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Abstract
For multimedia applications, constructing a joint representation that could carry information for multiple modalities could be
very conducive for downstream use cases. In this paper, we study how to effectively utilize available multimodal cues from
videos in learning joint representations for the cross-modal video-text retrieval task. Existing hand-labeled video-text datasets
are often very limited by their size considering the enormous amount of diversity the visual world contains. This makes it
extremely difficult to develop a robust video-text retrieval system based on deep neural network models. In this regard, we
propose a framework that simultaneously utilizes multimodal visual cues by a “mixture of experts” approach for retrieval.
We conduct extensive experiments to verify that our system is able to boost the performance of the retrieval task compared
to the state of the art. In addition, we propose a modified pairwise ranking loss function in training the embedding and study
the effect of various loss functions. Experiments on two benchmark datasets show that our approach yields significant gain
compared to the state of the art.

Keywords Video-text retrieval · Joint embedding · Multimodal cues

1 Introduction

The goal of this work is to retrieve the correlated text descrip-
tion given a random video, and vice versa, to retrieve the
matching videos provided with text descriptions (Fig. 1),
while several computer vision tasks (e.g., image classi-
fication [20,23,37], object detection [36,46,47]) are now
reaching maturity, cross-modal retrieval between visual data
and natural language description remains a very challenging
problem [35,64] due to the gap and ambiguity between differ-
ent modalities and availability of limited training data. Some
recent works [17,25,30,38,59] attempt to utilize cross-modal
joint embeddings to address the gap. By projecting data from
multiple modalities into the same joint space, the similarity
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of the resulting points would reflect the semantic closeness
between their corresponding original inputs. In this work,
we focus on learning joint video-text embedding models and
combining video cues for different purposes effectively for
developing robust video-text retrieval system.

The video-text retrieval task is one step further than
the image-text retrieval task, which is a comparatively
well-studied field. Most existing approaches for video-text
retrieval are very similar to the image-text retrieval meth-
ods by design and focus mainly on the modification of loss
functions [12,40,41,50,61]. We observe that simple adapta-
tion of a state-of-the-art image-text embedding method [13]
by mean pooling features from video frames generates a bet-
ter result than the existing video-text retrieval approaches
[12,40]. However, such methods ignore lots of contextual
information in video sequences such as temporal activities or
specific scene entities, and thus they often can only retrieve
some generic responses related to the appearance of static
frame. They may fail to retrieve the most relevant informa-
tion in many cases to understand important questions for
efficient retrieval such as “What happened in the video” or
“Where did the video take place.” This greatly undermines
the robustness of the systems; for instance, it is very difficult
to distinguish a video with the caption “a dog is barking”
apart from another “a dog is playing” based only on visual
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A reporter is talking 
about a movie scene 
from the wolverines

A man playing guitar 
and a group of people 
dancing with him

Children and adults 
are performing various 
forms of martial arts

A person is melting 
chocolate in a oven

Fig. 1 Illustration of video-text retrieval task: given a text query,
retrieve and rank videos from the database based on how well they
depict the text, and vice versa

“A dog is barking in field” “Gunshot broke out at the concert”

Fig. 2 Example frame from two videos and associated caption to illus-
trate the significance of utilizing supplementary cues from videos to
improve the chance of correct retrieval

appearance (Fig. 2). Associating video motion content and
the environmental scene can give supplementary cues in this
scenario and improve the chance of correct prediction. Simi-
larly, to understand a video described by “gunshot broke out
at the concert” may require analysis of different visual (e.g.,
appearance, motion, environment) and audio cues simulta-
neously. On the other hand, a lot of videos may contain
redundant or identical contents, and hence, an efficient video-
text retrieval should utilize the most distinct cues in the
content to resolve ambiguities in retrieval.

While developing a system without considering most
available cues in the video content is unlikely to be
comprehensive, an inappropriate fusion of complementary
features could adversely increase ambiguity and degrade
performance. Additionally, existing hand-labeled video-text
datasets are very small and very restrictive considering the
amount of rich descriptions that a human can compose and
the enormous amount of diversity in the visual world. This
makes it extremely difficult to train deep models to under-
stand videos in general to develop a successful video-text
retrieval system. To ameliorate such cases, we analyze how
to judiciously utilize different cues from videos. We propose
a mixture of experts system, which is tailored toward achiev-
ing high performance in the task of cross-modal video-text
retrieval.We believe focusing on threemajor facets (i.e., con-
cepts for Who, What, and Where) from videos is crucial for

efficient retrieval performance. In this regard, our framework
utilizes three salient features (i.e., object, action, place) from
videos (extracted using pre-trained deep neural networks) for
learning joint video-text embeddings and uses an ensemble
approach to fuse them. Furthermore, we propose a modi-
fied pairwise ranking loss for the task that emphasizes on
hard negatives and relative ranking of positive labels. Our
approach shows significant performance improvement com-
pared to previous approaches and baselines.

1.1 Contributions

The main contributions of this work can be summarized as
follows:

• The success of video-text retrieval depends on more
robust video understanding. This paper studies how to
achieve the goal by utilizing multimodal features from
a video (different visual features and audio inputs). Our
proposed framework uses action, object, place, text, and
audio features by a fusion strategy for efficient retrieval.

• We present a modified pairwise loss function to better
learn the joint embedding which emphasizes on hard
negatives and applies a weight-based penalty on the loss
based on the relative ranking of the correct match in the
retrieval.

• We conduct extensive experiments and demonstrate a
clear improvement over the state-of-the-art methods in
the video-to-text retrieval tasks on theMSR-VTT dataset
[60] and MSVD dataset [9].

This paper is an extended version of our work [35] with sig-
nificantly more insights and detailed discussions about the
proposed framework. The main extension in our pipeline is
adding scene cues from videos, along with object and activ-
ity cues for learning joint embeddings to develop a more
comprehensive video-text retrieval system. The previous ver-
sion utilized object-text and activity-text embeddings which
focused mainly on resolving ambiguities arising related to
concepts for Who andWhat. We add a place-text embedding
network in our framework to make it more robust which
will help us resolve ambiguities arising from concepts for
Where. Experiments show that this change results in a signifi-
cant improvement over the previous works in two benchmark
datasets.

