to synthesize
more BUS images and thereby enhances the segmentation
performance. Delannoy et al. [17] discussed a GAN-based
framework (SegSRGAN) that performs super-resolution to
increase the image quality and segmentation tasks to seg-
ment the region of interest on brain MR images. Lei et al.
[57] formulated a newGANmodel to differentiatemelanoma
from a normal skin lesion. The novel GAN contains Unet-
SCDC based generator that has skip connections as well as
dilated convolutions and produces segmentation masks. It
also includes two CNN-based discriminator networks that
enhance the generated mask quality. The first CNN takes the
concatenation of real input and generated segmentedmask as
input while the second CNN takes the generated segmented
mask alone.

3.5 Image to text (I2T) and text to image (T2I)
synthesis

In [127], the authors have proposed two stack models: stack
GAN version1 and stack GAN version2 to synthesize images
from text. Again stack GAN version1 has two GANs, one
in each stage. The stage1 GAN generates low-resolution
images from text descriptions. The stage2 GAN generates

high-resolution images from the low-resolution images by
considering the missing details of the text and conditioning
on the stage1 output. Stack GAN version2 consists of a series
of generators and a series of discriminators in a tree-like
structure. The stack GAN version2 model is implemented
in both conditional and unconditional manner to generate
high-resolution naturalistic images. Cai et al. [10] described
a Dual attention GAN (DualAttn-GAN) model to generate
naturalistic and realistic images from text descriptions. As
the name suggests, they incorporated two attention models:
textual attention model and visual attention model. The tex-
tual attention model is employed to identify the semantics
between inputs and outputs. On the other hand, a visual atten-
tion model is used to increase the representation power of
visual features. They evaluated the model using CUB and
Oxford-102 datasets. Contrary to the recognition of general
characters as machine-encoded text, extracting text from nat-
ural images. It includes challenges from variations in the text
shape, colour, size, and patterns. Figure 7 shows images gen-
erated by DualAttn-GAN compared to other models on CUB
dataset.

It is also difficult to extract text fromcomplexbackgrounds
with a non-uniform degree of visibility, noise, pollution
occlusion, reflections, lightening, and blur. Lei et al. [58]
presented a model named defect-restore GAN to extract
sequential text fromabnormal images of themoving vehicles.
The GAN model contains two encoders in the generator, a
discriminator, and recurrent neural network (rnn) as an output
block. The proposed model is investigated on their propri-
etary wagon dataset, which has 5000 images and achieved
significant results. Yanagi et al. [112] modelled a Query is
GAN using AttnGAN [110] to extract scenes from the text
descriptions. First, three query images are generated using
the text description as input to the AttnGAN. Later, the gen-
erated query images and a hierarchical structure are used
to retrieve the most desired scenes. Ak et al. [2] discussed
e-AttnGAN an extension for AttnGAN. The attention mod-
ule of e-AttnGAN involves contextual features of word and
sentences in image generation process. They employed spec-
tral normalization to maintain a stable training process. The
e-AttnGANhas proved its effectiveness over the state-of-the-
art in image generation.

3.6 Natural language processing

Generating text sequences is part of natural language pro-
cessing tasks. Dialogue systems, machine translation, and
writing poetry are also part of the text generation task. Since
the inception of GANs, they have been coupled with rein-
forcement learning to generate text sequences. The output of
the discriminator is fed as input to the generator to mimic
the reinforcement reward feedback signal. However, this
input is a scalar value and cannot maintain the high-level
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Fig. 6 Images cropped directly from [91] a Workflow of cGAN b cGAN architecture for breast mass segmentation of tumour c CNN architecture
for shape classification of tumour
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Fig. 7 Image generated by DualAttn-GAN [10] (2nd from right) compared to other models for the given text

semantic information of the text. Also, sampling is per-
formed to complete the text sequences and get a reward signal
through the discriminator. The text sequences may contain
repeated subjects and missing verbs due to the high random-
ness of the sampling process [122]. In [115], the authors
have addressed these two issues in feature-guiding GAN
(FGGAN) to generate text sequences. The reward signal has
been replaced by a feature guided vector generated from
the features extracted by the discriminator using a feature
module. Authors have also created semantic rules to control
the next word being generated at each time step prevent-
ing words that have low correlation with generated prefix
words. Li et al. [61] modelled a dialogue response system
using adversarial reinforcement training model. The model
is embedded in a reinforcement framework and trained the
generator based on the output of the discriminator. Themodel
has generated dialogue sentences that are competitive enough
to human-generated sentences. Given the context of the text
[63] generated labelled sentences based on category infor-
mation using category sentence GAN (CS-GAN). To this
end, they incorporated RNN to generate sequences, rein-
forcement learning for predicting next character based on
the current state, and GAN for adversarial training and clas-
sification. Wang et al. [98] discussed automatic sentimental
text generation using SentiGAN framework. The SenitGAN
consists of multiple generators generating diverse sentimen-
tal texts using a novel penalty based objective function. The
discriminator model classifies the high-quality diverse texts
to their sentiments. They extended the SentiGAN model,
C-SentiGAN to tackle the problem of conditional text gen-
eration. The model is evaluated on Movie Reviews, Beer
Reviews, customer reviews, and emotional conversations and
achieved significant results in terms of the novelty, fluency,
intelligence, and diversity of the texts generated.

