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Abstract
In automatic art analysis,models that besides the visual elements of an artwork represent the relationships between the different
artistic attributes could be very informative. Those kinds of relationships, however, usually appear in a very subtle way, being
extremely difficult to detect with standard convolutional neural networks. In this work, we propose to capture contextual
artistic information from fine-art paintings with a specific ContextNet network. As context can be obtained from multiple
sources, we explore two modalities of ContextNets: one based on multitask learning and another one based on knowledge
graphs. Once the contextual information is obtained, we use it to enhance visual representations computed with a neural
network. In this way, we are able to (1) capture information about the content and the style with the visual representations and
(2) encode relationships between different artistic attributes with the ContextNet. We evaluate our models on both painting
classification and retrieval, and by visualising the resulting embeddings on a knowledge graph, we can confirm that our models
represent specific stylistic aspects present in the data.

Keywords Art classification · Multi-modal retrieval · Knowledge graphs · Visualisation · Multitask learning

1 Introduction

This work aims to represent and explore artistic attributes
and their relationships in order to improve classification and
retrieval of artworks in automatic art analysis.With the large-
scale digitisation of art from collections all over the world,
computer vision and machine learning have become impor-
tant tools in the conservation and dissemination of cultural
heritage. Some of the most promising work on this direc-
tion involves the automatic analysis of paintings, in which
computer vision techniques are applied to study the con-
tent [12,47] and the style [9,45], or to classify the attributes
[35,37] of a specific piece of art.

Automatic analysis of art usually involves the extraction of
visual features from digitised artworks by using either hand-
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crafted [5,28,49] or deep learning techniques [27,34,35,54].
Visual features, specially the ones extracted from convolu-
tional neural networks (CNNs) [24,30,50], have been shown
to be very powerful at capturing content [12] and style [9]
from paintings, producing outstanding results, for example,
on the field of style transfer [45]. However, art specialists
rarely analyse artworks as independent and isolated cre-
ations, but commonly study paintings within its artistic,
historical and social contexts, such as the author influences
or the connections between different schools, as illustrated
in Fig. 1.

To analyse art from a global perspective, we propose to
extract context-aware embeddings from paintings by consid-
ering both visual and contextual information. For the visual
information, we use a standard convolutional neural net-
work, which successfully encodes the content and the style
of each sample. On the other hand, for the contextual infor-
mation, we propose the use of ContextNets, which capture
the relationships between the different artistic attributes that
are present in the dataset. As context can be acquired from
multiple sources, in this work we explore two modalities of
ContextNets.

The first modality is based on multitask learning (MTL).
We jointly compute several artistic-related tasks together
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Fig. 1 Art as an element in a global context. InGuernica, Pablo Picasso,
by means of his own style built upon many artistic influences, such as
Cubism or African art, expressed his emotions against war inspired by
its historical and political contexts. Image source: www.PabloPicasso.
org

(e.g. author classification, type classification, etc.) and obtain
an aggregated loss with the losses of each independent task.
By optimising a single aggregated loss, themodel is enforced
to find common elements and capture relationships between
the different artistic attributes. In this type of ContextNet, the
context is captured from the visual information, as the only
input provided to the system is the painting itself.

In the second modality, in contrast, we use a knowledge
graph (KG) to learn the different relationships between artis-
tic attributes.We create an art-specificKGby connecting a set
of paintings with their artistic-related attributes. Then, node
neighbourhoods and positions within the graph are encoded
into a vector to represent context.Whereas theMTLmodel is
able to capture relationships occurring at the visual level, the
use of KGs offers a more flexible representation of arbitrary
relationships, which might not be well-structured and more
difficult to detect when considering visual content only. In
any case, we incorporate the information obtained with the
aforementioned models into the art analysis system.

The two proposed ContextNets are evaluated on the
SemArt dataset [20] in four different art classification tasks
and in two cross-modal retrieval tasks. We show that,
although none of the proposed modalities show a superior
performance with respect to the other one in all of the eval-
uated tasks, ContextNets consistently outperform methods
based on visual embeddings only. Furthermore, our previ-
ous work on context-aware embeddings [18] is extended by
exploring the representations obtained with our ContextNets
and confirming the presence of specific stylistic aspects in
the clusters of the high-dimensional embedding space.

1.1 Contributions

The contributions of this work can be summarised as follows:

– We propose to use specific networks, different from stan-
dard visual representation networks, to capture artistic
context in paintings.

– We explore two different modalities of our proposed net-
works, one based on multitask learning and another one
based on knowledge graphs.

– We investigate the resulting context-aware embeddings
with a visualisation tool, finding insights on how the
different artistic attributes are clustered in different
embedding spaces.

2 Related work

2.1 Automatic art analysis

In order to identify specific attributes in paintings, early work
in automatic art analysis was focused on representing the
visual content of paintings by designing handcrafted feature
extraction methods [5,25,28,37,49]. For example, [25] pro-
posed to detect authors by analysing their brushwork using
wavelet decompositions [28,49], combined colour, edge, or
texture features for author, style, and school classification,
and [5,37] used SIFT features [33] to classify paintings into
different attributes.