2 Related work

2.1 Image-text retrieval

Recently, there has been significant interest in learning
robust visual-semantic embeddings for image-text retrieval
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[21,26,38,57]. Based on a triplet of object, action, and scene,
a method for projecting text and image to a joint space was
proposed in early work [14]. Canonical correlation analysis
(CCA) and several extensions of it have been used in many
previous works for learning joint embeddings for the cross-
modal retrieval task [18,19,22,44,49,62] which focuses on
maximizing the correlation between the projections of the
modalities. In [18], authors extended classic two-view CCA
approachwith a third view coming fromhigh-level semantics
and proposed an unsupervised way to derive the third view
from clustering the tags. In [44], authors proposed a method
named MACC (multimedia aggregated correlated compo-
nents) aiming to reduce the gap between cross-modal data
in the joint space by embedding visual and textual features
into a local context that reflects the data distribution in the
joint space. Extension of CCA with deep neural networks
named deep CCA (DCCA) has also been utilized to learn
joint embeddings [1,62], which focus on learning two deep
neural networks simultaneously to project two views that are
maximally correlated. While CCA-based methods are popu-
lar, thesemethods have been reported to be unstable and incur
a high memory cost due to the covariance matrix calculation
with large amount of data [32,58]. Recently, there are also
several works leveraging adversarial learning to train joint
image-text embeddings for cross-modal retrieval [10,57].

Most recent works relating to text and image modality
are trained with ranking loss [13,17,28,39,52,58]. In [17],
authors proposed a method for projecting words and visual
content to a joint space utilizing ranking loss that applies a
penalty when a non-matching word is ranked higher than the
matching one. A cross-modal image-text retrieval method
has been presented in [28] that utilizes triplet ranking loss
to project image feature and RNN-based sentence descrip-
tion to a common latent space. Several image-text retrieval
methods have adopted a similar approach with slight modifi-
cations in input feature representations [39], similarity score
calculation [58], or loss function [13]. VSEPP model [13]
modified the pairwise ranking loss based onviolations caused
by the hard negatives (i.e., non-matching query closest to
each training query) and has been shown to be effective in
the retrieval task. For image-sentence matching, an LSTM-
based network is presented in [24] that recurrently selects
pairwise instances from image and sentence descriptions, and
aggregates local similarity. In [39], authors proposed a mul-
timodal attention mechanism to attend to sentence fragments
and image regions selectively for similarity calculation. Our
method complements these works that learn joint image-text
embedding using a ranking loss (e.g., [13,28,52]). The pro-
posed retrieval framework can be applied to most of these
approaches for improved video-text retrieval performance.

2.2 Video hyperlinking

Videohyperlinking is also closely relevant to ourwork.Given
an anchor video segment, the task is to focus on retrieving
and ranking a list of target videos based on the likelihood
of being relevant to the content of the anchor [2,5]. Mul-
timodal representations have been utilized widely in video
hyperlinking approaches in recent years [2,6,56]. Most of
these approaches rely heavily on multimodal autoencoders
for jointly embedding multimodal data [8,15,55]. Bidirec-
tional deep neural network (BiDNN)-based representations
have also been shown to be very effective in video hyper-
linking benchmarks [54,56]. BiDNN is also a variation of
multimodal autoencoder, which performs multimodal fusion
using a cross-modal translation with two interlocked deep
neural networks [54,55]. Considering the input data, video-
text retrieval is dealing with the same multimodal input
as video hyperlinking in many cases. However, video-text
retrieval task is more challenging than hyperlinking since it
requires to distinctively retrieve matching data from a dif-
ferent modality, which requires effective utilization of the
correlations in-between cross-modal cues.

2.3 Video-text retrieval

Most relevant to our work are the methods that relate video
and languagemodalities. Twomajor tasks in computer vision
related to connecting these two modalities are video-text
retrieval and video captioning. In this work, we only focus on
the retrieval task. Similar to image-text retrieval approaches,
most video-text retrieval methods employ a shared subspace.
In [61], authors vectorize each subject-verb-object triplet
extracted from a given sentence by word2vec model [34] and
then aggregate the subject, verb, object (SVO) vector into a
sentence-level vector using RNN. The video feature vector is
obtained by mean pooling over frame-level features. Then, a
joint embedding is trained using a least square loss to project
the sentence representation and the video representation into
a joint space. Web image search results of input text have
been exploited by [40], which focused on word disambigua-
tion. In [53], a stacked GRU is utilized to associate sequence
of video frames with a sequence of words. In [41], authors
propose an LSTM with visual-semantic embedding method
that jointly minimizes a contextual loss to estimate relation-
ships among the words in the sentence and a relevance loss
to reflect the distance between video and sentence vectors
in the shared space. A method named Word2VisualVec is
proposed in [12] for the video to sentence matching task
that projects vectorized sentence into visual feature space
using mean squared loss. A shared space across image, text,
and sound modality is proposed in [4] utilizing ranking loss,
which can also be applied to video-text retrieval task.
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Utilizing multiple characteristics of video (e.g., activi-
ties, audio, locations, time) is evidently crucial for efficient
retrieval [63]. In the closely related task of video captioning,
dynamic information from video along with static appear-
ance features has been shown to be very effective [45,65].
However,most of the existing video-text retrieval approaches
depend on one visual cue for retrieval. In contrast to the
existing works, our approach focuses on effectively utilizing
different visual cues and audio (if available) concurrently for
more efficient retrieval.

2.4 Ensemble approaches

Our retrieval system is based on an ensemble framework
[16,42]. A strong psychological context of the ensemble
approach can be found from its intrinsic connection in deci-
sion making in many daily life situations [42]. Seeking the
opinions of several experts, weighing them, and combining to
make an important decision is an innate behavior of human.
The ensemble methods hinge on the same idea and utilize
multiple models for making an optimized decision, as in our
case diverse cues are available from videos and we would
like to utilize multiple expert models which focus on differ-
ent cues independently to obtain a stronger predictionmodel.
Moreover, ensemble-based systems have been reported to be
very useful when dealing with a lack of adequate training
data [42]. As diversity of the models is crucial for the suc-
cess of ensemble frameworks [43], it is important for our
case to choose a diverse set of video-text embeddings that
are significantly different from one another.

3 Approach

In this section, we first provide an overview of our pro-
posed framework (Sect. 3.1). Then, we describe the input
feature representation for video and text (Sect. 3.2). Next, we
describe the basic framework for learning visual-semantic
embedding using pairwise ranking loss (Sect. 3.3). After
that, we present our modification on the loss function
which improves the basic framework to achieve better recall
(Sect. 3.4). Finally, we present the proposed fusion step for
video-text matching (Sect. 3.5).