Rizzo et al. [81] explored the performance of SeqGAN
with contextual information encoded in global word embed-
dings as input. A self-attentive neural network is employed
as a discriminator to optimize the SeqGAN performance
in embedding knowledge into the generated text. Motivated
from the sequenceGAN[12,122] discussed a conditional text
GAN (CTGAN) that is capable of generating high-quality

diverse text content and variable-length text. An automated
method is also proposed to replace keywords that spec-
ify the context with the words that are synonymous from
the trained text data. CTGAN is conditioned on the emo-
tion label as an auxiliary input to have a control on topic.
They used an LSTM model as generator network and a
CNN model as discriminator network. The CTGAN model
is evaluated on Yelp restaurant reviews, Amazon reviews,
and film review data and generated text with high quality of
variable length. Automatically generating the text and sum-
marizing it to human-readable and a semantically similar
way of the original text is defined as text summarization.
Text summarization is categorized into two ways: extractive
summarization and abstractive summarization. Extractive
summarization extracts the important words, phrases, and
sentences and summarizes them. Abstractive summarization
generates the text and then summarizes it to reflect as the
original. Zhuang et al. [141] proposed an abstractive summa-
rization method using a GAN model which consists of one
generator and two discriminators. The generator is responsi-
ble for the encoding of long input text sentences into a short
text representation. The first discriminator trains the gener-
ator to generate the text in human-readable form and the
second discriminator trains the generator to keep the promi-
nent features of the original text to convert the generated text
semantically similar to the original. The authors have imple-
mented a policy gradient to train the model. The process of
rephrasing the sentence from the original style to another
style without altering the semantics of the text is defined as
style transfer. If it is from source style to target style, then
it is called unidirectional style transfer. Alternatively, multi-
directional style transfer is also possible but at the cost of
multiple trainings. If there are k attributes, then k × (k − 1)
training models are required. It has applications in NLP, for
example, sentiment transformation, formality modification,
etc., and computer vision. Yu et al. [123] discussed a unified
GAN (UGAN) model that transfers styles among multiple
attributes using one training model. The original text and
target attributes are given as input to the generator that gen-
erates text based on the given attributes. The discriminator
takes this text and real text as input and generates as output
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a rank and classification output. The proposed model signif-
icantly reduced the training time for multi-directional style
transfer.

3.7 Image deblurring and dehazing

Adverse weather conditions like fog, rain, haze, and pollu-
tion deteriorate the quality of images. Increasing the contrast,
colour, and texture of images to improve the quality of images
is referred to as image dehazing. In general, image dehaz-
ing techniques are categorized into image enhancement and
model-based dehazing approaches. Pang et al. [75] intro-
duced a model based method named haze removal GAN
(HRGAN) that uses mathematical inversion techniques to
reconstruct the haze-free images. The generator network
consists of three modules: a transmission map module,
atmospheric module, and a processing module that gen-
erates a reconstructed haze-free image. The CNN-based
discriminator classifies between real haze-free images and
reconstructed haze-free images. It employs a significant loss
that consists of pixel-wise loss, perceptual loss, and an adver-
sarial loss to train the HRGAN model. The HRGAN model
achieved significant results in terms of removing haze and the
quality of image compared to other benchmarks on NYU2,
synthetic, Middlubury, and SOTS datasets. Zhao et al. [132]
developed a pyramid GAN (PGAN) in which the authors
have placed three GAN models in a pyramid shape. The
first GAN block captures the non-local features of images
at multiple levels. The second GAN block captures the local
features of images at multiple levels. At this stage, the PGAN
combines and balances the local and non-local features of
images. The final GAN block identifies the sharp edges of
the reconstructed image. The performance of the model is
evaluated on GOPRO dataset and MS COCO dataset. Rain
is the prime factor that affects the quality of images cap-
tured by surveillance systems in terms of blurring, raindrop
obstacles, and deformation. Xiang et al. [109] discussed a
feature supervised GAN (FS-GAN) that removes the rain
steaks from a single image and enhances the image qual-
ity. It introduced a feature supervised guidance at the last
layer of the generator network and achieved fair results. Jin
et al. [44] discussed an asynchronous interactive GAN (AI-
GAN) that deals with feature-wise extrication and finds the
mutuality between feature-wise coupled components. Later,
this interdependency is leveraged to achieve the deraining
effect successively. The AI-GAN is capable of decompos-
ing all the diverse features involved in a single image using
a two-branch structure. Zhao et al. [134] discussed a dou-
ble discriminator GAN (DD-GAN) that has two generators
and leveraged two discriminators against each generator. The
mainmotive behind employing twodiscriminators is tomain-
tain a stable training process with limited training. They also
used a weight clipping algorithm to increase the convergence

speed, to tackle unstable training, and mode collapse prob-
lems of GANs. The model has achieved promising results on
RESIDE dataset and O-Haze dataset.

