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Abstract
Although deep neural networks have made tremendous progress in the area of multimedia representation, training neural
models requires a large amount of data and time. It is well known that utilizing trained models as initial weights often
achieves lower training error than neural networks that are not pre-trained. A fine-tuning step helps to both reduce the
computational cost and improve the performance. Therefore, sharing trained models has been very important for the rapid
progress of research and development. In addition, trained models could be important assets for the owner(s) who trained
them; hence, we regard trainedmodels as intellectual property. In this paper, we propose a digital watermarking technology for
ownership authorization of deep neural networks. First, we formulate a new problem: embedding watermarks into deep neural
networks. We also define requirements, embedding situations, and attack types on watermarking in deep neural networks.
Second, we propose a general framework for embedding a watermark in model parameters, using a parameter regularizer. Our
approach does not impair the performance of networks into which a watermark is placed because the watermark is embedded
while training the host network. Finally, we perform comprehensive experiments to reveal the potential of watermarking deep
neural networks as the basis of this new research effort. We show that our framework can embed a watermark during the
training of a deep neural network from scratch, and during fine-tuning and distilling, without impairing its performance. The
embedded watermark does not disappear even after fine-tuning or parameter pruning; the watermark remains complete even
after 65% of parameters are pruned.
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1 Introduction

Deep neural networks have made tremendous progress in the
area of multimedia representation [5,40,49,50]. It attempts
to model high-level abstractions in data by employing deep
architectures composed of multiple nonlinear transforma-
tions [7]. In addition, deep neural networks can be applied
to various types of data such as sound [49], video [30],
text [46], time series [53], and images [33]. In particu-
lar, deep convolutional neural networks (DCNN) such as
LeNet [36], AlexNet [33], VGGNet [42], GoogLeNet [44],
and ResNet [22] have demonstrated remarkable performance
for awide range of computer vision problems and other appli-
cations.

Additionally, many deep learning frameworks have been
released. They help engineers and researchers to develop
systems based on deep learning or do research with less
effort. Examples of these great deep learning frameworks
are Caffe [27], Theano [8], Torch [12], Chainer [45], Tensor-
Flow [1], and Keras [10].

Although these frameworks have made it easy to utilize
deep neural networks in real applications, training is still a
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difficult task because it requires a large amount of data and
time; for example, several weeks are needed to train a very
deep ResNet with the latest GPUs on the ImageNet dataset,
for instance [22].

Therefore, trainedmodels are sometimes provided onWeb
sites in order to make it easy to try out a certain model or
reproduce the results in research articles without training.
For example, Model Zoo1 provides trained Caffe models for
various tasks with useful utility tools.

It has been empirically observed that utilizing trained
models to initialize the weights of a deep neural network has
potential the following benefits. Fine-tuning [42] is a strategy
to directly adapt such already trainedmodels to another appli-
cation with minimum re-training time. It was reported that
pre-training neural networks often achieves lower training
error than neural networks that are not pre-trained [15,24].

Thus, sharing trained models is very important for the
rapid progress of research and development of deep neural
network systems. In the future, more systematic model-
sharing platformsmay appear, by analogywith video-sharing
sites. Some digital distribution platforms for purchase and
sale of the trained models or even artificial intelligence skills
(e.g., Alexa Skills2) may appear, similar to Google Play or
App Store.

In that sense, trained models could be important assets for
the owner(s) who trained them. Dataset quality and quan-
tity directly affect the accuracy of tasks with large networks.
The success of deep neural networks has been achieved not
only by algorithms but also through massive amounts of data
and computational power. Even if the same architecture is
employed for different applications, their model weights and
their performance are not be guaranteed to be equal. For
instance, if two applications employ the same architecture
such asAlexNet [33], and they are trained in the samemanner
but with a different dataset, the performance would depend
on the quality and quantity of the dataset. Furthermore, a
large cost is incurred to create a dataset of sufficient size
for specific and realistic tasks. From the viewpoint of appli-
cations, it could be argued that model weights rather than
architectures constitute competitive advantage.

We argue that trained models could be treated as intel-
lectual property, and we believe that providing copyright
protection for trained models is a worthwhile challenge. Dis-
cussion on whether or not the copyright law can protect
computationally trained models is outside the scope of this
paper. We focus on how to technically protect the copyrights
of trained models.

To this end, we employ a digital watermarking idea, which
is used to identify ownership of the copyright of digital con-
tent such as images, audio, and videos. In this paper, we

1 https://github.com/BVLC/caffe/wiki/Model-Zoo.
2 https://www.amazon.com/skills/.

propose a digital watermarking technology for neural net-
works. In particular, we propose a general framework to
embed a watermark in deep neural networkmodels to protect
intellectual property and detect intellectual property infringe-
ment of trained models. This paper is an extended version
of [48] with further analysis of attacks on the watermark.

2 Problem formulation

Given a model network with or without trained parameters,
we define the task of watermark embedding as embedding
T -bit vector b ∈ {0, 1}T into the parameters of one or more
layers of the neural network. We refer to a neural network
in which a watermark is embedded as a host network and
refer to the task that the host network is originally trying to
perform as the original task.

In the following, we formulate (1) requirements for an
embedded watermark or an embedding method, (2) embed-
ding situations, and (3) expected types of attacks against
which embedded watermarks should be robust.

