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Abstract Over the last few years, different traffic sign
recognition systems were proposed. The present paper intro-
duces an overview of some recent and efficient methods in
the traffic sign detection and classification. Indeed, the main
goal of detection methods is localizing regions of interest
containing traffic sign, and we divide detection methods into
three main categories: color-based (classified according to
the color space), shape-based, and learning-based methods
(including deep learning). In addition, we also divide classi-
ficationmethods into two categories: learningmethods based
on hand-crafted features (HOG, LBP, SIFT, SURF, BRISK)
and deep learning methods. For easy reference, the differ-
ent detection and classification methods are summarized in
tables along with the different datasets. Furthermore, future
research directions and recommendations are given in order
to boost TSR’s performance.

Keywords Traffic signdetection ·Traffic sign classification ·
Image processing · Object detection · Vehicle safety

1 Introduction

The United Nations estimates that between 2010 and 2020
the number of road deaths will increase by up to 50%, that is,
about 1.9 million people. To reverse this trend, the UN estab-
lished, in 2011, the 1st “Decade of Action for Road Safety.”
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Driver Assistance Systems can help reduce the number of
accidents by automating tasks such as lane departure warn-
ing systems, traffic sign recognition.

The recognition of traffic signs has received increasing
attention in recent years; it is even considered as a highly
important feature of intelligent vehicles. Traffic signs carry
substantial useful information that might be disregarded by
drivers due to driving fatigue or searching for an address
reasons. These drivers are also likely to pay less attention
to traffic signs on driving in threatening weather. There-
fore, making enhancement initiatives, like increasing driving
safety along with improving automatic detection and road
sign recognition system, is becoming indispensable to help
decrease road death toll. These enhancements, however ben-
eficial they may seem, meet several external non-technical
challenges such as lighting variations, scale and weather
conditions changes, occlusions and rotations, which may
eventually decrease the traffic sign recognition systems per-
formance.

The main issue of the problem in the traffic sign recogni-
tion system is not how to detect or recognize, with high recall,
a traffic sign in a fixed image. It is rather about how to obtain
a high precision in videos big data. To illustrate the problem
of false alarms, a traffic sign recognition system installed in a
smart phone, with 30 shot frames per s, (108,000 frames in a
1-h video), was considered. If we suppose that in every 4min
we detect a sign and that—with reference to the speed of a
car—every sign spans 2 s, this means that in the course of 1h
wewill find a total of 15 signs and that every signwill display
in 60 frames (900 frames that contain signs while 107,100
does not). Supposing also that the system has a 1% false pos-
itive accuracy rate, this means that there are 17 detected false
alarms in 1min (1071 in 1h) and 1 true positive and 68 false
alarms in 4min by consequent. This may eventually lead to
most users disabling their applications.
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Fig. 1 Traffic signs types: amandatory sign, b temporary sign, cwarn-
ing sign, d prohibition sign, e reservation sign

Traffic sign recognition systems consist of three main
stages: localization, detection, and classification. In the case
of any false alarm in the detection stage, performance will
be lower in the classification one; this is due to the fact that
the classifier is not usually trained on false alarms.

Road signs have many discriminating features on the
basis of which they are classified. According to their shapes
and colors, these are five main classes: warning signs (red
triangle), prohibition signs (red circular), reservation signs
(rectangular blue), mandatory signs (circular blue), and tem-
porary signs (yellow triangle). Examples of traffic signs for
each of the categories mentioned above are shown in Fig. 1.

The aim of this paper is to present an overview of some
recent and efficient traffic sign detection and classification
methods; some authors like [1–4,15,36] are also preferred to
make a study on this domain.

In Sect. 2, traffic sign detection methods are presented;
they have been divided into three categories: color-based,
shape-based, and learning-based methods, including deep
learning methods. In Sect. 3, traffic sign classification meth-
ods are stressed, firstly we cite learning methods based on
hand-crafted features, and then, we mention deep learning
methods. Moreover, different publicly available traffic sign
detection and classification datasets are also presented to help
meet the goal of this paper. Section 4 describes the future
research directions which can incorporate with researchers
in their future works. Finally, a conclusion is expected.