Li et al. [59] discussed an improved-SAGAN model to
generate high-quality dairy goat images. He used a self-
attention based normalized feature map method to compute
the correlation between features. They also replaced the one-
hot label for class labelswithmulti-class labels to improve the
quality of images. They investigated the model on a collec-
tion of goat images and CelebA datasets and got significant
improvements in results. [76] proposed an outdoor image
dehazing technique that consists of two GANs:cycleGAN
and cGAN with different properties. First, the cycleGAN is
trained on outdoor images and to generate haze-free coloured
images. On the other hand, cGAN is trained to keep the tex-
ture details like light, contrast, etc., of hazed images. Finally,
a convolutional neural network is fused to generate haze-
free images. Figure 8 shows the dehazed image of the hazed
image using CycleGAN.

3.8 Face image synthesis

Facial image synthesis and super-resolution, is also known
as face hallucination, are the twomost discussed topics in the
field of image processing and computer vision research. Face
hallucination is the process of upscaling the low-resolution
images to high-resolution images. Preserving the identity of
the person is a challengewhile performing face hallucination.
Hsu et al. [38] discussed a Siamese GAN model (SiGAN) to
reconstruct the faces in the process of face hallucination.
The SiGAN consists of two generators and a discriminator.
The two generators receive a low-resolution paired image as
input and reconstruct a high-resolution paired image. This
high-resolution image is given as input to the discrimina-
tor. They employed SiGAN loss which is a combination of
GAN loss and contrastive loss, and reconstruction loss is
used to train the SiGAN model. Experimental results on
CASIA, LFW, and CelebA datasets proved the effective-
ness of SiGAN model. [65] reconstructed a high-resolution
facial image using a component semantic prior GAN (CSP-
GAN) from a low-resolution facial image. They introduce
a gradient loss along with perceptual loss in computing the
content loss of the generator. The discriminator network in
the GAN is capable of predicting multiple task semantic cat-
egory. The proposed model effectiveness is investigated on
labelled faces in the wild (LFW) and facial HR images online
(FHRO) datasets. Figure 9 shows the ground truth textures in
the first row, and the second row shows the realistic textures
captures by CSPGAN with multi-tasking capable discrimi-
nator.

Given a photo, synthesizing a pencil sketch is referred
to as photo-sketch synthesis and has applications in the
fields of digital entertainment and suspects identification in
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Fig. 8 Dehazed image (right) of
hazed image (left) using
CycleGAN [76]

Fig. 9 Realistic textures captured by CSPGAN (2nd row) with multi-tasking discriminator [65]

law enforcement. This task suffers from loss of content,
colour inconsistency, distorted faces, lack of clarity, and
missing texture. [135] discussed a GAN model (EGGAN)
which is guided by a feature encoder. The feature encoder is
trained particularly to search for effective face photo-sketch
domain latent space. This model can perform photosynthesis
and sketch synthesis simultaneously. The model is validated
on two publicly available benchmark datasets: CUFS and
CUFSF. Han et al. [28] discussed another face frontaliza-
tion GAN model named face merged GAN (FM-GAN) that
has two generators and one discriminator. The first generator
extracts the local face features from upper and lower parts of
profile face using an encoder network. Then, a decoder net-
work merges these features to synthesize a frontal face view.
The decoder of the second generator takes the encoded fea-
tures of profile face and themerged frontal face view as inputs
and extracts the global features and generates a high dimen-
sional frontal face view. Later, the discriminator trained on
real and synthesized data and produced promising results on

Karolinska directed emotional faces (KDEF) dataset. Iran-
manesh et al. [42] devised a coupled GAN (CpGAN) for
face recognition task across diverse spectrums. It consists of
twoGAN-based sub-networks: Visible GAN and non-visible
GAN paired by a contrastive loss function and performs
nonlinear transformations. Both the generators are formed
by encoder-decoder network, and discriminators are CNNs.
The proposed model is evaluated on six different databases:
CasiaHFB, Casia NIR-VIS, NightVision (NVESD), Notre
DameX1 (UNDX1), Polarimetric Thermal, andWright State
(WSRI) and achieved significant results.