3.1 Overview of the proposed approach

In a typical cross-modal video-text retrieval system, an
embedding network is learned to project video features and
text features into the same joint space, and then retrieval is
performed by searching the nearest neighbor in the latent
space. Since in this work we are looking at videos in general,
detectingmost relevant information such as object, activities,
and places could be very conducive for higher performance.

Therefore, along with developing algorithms to train bet-
ter joint visual-semantic embedding models, it is also very
important to develop strategies to effectively utilize differ-
ent available cues from videos for a more comprehensive
retrieval system.

In this work, we propose to leverage the capability of neu-
ral networks to learn a deep representation first and fuse the
video features in the latent spaces so that we can develop
expert networks focusing on specific subtasks (e.g., detect-
ing activities, detecting objects). For analyzing videos, we
use a model trained to detect objects, a second model trained
to detect activities, and a thirdmodel focusing on understand-
ing the place. These heterogeneous features may not be used
together directly by simple concatenation to train a success-
ful video-text model as intra-modal characteristics are likely
to be suppressed in such an approach. However, an ensemble
of video-text models can be used, where a video-text embed-
ding is trained on each of the video features independently.
The final retrieval is performed by combining the individual
decisions of several experts [42]. An overview of our pro-
posed retrieval framework is shown in Fig. 3. We believe
that such an ensemble approach will significantly reduce the
chance of poor/wrong prediction.

We follow network architecture proposed in [28] that
learns the embedding model using a two-branch network
using image-text pairs. One of the branches in this network
takes text feature as input, and the other branch takes in a
video feature. We propose a modified bidirectional pairwise
ranking loss to train the embedding. Inspired by the success
of ranking loss proposed in [13] in image-text retrieval task,
we emphasize on hard negatives. We also apply a weight-
based penalty on the loss according to the relative ranking of
the correct match in the retrieved result.

3.2 Input feature representation

3.2.1 Text feature

For encoding sentences, we use gated recurrent units (GRU)
[11].We set the dimensionality of the joint embedding space,
D, to 1024. The dimension of the word embeddings that
are input to the GRU is 300. Note that the word embed-
ding model and the GRU are trained end-to-end in this
work.

3.2.2 Object feature

For encoding image appearance, we adopt deep pre-trained
convolutional neural network (CNN) model trained on Ima-
geNet dataset as the encoder. Specifically, we utilize state-of-
the-art 152-layer ResNet model ResNet152 [20]. We extract
image features directly from the penultimate fully connected
layer. We first rescale the image to 224 × 224 and feed into
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Fig. 3 An overview of the proposed retrieval process. We propose to
learn three joint video-text embedding networks as shown in Fig. 3. One
model learns a joint space (object-text space) between text features and
visual object features. Another model learns a joint space (activity-text
space) between text feature and activity features. Similarly, there is a
third model which learns a joint space (place-text space) between scene
features and text features. Here, object-text space is the expert in solving

ambiguity related to who is in the video, whereas activity-text space is
the expert in retrievingwhat activity is happening and place-text space is
the expert in solving ambiguity regarding locations in the video. Given a
query sentence, we calculate the sentence’s similarity scores with each
one of the videos in the entire dataset in all of the three embedding
spaces and use a fusion of scores for the final retrieval result. Please see
Sect. 3.1 for an overview and Sect. 3 for details

CNN as inputs. The dimension of the image embedding is
2048.

3.2.3 Activity feature

The ResNet CNN can efficiently capture visual concepts in
static frames. However, an effective approach to learning
temporal dynamics in videos was proposed by inflating a 2D
CNN to a deep 3DCNNnamed I3D in [7].We use I3Dmodel
to encode activities in videos. In this work, we utilize the
pre-trained RGB-I3D model and extract 1024-dimensional
feature utilizing continuous 16 frames of video as the
input.

3.2.4 Place feature

For encoding video feature focusing on scene/place, we
utilize deep pre-trained CNN model trained on Places-365
dataset as the encoder [66]. Specifically, we utilize 50-layer
model ResNet50 [20]. We extract image features directly
from the penultimate fully connected layer. We rescale the
image to 224x224 and feed into CNN as inputs. The dimen-
sion of the image embedding is 2048.

3.2.5 Audio feature

We believe that by associating audio, we can get important
cues to the real-life events, which would help us remove
ambiguity in many cases. We extract audio feature using
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state-of-the-art SoundNet CNN [3], which provides 1024-
dimensional feature from input raw audio waveform. Note
that we only utilize the audio which is readily available with
the videos.

3.3 Learning joint embedding

In this section, we describe the basic framework for learning
joint embedding based on bidirectional ranking loss.

Given a video feature representation (i.e., appearance fea-
ture or activity feature or scene feature) v (v ∈ R

V ), the
projection for a video feature on the joint space can be derived
as v = W (v)v (v ∈ R

D). In the same way, the projec-
tion of input text embedding t(t ∈ R

T ) to joint space is
t = W (t)t(t ∈ R

D). Here, W (v) ∈ R
D×V is the transfor-

mation matrix that projects the video content into the joint
embedding space, and D denotes the dimension of the joint
space. Similarly,W (t) ∈ R

D×T maps input sentence/caption
embedding to the joint space. Given feature representation
for words in a sentence, the sentence embedding t is found
from the hidden state of the GRU. Here, given the feature
representation of both videos and corresponding text, the
goal is to learn a joint embedding characterized by θ (i.e.,
W (v), W (t), and GRU weights) such that the video content
and semantic content are projected into the joint embedding
space. We keep image encoder (e.g., pre-trained CNN) fixed
in this work, as the video-text datasets are small in size.

In the embedding space, it is expected that the similarity
between a video and text pair to be more reflective of seman-
tic closeness between videos and their corresponding texts.
Many prior approaches have utilized pairwise ranking loss
for learning joint embedding between visual input and textual
input. Theyminimize a hinge-based triplet ranking loss com-
bining bidirectional ranking terms, in order to maximize the
similarity between a video embedding and the correspond-
ing text embedding and, while at the same time, minimize the
similarity to all other non-matching ones. The optimization
problem can be written as

min
θ

∑

v

∑

t−
[α − S(v, t) + S(v, t−)]+

+
∑

t

∑

v−
[α − S(t, v) + S(t, v−)]+, (1)

where [ f ]+ = max(0, f ). t− is a non-matching text
embedding, and t is the matching text embedding for video
embedding v. This is similar for text embedding t . α is the
margin value for the pairwise ranking loss. The scoring func-
tion S(v, t) is defined as the similarity function to measure
the similarity between the videos and text in the joint embed-
ded space. We use cosine similarity in this work, as it is easy
to compute and shown to be very effective in learning joint
embeddings. [13,28].