2.1 Requirements

Table 1 summarizes the requirements for an effective water-
marking algorithm in an image domain [13,21] and a neural
network domain. While both domains share almost the same
requirements, fidelity and robustness are different in image
and neural network domains. For fidelity in an image domain,
it is essential to maintain the perceptual quality of the
host image while embedding a watermark. However, in a
neural network domain, the parameters themselves are not
important. Instead, the performance of the original task is
important. Therefore, it is essential to maintain the perfor-
mance of the trained host network, and not to hamper the
training of a host network.

Regarding robustness, as images are subject to various sig-
nal processing operations, an embedded watermark should
stay in the host image even after these operations. Note that
the greatest possible modification to a neural network is fine-
tuning or transfer learning [42]. An embedded watermark in
a neural network should be detectable after fine-tuning or
other possible modifications.

2.2 Embedding situations

We classify the embedding situations into three types:
train-to-embed, fine-tune-to-embed, and distill-to-embed, as
summarized in Table 2.

Train-to-embed is the case in which the host network is
trained from scratch while embedding a watermark where
labels for training data are available.
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Table 1 Requirements for an effective watermarking algorithm in the image and neural network domains

Image domain Neural networks domain

Fidelity The quality of the host image should not be degraded
by embedding a watermark

The effectiveness of the host network should not be
degraded by embedding a watermark

Robustness The embedded watermark should be robust against
common signal processing operations such as lossy
compression, cropping, and resizing

The embedded watermark should be robust against
model modifications such as fine-tuning and model
compression

Capacity An effective watermarking system must have the ability to embed a large amount of information

Security A watermark should in general be secret and should not be accessed, read, or modified by unauthorized parties

Efficiency The watermark embedding and extraction processes should be fast

Table 2 Three embedding situations

Fine-tune Label availability

Train-to-embed �
Fine-tune-to-embed � �
Distill-to-embed �

Fine-tune indicates whether parameters are initialized in embedding
using already trained models, or not. Label availability indicates
whether or not labels for training data are available in embedding

Fine-tune-to-embed is the case in which a watermark is
embedded while fine-tuning. In this case, model parame-
ters are initialized with a pre-trained network. The network
configuration near the output layer may be changed before
fine-tuning in order to adapt the final layer’s output to another
task.

Distill-to-embed is the case in which a watermark is
embedded into a trained network without labels using the
distilling approach [23]. Embedding is performed in fine-
tuning where the predictions of the trained model are used as
labels. In the standard distill framework, a large network (or
multiple networks) is first trained and then a smaller network
is trained using the predicted labels of the large network in
order to compress the large network. In this paper, we use the
distill framework as a simple way to train a network without
labels.

The first two situations assume that the copyright holder
of the host network is expected to embed a watermark into
the host network during training or fine-tuning. Fine-tune-
to-embed is also useful when a model owner wants to embed
individual watermarks to identify those to whom the model
had been distributed. By doing so, individual instances can
be tracked. The last situation assumes that a non-copyright
holder (e.g., a platformer) is entrusted to embed a watermark
on behalf of a copyright holder.

2.3 Expected attack types

Related to the requirement for robustness in Sect. 2.1, we
assume three types of attacks against which embeddedwater-

marks should be robust: fine-tuning, model compression, and
watermark overwriting.

2.3.1 Fine-tuning

Fine-tuning [42] seems to be the most feasible type of attack,
whether intentionally or unintentionally, because it empiri-
cally has the following potential benefits as follows. Toutilize
trained models as initial weights of training another net-
works often achieves lower training error than training from
scratch [15,24]. The fine-tuning step helps to both reduce
the computational cost and improve the performance. Many
models have been constructed on top of existing state-of-
the-art models. Fine-tuning alters the model parameters, and
thus, embedded watermarks should be robust against this
alteration.

2.3.2 Model compression

Model compression is very important in deploying deep neu-
ral networks in embedded systems ormobile devices as it can
significantly reduce memory requirements and/or computa-
tional cost. Model compression can be easily imagined by
analogy with lossy image compression in the image domain.
Lossy compression distorts model parameters, so we should
explore how it affects the detection rate.

2.3.3 Watermark overwriting

Watermark overwriting would be a severe attack. Attack-
ers may try to destroy an existing watermark by embedding
different watermark in the same manner. Ideally embedded
watermarks should be robust against this type of attack.

3 Proposed framework

In this section, we propose a framework for embedding a
watermark into a host network. Although we focus on a
DCNN [36] as the host, our framework is essentially applica-
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ble to other networks such as standard multilayer perceptron
(MLP), recurrent neural networks (RNN), and long short-
term memory (LSTM) [25].

3.1 Embedding targets

In this paper, a watermark is assumed to be embedded into
one of the convolutional layers in a host DCNN,3 Let (S, S),
D, and L , respectively, denote the size of the convolution
filter, the depth of input to the convolutional layer, and the
number of filters in the convolutional layer. The parameters
of this convolutional layer are characterized by the tensor
W ∈ R

S×S×D×L . The bias term is ignored here. Let us think
of embedding a T -bit vector b ∈ {0, 1}T into W . The tensor
W is a set of L convolutional filters, and the order of the filters
does not affect the output of the network if the parameters of
the subsequent layers are appropriately re-ordered. In order
to remove this arbitrariness in the order of filters, we calculate
the mean of W over L filters as Wi jk = 1

L

∑
l Wi jkl . Letting

w ∈ R
M (M = S × S × D) denote a flattened version of W ,

our objective is now to embed T -bit vector b into w.