In [31], He et al. introduced a super-resolution GAN
model that synthesizes high-resolution facial images which
are scaled four times of low facial resolution images at dif-
ferent resolutions. The Bicubic interpolation method is used
to resize the low-resolution blurred images. These images
along with the ground truth images from CelebA dataset are
given as input to the stacked GAN that has three generators
and three discriminators. They incorporated residual learn-

123



14 International Journal of Multimedia Information Retrieval (2021) 10:1–24

ing for upsampling of images. Experimental results proved
that the proposed super resolution model outperformed other
methods in terms of SR performance and generated realistic
images. Sun et al. [92] considered the problem of short-
term facial age synthesis along with long-term facial age
synthesis over various age spans. They employed aGANnet-
work guided by age label distribution (IdGAN), especially
for short-term facial age synthesis. The label distribution
consists of various age groups. The proposed model is exper-
imented on Audience, CACD, FG-NET, MORPH, and UTK
Face facial age databases and yielded remarkable results. The
task of identifying the frontal face images from the profile
face images is referred to face frontalization. It has appli-
cations in face recognition systems. Recently, GANs have
proved their effectiveness in synthesizing frontal face images
from profile face images with small face poses. To address
this issue, [82] developed face frontalization method feature
improving GAN (FIGAN) that achieved improved results
with large face poses. The authors have employed a feature
mapping block (FMB) that identifies the variance between
the frontal face poses and profile face poses. The discrimi-
nator network is modelled with a feature discriminator that
improves the latent features generated by FMB block in the
generator. The model is investigated on celebrities in frontal
faces (CFP), labelled faces in the wild (LFW), and MultiPIE
databases.

3.9 Geoscience and remote sensing

Spectral sensors have been used for capturing hyperspectral
images of the object from long distances. It captures both spa-
tial information and spectral information of the target object.
Classification of such information ismuch useful in the appli-
cations of land change monitoring, resource management,
remote sensing of ground water resources, remote sensing
of agriculture and vegetation, distant observing of forestry,
urban development, scene interpretation in law enforcement,
etc. Deep learning model requires a large number of samples
for a successful classification process. However, the remote
sensing community suffers from the problem of limited sam-
ples. Due to this, the training process end up with over-fitting
problem, i.e. data perform well during training and fails to
generalize. In [90] Shi et al. automatically generated build-
ing footprints from the satellite images using a conditional
GAN. Instead of using the generic cost function, authors have
deployed a Wasserstein distance to update the parameters.
A gradient penalty term is also used along with Wasser-
stein distance. The generator functionality is implemented
with U-Net architecture, and the discriminator functionality
is implemented with PATCHGAN architecture. Zhu et al.
[140] presented two schemes for the classification of 1D and
3D hyperspectral images. First, a spectral classifier is mod-
elled using a 1D GAN. Second, a spectral-spatial classifier is

designed using a 3D GAN. The authors have used the GAN
model as a regularization unit to alleviate the effect of over-
fitting due to limited samples. The performance of the model
is evaluated on three publicly available datasets: Salina, Indi-
ana Pines, and Kennedy space centre. Cloud obstruction is
a conventional problem in remote sensing object detection
field. The cloud obstructionmakes the remote sensing images
of sea surface temperatures (SST) unclear and hazy. To over-
come this problem, [19] proposed adeep convolutional-based
GAN model with a novel inpainting loss function. The loss
function consists of a supervision term that removes the
unclearness and identifies the nearest encodings in the low-
dimensional images.

Feng et al. [20] discussed a spatial-spectral GAN model
that performs a multi-class classification of hyperspectral
images. This model addresses two issues of the classification
process. First, it addresses the inability of the discrimina-
tor in multi-class classification and Second, consideration
of spatial and spectral information in the classification of
hyperspectral images.Wang et al. [96] proposed a variational
GAN using a semi-supervised method to classify hyperspec-
tral images with limited labels. The semi-supervised context
is incorporated using an encoder-decoder network, and a
collaborative optimization framework is used to find the
latent space between classification and sample generation
tasks. The effectiveness of variational GAN is validated on
four benchmark datasets: University of Pavia, Pavia centre,
DCMall, and Jiamusi. Zhu et al. [137] devised a multi-
branch conditional GAN (MCGAN) model to increase data
for objection in remote sensing images. The MCGAN archi-
tecture consists of one generator, three discriminators, and
a classifier that build using deep CNNs. The data augmen-
tation process is carried out on NWPU VHR - 10 dataset
with an alternative of DOTA dataset for severely low num-
bered instance group in NWPU VHR - 10 dataset. Later,
NWPU VHR - 10 and DOTA datasets were merged to train
the MCGAN. Experimental results proved the effectiveness
of the model on the quality of objects detected from the gen-
erated images.

