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Abstract
Accurate retrieval of liver CT images can help a specialist to decide on the type of lesion and treatment planning. However, 
the complex texture of the abnormality and its nonlinear characteristic reduces the recognition rate of a retrieval system. In 
this paper, we propose how to represent an abnormal region of a liver by individual attributes of a multi-phase CT image. The 
indexing of a medical image database is represented by a correlation graph distance, which considers nonlinear behavior of 
the feature space as well. The results showed that the average recall was improved by 7.5% using the proposed feature vector. 
Concerning a complex scheme for lesion representation and the manifold indexing technique, the recall of the system was 
increased by twice. The proposed indexing and feature representation prove the potential of our method in content-based 
medical image retrieval systems.
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1  Introduction

Liver abnormalities are classified into benign lesions, 
including focal nodular hyperplasia (FNH), hemangiomas 
(HEM) and hepatocellular adenomas (HCA), and malignant 
lesions such as hepatocellular carcinoma (HCC), and metas-
tases. They exist as single/multiple lesions in men/woman. 
Their sizes can be small, or they may occupy large portions 
of the liver. A biopsy is a traditional technique for diagnosis 
with a risk of bleeding that has no benefit for benign lesions 
compared to radiologic diagnosis.

Interpretation of medical images is a less/non-invasive 
approach to obtain more information about the anatomy and 
function of a patient’s body. It results in early detection of 
abnormal tissues and can assist a physician in designating 
the type of the malignancy as well. Hepatic cancer with a 
rising rate of death is a good example which exploits the 
benefits of imaging technology [1]. Concerning liver lesions, 

multi-phase CT images provide extensive characteristics 
of the disease and help a specialist in improved decision 
making. However, the hard and time-consuming task of the 
manual image analysis is a major challenge that is released 
by machine learning algorithms. Moreover, there are subtle 
changes in images of various lesion types.

The increasing growth of medical images has opened a 
new field of content-based medical image retrieval (CBMIR) 
in disease diagnosis [2, 3]. Retrieving images with similar 
visual contents to an incoming patient’s data can assist a 
doctor in discriminating the class of the lesion and deciding 
on the treatment planning. There are two stages in a CBMIR 
system: feature representation and indexing [4, 5]. In the first 
stage, a large number of low/high-level characteristics are 
obtained from input images to represent the disease accu-
rately. Typical low-level features are color and texture, and 
high-level descriptors are Gray-Level Co-occurrence Matrix 
(GLCM), variations of Local Binary Pattern (LBP), and Bag 
of Visual Words (BoVW) [6]. Feature indexing methods 
include Euclidean-based techniques [7], dictionary-based 
sparse representation, and hashing functions. An efficient 
CBMIR system relies on a proper selection of the features 
and an appropriate discriminative metric. Traditional con-
tent-based image retrieval (CBIR) systems are not effective 
in the retrieving medical images due to the semantic gap 
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between low-level characteristics and high-level concepts, 
and the nonlinear nature of the corresponding features.

2 � Previous researches

Regarding feature extraction techniques, the Gray-Level Co-
occurrence Matrix (GLCM), Local Binary Pattern (LBP), 
and Bag of Visual Words (BOVW) are commonly utilized. 
The GLCM is a conventional feature with several variations, 
and the BOVW is a more complicated characteristic which 
is more used in recent researches. Malviya et al. [8] used the 
GLCM features to retrieve pathological CT images of the 
lung. Roy et al. employed spatiotemporal features to improve 
retrieval of liver CT images. They mainly used the intensity 
and GLCM matrix in different parts of a tumor in a multi-
phase data [9]. Satish et al. [10] used a Local Binary Pattern 
(LBP) descriptor and enhanced it by the Scale Invariant Fea-
ture Transform (SIFT). Then, they formulated the retrieval 
problem in a Bayesian framework.