2 Detection methods

Asmentioned above,we can classify detection or localization
methods into three fundamental classes: color-based, shape-
based, and learning-based methods. According to the nature
of the problem and system requirements, we can decide
upon the best method to apply; for example, methods based
on color information can used with high-resolution dataset,
however, not with grayscale images.

2.1 Color-based methods

The dominant color-based segmentation is applied to detect
regions of interest. There are specific characteristic colors
of traffic signs: red, blue, and yellow. These characteris-
tics, however, indicate sensitivity to various factors, such

as the age of signs and the variation of light, which make
the segmentation an arduous process. In order to overcome
this problem, authors are working on different color spaces
among which we mention the following:

2.1.1 RGB space

De La Escalera et al. [5] adopt RGB space by reason of HSI
formulas are nonlinear. The authors use the relation between
the components as it is presented in the following expression:

g(x, y) = k1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ra ≤ fr(x, y) ≤ Rb

TGa ≤ fg(x,y)
fr(x,y)

≤ TGb

T Ba ≤ fg(x,y)
fb(x,y)

≤ T Bb

g(x, y) = k2 in other case

(1)

fr(x, y), fg(x, y), and fb(x, y) are, respectively, the func-
tions that provide the red, green, and blue levels of each point
of the image.

Thresholding is used by several authors as [6–8]. Their
approaches, however, highly related to the selected thresh-
olds, which make the comparison of their performances a
difficult task.

Ruta et al. [7] applied filtering for each pixel: X =
[xR, xG, xB] and S = xR + xG + xB)

fR(X) = max(0,min(xR − xG, xR − xB)/S) (2)

fB(X) = max(0,min(xB − xR, xB − xG)/S)) (3)

fY(X) = max(0,min(xR − xB, xG − xB)/S)) (4)

In this approach, they generate three maps red, blue, and
yellow for each RGB image. The dominant color has a high
intensitywhile deteriorated signals have low intensities.King
et al. [9] prefer the R’G’B’ space. At first, they normalize the
three RGB channels by intensity I:

I = R′ + G ′ + B ′

3
(5)

r = R′

I
, g = G ′

I
, b = B ′

I
(6)

Then, they construct four new images according to the equa-
tion proposed by [10]:

R = r − (g + b)

2
(7)

G = g − (r + b)

2
(8)
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B = b − (r + g)

2
(9)

Y = r + g

2
− | r − g |

2
− b (10)

The dominant color has a great intensity that facilitates the
extraction of the panels. Thresholding is used to binarize the
four images (R, G, B, Y); morphological operations are then
applied to remove the unwanted pixels. It is worth highlight-
ing that this approach is capable of detecting up to 93.63%
of the panels.

King et al.’s approach is adopted in [11]. A filter is pro-
posed to eliminate undesirable pixels with a view to reduce
the execution time.

2.1.2 HSV space

Yakimov [12] considered that is not possible to detect traffic
signs in real images by applying a simple threshold directly
in the RGB space due to lighting variations; this is what
urged them to choose theHSVspace. Theyused experimental
method to determine the optimal threshold values for red
color as it is presented in the following expression:

(0.0H < 23) ‖ (350 < H < 360)

(0.85 < S ≤ 1)

(0.85 < V ≤ 1)

(11)

After segmentation, they used a modified algorithm pre-
sented in [13] to denoise segmented images. The advantage
of the denoising algorithm is that only noise will be removed
and the regions of interest stay unfiltered.

Wang et al. [14] also choose HSV space, and they found
that the classical thresholding method gives good results
in many different lighting conditions except for the cases
of color cast or poor lighting condition. They proposed a
new thresholding method by using the color information of
neighboring pixels. Firstly, the red degree of each point c
is calculated to get a new image fR(c) with the following
equation:

fR(c) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S(c) sin(H(c)−300◦)
sin(60◦) if H(C) ∈ [300◦, 360◦]

S(c) sin(60◦)−H(c)
sin(60◦) if H(C) ∈ [0◦, 60◦]

0 others

(12)

Secondly, the normalized red degree fN R(x) is calculated as
the following:

fN R(x) = ( fR(x) − μR(ωx ))

(σR(ωx ))
(13)

μR(ωx ) and σR(ωx ) are the mean and the variance of the
red degrees of the pixels in the window ωx centered on x .