3.10 Video generation

Given a context, the process of forecasting the next sequence
of frames is known as video prediction. It has a wide range
of applications like autonomous driving, object tracking,
robotic planning, etc. An underlying uncertainty associated
with the dynamics of the real-world challenges the predic-
tions. Wen et al. [106] generated a sequence of video frames
yi+1, yi+2, . . . , yk given two key input frames xi and xk+1.
They used two generators G1, G2 and two discriminators
D1,D2. The generators are placed in a sequential manner,
where the output of the first generator is fed into the sec-
ond generator. G1 learns motions from real videos during
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training and G2 adds more details to the output of G1.
D1 and D2 optimize the performance of generators through
adversarial training. Investigations proved that the generated
video frames are clear and smooth. In [39], Hu et al. intro-
duced a novel stochastic video prediction GAN (VPGAN)
that is trained based on the cycle-consistent loss to predict
the next sequence of actions in a video. An image seg-
mentation model is also incorporated using two generators
to extract the features. The proposed model is investigated
on four datasets: Moving Mnist, KTH, BAIR, and UCF101
and achieved significant improvement in the quality of pre-
dicted future frames. [13] devised a model bottom-up GAN
(BoGAN) to generate video frames from text descriptions.
The model has an attention model that computes the region
loss to fill the sub-regions of the video frame conditioned by
words. The discriminator employs a frame-level loss to keep
the semantic matching between successive frames. Finally,
another discriminator that maintains the global level seman-
tics between the sequence of frames in the final video. The
model produced promising results compared to benchmarks.

3.11 Animation creation

Anime character and animation creation is a challenging task
in the domain of multimedia applications. Image-to-Image
translation and image super-resolution are the two major
tasks involved in anime character synthesis. [45] modelled
a cartoonGAN that transforms real-world images into car-
toon style images a challenging task in computer graphics.
The generator network of cartoonGAN consists of convolu-
tion, deconvolution, and residual blocks. The discriminator
comprises convolutional layers. Themodel takes a set of real-
world images and another set of cartoon images for training.
The model also employs two loss functions during training
to find the latent space between the two sets of images. A
semantic content loss that manages the variations between
real images and cartoon images, and an edge enhancing
adversarial loss that maintains the sharp edges. Experimen-
tal results proved that the generated cartoon images are of
high quality and surmounts the state-of-the-art style trans-
forming methods. [26] imposed structural conditions at each
scale of image generation during progressive training of
progressive structure-conditional GAN (PSGAN). PSGAN
generates anime images at 1024× 1024 resolution with full-
body structure. A landmark assisted CycleGAN [108] is
modelled to generate high-quality cartoon faces from real
faces. The unpaired real faces and cartoon faces are used to
train the model. The model employs a regressor to detect the
landmarks in the generated cartoon faces. A novel landmark
consistency loss is used during training to capture the impor-
tant features of real faces. Landmark consistency, along with
the local discriminators, alleviates the structural variance

between the real faces and cartoon faces. Figure 10 shows the
cartoon faces generated by landmark assisted CycleGAN.

[119] proposed an image reconstructionmethod (PI-REC)
that takes the flat colour domain and binary sparse edge
as input to produce high quality reconstructed images. The
authors have incorporated aGANmodel that consists of three
generators, and three discriminators in parallel, and each
GAN model works in a phase and refines the reconstructed
image details progressively. The sparse and interpretable
inputs ensure the control over style and content of images
being generated. Finally, the method also produced signifi-
cant results on image to image translation task, provided the
domains should be similar. [120] proposed a GAN model
in which the discriminator generates two kinds of pseudo-
labels using the self-supervised approach. Later, the discrete
pseudo-labels are mapped to latent variables during train-
ing and eventually mapped to animation features to generate
diverse animation clips. The continuous pseudo-labels are
used to create diverse frames in one animation clip. They
also discussed a novel metric to investigate the quality of
animations.

3.12 Other application domains

When training data and testing data do not agree with each
other, they pose a challenge for speech recognition in noisy
environments. Qian et al. [79] discussed a GAN model for
data augmentation and to improve the task of speech recog-
nition, especially under noise conditions. A basic GAN is
employed for data generation process based on FBANK fea-
ture map and generated frame by frame feature map. Since
the generated data do not have labels, later, an unsupervised
learning framework is deployed for the speech recognition
task. The authors have conditioned one GAN on acoustic
state and the other GAN on clean speech for better data gen-
eration. The collection of hard labels and soft labels achieved
promising performance using conditional GAN on Aroura-4
andAMI-SDMdatasets. Industries heavily depend on failure
data to mitigate the occurrence of hazardous events and loss
of human life. Thus, a risk warning system is an essential tool
for identifying and avoiding such rare events. However, these
rare events suffer from the problem of data scarcity for risk
analysis. In [33] He et al. constructed a semi-supervised real-
time risk management system by integrating fuzzy HAZOP
risk analysis with a distributed control system (DCS). They
also employed a GANmodel that augments labelled process
data which enhances the assessment of the type of risk clas-
sification. The framework is evaluated using a case study on
the processing of polyolefin using a multizone circulating
reactor (MZCR). Domain adaptation is an important area of
research in the field of computer vision. Given two distribu-
tions: labelled and unlabelled relating to target data shifting
domain from labelled to unlabelled is defined as domain
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Fig. 10 Cartoon faces generated
by [108] on the last column for
the given real faces on the first
column compared to others in
the middle column