Concerning the nonlinear character of image features, 
some researchers employed a manifold approach to learn 
features and classify images [11–14]. Therefore, they consid-
ered the complexity of the data. They ranked objects accord-
ing to the conventional feature vectors and used the graph 
theory to construct the relationship between the entities in 
a dataset. They used globally ranking methods to remove 
local biases. Ma et al. [14] combined visual and semantic 
similarities to reduce limitations of pairwise measures. The 
visual metric was conventional measures such as Euclidean 
and correlation distances, and the semantic metric used a 
classifier to calculate the probability of assigning a query 
image to a specific class. Then, the authors built a graph 
based on the two measures and traversed it using the short-
est path algorithm to rank the images of the database. Wang 
et al. [15] extended the concept of linear sparse-coding using 
third-order tensors of multi-phase data to consider nonlin-
earity of the features.

Pedronette et al. [12] used the manifold learning approach 
in the CBIR systems. They used the correlation metric to set 
up a correlation graph distance. They used the strongly con-
nected component (SCC) algorithm in an iterative approach 
refining the similarity of the input images [12]. They con-
sidered the non-symmetric distance between typical objects 
to improve the visual metrics. They also used the reciprocal 
K-nearest neighbor to improve the correlation graph [16]. 
Later, Pedronette and Torres [3] improved the ranking step 
by a diffusion process to reduce the complexity of the algo-
rithm. Their recent method utilized the intrinsic manifold 
structure of the data more effectively. However, the pro-
cesses required much time to run.

Some researchers have used hashing functions to relieve 
a CBIR algorithm from the expensive search step and to 

develop a scalable technique. Scalability is an important 
issue in designing a retrieval algorithm due to the increasing 
number of available medical images. Onjeti et al. employed 
hash functions to develop a large-scale image retrieval algo-
rithm [4, 17].

The deep neural network is a recent trend in image pro-
cessing that exploits features inherent in the whole input 
data. It has several variations, including auto-encoders, deep 
belief networks, convolutional neural networks (CNNs), 
and generative adversarial networks. Qayyum et al. [18] 
employed CNNs to classify healthy medical images with 
various modalities.

In this paper, we propose an unsupervised manifold learn-
ing algorithm to retrieve multi-phase CT images of hepatic 
tumors. Our main novelties are (1) using the correlation 
graph distance as a nonlinear approach measuring the simi-
larity of pathological images, (2) modification of the SCC 
algorithm to fix the number of the clusters and (3) appropri-
ate selection of the features for each phase to improve the 
overall results. As far as we know, this is the first research 
that employs a graph-based technique to measure the dis-
tance of pathological liver images. Concerning multi-phase 
CT data, researchers have employed identical features for all 
phases. However, based on our experience, a specific set of 
features work better for a phase compared to other phases. 
We compared our method with conventional features and 
distances, and our results outperformed other methods.

This paper is organized as follows. In Sect. 2, we describe 
the preliminaries of our technique and explain our method. 
Section 3 presents the results and discussions. In Sect. 4, we 
conclude the paper and give our plans.

3 � The proposed method

The main steps of the proposed method are feature extrac-
tion and graph construction. The mask of a tumor is used to 
define its region-of-interest (ROI) to reduce the processing 
time and the required memory. For feature extraction, we 
followed two scenarios: (1) using statistical textures for the 
whole lesion’s region, (2) partitioning the lesion’s volume 
into three parts and extracting individual characteristics 
from each zone. The partitioning is based on the fact that 
a lesion shows different characteristics based on its grow-
ing stage. It means that the internal parts of a lesion have 
different features compared to the newly affected tissues. 
In each partition, shape, spatial, and temporal features are 
extracted. Then, we construct a graph in which database 
images constitute its nodes, and the edges define the similar-
ity between images. The graph is a manifold representation 
of image similarities and denotes inherent nonlinearity of 
the relations.
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3.1 � Feature selection: the first scenario

The GLCM matrix is a common texture descriptor that repre-
sents the properties of the gray level and texture of an image. 
We used six attributes of the matrix: entropy, contrast, correla-
tion, homogeneity, intensity, and energy, which are described 
in Eqs. (1)–(10):

(1)Entropy =

N−1
∑

i=0

N−1
∑

j=0

g(i, j) log2
[

g(i, j)
]

.