In Eq. (1), in the first term, for each pair (v, t), the sum is
taken over all non-matching text embedding t−. It attempts to
ensure that for each visual feature, corresponding/matching
text features should be closer than non-matching ones in the
joint space. Similarly, the second term attempts to ensure
that text embedding that corresponds to the video embedding
should be closer in the joint space to each other than non-
matching video embeddings.

3.4 Proposed ranking loss

Recently, focusing on hard negatives has been shown to be
effective in many embedding tasks [13,33,48]. Inspired by
this, we focus on hard negatives (i.e., the negative video
and text sample closest to a positive/matching (v, t) pair)
instead of summing over all negatives in our formulation.
For a positive/matching pair (v, t), the hardest negative sam-
ple can be identified using v̂ = argmaxv− S(t, v−) and
t̂ = argmaxt− S(v, t−). The optimization problem can be
rewritten as the following to focus on hard negatives:

min
θ

∑

v

[α − S(v, t) + S(v, t̂)]+

+
∑

t

[α − S(t, v) + S(t, v̂)]+. (2)

The loss in Eq. 2 is similar to the loss in Eq. 1, but it is
specified in terms of the hardest negatives [13]. We start with
the loss function in Eq. 2 and further modify the loss function
following the idea of weighted ranking [51] to weigh the loss
based on the relative ranking of positive labels.

min
θ

∑

v

L(rv)[α − S(v, t) + S(v, t̂)]+

+
∑

t

L(rt )[α − S(t, v) + S(t, v̂)]+, (3)

where L(.) is a weighting function for different ranks. For
a video embedding v, rv is the rank of matching sentence t
among all compared sentences. Similarly, for a text embed-
ding t , rt is the rank of matching video embedding v among
all compared videos in the batch. We define the weighting
function as L(r) = (1 + β/(N − r + 1)), where N is the
number of compared videos and β is the weighting factor.
Figure 4 shows an example showing the significance of the
proposed ranking loss.

It is very common, in practice, to only compare samples
within a mini-batch at each iteration rather than com-
paring the entire training set for computational efficiency
[25,33,48]. This is known as semi-hard negative mining
[33,48]. Moreover, selecting the hardest negatives in practice
may often lead to a collapsed model and semi-hard negative
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Fig. 4 An example showing the significance of the proposed ranking
loss. The idea is that if a large number of non-matching instances are
ranked higher than thematching one given the current state of themodel,
then the model must be updated by a larger amount [b However, the
model needs to be updated by a smaller amount if the matching instance
is already ranked higher than most non-matching ones (a)]

mining helps to mitigate this issue [33,48].We utilize a batch
size of 128 in our experiment.

It is evident fromEq. 3 that the loss applies aweight-based
penalty based on the relative ranking of the correct match in
retrieved result. If a positive match is ranked top in the list,
then L(.) will assign a small weight to the loss and will not
cost the loss too much. However, if a positive match is not
ranked top, L(.) will assign a much larger weight to the loss,
which will ultimately try to push the positive matching pair
to the top of rank.

3.5 Matching and ranking

The video-text retrieval task focuses on returning for each
query video, a ranked list of the most likely text description
from a dataset and vice versa. We believe that we need to
understand three main aspects of each video: (1) Who: the
salient objects of the video, (2) What: the action and events
in the video, and (3) Where: the place aspect of the video. To
achieve this,we learn three expert joint video-text embedding
spaces as shown in Fig. 3.

The object-text embedding space is the common space
where both appearance features and text feature are mapped
to. Hence, this space can link video and sentences focusing
on the objects. On the other hand, the activity-text embed-
ding space focuses on linking video and language description
which emphasizes more on the events in the video. Action
features and audio features both provide important cues for
understanding different events in a video.We fuse action and
audio features (if available) by concatenation and map the
concatenated feature and text feature into a common space,
namely, the activity-text space. If the audio feature is absent
from videos, we only use the action feature as the video rep-
resentation for learning the activity-text space. The place-text
embedding space is the common space where visual features
focusing on scene/place aspect and text feature are mapped
to.Hence, this space can link video and sentences focusing on

the entire scene. We utilize the same loss functions described
in Sect. 3.4 for training these embedding models.

At the time of retrieval, given a query sentence, we com-
pute the similarity score of the query sentence with each
one of the videos in the dataset in three video-text embed-
ding spaces and use a fusion of similarity scores for the final
ranking. Conversely, given a query video, we calculate its
similarity scores with all the sentences in the dataset in three
embedding spaces and use a fusion of similarity scores for
the final ranking.

Sv−t (v, t) = w1So−t + w2Sa−t + w3Sp−t . (4)

It may be desired to use a weighted sum when it is necessary
in a task to put more emphasis on one of the facets of the
video (objects or captions or scene). In this work, we empir-
ically found putting comparatively higher importance to
So−t (object-text) and Sa−t (activity-text), and slightly lower
importance to Sp−t (place-text) works better in evaluated
datasets than putting equal importance to all. We empirically
choose w1 = 1, w2 = 1, and w3 = 0.5 in our experiments
based on our evaluation on the validation set.

4 Experiments

In this section, we first describe the datasets and evaluation
metric (Sect. 4.1). Then, we describe the training details.
Next, we provide quantitative results on MSR-VTT dataset
(Sect. 4.3) and MSVD dataset (Sect. 4.4) to show the effec-
tiveness of our proposed framework. Finally. we present
some qualitative examples analyzing our success and fail-
ure cases (Sect. 4.5).

4.1 Datasets and evaluationmetric

Wepresent experiments on two standard benchmark datasets:
Microsoft Research Video to Text (MSR-VTT) dataset [60]
andMicrosoftVideoDescription (MSVD) dataset [9] to eval-
uate the performance of our proposed framework. We adopt
rank-based metric for quantitative performance evaluation.