3.2 Embedding regularizer

It is possible to embed a watermark into a host network by
directly modifyingw of a trained network, as is usually done
in the image domain. However, this approach degrades the
performance of the host network in the original task as shown
later in Sect. 4.3.1. Instead, we propose embedding a water-
mark while training a host network for the original task so
that the existence of the watermark does not impair the per-
formance of the host network in its original task. To this end,
we utilize a parameter regularizer, which is an additional
term in the original cost function for the original task. The
cost function E(w) with a regularizer is defined as:

E(w) = E0(w) + λER(w), (1)

where E0(w) is the original cost function, ER(w) is a regular-
ization term that imposes a certain restriction on parameters
w, and λ is an adjustable parameter. A regularizer is usually
used to prevent over-fitting in neural networks. L2 regular-
ization (or weight decay [34]), L1 regularization, and their
combination are often used to reduce over-fitting of param-
eters for complex neural networks. For instance, ER(w) =
||w||22 in the L2 regularization.

In contrast to these standard regularizers, our regularizer
imposes a certain statistical bias on parameter w, as a water-
mark in a training process. We refer to this regularizer as

3 Fully connected layers can also be used, butwe focus on convolutional
layers here, because fully connected layers are often discarded in fine-
tuning.

an embedding regularizer. Before defining the embedding
regularizer, we explain how to extract a watermark from w.
Given a (mean) parameter vectorw ∈ R

M and an embedding
parameter X ∈ R

T×M , the watermark extraction is simply
done by projecting w using X , followed by thresholding at
0. More precisely, the j-th bit is extracted as:

b j = s

(
∑

i

X jiwi

)

, (2)

where s(x) is a step function:

s(x) =
{
1 x ≥ 0

0 else.
(3)

This process can be considered to be a binary classifica-
tion problem with a single-layer perceptron (without bias).4

Therefore, it is straightforward to define the loss function
ER(w) for the embedding regularizer by using (binary) cross
entropy:

ER(w) = −
T∑

j=1

(
b j log(y j ) + (1 − b j ) log(1 − y j )

)
, (4)

where y j = σ(
∑

i X jiwi ) and σ(·) is the sigmoid function:

σ(x) = 1

1 + exp(−x)
. (5)

We call this loss function an embedding loss function.
Note that an embedding loss function is used to update

w, not X , in our framework. It may be confusing that w is
an input and X is a parameter to be learned in a standard
perceptron. In our case, w is an embedding target and X is
a fixed parameter. X works as a secret key [21] to detect
an embedded watermark. The design of X is discussed in
Sect. 3.3.

This approach does not impair the performance of the
host network in the original task as confirmed in exper-
iments, because deep neural networks are typically over-
parameterized. It is well known that deep neural networks
have many local minima and that all local minima are likely
to have an error very close to that of the global mini-
mum [11,14]. Therefore, the embedding regularizer only
needs to guidemodel parameters to one of a number of good
local minima so that the final model parameters have an arbi-
trary watermark.

4 Although this single-layer perceptron can be deepened intomultilayer
perceptron, we focus on the simplest one in this paper.
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3.3 Regularizer parameters

In this section, we discuss the design of the embedding
parameter X , which can be considered as a secret key [21]
in detecting and embedding watermarks. While X ∈ R

T×M

can be an arbitrary matrix, it will affect the performance of
an embedded watermark because it is used in both embed-
ding and extraction of watermarks. In this paper, we consider
three types of X : Xdirect, Xdiff, and X random.

Xdirect is constructed so that one element in each row of
Xdirect is ’1’ and the others are ’0’. In this case, the j-th
bit b j is directly embedded in a certain parameter wî s.t.

Xdirect
j î

= 1.

Xdiff is created so that each row has one ’1’ element and
one ’-1’ element, and the others are ’0’. Using Xdiff, the j-th
bit b j is embedded into the difference between wi+ and wi−
where Xdiff

j i+ = 1 and Xdiff
j i− = −1.

Each element of X random is independently drawn from the
standard normal distribution N (0, 1). Using X random, each
bit is embedded into all instances of the parameter w with
randomweights. These three types of embedding parameters
are compared in experiments.

4 Experiments

In this section, we demonstrate that our embedding regular-
izer can embed a watermark without impairing the perfor-
mance of the host network, and the embedded watermark is
robust against various types of attacks. Our implementation
of the embedding regularizer is publicly available.5

4.1 Evaluation settings

4.1.1 Dataset

For experiments, we used the well-known CIFAR-10 and
Caltech-101 datasets. The CIFAR-10 dataset [32] consists of
60,000 32×32 color images in 10 classes, with 6000 images
per class. These images were separated into 50,000 training
images and 10,000 test images. The Caltech-101 dataset [16]
includes pictures of objects belonging to 101 categories; it
contains about 40–800 images per category. The size of each
image is roughly 300 × 200 pixels, but we resized them to
32 × 32 for fine-tuning. For testing, we used 30 images for
training and at most 40 of the remaining images for each
category.

5 https://github.com/yu4u/dnn-watermark.

Table 3 Structure of the host network

Group Output size Building block M
ResNe block type = B(3, 3)

conv 1 32 × 32 [3 × 3, 16] N/A

conv 2 32 × 32

[
3 × 3, 16 × k
3 × 3, 16 × k

]

× N 144 × k

conv 3 16 × 16

[
3 × 3, 32 × k
3 × 3, 32 × k

]

× N 288 × k

conv 4 8 × 8

[
3 × 3, 64 × k
3 × 3, 64 × k

]

× N 576 × k

1 × 1 avg-pool, fc, soft-max N/A

N is the number of blocks and k is a widening factor in groups

4.1.2 Host network and training settings

We used the wide residual network [52] as the host network.
The wide residual network is an efficient variant of the resid-
ual network [22]. Table 3 shows the structure of the wide
residual network. A depth parameter N is the number of
blocks in groups, and a width parameter k is widening factor
that scales the width of the residual blocks in groups.