(2)Controst =

N−1
∑

i=0

N−1
∑

j=0

(

i + j − �i − �j

)3
g(i, j)

.

(3)Correlation =

N−1
∑

i=0

N−1
∑

j=0

(

i − �i

)(

j − �j

)

g(i, j)

�i�j
.

(4)Homogeneity =

N−1
∑

i=0

N−1
∑

j=0

1

1 + (i − j)2
g(i, j).

(5)Intensity =

N−1
∑

i=0

N−1
∑

j=0

(i − j)2g(i, j).

(6)Energy =

N−1
∑

i=0

N−1
∑

j=0

g(i, j)2.

(7)�i =

N−1
∑

i=0

i

N−1
∑

j=0

g(i, j).

In Eqs. (1–10), g (i, j) denotes the frequency of the gray-
level pairs (i, j), and N is the total number of gray levels in 
the image.

Based on our experience, various features have their 
potentials in discriminating lesion categories. In Fig. 1, typi-
cal 2D and 3D plots of the lesions in different feature spaces 
are shown. As shown in Fig. 1a, homogeneity and entropy 
are good characteristics to label HCC (class-3) lesions, while 
type-II lesions are better discriminated by the correlation 
(Fig. 1b). We plotted lesion categories using several 2D and 
3D features and found that using dissimilar features for dif-
ferent imaging phases is more appropriate for separating 
lesion types. Therefore, we selected conventional metrics 
of CBIR systems as cost functions to pick up the best charac-
teristics of liver abnormalities. Based on our experience, the 
feature vector in Eq. 11 gives the highest class separation.

In (11), Cntr, Crr, Int, Hmg, and Ent refer to the con-
trast, correlation, intensity, homogeneity, and entropy, 
respectively.

(8)�j =

N−1
∑

j=0

j

N−1
∑

i=0

g(i, j).

(9)�i =

N−1
∑

i=0

(

i − �i

)2
N−1
∑

j=0

g(i, j).

(10)�j =

N−1
∑

j=0

(

j − �j

)2
N−1
∑

i=0

g(i, j).

(11)
F =

{

CntrNC,CrrNC, IntNC,HmgART,

CrrART, IntART,CntrPV,CrrPV,EntPV
}

Fig. 1   Discrimination potential of lesion categories using different features. a 2D-plot of the entropy against homogeneity in the ART phase, b 
3D-plot of the contrast, correlation, and intensity in NC phase
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3.2 � Feature selection: the second scenario

Concerning the second setup, we divide the volume of a 
tumor into three partitions shown in Fig. 2: the inner (P1), 
intermediate (P2), and borderline (P3) partitions [9]. In 
each section, three categories of attributes are obtained: 
(1) density, (2) temporal density, (3) texture, and (4) tem-
poral texture. Each attribute is calculated for individual 
image phases: non-contrast (NC), arterial (ART), and por-
tal vein (PV). The partitions are obtained by morphologi-
cal erosion with a size of 6 and 12 pixels corresponding 
to P2 and P3.

The density feature (FD) is the ratio of the tumor’s average 
intensity to the average intensity of the healthy region (e.g., 
dNC
P1

dNC
liver

 ). It reflects the contrast enhancement of the lesion in 
each of the partitions P1 to P3. It is individually calculated 
for each phase (NC, ART, and PV) in the three partitions. 
Therefore, the density feature is a 9 × 1 vector described by 
Eq. (12).

The temporal density feature (FTD) is a 6 × 1 vector that 
shows the relative enhancement of the lesion’s intensity 
between different phases in each partition (Eq. 13).