4.1.1 MSR-VTT

The MSR-VTT is a large-scale video description dataset.
This dataset contains 10,000 video clips. The dataset is split
into 6513 videos for training, 2990 videos for testing, and
497 videos for the validation set. Each video has 20 sen-
tence descriptions. This is one of the largest video captioning
datasets in terms of the quantity of sentences and the size of
the vocabulary.
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4.1.2 MSVD

The MSVD dataset contains 1970 YouTube clips, and each
video is annotated with about 40 sentences. We use only
the English descriptions. For a fair comparison, we used the
same splits utilized in prior works [53], with 1200 videos for
training, 100 videos for validation, and 670 videos for testing.
TheMSVDdataset is also used in [40] for video-text retrieval
task, where they randomly chose 5 ground-truth sentences
per video. We use the same setting when we compare with
that approach.

4.1.3 Evaluation metric

We use the standard evaluation criteria used in most prior
work on image-text retrieval and video-text retrieval task [12,
28,40]. We measure rank-based performance by R@K ,
median rank (MedR), and mean rank (MeanR). R@K
(Recall at K ) calculates the percentage of test samples for
which the correct result is found in the top-K retrieved points
to the query sample. We report results for R@1, R@5, and
R@10. Median rank calculates the median of the ground-
truth results in the ranking. Similarly, mean rank calculates
the mean rank of all correct results.

4.2 Training details

We used two Titan Xp GPUs for this work. We implemented
the network using PyTorch following [13]. We start training
with a learning rate of 0.002 and keep the learning rate fixed
for 15 epochs. Then, the learning rate is lowered by a factor
of 10 and the training continued for another 15 epochs. We
use a batch size of 128 in all the experiments. The embedding
networks are trained using ADAM optimizer [27]. When the
L2 norm of the gradients for the entire layer exceeds 2, gra-
dients are clipped. We tried different values for margin α in
training and found 0.1 ≤ α ≤ 0.2 works reasonably well.
We empirically choose α as 0.2. The embedding model was
evaluated on the validation set after every epoch. The model
with the best sum of recalls on the validation set is chosen as
the final model.

4.3 Results onMSR-VTT dataset

We report the result on MSR-VTT dataset [60] in Table 1.
We implement several baselines to analyze different compo-
nents of the proposed approach. To understand the effect of
different loss functions, features, effect of feature concate-
nation, and proposed fusion method, we divide the table into
7 rows (1.1–1.7). In row 1.1, we report the results on apply-
ing two different variants of pairwise ranking loss. VSE [28]
is based on the basic triplet ranking loss similar to Eq. 1,
and VSEPP [13] is based on the loss function that empha-

sizes on hard negatives as shown in Eq. 2. Note that all other
reported results in Table 1 are based on the modified pair-
wise ranking loss proposed in Eq. 3. In row 1.2, we provide
the performance of different features in learning the embed-
ding using the proposed loss. In row 1.3, we present results
for the learned embedding utilizing a feature vector that is a
direct concatenation of different video features. In row 1.4,
we provide the result when a shared representation between
image, text, and audiomodality is learned using the proposed
loss following the idea in [4] and used for video-text retrieval
task. In row 1.5, we provide the result based on the proposed
approach that employs two video-text joint embeddings for
retrieval. In row 1.6, we provide the result based on the pro-
posed ensemble approach that employs all three video-text
joint embeddings for retrieval. Additionally, in row 1.7, we
also provide the result for the case where the rank fusion has
been considered in place of the proposed score fusion.

4.3.1 Loss function

For evaluating the performance of different ranking loss func-
tions in the task, we can compare results reported in row 1.1
and row 1.2. We can choose only results based on object-text
spaces from these two rows for a fair comparison.We see that
VSEPP loss function and the proposed loss function perform
significantly better than the traditional VSE loss function in
R@1, R@5, and R@10. However, VSE loss function has
better performance in terms of the mean rank. This phe-
nomenon is expected based on the characteristics of the loss
functions. As higher R@1, R@5, and R@10 are more desir-
able for an efficient video-text retrieval system than the mean
rank, we see that our proposed loss function performs bet-
ter than other loss functions in this task. We observe similar
performance improvement using our loss function in other
video-text spaces too.

4.3.2 Video features

We can compare the performance of different video features
in learning the embedding using the proposed loss from row
1.2. We observe that object feature and activity feature from
video perform reasonably well in learning a joint video-text
space. The performance is very low when only audio feature
is used for learning the embedding. It can be expected that the
natural sound associated in a video alone does not contain as
much information as videos inmost cases. However, utilizing
audio along with I3D feature as activity features provides a
slight boost in performance as shown in row 1.3 and row 1.4.

4.3.3 Feature concatenation for representing video

Rather than trainingmultiple video-semantic spaces, one can
argue that we can simply concatenate all the available video
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features and learn a single video-text space using this con-
catenated video feature [12,60]. However, we observe from
row 1.3 that integrating complementary features by static
concatenation-based fusion strategy fails to utilize the full
potential of different video features for the task. Comparing
row1.2 and row1.3,weobserve that a concatenation of object
feature, activity feature, and audio feature performs even
worse than utilizing only object feature in R@1. Although
we see some improvement in other evaluation metrics, over-
all the improvement is very limited. We believe that both
appearance feature and action feature get suppressed in such
concatenation as they focus on representing different entities
of a video.

4.3.4 Learning a shared space across image, text, and audio

Learning a shared space across image, text, and soundmodal-
ity is proposed for cross-modal retrieval task in [4]. Following
the idea, we trained a shared space across video-text-sound
modality using the pairwise ranking loss by utilizing video-
text and video-sound pairs. The result is reported in row
1.4. We observe that performance in video-text retrieval task
degrades after training such an aligned representation across
3 modalities. Training such a shared representation gives
the flexibility to transfer across multiple modalities. Nev-
ertheless, we believe it is not tailored toward achieving high
performance in a specific task. Moreover, aligning across
3 modalities is a more computationally difficult task and
requires many more examples to train.

4.3.5 Proposed fusion

The best result in Table 1 is achieved by our proposed
fusion approach as shown in row 1.6. We see that the pro-
posed method achieves 31.43% improvement in R@1 for
text retrieval and 25.86% improvement for video retrieval
in R@1 compared to best performing Ours(Object-text) as
shown in row 1.2, which is the best among the other methods
which use a single embedding space for the retrieval task.
In row 1.5, Fusion[Object-text & Activity(I3D-Audio)-text]
differs from Fusion[Object-text & Activity(I3D)-text] in the
feature used in learning the activity-text space. We see that
utilizing audio in learning the embedding improves the result
slightly. However, as the retrieval performance of individual
audio feature is very low (shown in row 1.2), we did not
utilize audio-text space separately in fusion as we found it
degraded the performance significantly.