In all our experiments, we set N = 1 and k = 4 and used
SGD with Nesterov momentum [2,39,43] and cross entropy
loss in training. The initial learning rate was set at 0.1, weight
decay to 5.0 × 10−4, momentum to 0.9 and minibatch size
to 64. The learning rate was dropped by a factor of 0.2 at
60, 120, and 160 epochs, and we trained for a total of 200
epochs, following the settings used in [52].

We embedded a watermark into one of the following con-
volution layers: the second convolutional layer in the conv 2,
conv 3, and conv 4 groups. Hereinafter, we refer to the loca-
tion of the host layer by simply describing the conv 2, conv
3, or conv 4 group. In Table 3, the number M of parameterw
is also shown for these layers. The parameter λ in Eq. (1) is
set to 0.01. As a watermark, we embedded b = 1 ∈ {0, 1}T
in the following experiments.

4.2 Embedding results

We trained the host network from scratch (train-to-embed)
on the CIFAR-10 dataset with and without embedding a
watermark. In the embedding case, a 256-bit watermark
(T = 256) was embedded into the conv 2 group.

4.2.1 Detecting watermarks

Figure 1 shows the histogram of the embedded water-
mark σ(

∑
i X jiwi ) (before thresholding) with and without

watermarkswhere (a) direct, (b) diff, and (c) random param-
eters are used in embedding and detection. If we binarize
σ(

∑
i X jiwi ) at a threshold of 0.5, all watermarks are cor-

rectly detected because ∀ j, σ (
∑

i X jiwi ) ≥ 0.5 if and only
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(a) (b)

(c)

Fig. 1 Histogram of the embedded watermark σ(
∑

i X jiwi ) (before
thresholding) with and without watermarks. All watermarks will be
successfully detected by binarizing σ(

∑
i X jiwi ) at a threshold of 0.5.

In the case of random, it can be easily determined whether or not a
watermark is embedded with the histogram. a direct, b diff and c ran-
dom

if
∑

i X jiwi ≥ 0 for all embedded cases. Please note that
we embedded b = 1 ∈ {0, 1}T as a watermark as previously
mentioned. Although random watermarks will be detected
for the non-embedded cases, it can be easily determined
whether the watermark is not embedded because the dis-
tribution of σ(

∑
i X jiwi ) is quite different from those for

embedded cases.

4.2.2 Distribution of model parameters

We explore how trained model parameters are affected by
the embedded watermarks. Figure 2 shows the distribution of
model parameters W (not w) with and without watermarks.
These parameters are taken only from the layer in which
a watermark was embedded. Note that W is the parameter
before taking the mean over filters, and thus, the number of
parameters is 3×3×64×64. We can see that direct and diff
significantly alter the distribution of parameters while ran-
dom does not. In direct, many parameters became large and
a peak appears near 2 so that their mean over filters becomes
a large positive value to reduce the embedding loss. In diff,

most parameters were pushed in both positive and negative
directions so that the differences between these parameters
became large. In random, a watermark is diffused over all
parameters with random weights and thus does not signif-
icantly alter the distribution. This is one of the desirable
properties of watermarking related to the security require-
ment; one may be aware of the existence of the embedded
watermarks for the direct and diff cases.

The results so far indicated that the random approach
seemed to be the best choice among the three, with low
embedding loss, low test error in the original task, and no
alteration of the parameter distribution. Therefore, in the
following experiments, we used the random approach in
embedding watermarks without explicitly indicating it.

4.3 Fidelity

4.3.1 Embedding without training

Asmentioned in Sect. 3.2, it is possible to embed awatermark
in a host network by directlymodifying the trained parameter

123



International Journal of Multimedia Information Retrieval (2018) 7:3–16 9

(a) (b)

(c) (d)

Fig. 2 Distribution of model parameters W with and without watermarks. a Not embedded, b direct, c diff and d random

w0 as usually done in the image domain.Herewe try to do this
by minimizing the following loss function instead of Eq. (1):

E(w) = 1

2
||w − w0||22 + λER(w), (6)

where the embedding loss ER(w) is minimized while mini-
mizing the difference between the modified parameterw and
the original parameter w0. Table 4 summarizes the embed-
ding results after minimizing Eq. (6) against the host network
trained on the CIFAR-10 dataset. We can see that embedding
fails for λ ≤ 1 as the bit error rate (BER) is larger than zero
while the test error of the original task becomes too large for
λ > 1. Thus, it is not effective to directly embed a watermark
without considering the original task.

4.3.2 Test error and training loss

Figure 3 shows the training curves for the host network in
CIFAR-10 as a function of epochs. Not embedded is the
case where the host network is trained without the embed-
ding regularizer. Embedded (direct), Embedded (diff), and
Embedded (random), respectively, represent training curves

Table 4 Losses, test error (%), and bit error rate (BER) after embedding
a watermark with different λ

λ 1
2 ||w − w0||22 ER(w) Test error BER

0 0.000 1.066 8.04 0.531

1 0.184 0.609 8.52 0.324

10 1.652 0.171 10.57 0.000

100 7.989 0.029 13.00 0.000

with embedding regularizers whose parameters are Xdirect,
Xdiff, and X random. We can see that the training loss E(w)

with awatermark becomes larger than the not-embedded case
if the parameters Xdirect and Xdiff are used. This large train-
ing loss is dominated by the embedding loss ER(w), which
indicates that it is difficult to embed awatermark directly into
a parameter or even into the difference of two parameters. On
the other hand, the training loss of Embedded (random) is
very close to that of Not embedded.