(12)

FD =

{

dNC
P1

dNC
liver

,
dNC
P2

dNC
liver

,
dNC
P3

dNC
liver

,
dART
P1

dART
liver

,
dART
P2

dART
liver

,
dART
P3

dART
liver

,
dPV
P1

dPV
liver

,
dPV
P2

dPV
liver

,
dPV
P3

dPV
liver

}

The texture feature is the conventional GLCM descriptors 
consisting of the energy (g1) , entropy (g2) , homogeneity (g3) , 
intensity (g4) , contrast (g5) , and correlation (g6) measures. It 
is calculated for the ART and PV phases in each of the three 
partitions. Therefore, it consists of 36 elements.

The temporal texture feature (FTT) depicts the variations 
of the GLCM descriptors concerning the acquisition phase. 
It is a heterogeneous feature vector that is composed of 36 
elements that are described in Eqs. (14)–(17).

In Eqs. (17), median, min, and max are the median, min-
imum, and maximum operators and gPhase

K,Part.
 is the average 

of the kth texture descriptor that is calculated for the three 
phases. Finally, we develop the spatiotemporal feature vector 
consisting of 87 elements.

3.3 � The correlation graph distance

The construction of a correlation graph has three stages: (1) 
calculating the global correlation between database images, 
(2) designating strongly connected components (SCCs), and 
(3) construction of a “distance correlation graph.”

First, the correlation between an input image and the 
database images of the database is calculated, and they are 
ranked and put in a list based on their similarities. Images 
with a similarity lower than a threshold are removed from 
the list. Therefore, a graph is constructed between the 
remaining images using the correlation metric. The cor-
relation graph formed in the previous step is modified by 

(13)

FTD =

{

d
ART
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− d

NC
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d
NC

P1

,
d
ART
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− d
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P2

d
NC

P2

,
d
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P3
− d

NC

P3
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,

d
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d
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,
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d
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,
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d
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}

.

(14)
FTT =

{

TTART
P1

, TTART
P2

, TTART
P3

, TTPV
P1
, TTPV

P1
, TTPV

P2
, TTPV

P3

}

.

(15)

TT
ART

Part.
=

{

g
ART

1,Part.
, gART

2,Part.
, gART

3,Part.
, gART

4,Part.
, gART

5,Part.
, gART

6,Part.

}

,

Part. ∈ {P1, P2, P3}.

(16)
TT

PV

Part.
=

{

g
PV

1,Part.
, gPV

2,Part.
, gPV

3,Part.
, gPV

4,Part.
, gPV

5,Part.
, gPV

6,Part.

}

,

Part. ∈ {P1, P2, P3}.

(17)

g
Phase

K,Part.

=

g
Phase

K,Part.
−median

{

g
ART

K,Part.
, gPV

K,Part.

}

max

{

g
NC

K,Part.
, gART

K,Part.
, gPV

K,Part.

}

−min

{

g
NC

K,Part.
, gART

K,Part.
, gPV

K,Part.

}

Phase ∈ {ART, PV}, Part. ∈ {P1, P2, P3}, K ∈ {1, 2, 3, 4, 5, 6}

Fig. 2   Partitioning a tumor volume into three partitions. The arrows 
show the boundary of each region: internal (P1), intermediate (P2), 
and borderline (P3) parts
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identifying the fully connected components and reinforcing 
the connection between graph nodes.

The distance obtained by the correlation graph is supe-
rior to conventional measures such as the Euclidean and 
local correlation metrics. The discrimination power of the 
graph proves itself where there is nonlinearity in the fea-
ture space. In Fig. 3, the known two-moon data are shown, 
and they are classified by (a) the K-means algorithm using 
the Euclidean distance (Fig. 3a), and (b) the correlation 
graph measure (Fig. 3b). The K-means algorithm labels 
the data based on their distance, which results in misclas-
sification, as is shown in Fig. 3a. However, the correlation 
graph considers the structure of the intrinsic geometry of 
the data manifold. Details of the correlation graph distance 
are given below.