In the last years, deep visual features extracted from
CNNs have been repeatedly shown to be very effective in
many computer vision tasks, including automatic art anal-
ysis [2,20,27,34,35,44,53,54]. At first, deep features were
extracted from pre-trained networks and used off-the-shelf
for automatic art classification [2,27,44]. Later, deep visual
features were shown to obtain better results when fine-tuned
using painting images [8,35,47,53,54]. Alternatively, [10–
12] explored domain transfer for object and face recognition
in paintings, whereas [20] introduced the use of joint visual
and textual models to study paintings from a semantic per-
spective.

So far, most of the proposed methods in automatic art
analysis have focused on representing the visual essence of an
artwork by capturing style and/or content.However, the study
of art is not only about the visual appearance of paintings,
but also about their historical, social, and artistic contexts.
In this work, we propose to consider both visual and contex-
tual information in art by introducing ContextNet networks.
Although the main focus of this work is on painting classi-
fication and retrieval, our findings can be easily applied to
other artistic areas [39,40].

2.2 Multitask learning

Multitask learning models [6] aim to solve multiple tasks
jointly with the hope that the generated generic features are
more powerful than task-specific representations. In deep
learning approaches, MTL is commonly performed via hard
or soft parameter sharing [42]. Whereas in hard parame-
ter sharing [6,48], except by the output layers, parameters
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are shared between all the tasks, in soft parameter sharing
[32,58], each task is defined by its own parameters, which
are encouraged to remain similar via regularisation methods.

Following the success of MTL in many computer vision
problems, such as object detection and recognition [3,43],
object tracking [60], facial landmark detection [61], or facial
attribute classification [41], we propose a hard parameter
sharing MTL approach for obtaining context-aware embed-
dings in the domain of art analysis. In our approach, by jointly
learning related artistic tasks, the resulting visual represen-
tations are enforced to capture relationships and common
elements between the different artistic attributes, such as
author, school, type, or period, and thus, providing contextual
information about each painting. In parallel with our work,
Strezoski et al. [52] also show outstanding improvements in
an art classification dataset by using MTL strategies, which
encourage our claim that context is strongly beneficial in
automatic art analysis.

2.3 Knowledge graphs

Knowledge graphs are complex graph structures able to
capture non-structured relationships between the data rep-
resented in the graph. When KGs are used to add contextual
information to a multimedia database, prior work has shown
consistent improvements in annotation, classification, and
retrieval benchmarks [7,13,15,17,26,36,43,55,59].

To extract contextual information from a KG, one strat-
egy is to encode relationships from visual concepts detected
in pictures, forming concept hierarchies [15,43]. Johnson et
al. [26] introduced human-generated scene graphs based on
descriptions of pictures to improve retrieval tasks, whereas
[13] exploited semantic relationships between labels using
ConceptNet [51]. Another strategy is to gather labelling
information from social media to compute a word-image
graph, in which random walks are proposed to extract topo-
logical information [59]. Other approaches incorporate the
use of external knowledge bases. For example, [17] pro-
posed to improve classifiers with the use ofWordNet, [36,38]
designed an end-to-end learning pipeline to incorporate large
knowledge graphs, such as Visual Genome [29], into classi-
fication, and [55] trained image and graph embeddings using
WordNet, NELL [4], or NEIL [7].

While related work mostly relies on the use of external
knowledge, in our knowledge graph model, we propose to
capture contextual information only by processing the data
provided with art datasets. As the semantic of art pieces is
extremely domain specific, the symbolism that is implied
in mythological or religious representations may not benefit
from general knowledge. Instead, we leverage on metadata
information from art datasets to create a domain-specific
knowledge graph, from which we train context embeddings
without any task-specific supervision.

3 Multitask learning ContextNet

In theMTLContextNet, artistic context is obtainedbyfinding
visual relationships between common elements in different
artistic attributes. To compute context-aware embeddings,
the model is trained to learn multiple artistic tasks jointly, so
the generated embeddings are enforced to find visual simi-
larities between the different tasks.

Formally, in a multitask learning problem, given T learn-
ing tasks, with the training setting for the t th task consisting
of Nt training samples and denoted as {xtj , ytj }Nt

j=1, where

xtj ∈ R
d and ytj are the j th training sample and its label,

respectively, the goal is to optimise:

argmin
{wt }Tt=1

T∑

t=1

Nt∑

j=1

λt�t ( f (xtj ;wt ), ytj ) (1)

where f is a function parameterised by the vector wt , �t is
the loss function for the t th task, and λt , with