adaptation. In this context, [14] modelled an unsupervised
framework that contains a feature extractor, attention mod-
ule embeddedGAN (GAACN), and a classifier. The attention
module is placed between the generator and discriminator
to shift the transferable regions among different domains.
They also used a label classifier module to keep the class
consistency in discriminator network. The feature extractor
is forced to learn the joint feature distribution by the GAN
module. The feature extractor and classifier module are used
in the testing phase to label the unlabelled target data. The
GAN model and the attention module are built of convolu-
tional layers. The experimental results on i. Digits dataset:
MNIST, USPS, SVHN ii. ImageCLEF-DA dataset: Caltech-
256, ILSVRC 2012, Pascal VOC 2012 iii. Office 31 dataset:
Amazon, Webcam, DSLR iv. Office-Home dataset: Artistic
domain, Clip Art, Product domain, Real-World domain v.
VisDA 2017 dataset: synthetic domain, the real domain has
produced significant results compared to other conventional
models.

Wang et al. [97] discussed a new deep learning-based
model named adaptive balancingGAN (AdaBalGAN)model
to identify the defective types in imbalanced wafer maps
data. They used a conditioned GANmodel to generate wafer
maps of a specific type, and a generative controller is used to
change the sample distribution of the wafer maps concording
to the various defective patterns. The proposedmodel is eval-
uated on real-world fabricated WM-811K wafer maps. [29]
proposed a conditional generation method which generates
time-series data that belongs to multiple classes. The authors
have employed a canonical correlation analysis to exemplify
the characteristics between the input and generated data.
They also deployed the LSTM model in both generator and
discriminator. [56] designed a controllable GAN (Control

GAN) to reduce the overfitting problem occurred by auxil-
iary classifier in the discriminator of ACGAN [72]. ResNet
[32]-based generator network and discriminator network are
used in ControlGAN. Authors have used a ResNet-based
independent classifier to evaluate the generated samples.
The proposed model is evaluated using CIFAR-10, CelebA,
and LSUN datasets. Mandal et al. [68] developed a deep
CNN-based semi-supervised GAN (SSGAN) for the food
recognition task. Food recognition is a thought provoking
task due to huge interclass variation in food images. Exper-
imental results proved the effectiveness of the proposed
semi-supervisedmodel onETHFood-101Dataset and Indian
Food Dataset. In [64] Lin et al. designed a defect enhance-
ment GAN (DEGAN) based on deep convolutional GAN
(DCGAN) [80] and energy-based GAN (EBGAN) [133]
to generate microcrack defective samples. It incorporates a
defect enhancement algorithm in the forward path and after
the discriminator also. The generator model consists of con-
volutional layers, and the discriminator is implemented using
an encoder and decode network. [62] notified a similarity
constraint GAN (SCGAN) that identifies the entangled fea-
ture and represents it in disentangled representation in an
unsupervisedmanner. The proposedmodel is investigated on
MNIST, FASHIONMNIST, SVHN, CIFAR-10, and CelebA
datasets and gained significant improvements in results.

Reference [95] designed an evolutionary algorithm based
GAN (EGAN) framework in which they stabilized the
GAN training. The evolutionary algorithm optimizes the
generator’s objective using multiple training objectives. It
consists of three phases: evaluation, variation, and selection.
The proposed framework is evaluated using three datasets:
CIFAR-10, LSUN bedroom, and CelebA and obtained sig-
nificant improvement in results. Kasem et al. [47] introduced
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Fig. 11 Application wise
number of publications

robust super-resolutionGAN(RSR-GAN) that addresses two
issues while improving the quality of subjects in the images.
First, it regains the texture details with extreme upscaling
factors. Second, it alleviates the noise generated due to geo-
metric transformations. The RSR-GAN has a transformer
module in discriminator that enhances the discrimination
capacity. The generator loss term has an additional DCT loss
term that finds the right mapping between generated and real
images. The authors have used Berkeley segmentation data
set for training and BDS100, MANGA109, SET5, SET14,
and URBAN100 datasets for testing and obtained significant
results. [30] proposed a style consistent GAN (GylphGAN)
that generates novel font types. The generated font types are
style consistent, legible, and diverse overall characters. [94]
designed a compressive privacy GAN (CPGAN) to defend
attackswhile sharing data usingmachine learning as a service
(MLaaS) in cloud platforms. [121] devised a long short-term
memory based conditional GAN (LSTM-GAN) to identify
the taxi hotspots in both dimensions: spatial and temporal.
[16] generated realistic user behaviour data related to the
products that have not been released yet using a conditional
GAN framework. Figure 11 shows the graph of application
wise number of publications considered.

4 Evaluationmetrics

There has been an extensive usage of GANs in diverse appli-
cations in the late years of this decade. Generative modelling
aims at mimicking the trained data with generated data.
Hence, it obvious to measure the distance between the real
data and artificial data. In general, a distance function that
computes the distance between a real distribution and gen-
erated distribution are used as loss functions. However, no
standardizedmetrics are devised to evaluate how goodGANs

are in mimicking trained data. Thus, in this section, we
present a few metrics that are used in the literature exten-
sively to evaluate the GAN model.