Table 5 shows the best test errors and embedding losses
ER(w) of the host networkswith andwithout embedding.We
can see that the test errors of Not embedded and random are
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Fig. 3 Training curves for the host network on CIFAR-10 as a function
of epochs. Solid lines denote test error (y-axis on the left) and dashed
lines denote training loss E(w) (y-axis on the right)

Table 5 Test error (%) and embedding loss ER(w) with and without
embedding

Test error ER(w)

Not embedded 8.04 N/A

Direct 8.21 1.24 × 10−1

Diff 8.37 6.20 × 10−2

Random 7.97 4.76 × 10−4

almost the same, while those of direct and diff are slightly
larger. The embedding loss ER(w) of random is extremely
low compared with those of direct and diff. These results
indicate that the random approach can effectively embed a
watermark without impairing the performance in the original
task.

4.3.3 Fine-tune-to-embed and distill-to-embed

In the above experiments, a watermark was embedded by
training the host network from scratch (train-to-embed).
Here, we evaluated the other two situations introduced in
Sect. 2.2: fine-tune-to-embed and distill-to-embed.

For fine-tune-to-embed, two experimentswere performed.
In the first experiment, the host network was trained on the
CIFAR-10 dataset without embedding and then fine-tuned
on the same CIFAR-10 dataset with and without embedding
(for comparison). In the second experiment, the host network
is trained on the Caltech-101 dataset and then fine-tuned on
the CIFAR-10 dataset with and without embedding.

Table 6a shows the result of the first experiment. Not
embedded 1st corresponds to the first training without
embedding. Not embedded 2nd corresponds to the second
training without embedding and Embedded corresponds to
the second trainingwith embedding. Figure 4 shows the train-

Table 6 Test error (%) and embedding loss ER(w) with and without
embedding in fine-tuning and distilling

Test error ER(w)

(a) Fine-tune-to-embed (CIFAR-10 → CIFAR-10)

Not embedded 1st 8.04 N/A

Not embedded 2nd 7.66 N/A

Embedded 7.70 4.93 × 10−4

(b) Fine-tune-to-embed (Caltech-101 → CIFAR-10)

Not embedded 2nd 7.93 N/A

Embedded 7.94 4.83 × 10−4

(c) Distill-to-embed (CIFAR-10 → CIFAR-10)

Not embedded 1st 8.04 N/A

Not embedded 2nd 7.86 N/A

Embedded 7.75 5.01 × 10−4

(d) Distill-to-embed (CIFAR-10 → Caltech-101)

Not embedded 1st 8.04 N/A

Embedded 28.34 5.80 × 10−3

ing curves of these fine-tunings.6 We can see that Embedded
achieved almost the same test error as Not embedded 2nd
and a very low ER(w).

Table 6b shows the results of the second experiment. Not
embedded 2nd corresponds to the second training without
embedding and Embedded corresponds to the second train-
ing with embedding. Figure 5 shows the training curves of
these fine-tunings. The test error and training loss of the first
training are not shown because they are not compatible with
the two different training datasets. From these results, it was
also confirmed that Embedded achieved almost the same
test error as Not embedded 2nd and very low ER(w). Thus,
we can say that the proposed method is effective even in
the fine-tune-to-embed situation (in the same and different
domains).

Finally, embedding a watermark in the distill-to-embed
situation was evaluated. The host network is first trained
on the CIFAR-10 dataset without embedding. Then, the
trained network was further fine-tuned on the same CIFAR-
10 dataset with and without embedding. In this second
training, the training labels of the CIFAR-10 dataset were
not used. Instead, the predicted values of the trained net-
work were used as soft targets [23]. In other words, no
label was used in the second training. Table 6c shows the
results for the distill-to-embed situation. Not embedded 1st
corresponds to the first training and Embedded (Not embed-
ded 2nd) corresponds to the second distilling training with
embedding (without embedding). It was found that the pro-
posed method also achieved low test error and ER(w) in the

6 Note that the learning ratewas also initialized to 0.1 at the beginning of
the second training, while the learning rate was reduced to (8.0×10−4)
at the end of the first training.
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Fig. 4 Training curves for fine-tuning the host network. The first and
second halves of epochs correspond to the first and second trainings.
Solid lines denote test error (y-axis on the left) and dashed lines denote
training loss (y-axis on the right)

Fig. 5 Training curves for the host network on CIFAR-10 as a function
of epochs. Solid lines denote test error (y-axis on the left) and dashed
lines denote training loss (y-axis on the right)

distill-to-embed situation. Table 6d shows the result for the
distill-to-embed situation on the different domain; the dif-
ference from Table 6c is that the predicted values for the
Caltech-101 are used as soft targets here instead of CIFAR-
10. The test error is calculated on CIFAR-10.

4.4 Robustness of embedded watermarks

In this section, the robustness of the proposed watermark is
evaluated for the three types of attacks explained in Sect. 2.3:
fine-tuning, model compression, andwatermark overwriting.

4.4.1 Robustness against fine-tuning

Fine-tuning or transfer learning [42] seems to be the most
likely type of (unintentional) attack because it is frequently
performed on trained models to apply them to other but simi-
lar tasks with less effort than training a network from scratch

or to avoid over-fitting when sufficient training data are not
available.