∑T
t=1 λt = 1,

weights the contribution of each task.
In our model, we aim to distinguish between the context-

aware information and the task-specific data. We define the
function parameters for the t th task as the contribution of two
vectors, wt = [wt

g;wt
s], so that f is defined as:

f (xtj ;wt ) = fs(vtj ;wt
s) (2)

where

vtj = fg(xtj ;wt
g) (3)

here fg is a context-aware function parametrised by wt
g , fs

is a task-specific function parametrised by wt
s , and vtj is the

j th context-aware embedding generated by task t .
By sharing both the training data and the context-aware

parameters across all the tasks as xtj = xkj and wt
g =

wk
g for j �= k, the context-aware embedding vtj is defined as:

v j = fg(x j ;wg) (4)

which enforces v j to encode x j in a generic and non-
task-specific representation by identifying patterns and rela-
tionships within different tasks. The problem, finally, is
formulated as:

argmin
wg,{wt

s }Tt=1

T∑

t=1

N∑

j=1

λt�t ( fs( fg(x j ;wg);wt
s), y

t
j )

(5)

For solving this optimisation problem, we propose the
model in Fig. 2, in which the T learning tasks corre-
spond to multiple artistic classification challenges, such as
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Fig. 2 Overview of the
multitask learning ContextNet
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type, school, timeframe, or author classification. To obtain
context-aware embeddings, the context-aware function, fg ,
is characterised by ResNet50 [24] after removing the last
fully connected layer, whereas the task-specific functions,
fs , are described by a fully connected layer followed by a
ReLU nonlinearity. The output of fg is a 2048-dimensional
embedding, which is the input of the task-specific classi-
fiers. Each classifier produces aCt -dimensional task-specific
embedding as output, ztj , where Ct is the number of classes
in each task. Each tasks is formulated with the cross-entropy
loss function as:

�t (ztj , y
t
j ) = − log

( exp(ztj [ytj ])∑
c exp(z

t
j [c])

)
(6)

where ztj = fs( fg(xj;wg);wt
s).

4 Knowledge graph ContextNet

In the MTL ContextNet, contextual information is provided
by the painting images themselves by considering the rela-
tionships between commonelements in the visual appearance
of the imageswhenmultiple artistic tasks are trained together.
In the knowledge graph ContextNet (KGM), in contrast, con-
textual information is obtained from capturing relationships
in an artistic knowledge graph built with non-visual artistic
metadata.

4.1 Artistic knowledge graph

AKG is a graph structure, G = (V , E), in which the entities
and their relations are represented by a collection of nodes,V ,
and edges, E , respectively.Weuse aKG to capture contextual
knowledge and similarities in the semantic space formed by
the graph, often referred to as homophily [21].

To construct an artistic KG, one strategy is to connect
paintings with edges when sharing a common attribute a ∈
A, where A is a collection of artistic attributes. However,
the complexity of this approach is expensive, reaching the
order of |V |2×|A|. Instead, we propose to connect paintings

Van 
Gogh

Monet

Vermeer

Dutch

French

Portrait

Still-Life

Landscape

Fig. 3 An example of our artistic KG. Each node corresponds to either
a painting or an artistic attribute, whereas edges correspond to existing
interconnections

with their attributes in a much sparser manner. We consider
multiple types of node: paintings, P ⊆ V , which represent
the paintings themselves (e.g. Girl with a Pearl Earring), and
each family, ψ , of attributes Aψ ⊆ V , which represent artis-
tic concepts (e.g. a type such as Portrait or an author such
as Van Gogh). We use the training data from the SemArt
dataset [20], which contains 19,244 paintings labelled with
the attributes Author, Title, Date, Technique, Type, School,
andTimeframe to connect edges, e = (Vp, Vq) ∈ E , between
painting nodes, Vp, and attribute nodes, Vq ∈ Aψ , with
ψ ∈ {Type,Timeframe,Author}, when an attribute exists in
a painting. As School corresponds to an author’s school, we
connect an edge, e = (Va, Vs) ∈ E , between an author, Va ,
and a school, Vs . We additionally enrich our graph with three
other families of attributes, which are connected to painting
nodes. From Technique, we extract Material, such as oil,
and Support, such as 210 × 80 cm. Also, by computing the
most common n-grams in the titles, with n up to three, we
extract keywords from the title of eachpainting, such asThree
Graces. In total, the resulting KG presents 33,148 nodes and
125,506 edges, with 3166 authors, 618materials, 26 schools,
8899 supports, 22 timeframes, 10 types, and 1163 keyword
nodes. An example representation of our artistic graph is
shown in Fig. 3.
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Fig. 4 Overview of the
knowledge graph ContextNet
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4.2 Training

At training time, visual and context embeddings are com-
puted from the painting image and from theKG, respectively,
and used to optimise the weights of the model. Our training
model is depicted in Fig. 4, and each of its parts are detailed
below.

Visual embeddings Visual embeddings represent the visual
appearance of paintings, containing information about the
content and the style of the artwork. To obtain the visual
embeddings, we use a ResNet50 [24] without the last fully
connected layer.

Context embeddings Context embeddings encode the artistic
context of an artwork by extracting data from the KG. For
encoding the KG information into a vector representation,
we adopt the node2vec model [22] because of its capacity to
preserve a trade-off between homophily and structural equiv-
alences, resulting in high performances in node classification
tasks [21]. To capture node embeddings, node2vec operates
skip-grams over random walks in the KG and associates a
vector representing the neighbourhood and the overall posi-
tion of each node in the graph.