4.1 1-Nearest neighbour classifier (1-NN)

It is a version of classifier two sample tests (C2ST) and is
not an evaluation metric. It checks the similarity between
real data distribution Pw(.) and generated data distribution
P(.). It computes the leave one out (LOO) cross-validation
accuracy of classification, where all the data points except
one point are used to estimate accuracy and left out point is
used for prediction.

4.2 Inception scores (IS)

It is a metric derived by [86] to evaluate the quality and
diversity of synthesized images by generative models. First,
they computed the conditional probability of an instance
belonging to a class. Later, these conditional probabilities are
used to compute the inception score on a pre-trained incep-
tion network. If the conditional label distribution has low
entropy, then the generated images are of good quality. To
produce a variety of images, the network should have a low
marginal conditional probability distribution. The inception
score ranges between 1 and total classes. The limitation of
this metric is that it does not consider the statistics (mean,
variance, and standard deviation) of the original data distri-
bution to compare with generated samples distribution.

I S
(
Pg

) = eEx∼ρg [KL(p(y|x)‖p(y))] (3)
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4.3 Mode score (MS)

This metric overcomes the limitation faced by IS metric and
considers the statistics of prior distribution to evaluate the
quality of images and diversity of images [11]. The mode
score can be computed using the Eq. 4. p(y∗) represents the
distribution of ground truth labels computed using original
data distribution.

MS(Pg) = e

(
Ex∼æg [KL(p(y|x)‖p(y∗))]−KL(p(y)‖p(y∗))

)

(4)

4.4 Frechet inception distance (FID)

It is a distance metric between the feature vectors of real
data and generated data. It measures the quality of generated
images and finds the occurrence of intra-classmode collapse.
However, this metric considers the mean (m) and covariance
(C) of two Gaussians under study. The Frechet distance [35]
d(m,C) between the real data distribution Pw(mw,Cw) and
the synthetic data distribution Ps(ms,Cs) is defined as fol-
lows:

d2 ((ms,Cs), (mw,Cw)) = ‖ms − mw‖22
+ Tr

(
Cs + Cw − 2 (CsCw)1/2

)

(5)

where Tr represents the trace computation.

4.5 Maximummean discrepancy (MMD)

The MMD metric is used to compute the dissimilarity
between the real data distribution Pr and the generated
data distribution Pg . If we employ a fixed Gaussian kernel

k(x, x ′) = e||x−x ′||2 , then the kernel MMD [25] is computed
as shown in Eq. 6. A lowerMMD indicates Pg ismore similar
to Pr .

KMMD
(
Pr , Pg

) = Ex,x ′∼Pr

[
k

(
x, x′)]

−2Ex∼Pr ,y∼Pg [k(x, y)]
+Ey,y′∼Pg

[
k

(
y, y′)] (6)

4.6 Multi-scale structural similarity for image
quality

Wang, et al. [105] used structural information s(x, y), lumi-
nance information l(x, y), and contrast information c(x, y)
to derive the structural similarity index (SSIM) as shown in

7. It assesses the similarity index between two images.

SSIM(x, y) =
(
2μxμy + C1

) (
2σxy + C2

)

(
μ2
x + μ2

y + C1

) (
σ 2
x + σ 2

y + C2

) (7)

μx , μy , σx , σy denote the mean and standard deviations of
image signal x and image signal y, respectively. Ci is a con-
stant. [104] extended this metric to multi-scale to assess the
quality of images by integrating different image resolutions.
The multi-scale SSIM is computed as follows:

SSIM(x, y) = [
lM (x, y)

]αM ·
M∏

j=1

[
c j (x, y)

]β j
[
s j (x, y)

]γ j

(8)

The exponents α, β, and γ are included to alter the relative
importance of various components.

4.7 Wasserstein critic

It estimates the Wasserstein distance between the real data
distribution Pr and the generated data distribution Pg . This
metric estimates lower values for generated instances and
higher values for real instances. In case of discrete distri-
bution transformations, it is also known as Earth Mover’s
distance (EMD). The Wasserstein critic between Pg and Pr
is estimated as shown in Eq. 9.

W
(
Pr , Pg

) ∝ max
f

Ex∼Pr [ f (x)] − Ex∼Pg [ f (x)] (9)

where f : RD → R denotes the Lipschitz continuous func-
tion [8].