In this experiment, two trainings were performed; in the
first training, a 256-bit watermark was embedded in the conv
2 group in the train-to-embed manner, and then, the host
network was further fine-tuned in the second training with-
out embedding, to determine whether or not the watermark
embedded in the first training stayed in the host network,
even after the second training (fine-tuning).

Table 7 shows the embedding loss before fine-tuning
(ER(w)) and after fine-tuning (E ′

R(w)), and the best test
error after fine-tuning. In the same domain, the host net-
work is trained on the CIFAR-10 dataset while embedding
a watermark and then further fine-tuned without embedding
a watermark. We evaluated fine-tuning in the same domain
(CIFAR-10 → CIFAR-10) and in the different domains
(Caltech-101 → CIFAR-10). We can see that, in both cases,
the embedding loss was increased slightly by fine-tuning but
was still low. In addition, the bit error rate of the detected
watermark was equal to zero in both cases. The reason why
the embedding loss in fine-tuning in the different domains
is higher than that in the same domain is that the Caltech-
101 dataset is significantly more difficult than the CIFAR-10
dataset in our settings; all images in the Caltech-101 dataset
were resized to 32×327 for compatibilitywith theCIFAR-10
dataset.

4.4.2 Robustness against model compression

It is sometimes difficult to deploy deep neural networks in
embedded systems or mobile devices because they are both
computationally intensive and memory intensive. In order
to solve this problem, the model parameters are often com-
pressed [18–20]. The compression of model parameters can
intentionally or unintentionally act as an attack againstwater-
marks. In this section, we evaluate the robustness of our
watermarks againstmodel compression, in particular, against
parameter pruning [20] and distillation [23].

Robustness against parameter pruning In parameter prun-
ing, parameters whose absolute values are very small are cut
off to zero. In [19], quantization of weights and the Huff-
man coding of quantized values are further applied. Because
quantization has less impact than parameter pruning and the
Huffman coding is lossless compression, we focus on param-
eter pruning.

In order to evaluate robustness against parameter prun-
ing, we embedded a 256-bit watermark in the conv 2 group
while training the host network on the CIFAR-10 dataset.
We removed α% of the 3 × 3 × 64 × 64 parameters of the
embedded layer and calculated embedding loss and bit error

7 This size is extremely small compared with their original sizes
(roughly 300 × 200).
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Table 7 Embedding loss before
fine-tuning (ER(w)) and after
fine-tuning (E ′

R(w)), and the
best test error (%) and bit error
rate (BER) after fine-tuning

ER(w) E ′
R(w) BER Test error

CIFAR-10 → CIFAR-10 4.76 × 10−4 8.66 × 10−4 0.00 7.69

Caltech-101 → CIFAR-10 5.96 × 10−3 1.56 × 10−2 0.00 7.88

rate. Figure 6a shows embedding loss ER(w) as a function of
pruning rate α. Ascending (Descending) represents embed-
ding losswhen the topα%parameters are cut off according to
their absolute values in ascending (descending) order. Ran-
dom represents embedding loss where α% of parameters
are randomly removed. Ascending corresponds to parame-
ter pruning, and the others were evaluated for comparison.
We can see that the embedding loss of Ascending increases
more slowly than those of Descending and Random as α

increases. It is reasonable that model parameters with small
absolute values have less impact on a detected watermark
because the watermark is extracted from the dot product of
the model parameter w and the constant embedding param-
eter (weight) X .

Figure 6b shows the bit error rate as a function of prun-
ing rate α. Surprisingly, the bit error rate was still zero after
removing 65% of the parameters and 2/256 even after 80%
of the parameters were pruned (Ascending). We can say
that the embedded watermark is sufficiently robust against
parameter pruning because, in [19], the resulting pruning
rate of convolutional layers ranged from 16 to 65% for the
AlexNet [33], and from 42 to 78% for VGGNet [42]. Fur-
thermore, this degree of bit error can be easily corrected by
an error correction code (e.g., the BCH code). Figure 7 shows
the histogram of the detected watermark σ(

∑
i X jiwi ) after

pruning for α = 0.8 and 0.95. For α = 0.95, the histogram
of the detected watermark is also shown for the host network
into which no watermark is embedded.We can see that many
of σ(

∑
i X jiwi ) are still close to one for the embedded case,

which might be used as a confidence score in determining
the existence of a watermark (zero-bit watermarking).

Robustness against distillation Distillation is a training
procedure initially designed to train a deep neural networks
model using knowledge transferred from a different model.
The intuition was suggested in [4], while distillation itself
was formally introduced in [23]. Distillation is employed to
reduce computational complexity or compressing the knowl-
edge in an ensemble of models into a single small model. In
the standard distillation framework, a large network (or mul-
tiple networks) is first trained, and then, a smaller network
is trained using the predicted labels of the large network in
order to compress the large network. As well as fine-tuning,
distillation could be an unintentional attack and it is specific
to deep neural networks.