Comparing row 1.6, row 1.5, and row 1.2, we find that the
ensemble approach with score fusion results in significant
improvement in performance, although there is no guarantee
that the combination of multiple models will perform better
than the individual models in the ensemble in every single

case. However, the ensemble average consistently improves
performance significantly.

4.3.6 Rank versus similarity score in fusion

Weprovide the retrieval result based onweighted rank aggre-
gation of three video-text spaces in row 1.7. Comparing the
effect of rank fusion in replacement of the score fusion from
row 1.6 and row 1.7 in Table 1, it is also evident that the pro-
posed score fusion approach shows consistent performance
improvement over rank fusion approach. It is possible that
exploiting similarity score to combine multiple evidences
may be less effective than using rank values in some cases,
as score fusion approach independently weighs scores and
does not consider overall performance in weighting [31].
However, we empirically find that utilizing score fusion is
more advantageous than rank fusion in our system in terms
of retrieval effectiveness.

4.4 Results onMSVD dataset

We report the results of video-to-text retrieval task onMSVD
dataset [9] in Table 2 and the results for text-to-video retrieval
in Table 3.

We compare our approach with the existing video-text
retrieval approaches, CCA [49], ST [29], JMDV [61], LJRV
[40], JMET [41], and W2VV [12]. For these approaches, we
directly cite scores from respective papers when available.
We report score for JMET from [12]. The score of CCA is
reported from [61], and the score of ST is reported from [40].
If scores for multiple models are reported, we select the score
of the best performing method from the paper.

We also implement and compare results with state-of-the-
art image-embedding approach VSE [28] and VSEPP [13]
in the object-text (O-T) embedding space. Additionally, to
show the impact of only using the proposed loss in retrieval,
we also report results based on the activity-text (A-T) space
and place-text (P-T) space in the tables. Our proposed fusion
is named as Ours-fusion(O-T, A-T, P-T) in Tables 2 and 3.
The proposed fusion system utilizes the proposed loss and
employs three video-text embedding spaces for calculating
the similarity between video and text. As the audio is muted
in this dataset, we train the activity-text space utilizing only
I3D feature from videos.We also report results for our fusion
approach using any two of the three video-text spaces in the
tables. Additionally, we report results of Rank-fusion(O-T,
A-T, P-T), which uses rank in place of similarity score in
combining retrieval results of three video-text spaces in the
fusion system.

From Tables 2 and 3, it is evident that our proposed
approach performs significantly better than the existing ones.
The result is improved significantly by utilizing the fusion
proposed in this paper that utilizes multiple video-text spaces
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Table 2 Video-to-text retrieval
results on MSVD dataset

Method R@1 R@5 R@10 MedR MeanR

Results using partition used by JMET and JMDV

CCA 245.3

JMET 208.5

JMDV 224.1

W2VV-ResNet152 16.3 44.8 14 110.2

VSE(object-text) 15.8 30.2 41.4 12 84.8

VSEPP(object-text) 21.2 43.4 52.2 9 79.2

Ours(object-text) 23.4 45.4 53 8 75.9

Ours(activity-text) 21.3 43.7 53.3 9 72.2

Ours(place-text) 11.2 25.1 34.3 27 147.7

Ours-fusion(O-T, P-T) 25.7 45.4 54 7 65.4

Ours-fusion(A-T, P-T) 26 46.1 55.8 7 53.5

Ours-fusion(O-T, A-T) 31.5 51 61.5 5 41.7

Ours-fusion(O-T, A-T, P-T) 33.3 52.5 62.5 5 40.2

Rank-fusion(O-T, A-T, P-T) 30 51.3 61.8 5 42.3

Results using partition used by LJRV

ST 2.99 10.9 17.5 77 241

LJRV 9.85 27.1 38.4 19 75.2

W2VV(object-text) 17.9 – 49.4 11 57.6

Ours(object-text) 20.9 43.7 54.9 7 56.1

Ours(activity-text) 17.5 39.6 51.3 10 54.8

Ours(place-text) 8.5 23.3 32.7 26 99.3

Ours-fusion(O-T, A-T) 25.5 51.3 61.9 5 32.5

Ours-fusion(O-T, A-T, P-T) 26.4 51.9 64.5 5 31.1

Rank-fusion(O-T, A-T, P-T) 24.3 49.3 62.4 6 34.6

We highlight the proposed method. The methods which has “Ours” keyword in name are trained with the
proposed loss

in calculating the final ranking. Moreover, utilizing the pro-
posed loss improves the result over previous state-of-the-art
methods. It can also be identified that our loss function is
not only useful for learning embedding independently, but
also it is useful for the proposed fusion. We observe that uti-
lizing the proposed loss function improves the result over
previous state-of-the-art methods consistently, with a mini-
mum improvement of 10.38% from the best existing method
VSEPP(object-text) in video-to-text retrieval and 4.55% in
text-to-video retrieval. The result is improved further by
utilizing the proposed fusion framework in this paper that
utilizes multiple video-text spaces in an ensemble fusion
approach in calculating the final ranking, with an improve-
ment of 57.07% from the best existing method in the video
to text retrieval and 38.31% in the text-to-video retrieval.
Among the video-text spaces, object-text and activity-text
space show better performance in retrieval, compared to
place-text space which indicates that the annotators focused
more on object and activity aspects in annotating the videos.
Similar to the results of MSR-VTT dataset, we observe
that the proposed score fusion approach consistently shows

superior performance than rank fusion approach in both
video-to-text and text-to-video retrieval.

4.5 Qualitative results

We report the qualitative results on MSVD dataset in Fig. 5
and the results on MSR-VTT dataset in Fig. 6.