3.3.1 � The correlation graph

Given a database C =
{

img1, img2,… , imgn
}

 consisting of 
n images, we compare a query image imgq to these images 
using the Euclidean distance and then sort them in the 
ascending order �q = (img1, img2,… , imgns ) . The correla-
tion graph G = (V ,E) includes a set of vertices V resembling 
available images and the links between them (E). Next, we 
calculate the correlation between the query image (imgq) 
and an element of �q (imgj) . To calculate the Pearson’s cor-
relation coefficient between the two images, we use their 
K-nearest neighbor Nk(q) . Then, the correlation between 
imgq and imgj is calculated using Eq. 18.

In (16), imgi ∈ Nk(q, j) , Xi = �(q, i), Yi = �(j, i) , X̄ , and Ȳ  
are the corresponding arithmetic means, �(q, i) is the Euclid-
ean distance between the two images q and i , Nk(q, j) is the 
accumulated set of Nk(q) and Nk(j) , and ku is the cardinality 
of Nk(q, j) . The value of the correlation coefficient lies in the 
range [− 1, + 1]. If the calculated correlation is greater than 
a threshold tc , there will be a link between imgq and imgj.

3.3.2 � Strongly connected components

To refine the correlation graph of the previous step, we 
obtain fully connected components using the Tarjan algo-
rithm [19]. The general output of the algorithm is defined as 
a set of strongly connected components s =

{

s1, s2,… , sm
}

 , 
and the improvement is performed repetitively. We increase 
the value of the correlation threshold (tc) in each iteration 
and stop the algorithm when the threshold reaches a value 
of 1.

3.3.3 � Correlation graph distance

The constructed correlation graph and the components 
obtained at the previous stage are used to compute a simi-
larity matrix. The similarity between the two images imgi , 
imgj is initially set to wij , and it is changed iteratively by 

(18)cor(q, j) =

∑ku
i=1

(Xi − X̄)
�

Yi − Ȳ
�

�

∑ku
i=1

(Xi − X̄)2
�

∑ku
i=1

(Yi − Ȳ)2

Fig. 3   Classification of 2-month data using a Euclidean and b the correlation graph distances
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calculating the affinity of non-similar images. More details 
of the algorithm are given in [9].

4 � Result and discussions

4.1 � Dataset and evaluation metrics

In this study, we used 411 CT liver data consisting of three 
phases: non-contrast (before injection of the contrast mate-
rial), arterial (15–40 s after the injection), and portal vein 
(70–80 s after the injection of contrast agent). There were 
137 lesions including 38 Cyst, 22 FNH, 28 HCC, 28 HEM, 
and 21 METS. The images belonged to Sir Run Run Shaw 
Hospital, Hangzhou, China [15, 20].

The proposed algorithm was implemented in the MAT-
LAB 2015 environment on a personal computer running 
Windows 8, with a coreTMi5 quad-core processor and 4 GB 
of dynamic memory. Retrieval of a single image takes about 
16 s on the above platform.

The evaluation metrics were recall and precision defined 
in Eqs. (19) and (20).

Consider distinguishing HCC lesions, TP (True Positive) 
is the number of HCC images that are correctly labeled as 
HCC, FN (False Negative) is the number of HCC data that 
are assigned to other classes mistakenly, FP (False Positive) 
is the number of other tumor types that are tagged as HCC 

(19)Recall =
TP

TP + FN

(20)Precision =
TP

TP + FP

[21]. The recall index is the ratio of the fetched HCC lesions 
to the total number of HCC data. The precision metric is 
the ratio of the fetched HCC lesions to the total number of 
retrieved images.

4.2 � Quantitative results

As stated earlier, we used two scenarios for feature extrac-
tion. In the first scenario, the GLCM matrix was used to 
characterize a lesion. In the second scenario, the volume of 
a lesion was divided into three partitions, and several attrib-
utes were extracted in each section.