Classifier The classifier takes as input the visual embedding
and predicts the artistic attributes contained in the sam-
ple painting. We use different kinds of attribute classifiers,
such as type, school, timeframe, or author. The classifier is
composed of a fully connected layer followed by a ReLU
nonlinearity, and its output is used to compute a classifica-
tion loss using a cross-entropy loss function:

�c(z j , class j ) = − log

(
exp(z j [class j ])∑

i exp(z j [i])
)

(7)

where z j and class j are the output of the classifier and the
assigned label of the attribute for the j th training painting,
respectively.

Encoder The encoder module, which is composed of a single
fully connected layer, is used to project the visual embed-
dings into the context embedding space.We compute the loss
between the projected visual embedding, p j , and the context
embedding, u j , of the j-training sample with a smooth L1
loss function:

�e(p j ,u j ) = 1

n

∑

i

δ j i (8)

where

δ j i =
{

1
2 (p ji − u ji )

2, if |p ji − u ji | ≤ 1

|p ji − u ji | − 1
2 , otherwise

where p ji and u ji the i th elements in p j and u j , respectively.
To train the KGM, we compute the total loss function of
the model as a combination of the losses obtained from the
classifier and encoder modules:

L = λc

N∑

j=1

�c(z j , class j ) + λe

N∑

j=1

�e(p j ,u j ) (9)

where λc and λe are parameters that weight the contribution
of the classification and the encoder modules, respectively,
and N is the number of training samples.

Whereas the parameters of the context embeddings are
learnt without supervision and frozen during the KGM train-
ing process, the loss score, L, obtained from Equation (9) is
backpropagated through the weights of the visual embedding
module.This enforcesResNet50 to compute embeddings that
are meaningful for artistic classification by decreasing �c,
while incorporating contextual information from the knowl-
edge graph by minimising �e.

4.3 ContextNet at test time

At test time, to obtain context-aware embeddings from
unseen test samples, painting images are fed into the fine-
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tuned ResNet50 model. As context embeddings computed
directly from the KG cannot be obtained for samples that
are not contained as a node, the context embedding and the
encoder modules are removed from the test model (Fig. 4).

However, the ResNet50 network has been enforced during
the training process (1) to capture relevant visual information
to predict artistic attributes and (2) to incorporate contex-
tual data from the KG in the visual embeddings. Therefore,
the output embeddings from the fine-tuned ResNet50 are,
indeed, context-aware embeddings.

5 Art classification evaluation

We evaluated the two proposed ContextNets in multiple art
classification tasks, including author identification and type
classification.

5.1 Implementation details

In both of our proposedmodels, painting images are encoded
into a vector representation by using ResNet50 [24] with-
out the last fully connected layer. ReNet50 is initialised
with its standard pre-trainedweights for image classification,
whereas the weights from the rest of the layers are initialised
randomly. Images are scaled down to 256 pixels per side and
randomly cropped into 224 × 224 patches. At training time,
visual data are augmented by randomly flipping images hor-
izontally. The size of the embeddings produced by ResNet50
is 2048, whereas the dimensionality produced by node2vec
is 128. We use stochastic gradient descent with a momentum
of 0.9 and a learning rate of 0.001 as optimiser. The training
is conducted in mini-batches of 28 samples, with a patience
of 30 epochs. In the MTL ContextNet, λt is set to 0.25 for all
the tasks, whereas in the KGM ContextNet, λc is set to 0.9
and λc to 0.1.

5.2 Evaluation dataset

We use the SemArt dataset [20] in our art classification eval-
uation. The SemArt dataset is a collection of 21,384 painting
images, from which 19,244 are used for training, 1069 for
validation, and 1069 for test. Each painting is associated
with an artistic comment, and the following attributes are:
Author, Title, Date, Technique, Type, School and Timeframe.
We implement the following four tasks for art classification
evaluation.

– Type classification Using the attribute Type, each paint-
ing is classified according to 10 different common types
of paintings: portrait, landscape, religious, study, genre,
still life, mythological, interior, historical and other.

– School classification The School attribute is used to
assign each painting to one of the schools of art that
appear at least in ten samples in the training set: Ital-
ian, Dutch, French, Flemish, German, Spanish, English,
Netherlandish, Austrian, Hungarian, American, Dan-
ish, Swiss, Russian, Scottish,Greek, Catalan, Bohemian,
Swedish, Irish, Norwegian, Polish and Other. Paintings
with a school different to those are assigned to the class
Unknown. In total, there are 25 school classes.

– TimeframeclassificationTheattributeTimeframe,which
corresponds to periods of 50 years evenly distributed
between 801 and 1900, is used to classify each paint-
ing according to its creation date. We only consider
timeframes with at least ten paintings in the training
set, obtaining a total of 18 classes, which includes an
Unknown class for timeframes out of the selection.

– Author identification The Author attribute is used to
classify paintings according to 350 different painters.
Although the SemArt dataset provides 3281 unique
authors, we only consider the ones with at least ten paint-
ings in the training set, including an Unknown class for
painters not contained in the final selection.