4.5.1 MSVD dataset

In Fig. 5, we show examples of a few test videos fromMSVD
dataset and the top 1 retrieved captions for the proposed
approach. We also show the retrieval result when only one of
the embeddings is used for retrieval. Additionally, we report
the rank of the highest ranked ground-truth caption in the
figure. We can observe from the figure that in most of the
cases, utilizing cue from multiple video-text spaces helps to
match the correct caption. We see from Fig. 5 that, among
9 videos, the retrieval performance is improved or higher
recall is retained for 7 videos. Video 6 and video 9 show
two failure cases, where utilizing multiple video-text spaces
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Table 3 Text-to-video retrieval
results on MSVD dataset

Method R@1 R@5 R@10 MedR MeanR

Results using partition used by JMET and JMDV

CCA 251.3

JMDV 236.3

VSE(object-text) 12.3 30.1 42.3 14 57.7

VSEPP(object-text) 15.4 39.6 53 9 43.8

Ours(object-text) 16.1 41.1 53.5 9 42.7

Ours(activity-text) 15.4 39.2 51.4 10 43.2

Ours(place-text) 7.9 24.5 36 21 64.6

Ours-fusion(O-T, P-T) 17 42.2 56 8 36.5

Ours-fusion(A-T, P-T) 17.2 42.6 55.6 8 34.1

Ours-fusion(O-T, A-T) 20.3 47.8 61.1 6 28.3

Ours-fusion(O-T, A-T, P-T) 21.3 48.5 61.6 6 26.3

Rank-fusion(O-T, A-T, P-T) 19.4 45.8 59.4 7 29.2

Results using partition used by LJRV

ST 2.6 11.6 19.3 51 106

LJRV 7.7 23.4 35 21 49.1

Ours(object-text) 15 40.2 51.9 9 45.3

Ours(activity-text) 14.6 38.9 51 10 45.1

Ours(place-text) 7.9 24.5 36 21 64.6

Ours-fusion(O-T, A-T) 20.2 47.5 60.7 6 29

Ours-fusion(O-T, A-T, P-T) 20.7 47.8 61.9 6 26.8

Rank-fusion(O-T, A-T, P-T) 18.5 44.9 58.8 7 30.2

We highlight the proposed method

degrades the performance slightly than using object-text in
video 6 and activity-text space in video 9.

4.5.2 MSR-VTT dataset

Similar to Fig. 5, we also show qualitative results for a few
test videos from MSR-VTT dataset in Fig. 6. Videos 1–6 in
Fig. 6 show a few examples where utilizing cue from mul-
tiple video-text spaces helps to match the correct caption
compared to using only one of the video-text spaces. More-
over, we also see the result was improved after utilizing audio
in learning the second video-text space (activity-text space).
We observe this improvement for most of the videos, as we
also observe from Table 1. Videos 7–9 show some failure
cases for our fusion approach in Fig. 6. Video 7 shows a
case, where utilizing multiple video-text spaces for retrieval
degrades the performance slightly compared to utilizing only
one of the video-text spaces. For video 8 and video 9 in Fig. 6,
we observe that the performance improves after fusion over-
all, but the performance is better when the audio is not used
in learning video-text space. On the other hand, videos 1–6
include cases where utilizing audio helped to improve the
result.

4.6 Discussion

The experimental results are aligned with our rationale that
utilizing multiple characteristics of a video is crucial for
developing an efficient video-text retrieval system. Exper-
iments also demonstrate that our proposed ranking loss
function is effective in learning video-text embeddings bet-
ter than the existing ones. However, we observe that major
improvement in experimental performance comes from our
mixture of experts systemwhich utilizes evidence from three
complementary video-text spaces for retrieval. Our mixture
of expert video-text model may not outperform the perfor-
mance of a single video-text model in the ensemble in every
single case, but it is evident from experiments that our system
significantly reduces the overall risk of making a particularly
poor decision.

From qualitative results, we observe it cannot be claimed
in general that one video feature is consistently better than
others for the task of video-text retrieval. It can be easily
identified from the top 1 retrieved captions in Figs. 5 and 6
that the video-text embedding (object-text) learned utilizing
object appearance feature (ResNet) as video feature is sig-
nificantly different from the joint embedding (activity-text)
learned using activity feature (I3D) as video feature. The
variation between the rank of the highest matching caption
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Proposed Fusion: (1) A man pets a couple of dogs.

Object-Text: (24) a man is standing in front of a microphone
holding a violin in one hand and a violin bow in the other.

Activity-Text: (6) A couple of slow lorises are eating fruit.

GT: A man is petting two dogs while holding a guitar.

Proposed Fusion: (1) A person is driving a motorcycle
through waves on the shore.

Object-Text: (1) A man is riding a bike across the waves
by the beachside.
Activity-Text: (6) A man on a motorcycle falls into a pool
of mud.

GT: A man is riding a motorcycle in the water at the edge
of a beach.

Object-Text: (2) Two women are wrestling each other.

Activity-Text: (118) A young woman is putting stickers
all over her face.
Proposed Fusion: (4) Women are dancing.

GT: A man is drying off a woman with a towel.

Proposed Fusion: (1) The girl rode her brown horse.

Object-Text: (13) A guy is riding a horse.

Activity-Text: (1) The girl rode her brown horse.

GT: A woman is riding a horse on an open ground.
Object-Text: (9) A man is drinking a large goblet of beer.

Activity-Text: (6) The lady tried to wake up the man in
costume.
Proposed Fusion: (2) The boy hugged the girl.

GT: A man and a woman are having a phone conversation.

Proposed Fusion: (3) A woman is chopping a red bell
pepper into small pieces.

Object-Text: (58) A woman is chopping a red bell pepper
into small pieces.
Activity-Text: (18) A cat is eating a small wedge of
watermelon.

GT: Someone wearing blue rubber gloves is slicing a
tomato with a large knife.

GT: A man slicing a bun in half with a knife appears to cut 
himself.

Proposed Fusion: (1) A man slicing the roasted duck.

Object-Text: (141) Man chops meat and puts it in a plate.

Activity-Text: (7) A man is cutting vegetables.

GT: A man pours a plate of shredded cheese in a pot of sauce.

Proposed Fusion: (2) A person mixes flour and water in a 
bowl.

Object-Text: (4) Someone is mixing up chocolate batter in a 
bowl.
Activity-Text: (8) Someone has picked up a handful of white 
substance from mixing bowl and squeezing it in a lump.

GT: Several people are dancing on the patio.

Activity-Text: (1) People are dancing together near a house.
Proposed Fusion: (2) Many men and women are dancing in
street.

Object-Text: (44) A man persuades two ladies standing by
the beach to come with him and then the three of them run
to join some other people.