5 Challenges

Despite the success and extensive usage of GANs, often they
face some common challenges during the training. The three
most important challenges faced by GANs are as follows:

– If the generator is not as good as the discriminator,
then the discriminator always differentiates between real
and artificial data. Hence, the gradients of the generator
will be vanished, leading to failure of the generator. [5]
succeeded in eliminating the vanishing gradient prob-
lem of generators by introducing Wasserstein loss 4.7
to compute the distance between real and artificial data.
However, it is not guaranteed that replacing the min–max
loss with Wasserstein loss can eradicate the vanishing
gradient problem as it also depends on other factors like
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Table 1 A summary of the tasks, applications, and the datasets used

Task/Reference Applications Datasets

Image Dehazing [134] Traffic monitoring RESIDE

Security monitoring O-Haze

Face photo - sketch synthesis [135] Digital entertainment CUFS

Law enforcement CUFSF

Face frontalization [82] Face recognition systems MultiPIE

LFW

CFP

Cross-modal face reccognition [42] Nighttime face recognition WSRI

UND X1

NVESD

Casia NIR-VIS

Casia HFB

Polarimetric Thermal

Person re-identification [125] Surveillance systems VPIeR

CUHK03

Market-1501

Text generation [115] Dialogue systems COCO

Machine translation Chinese poetry

Writing poetry

BOT applications

Abstractive text summarization [141] News letters CNN-Daily Mail

Social media marketing

Text style transfer [123] Sentiment transformation YELP

Formality direction AMAZON

CAPTION

Hyper-spectral image classification [140] Land change monitoring Salinas

Resource management Indiana Pines

Remote sensing of agriculture Kennedy Space Center

Video prediction [39] Autonomous driving Moving Mnist

Robotic planning BAIR

Object tracking KTH

UCF101

Semantic segmentation [73] Autonomous driving PASCAL VOC 2012

Medical diagnostics Cam Vid

Robotic systems CelebA

Fault diagnosis [89] Industrial machine monitoring Induction motor signal vibration

Risk analysis

Clinical diagnosis

ECG Analysis [99] Caridovascular diseases MIT-BIH Databse

available data, hyperparameter settings, model structure,
etc.

– The generator tries to over-optimize the discriminator
in each epoch of the GAN training. If the discriminator
caught in the local minimum trap and always rejecting
every instance of its input, then the generator keeps on
generates the same set of instances. This is popularly

known as mode collapse problem of GANs. Wasserstein
loss [5] does not let discriminator struck at local optimum,
and hence, generator produces a new set of outputs. [70]
modelled generators objective in coherence with optimal
discriminator to alleviate mode collapse problem. [25]
devised an empirical model that automatically detects
the problem of mode anomaly.
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Table 1 continued

Task/Reference Applications Datasets

MRI, PET, and CT Analysis [21] Cancer detection T2-Flair

Functional abnormalities in body parts LIDC-IDRI

Mammogram segmentation [131] Detection of breast cancer INbreast

DDSM

Hospital Sant Joan de Reus

Data augmentation [79] Speech recognition Aroura-4

Audio denoising AMI-SDM

DeepFakes [18] Educational applications DFDC

Enlightening mankind CelebDF

FaceForensics++DF

– Often GANs fail to converge due to irregularities in
the structure of the model, hyperparameter tuning, and
training strategies. [4] added noise to the inputs of a dis-
criminator for stable training andGANconvergence. [84]
introduced a novel regularizationmethod to eliminate the
problem of convergence.

– The above-said challenges are discussed in the perspec-
tive of algorithmic and training issues of GANs. GANs
are highly successful in generating high-quality natu-
ralistic images. However, the performance of GANs is
questioned in creating fake videos, also called deepfakes.
Creating fake videos using deep learning techniques to
swap the identity of a personwith another person is called
deepfakes. However, the deepfakes resembles realistic, it
is difficult to create a deepfake that mimics eye blinking,
since nobody likes to take a picture with eyes closing.
Also, while creating deepfakes, we need images that have
persons with similar skin tone, the orientation of faces,
etc.Otherwise, the output deepfakewould not be optimal.
Deepfakes created using pairwise deepfake auto-encoder
(DFAE) models are higher in quality compared to deep-
fakes created using GAN-based methods on deepfake
detection challenge (DFDC) dataset [18].

6 Conclusion

This paper presents the ins and outs of GANs, derivedGANs,
their application areas, evaluation metrics, and challenges
involved in training GANs. A total of 88 publications are
summarized based on their objective with an ease of under-
standing terminology to a naive researcher. At this point,
it may be noted that the main objective of some publica-
tions related to clinical diagnosis is segmentation. So, the
said publications are discussed in detail in the respective
sect. 3.4. It is obvious that image super-resolution is an appli-
cation of GAN worth discussing. But it is covered as part

of section 3.8 to limit the size of the paper. We also noted
that all supervised, semi-supervised, and unsupervised algo-
rithms are discussed. However, mostly semi-supervised and
unsupervised algorithms are used in case of data insufficient
problems. The application of GANs are spread over diverse
domains, and they are not limited to the ones discussed in this
paper. Often, GANs face a challenge with the increase in the
number of distributions in the real data. With sophisticated
techniques for training GANs, especially when dealing with
a large number of distributions, the applications of GANs
can be widespread. It also provides a summary on various
applications, tasks achieved, and the datasets in Table 1 for
quick referencing.
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