5.3 Baselines

Our models are compared against the following baselines:

– Pre-trained NetworksVGG16 [50], ResNet50 [24] and
Res-Net152 [24] with their pre-trained weights learnt in
natural image classification. To adapt the models for art
classification, we modified the last fully connected layer
to match the number of classes of each task. The weights
of the last layer were initialised randomly and fine-tuned
during training, whereas the weights of the rest of the
network were frozen.

– Fine-tuned Networks VGG16 [50], ResNet50 [24] and
Res-Net152 [24] networks were fine-tuned for each art
classification task. As in the pre-trained models, the last
layer was modified to match the number of classes in
each task.

– ResNet50+Attributes The output of each fine-tuned
classification model from above was concatenated to
the output of a pre-trained ResNet50 network without
the last fully connected layer. The result was a high-
dimensional embedding representing the visual content
of the image and its attribute predictions. The high-
dimensional embedding was input into a last fully con-
nected layerwithReLU to predict the attribute of interest.
Only the weights from the pre-trained ResNet50 and the
last layer were fine-tuned, whereas the weights of the
attribute classifiers were frozen.

– ResNet50+Captions For each painting, we generated a
caption using the captioning model from [57]. Captions
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Table 1 Art classification results on SemArt dataset

Method Type School TF Author

VGG16 pre-trained 0.706 0.502 0.418 0.482

ResNet50 pre-trained 0.726 0.557 0.456 0.500

ResNet152 pre-trained 0.740 0.540 0.454 0.489

VGG16 fine-tuned 0.768 0.616 0.559 0.520

ResNet50 fine-tuned 0.765 0.655 0.604 0.515

ResNet152 fine-tuned 0.790 0.653 0.598 0.573

ResNet50+Attributes 0.785 0.667 0.599 0.561

ResNet50+Captions 0.799 0.649 0.598 0.607

MTL context-aware 0.791 0.691 0.632 0.603

KGM context-aware 0.815 0.671 0.613 0.615

Bold values indicate the best result

were represented by a multi-hot vector with a vocabu-
lary size of 5000 and encoded into a 512-dimensional
embedding with a fully connected layer followed by an
hyperbolic tangent or tanh activation.The caption embed-
dings were then concatenated to the output of a ResNet50
network without the last fully connected layer. The con-
catenated vector was fed into a fully connected layer with
ReLU to obtain the prediction.

5.4 Results analysis

We measured classification performance in terms of accu-
racy, i.e. the ratio of correctly classified samples over the
total number of samples. Results are provided in Table 1.
In every task, the best accuracy was obtained when a Con-
textNet, MTL or KGM, was used. The MTL ContextNet
performed slightly better than the KGM in School and Time-
frame tasks, whereas the KGM was the best in classifying
Type and Author attributes. Unsurprisingly, the pre-trained
models obtained the worst results among all the baselines,
as they do not present enough discriminative power in the
domain of art. Also, there was a clear improvement with
respect to pre-trained baselines when the networks were fine-
tuned, as already noted in previous work [35,47,53,54]. On
the other hand, adding attributes or captions to the visual rep-
resentations seemed to improve the accuracy, although not in
all the scenarios, e.g.Timeframewas better classifiedwith the
fine-tuned ResNet50 model than with ResNet50+Attributes
or ResNet50+Captions, whereas School was better classified
with the fine-tuned ResNet50 than with ResNet50+Captions.
This suggests that informing the model with extra infor-
mation is beneficial. When the data used to inform the
model were from a ContextNet, accuracy was boosted, with
improvements ranging from 3.16 to 7.3% with respect to
fine-tuned networks and from 1.32 to 5.5% with respect to
ResNet50+Attributes and ResNet50+Captions.

This landscape depicts ships moored 
off a rocky coastline with fishermen 
unloading their catch.

This view of Florence is one of a 
number of views by Lear based upon on 
the spot sketches he produced in 1861.

View of Florence from Villa San 
Firenze, near San Miniato 

Ships Moored Off a Rocky 
Coastline

This painting depicts a still-life of 
grapes, cherries, peaches and other 
fruit in a basket, with a rose and a 
dragonfly on a stone ledge.

This painting was inspired by the painter's 
travels in Italy. The costume of the two girls 
and the landscape suggests the Amalfi 
coast, or Capri as the setting of the scene.

Water Carriers Still-Life

Fig. 5 Examples of the SemArt dataset

6 Art retrieval evaluation

Weadditionally evaluated the ourContextNets on art retrieval
problems by incorporating context-aware embeddings into a
cross-modal retrieval algorithm.

6.1 Implementation details

As evaluation protocol, we used the SemArt dataset and its
proposed Text2Art challenge, which consists of two cross-
modal retrieval tasks: text-to-image and image-to-text. In
text-to-image retrieval, given an artistic comment and its
attributes, the goal is to find the correct painting within all
the test paintings in the dataset. Similarly, in image-to-text
retrieval, given a sample painting, the goal is to find the cor-
rect comment. Examples of paintings and their comments in
the dataset can be seen in Fig. 5. We incorporate our Con-
textNets in a cross-modal retrieval system as shown in Fig. 6
and described below [19].