1 2 3

4 5 6

7 8 9

Fig. 5 Examples of 9 test videos from MSVD dataset and the top 1
retrieved captions by using a single video-text space and the fusion
approach with our loss function. The value in brackets is the rank of
the highest ranked ground-truth caption. Ground truth (GT) is a sample
from the ground-truth captions. Among all the approaches, object-text

(ResNet152 as video feature) and activity-text (I3D as video feature)
are systems where single video-text space is used for retrieval. We also
report result for the fusion systemwhere three video-text spaces (object-
text, activity-text, and place-text) are used for retrieval

further strengthens this observation. Object-text space per-
forms better than the activity-text space in retrieval for some
videos. For other videos, the activity-text space achieves
higher performance. However, it can be claimed that combin-
ing knowledge from multiple video-text embedding spaces
consistently showsbetter performance than utilizing only one
of them.

We observe from Fig. 6 that using audio is crucial in many
cases where there is deep semantic relation between visual
content and audio (e.g., the audio is from the third person nar-
ration of the video, the audio is music or song) and it gives
important cues in reducing description ambiguity (e.g., video
2, video 5, and video 6 in Fig. 6). We observe that the perfor-
mance degrades in some cases when audio is utilized in the
system (e.g., video 8 in Fig. 6). We see an overall improve-
ment in the quantitative result (Table 1) which also supports
our idea of using audio. Since we did not exploit the structure
of the audio and analyze the structural alignment between
audio and video, it is difficult to determine whether audio is
always helpful. For instance, audio can come from different
things (persons, animals, or objects) in a video, and it might

shift our attention away from the main subject. Moreover,
the captions are provided mostly based on visual aspects,
which make audio information very sparse. Hence, the over-
all improvement using audio was limited.

5 Conclusions

In this paper, we study how to leverage diverse video features
effectively for developing a robust cross-modal video-text
retrieval system.Our proposed framework learns three expert
video-text embeddingmodels focusing on three salient video
cues (i.e., object, activity, and place) and uses a combination
of these models for high-quality prediction. A modified pair-
wise ranking loss function is also proposed for better learning
the joint embeddings, which focuses on hard negatives and
applies a weight-based penalty based on the relative ranking
of the correct match. Extensive quantitative and qualitative
evaluations of MSVD and MSR-VTT datasets demonstrate
that our framework performs significantly better than base-
lines and state-of-the-art systems.Moving forward,wewould
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Proposed Fusion: (4) The young girls sing for the judges

Object-Text: (11) A girl singer perform in front of judges.

Activity-Text: (14) A girl with a guitar sings and preforms
for judges.

GT: A group of three young children singing on a stage in
front of judges..

Fusion-No Audio: (9) The young girls sing for the judges..

6

7

Proposed Fusion: (2) A man is talking about the first
manned space flight.

Object-Text: (1) A man explaining about a space device.
Activity-Text: (39) Hyenas are walking around a lion waiting
for scraps.

GT: A man is talking about satellites in space.

Fusion-No Audio: (3) Characters from minecraft floating in
space talking about going to the moon.

2

Proposed Fusion: (1) A young girl is laughing while the
young man looks concerned.

Object-Text: (161) Guy walking alone on road.

Activity-Text: (16) A girl is talking on the phone and a
woman attacks her.

GT: A woman waits at a table in a restaurant and cheers after
a man passes her.

Fusion (No Audio): (14) A girl sitting on a sofa talking.

8

Proposed Fusion: (4) In this video there are some soldiers
getting ready for war.

Object-Text: (15) Military police is pointing a gun at a
person on the ground.
Activity-Text: (7) Man describes difference between two steaks.

GT: A group of people looking through ammunition.

Fusion-No Audio: (1) Soldiers are getting ready with their
weapons.

Proposed Fusion : (1) A reporter speaks to a military
person in front of a large crowd on television.

Object-Text: (37) A man is giving a speech.
Activity-Text: (7) A male commentates over gameplay
while discussing his channel and an upcoming interview..

GT: Military figures are discussing their actions on a
television news program.

Fusion (No Audio): (6) A man giving a speech to a large
crowd of people.

3

9

4

Proposed Fusion: (2) A wrestler at a match is talking to other
wrestlers and some people on stage with him..

Object-Text: (11) Wrestlers are talking to the crowd.
Activity-Text: (10) A man discussing a wrestler as the
wrestling match starts.

GT: A group of people talking in a professional wrestling
ring..

Fusion-No Audio: (4) Wrestlers are in the ring talking

Proposed Fusion : (4) This is a video of chef made meals in a
show.

Object-Text: (22) The chef puts various food items into a pot
and shows the viewers how to make a dish.
Activity-Text: (30) A chef discusses needed ingredients.

GT: A woman hosting the show while a man cooks a dish..

Fusion (No Audio): (30) A man pours soda into a pot on the
stove.

5

1

Proposed Fusion: (1) A man narrates a game of minecraft
while running through a pink house.

Object-Text: (4) a minecraft video shows a character
climbing a staircase.
Activity-Text: (52) Someone playing mine craft while giving
commentary.

GT: A man is commentating while playing minecraft.

Fusion (No Audio): (12) A video game character is
exploring a castle.

Proposed Fusion: (4) An advertisement about the stroller
baby jogger.

Object-Text: (3) A quick motion clips scene of a blue
stroller and it s details.
Activity-Text: (8) A woman is giving demo for baby trolley.

GT: A woman demonstrating the functions of a baby stroller.

Fusion-No Audio: (1) An advertisement for a jogger stroller
a woman in black is using the stroller.

Fig. 6 A snapshot of 9 test videos fromMSR-VTT dataset with success
and failure cases, the top 1 retrieved captions for four approaches based
on the proposed loss function and the rank of the highest ranked ground-
truth caption inside the bracket. Among the approaches, object-text is
trained using ResNet feature as video feature and activity-text is trained
using the concatenated I3D feature and audio feature as the video fea-

ture.We also report results for fusion approaches where three video-text
spaces are used for retrieval. The fusion approaches use an object-text
space trained with ResNet feature and place-text space trained with
ResNet50(Place) feature, while in the proposed fusion, the activity-text
space is trained using concatenated I3D and audio feature. Fusion (no
audio) utilizes activity-text space trained with only the I3D feature

like to improve our system by developing more sophisticated
algorithms to combine evidence from multiple joint spaces
and further analyze the role of associated audio for video-text
retrieval.
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