In this experiment, we performed two trainings. First a
256-bit watermark was embedded in the conv 2 group in the

(a)

(b)

Fig. 6 Embedding loss and bit error rate after pruning as a function of
pruning rate. a Embedding loss and b bit error rate

train-to-embed manner with CIFAR-10. Then, in the second
training, another model was distilled using the CIFAR-10
dataset and the predicted values of the first trained network
instead of the actual labels. The second training did not
embed a watermark and initial weights were set at random.
We employed the simplest form of distillation in this experi-
ment. Althoughwe could use a different network architecture
and different dataset in the transfer step, we trained a new
model of the same architecture on the same set CIFAR-10
for simplicity.
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Fig. 7 Histogram of the detected watermark σ(
∑

i X jiwi ) after prun-
ing

Table 8 Test error (%) and bit error rate (BER) of the embedded host
network and after distilling without embedding the watermark

Test error BER

Embedded 1st 8.05 0.00

After distillation 8.40 0.54

Table 8 shows the test error and bit error rate after the first
and second trainings. The watermark could not be detected
from the distilled model as expected because the model
weights had been initialized with random weights.

4.4.3 Robustness against watermark overwriting

Overwriting is a commonattack in digital contentwatermark-
ing [28]. A third-party usermay embed a different watermark
in order to overwrite the original watermark. Basically, it is
necessary to know where the original watermark is embed-
ded to overwrite watermarks. Please note that in addition to
regularizer parameters X , which work as a secret key, the
location where a digital watermark is embedded should also
be secret information. However, it is conceivable for a water-
mark to be embedded into all or multiple layers to destroy the
embedded original watermark or change ownership without
exact information onwhere the originalwatermark is actually
embedded.

In order to evaluate robustness against overwriting, we
embedded a 256-bit watermark in the conv 2, conv 3
and conv 4 groups with a regularizer parameter X0, while
training the host network on the CIFAR-10 dataset. Then,
we additionally embedded a 256-bit, 512-bit, 1024-bit, and
2048-bit watermark into the host network, respectively, with
a regularizer parameter X0 different from X1. The number
of parameters w of conv 2, conv 3, and conv 4 groups were
576, 1152, and 2304, respectively. All bit error rates of the

Table 9 Test error (%), embedding loss ER(w), and bit error rate with
the original regularizer parameter after overwriting a watermark

Embedded bits Embedded group

conv 2 conv 3 conv 4

(a) Test error (%)

256 7.43 7.36 7.96

512 7.29 7.35 7.92

1024 7.58 7.41 7.96

2048 7.36 7.61 7.94

(b) Embedding loss

256 1.67 2.05 × 10−1 4.98 × 10−2

512 4.28 1.13 1.94 × 10−1

1024 1.77 × 101 3.76 5.24 × 10−1

2048 1.04 1.12 × 101 1.40

(c) Bit error rate

256 3.09 × 10−1 8.59 × 10−2 3.90 × 10−3

512 4.10 × 10−1 2.38 × 10−1 6.64 × 10−2

1024 5.11 × 10−1 4.29 × 10−1 1.99 × 10−1

2048 5.27 × 10−1 5.07 × 10−1 3.55 × 10−1

The number of parameters w of conv 2, conv 3, and conv 4 groups is
576, 1152, and 2304, respectively

original host networks were zero. The additional watermarks
were embedded while training on the CIFAR-10 dataset.

Table 9 shows test error, embedding loss ER(w), and
bit error rate with the first regularizer parameter X0 after
overwriting the first watermark. When the bit error rate is
close to 0.5, it indicates that the original watermark has been
erased completely. We can see that the original watermark
was erased in some cases where the number of embedded
bits was large compared to the number of parameters w.

4.5 Capacity of watermark

In this section, the capacity of the embedded watermark is
explored by embedding different sizes of watermarks into
different groups in the train-to-embed manner. Please note
that the number of parametersw of conv 2, conv 3, and conv
4 groups was 576, 1152, and 2304, respectively. Table 10
shows test error (%), embedding loss ER(w) and bit error rate
for combinations of different embedded blocks and different
numbers of embedded bits. We can see that embedded loss
or test error becomes high if the number of embedded bits
becomes larger than the number of parameters w (e.g., 2048
bits in conv 3) because the embedding problem becomes
overdetermined in such cases. Thus, the number of embedded
bits should be smaller than the number of parameters w,
which is a limitation of the embeddingmethod using a single-
layer perceptron. This limitation would be resolved by using
a multilayer perceptron in the embedding regularizer.
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Table 10 Test error (%), embedding loss ER(w), and bit error rate for
the combinations of embedded groups and sizes of embedded bits

Embedded bits Embedded group

conv 2 conv 3 conv 4

(a) Test error (%)

256 7.97 7.98 7.92

512 8.47 8.22 7.84

1024 8.43 8.12 7.84

2048 8.17 8.93 7.75

(b) Embedding loss

256 4.76 × 10−4 7.20 × 10−4 1.10 × 10−2

512 8.11 × 10−4 8.18 × 10−4 1.25 × 10−2

1024 6.74 × 10−2 1.53 × 10−3 1.53 × 10−2

2048 5.35 × 10−1 3.70 × 10−2 3.06 × 10−2

(c) Bit error rate

256 0.00 0.00 0.00

512 0.00 0.00 0.00

1024 0.00 0.00 0.00

2048 0.28 0.00 0.00

The number of parametersw of conv 2, conv 3, and conv 4 groups was
576, 1152, and 2304, respectively

5 Discussion

5.1 Insights

Fidelity As mentioned in Sect. 3.2, poor local minima are
rarely a problem with large networks in practice. Regardless
of the initial conditions, the system nearly always reaches
solutions of very similar quality. Recent theoretical and
empirical results strongly suggest that local minima are not
a serious issue in general [35]. Therefore, the proposed
approach was able to maintain the performance of the origi-
nal task and carry out successful watermarking as shown in
the experimental results of Sects. 4.3.2 and 4.3.3.