Visual encoderPainting images are scaled down to 256 pixels
per side and randomly cropped into 224×224 patches. Then,
paintings are fed into ResNet50, initialised with its standard
pre-trained weights, to obtain a 1000-dimensional vector,
hcnn, from the last convolutional layer. At the same time,
paintings are fed into a ContextNet classifier to obtain a c-
dimensional vector, hatt, containing the predicted attributes,
with c being the number of output classes in the classi-
fier. The final visual representation, h, is then computed as
h = hcnn ⊕ hatt, where ⊕ is concatenation.
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Horace Vernet, French, Genre, 1801-1850Cosine Margin Loss

A Saddled Race Horse Tied to a Fence

painting

ResNet

ContextNet

Visual
Projection

Horace Vernet enjoyed royal patronage, one of 
his earliest commissions was a group of ten 
paintings depicting Napoleon's horses. These 
works reveal his indebtedness to the English 
tradition of horse painting. The present painting 
was commissioned in Paris in 1828 by 
Jean-Georges Schickler, a member of a German 
based banking family, who had a passion for 
horse racing

Language
Projection

attributes

title

commentTF-IDF

Fig. 6 ContextNets for cross-modal retrieval in art

Comment and attribute encoderWe encode each comment as
a term frequency–inverse document frequency (tf–idf) vec-
tor, qcom, using a vocabulary of size 9708, which is built
with the alphabetic words that appear at least ten times in
the training set. We encode titles as another tf–idf vector,
qtit, with a vocabulary of size 9092, which is built with the
alphabetic words that appear in the titles of the training set.
Additionally, we encode Type, School, Timeframe, or Author
attributes using a c-dimensional one-hot vector, qatt, with
c being the number of classes in each attribute. The final
joint comment and attributes representation, q, is computed
as q = qcom ⊕ qtit ⊕ qatt.

Cross-modal projections To compute similarities between
cross-modal data, the visual representation, h, and the joint
comment and attributes representation, q, are projected into
a common 128-dimensional space using the nonlinear func-
tions fh and fq , respectively. The nonlinear functions are
implemented with a fully connected layer followed by tanh
activation and a �2-normalisation. Once projected into the
common space, elements are retrieved according to their
cosine similarity.

The weights of the retrieval model, except from the Con-
textNet which is frozen, are trained using both positive (i.e.
matching) and negative (i.e. non-matching) pairs of samples
with the cosine margin loss function:

L(hk ,q j ) =
{
1 − sim( fh(hk), fq(q j )), if k = j

max(0, sim( fh(hk), fq(q j )) − Δ), if k �= j

(10)

where sim is the cosine similarity between two vectors and
Δ = 0.1 is themargin.We use Adam optimiser with learning
rate 0.0001.

6.2 Results analysis

Results are reported as median rank (MR) and recall rate
at K (R@K), with K being 1, 5, and 10. MR is the value

separating the higher half of the relevant ranking position
amount all samples, i.e. the lower the better, whereas R@K
is the rate of samples for which its relevant image is in the
top K positions of the ranking, i.e. the higher the better.

We report results of the proposed cross-modal retrieval
model using the following ContextNets: MTL-Type, MTL-
Timeframe,MTL-School, MTL-Author, KGM-Type, KGM-
School, KGM-Timeframe, and KGM-Author, in which only
the specified attribute is used. As a baseline of the proposed
model, results when using fine-tuned ResNet152 instead of
a ContextNet are also reported. Our methods are compared
against previous work: CML [20], which encodes comments
and titles without attribute information, and AMD [20], in
which attributes are used at training time to learn the visual
and textual projections. CML* is a reimplementation ofCML
with slightly better results.

Results are summarised in Table 2. The KGM-Author
model obtained the best results, improving previous state
of the art, CML*, by a 37.24% in average. When com-
paring ContextNets, in agreement with classification results
(Table 1), MTL performed better than KGM when using
School, whereas KGM was the best in Type and Author
attributes. We also noted that concatenating the output of an
attribute classifier as proposed (ResNet152, MTL, and KGM
models) improved results considerablywith respect toAMD.
However, we observed a big difference in performance when
using the different attributes, being Author and Type the best
and the worst ones, respectively. A possible explanation for
this phenomenon may lay in the difference on the number of
classes of each attribute.

Finally, our best model, KGM-Author, was further com-
pared against human evaluators. In the easy set-up, evaluators
were shown an artistic comment, a title, and the attributes
Author, Type, School, and Timeframe and were asked to
choose the most appropriate painting from a pool of ten
random images. In the difficult set-up, however, instead
of random paintings, the images shown shared the same
attribute Type. Results are provided in Table 3. Our model
reached values closer to human accuracy than previous work,
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Table 2 Results on the Text2Art
challenge