The results shown in Fig. 4 compare the retrieval of the 
lesions using single-phase data. Concerning the NC, ATR, 
and PV phases, we used “contrast–correlation–intensity,” 
“homogeneity–correlation–intensity,” and “contrast–cor-
relation–entropy” features, respectively. Both the Euclid-
ean measure and correlation graph distance were used for 
indexing.

As is shown in Fig. 4, using simple attributes of a single-
phase image gives a low retrieval performance (both in terms 
of precision and recall). However, the correlation graph dis-
tance improves the outcome. Moreover, different acquisition 
phases are successful in recognition of different lesions. The 
recall and precision results confirm each other as well. The 
maximum of the recall is in the range [40, 45] for NC, ART, 
and PV phases.

In Fig. 5, we improved the describing attributes of the 
lesions and used an 87 × 1 feature vector. While the results of 
the Euclidean indexing are changed a little, the outcome of 
the correlation graph distance is nearly increased by 100%. 
The results prove that the essence of the lesion features is 
described by a manifold approach better than conventional 

Fig. 4   Retrieval results of liver lesions using the GLCM attributes. The top and bottom rows are the recall and precision measures
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metrics. Moreover, augmentation of imaging phases 
improves the results. Figure 5 also reveals that the ART 
phase is more descriptive compared to two other phases.

We compared our results with two other methods to eval-
uate the effectiveness of the proposed algorithm (Table 1). 
The first method was proposed by Roy et al. [9] that used 
123 features using 4-phase CT data to recognize five types of 
hepatic lesions. The second method belonged to Wang et al. 
[15]. It used linear sparse-coding using third-order tensors 
of multi-phase data to consider nonlinearity of the features. 
The results in Table reveal that choosing a proper indexing 
technique can be as effective as a complex feature vector.

Concerning the challenges of the proposed method, it 
requires a multi-phase data to decide on the type of the 
lesion. However, the acquisition of several CT images from 
a single patient is hazardous. Therefore, it is required to sug-
gest new features to replace the currently large feature vector 
of multi-phase data. Recently, we have researched to intro-
duce new elements that describe a tumor better and improve 
discrimination between different tumor types as well. We 
also need to collect a larger dataset and further verify the 

effectiveness of our method. Our research proved the non-
linear nature of tumor features.

4.3 � Sensitivity analysis

In this section, the sensitivity of the proposed method 
to the parameters of the algorithm is investigated, and 
the optimal values of the parameters are calculated. The 
inspected parameters in both scenarios are the number of 
the nearest neighbors (k), correlation threshold (tc), and 
the number of similar images to the search image (ns).
In Fig. 6, the sensitivity analysis is shown. Based on the 
analysis, we set ns = 28 , k = 11 , and tc = 0.15.

5 � Conclusions

In the paper, we proposed two approaches for liver lesion 
retrieval. In the first approach, individual features were 
selected for each of the imaging phases to improve the 
separability of the lesion classes. In the second approach, 
a lesion was represented by an 87 × 1 elements vector to 
describe various regions of an abnormal region. To meas-
ure the distance of an input image to other images of a 
database, we used the correlation graph distance that rep-
resents the nonlinear structure of the feature vector. We 
showed that using a manifold scheme to calculate the dis-
tance between images improves the discrimination power 
of a CBMIR system. It was proved that a more complex 
feature vector also improves the results as well. The overall 

Fig. 5   a Recall and b precision 
of liver lesions retrieval using 
the attributes of the second 
scenario

Table 1   Comparison of the proposed method with some other 
researches

Method Recall (%) Precision (%) Accuracy (%)

Roy et al. [9] 82.6 55 –
Wang et al. [15] – – 92.79
The proposed method 84.2 83.6 94.09

Fig. 6   Sensitivity analysis of a 
number of the nearest neighbors 
and b the correlation threshold
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recall of our results was averagely improved by 7.5% using 
the proposed feature vector.

We plan to employ sophisticated feature vectors and use 
more recent manifold techniques of natural image retrieval 
systems to increase the accuracy of a CBMIR system.
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