Robustness For watermarking techniques in the neural
networks domain, fine-tuning seems to be the most feasible
and significant attack. The experimental results in Sect. 4.4.1
show the proposed method could retain the watermark com-
pletely after fine-tuning in both cases: the same domain and
a different domain. In the case of the same domain, updates
of weight values were assumed to be small if the host model
was trained well in the first training. On the other hand, in
the case of a different domain, weight values are supposed
to change dramatically. However, our experimental results
show the watermark remained after fine-tuning to a differ-
ent domain. It is considered that fine-tuning would cause
less alteration for weights near the input layer compared to
near the output layer. Therefore, the digital watermark could
successfully resist a fine-tuning attack, if the watermark is
embedded near the input layer of sufficiently deep networks.

Additionally, there is an advantage that the network config-
uration near the input layer may not be changed for another
task.

Capacity The result presented in Sect. 4.5 indicates that
the capacity is strongly related to the number of the host
weights compared to the length ofwatermarks. Capacitymay
be increased by using a multilayer perceptron in the embed-
ding regularizer.

5.2 Limitations

Although we have obtained some initial insights into the new
problem of embedding a watermark in deep neural networks,
the proposed approach still has the following limitations.

DistillationDistillation is theoretically a serious attack for
watermarking of neural networks. However, distillation does
not seem to be an important attack in reality, since it requires
data that are very similar to the inputs used in the original
training phase in order to maintain fidelity.

OverwritingAs shown in Sect. 4.4.3, overwriting destroys
the original watermark. This experiment is assumed to know
exactly where the original watermark was embedded. It is
conceivable that watermarks could be embedded into all or
multiple layers to destroy the original watermark, although
this would incur a much greater computational cost due to
the large size of widely targeted parameters. Overwriting is
still a serve attack, and we should explore an effective way
of combatting overwriting.

Black-box type situation In the proposed digital water-
marking approach for deep neural network models, we make
an assumption that the weight values are visible. Thus, it is
impossible to detect abuse in a black-box type situation such
as a client–server systemwhere a watermarkedmodel is used
on a server by unauthorized parties. To effectively deal with
such a situation, the copyright protection of neural network
models requires another approach. Inspired by ourwork [48],
Merrer et al. propose a method that allows the extraction of
the watermark from a neural network remotely through a ser-
vice API [38]. The method embeds zero-bit watermarks into
models with a stitching algorithm based on adversaries.

5.3 Further expected developments

Further developments are expected by using the analogy of
digital content protection and domain-specific issues for deep
neural networks.

Embedding as sequential learning In Sect. 4.3.1, we have
shown that it is not effective to directly embed a watermark
without considering the original task. We can consider this
embedding process as sequential learning; the training of
the original task is the first task, and subsequent watermark
embedding is the second task. Thus, the increase in error
rate after embedding can be interpreted as catastrophic for-

123



International Journal of Multimedia Information Retrieval (2018) 7:3–16 15

getting [26]. From this point of view, we can adopt recently
developedmethods [26,37] to overcome this catastrophic for-
getting in embedding watermark.

Compression as embeddingCompressing deep neural net-
works is a very important and active research topic. While
we confirmed in this paper that our watermark is very robust
against parameter pruning in this paper, a watermark might
be embedded in conjunction with compressing models. For
example, in [19], after parameter pruning, the network is re-
trained to learn the final weights for the remaining sparse
parameters. Our embedding regularizer can be used in this
re-training to embed a watermark.

Network morphism In [9,51], a systematic study has been
conducted on how to morph a well-trained neural network
into a new one so that its network function can be completely
preserved for further training. This network morphism can
constitute a severe attack against our watermark because it
may be impossible to detect the embedded watermark if the
topology of the host network undergoes major modification.
We have left the investigation into how the embedded water-
mark is affected by this network morphism as a topic for
future work.

Steganalysis Steganalysis [31,41] is a method for detect-
ing the presence of secretly hidden data (e.g., steganography
or watermarks) in digital media files such as images, video,
audio, and, in our case, deep neural networks. Watermarks
ideally are robust against steganalysis. While, in this paper,
we confirmed that embedding watermarks does not signif-
icantly change the distribution of model parameters, more
exploration is needed to evaluate robustness against steganal-
ysis. Conversely, developing effective steganalysis against
watermarks for deep neural networks could be an interesting
research topic.

Fingerprinting Digital fingerprinting is an alternative to
the watermarking approach for persistent identification of
images [6], video [29,47], and audio clips [3,17]. In this
paper, we focused on one of these two important approaches.
Robust fingerprinting of deep neural networks is another
and complementary direction to protect deep neural network
models.

6 Conclusions

In this paper, we have proposed a general framework for
embedding a watermark in deep neural network models to
protect the rights to the trained models. First, we formu-
lated a newproblem: embeddingwatermarks into deep neural
networks. We also defined requirements, embedding situa-
tions, and the types of attacks that watermarking deep neural
networks are vulnerable to. Second, we proposed a general
framework for embedding a watermark in model parame-
ters using a parameter regularizer. Our approach does not

impair the performance of networks into which a watermark
is embedded. Finally, we performed comprehensive exper-
iments to reveal the potential of watermarking deep neural
networks as the basis of this new problem. We showed that
our framework could embed a watermark without impairing
the performance of a deep neural network. The embedded
watermark did not disappear even after fine-tuning or param-
eter pruning; the entire watermark remained even after 65%
of the parameters were pruned.
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