Model Text-to-image Image-to-text

R@1 R@5 R@10 MR R@1 R@5 R@10 MR

CML 0.144 0.332 0.454 14 0.138 0.327 0.457 14

CML* 0.164 0.384 0.505 10 0.162 0.366 0.479 12

AMD

Type 0.114 0.304 0.398 17 0.125 0.280 0.398 16

School 0.103 0.283 0.401 19 0.118 0.298 0.423 16

TF 0.117 0.297 0.389 20 0.123 0.298 0.413 17

Author 0.131 0.303 0.418 17 0.120 0.302 0.428 16

Res152

Type 0.178 0.383 0.525 9 0.165 0.364 0.491 11

School 0.192 0.386 0.507 10 0.163 0.364 0.484 12

TF 0.127 0.322 0.432 18 0.130 0.336 0.444 16

Author 0.236 0.451 0.572 7 0.204 0.440 0.535 8

MTL

Type 0.145 0.358 0.474 12 0.150 0.350 0.475 12

School 0.196 0.428 0.536 8 0.172 0.396 0.520 10

TF 0.171 0.394 0.525 9 0.138 0.353 0.466 12

Author 0.232 0.452 0.567 7 0.206 0.431 0.535 9

KGM

Type 0.152 0.367 0.506 10 0.147 0.367 0.507 10

School 0.162 0.371 0.483 12 0.156 0.355 0.483 11

TF 0.175 0.399 0.506 10 0.148 0.360 0.472 12

Author 0.247 0.477 0.581 6 0.212 0.446 0.563 7

Bold values indicate the best result

Table 3 Comparison against human evaluation

Model Land Relig Myth Genre Port Total

Easy set

CCA [20] 0.708 0.609 0.571 0.714 0.615 0.650

CML [20] 0.917 0.683 0.714 1 0.538 0.750

KGM Author 0.875 0.805 0.857 0.857 0.846 0.830

Human 0.918 0.795 0.864 1 1 0.889

Difficult set

CCA [20] 0.600 0.525 0.400 0.300 0.400 0.470

CML [20] 0.500 0.875 0.600 0.200 0.500 0.620

KGM Author 0.600 0.825 0.700 0.400 0.650 0.680

Human 0.579 0.744 0.714 0.720 0.674 0.714

Bold values indicate the best result

outperformingCMLbya10.67% in the easy task and a9.67%
in the difficult task.

7 Discussion and visualisation

To further understand the quality of our results, we investi-
gate the ability of ContextNets to discern between different
contextual cues. We additionally explore the generated

embedding space using the knowledge graph as a visuali-
sation tool.

7.1 Separability of embeddings

We study how well context is captured in different types of
embeddings by analysing the separability of artistic attributes
in clusters. To estimate the separability between clusters, we
applied the Davies–Bouldin index [14], Q, which measures
a trade-off between dispersion, Si , and separation, Di j , of
the clusters i and j :

Q = 1

k

k∑

i=1

(
max
i �= j

(
Si + S j
Di j

))
(11)

where k is the number clusters, and Si and Di j are computed
as:

Si =
⎛

⎝ 1

|Ci |
∑

x∈Ci

‖x − Ai‖p
⎞

⎠
1/p

Di j = ‖Ai − A j‖p

where Ai the centroid of cluster i of element x ∈ Ci com-
puted using the �p distance, and |Ci | the number of elements
in Ci .
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Fig. 7 Davies–Bouldin index for each different attribute. The blue and red groups correspond to single task of ResNet152-ft and KGM, respectively.
Their best results are reported in both ResNet152-ft and KGM columns of the first group (colour figure online)

Fig. 8 Embeddings of paintings projected in Tulip [1] using t-SNE
[56]. Each node is a painting, and the colouring is mapped to the Time-
frame attribute. There is a good separability of Timeframe values in the

node2vec and MTL, as opposed to ResNet152. Each red circled area
corresponds to its respective cluster selected for inspection in Fig. 10
(colour figure online)

To compare the different settings, we used the samples
from the training set and we applied Q with p = 2 to mul-
tiple types of embeddings on different attributes, as reported
in Fig. 7.When compared on the same task, the smaller value
of Q, the better the cluster separation tends to be. We used
Type, School, Timeframe, and Author attributes to compare
performances between models. We also included the derived
Material and Support attributes, for which none of our mod-
els was fine-tuned. Along with Author, these new attributes
have the highest dispersion due to their large number of
classes, showing the lowest Q values.

The compared embeddings are detailed in Fig. 7. The pre-
trained ResNet152 baseline (in green) shows consistently the
worst results in most categories, whereas the node2vec base-
line trained on our KG (in orange) shows a good trade-off
between categories and the best performance on the most
complex attributes Author, Material and Support. On aver-
age, KGM(in purple) performs the best due to its high quality
on each of the Type, School, and Timeframe attributes for

Fig. 9 The overview of the knowledge graph visualised

which it has been trained. On average, the MTL (in red)
shows a comparable performance to the multiple single-task
fine-tuned ResNet152 (in blue).
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Fig. 10 Selected cluster for each different embeddings. Top. Each clus-
ter has been enriched with a knowledge graph and redrawn accordingly.
The colour encoding is the following: in dark green, time periods; in

light green, type of paintings; in dark blue, author; in light blue: mate-
rial; in dark orange, support; in light orange, school. Bottom. The list
paintings thumbnails for each cluster (colour figure online)

These results rule in favour of the added value that con-
textual knowledge brought by the KG improves overall
performances. We may further confirm this intuition from
the 2D-projected embeddings in Fig. 8: while the space rep-
resented by pre-trained ResNet152 applied to art does not
show any convincing separability, the subspace formed by
paintings in the node2vec embeddings shows clear separa-
bility and sub-densities. MTL does display such a structure,
while being much more fractioned.

7.2 Knowledge graph visualisation

We further investigate the content of these clusters and how
they capture abstract concepts of art by using the knowledge
graph as a visualisation tool. An overview of the knowledge
graph is given in Fig. 9.

We inspect one cluster—i.e. a density in the projected
space—per each of the embeddings in Fig. 8. To identify
such densities, we first apply a DBScan [46] clustering from

the 2D projections.1 We obtain 10 clusters for ResNet 152
pre-trained, 106 clusters for node2vec, and 285 clusters for
MTL. We further rank the top 10 clusters for each type of
embeddings based on the averaged pairwise Euclidean dis-
tance of their content, with a minimum size of 100 paintings
per cluster. Then, we arbitrarily picked one cluster per type
of embedding based on its size and visual appeal.

To explore each cluster, we construct the knowledge sub-
graph induced by all the paintings contained in the selected
cluster. To reduce the visual clutter, we remove all the knowl-
edge graph nodes of degree 1.2 In these mini knowledge
graphs, the degree shows the influence of a node in the clus-
ter.We thusmapped their degree on thenode size of eachnode
and computed a force-directed layout [23] and then removed
overlap [16]. We further used edge bundling to remove the
visual clutter induced by too many edges [31]. Results are
shown in Fig. 10, using Tulip [1].

1 We use the same parameters for all settings: Euclidean distance, with
at least 10 sample points in a cluster, with a maximum distance of 2
2 Degree being the number of edges connected to a node.
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Table 4 Top degree nodes for each embeddings

ResNet node2vec MTL

Node Degree Node Degree Node Degree

Still life 707 1551–1600 297 1651–1700 174

Oil on canvas 463 portrait 287 landscape 167

1601–1650 321 Oil on canvas 174 Oil on canvas 112

1651–1700 210 Oil on panel 45 Dutch 63

Oil on panel 139 Italian 40 Oil on panel 34

Dutch 93 Oil on wood 28 BACKHUYSEN, Ludolf 11

1701–1750 63 TINTORETTO 27 POST, Frans 10

1851–1900 60 GRECO, El 26 KONINCK, Philips 10

1551–1600 53 ARCIMBOLDO, Giuseppe 17 Oil on wood 9

Italian 50 Oil on oak panel 16 VELDE, Adriaen van de 9

Oil on wood 49 MORONI, Giovanni Battista 14 CAPPELLE, Jan van de 9

Oil on oak panel 46 Flemish 14 MOUCHERON, Frederick de 9

Flemish 41 VERONESE, Paolo 14 PYNACKER, Adam 8

French 34 MOR VAN DASHORST, Anthonis 14 WYNANTS, Jan 8

Following the selected clusters, we obtained 774 paint-
ings, 261 authors, 83 supports, 14 materials, 11 schools, 9
timeframes, and 7 types in ResNet (Fig. 10d); 297 paintings,
74 authors, 18 supports, 9 materials, 8 schools, 1 timeframe,
and 4 types in node2vec (Fig. 10e); and 174 paintings, 65
authors, 7 supports, 7 materials, 1 school, 1 timeframe, and
3 types in MTL (Fig. 10f).

The top nodes ranking by degree are reported in Table 4.
As we can see, the ResNet cluster concentrates still-life oil
paintings mostly from the seventeenth century from many
different authors, among which Dutch and Italian painters
are well represented. The node2vec cluster focuses almost
exclusively on portraits of the second half of the sixteenth
century, mostly oil paintings, amongwhich Italian and Flem-
ish painters are well represented. The MTL cluster focuses
almost exclusively on landscapes from the seventeenth cen-
tury, mostly oil paintings, among which the Dutch masters
are well represented. The characteristics of the painting type
may be easily confirmed from the paintings in Fig. 10, which
shows that bothMTL- and node2vec-based embeddings well
capture not only the timeframe but also more specific stylis-
tic aspects of the dataset (i.e. in combination with type and
school).

8 Conclusions

This work proposed to use ContextNets to capture the rela-
tionship between artistic attributes in art classification and
retrieval. Twomodalities ofContextNetwere introduced.The
first one, based on multitask learning, captures the relation-
ships between visual artistic elements in paintings, whereas
the second one, based on knowledge graphs, encodes the

interconnections between non-visual artistic attributes. The
reported results showed that context-aware embeddings are
beneficial in many automatic art analysis problems, improv-
ing art classification accuracy by up to a 7.3% with respect
to classification baselines. In cross-modal retrieval tasks, our
best model outperformed previous work by a 37.24%. We
further investigated the clusters obtained from the context-
aware embeddings, revealing that similar stylistic attributes
were placed close to each other.
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