Thirdly, the normalized intensity fN I is calculated with
the following equation:

fN I (x) = ( f I (x) − μI (ωx ))

(σI (ωx ))
(14)

f I (x) is the intensity of the pixel x ; μI (ωx ) and σI (ωx )

are the mean and the variance of the intensities of the pixels
in the window ωx . Finally, the red bitmap B is given as the
following:

B(x) =
{
1 if fN R(x) > max(T H R1, fN I + T H R2)

0 others

(15)

Basconand et al. [16] combine thresholding on H and
S components with the achromatic decomposition. This
method, however simple and fast, is not robust to signal
deterioration and illumination changes. Fleyeh et al. [17] use
thresholding onH, S, andVcomponents; thismethod is resis-
tant to lighting changes, but is costly in computation time.
Vitabile et al. [18] on the other side use dynamic aggregation
technique of pixels to segment the image.

2.1.3 HSI space

Several authors have chosen to use HSI space because its hue
component is invariant to changes in the luminance.

Escalera et al. [19] have chosen HSI space to detect the
signs. only H and S components are used to compensate for
the problemof brightness variations. The authors constructed
two look-up tables (LUTs): one for the hand and the other
for the S component. The idea is that each LUT makes up
for the other, i.e., if a component has false values, the other
can compensate. Once the LUTs are applied, the resulting
images are multiplied and compared with the conventional
logical AND.

Fang et al. [20] assume that each particular color of a sign
can be represented by a hue value distributed with a Gaussian
manner variance σ 2. The set of all these hue values is denoted
as

[
h1, h2, . . . . . . , hq

]
; then, a z degree of similarity between

the color of a pixel h and color sign hues hk is calculated as
the following:

z = max(k=1,.q)

zk = 1√
2πσ

exp((h − hk)
2/2σ 2)

(16)

They will not get a segmented image, but an image where
each pixel represents the similarity between the pixel color
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and standard one. One of the drawbacks of this method is
that its calculations are not linear.

2.1.4 YUV space

The YUV space is a three-component model based on the
separation of luminance and chrominance information:

Y = 0, 299R + 0, 587G + 0, 114B

U = 0, 493(B − Y )

V = 0, 877(R − Y )

(17)

Rectangular information panels being detected in [21] by
a colorimetric thresholding in YUV are followed by a hori-
zontal and vertical projection of the gradient on a recognition
of Kanji (Japanese writing system). In this approach, the per-
formance is only illustrated by some examples. The choice
in [22] fells also on the YUV space after previous color cor-
rection given the pixel values of the theoretically gray floor
(R = G = B).

In [23], the authors compared different segmentation
methods in order to find the best method in the field of road
signs recognition. They classified the methods of segmen-
tation into three main categories: segmentation with bina-
rization, chromatic/ achromatic decomposition, and edge
detection and then proposed a new segmentation method in
which they combined SVM with LUT (Look Up Table).

After implementing the different methods and conducting
an extensive research to find the best method, they concluded
that:

• In the single images, the best results were obtained with
the RGB method; however, in the videos, the best results
were seen when applying LUT SVM method;

• The edge detection can be used as a complement to the
segmentation method but cannot be used alone;

• The standardization of RGB color space proves good per-
formance with less operations; on the other hand, HSV
space, though it gives higher results, takes a long time of
execution, which makes it a less efficient method. Thus,
why would we use a nonlinear transformation if just sim-
ple normalization is good enough.

Unlike the color thresholding and extreme region extrac-
tion methods used in previous approaches, the
recent approach [24] uses High-Contrast Region Extrac-
tion (HCRE), motivated by the cascaded detection methods,
to extract ROI with high local contrast. This can keep a
compromise between the detection and extraction rates. Tak-
ing advantage of the observation that different types of
traffic signs have relative high contrast in local regions,
the HCRE can reject approximately 83.10% of the non-

interesting regions with low local contrast such as the sky,
roads and some buildings, and thus boosting the detection
speed of the SFC-tree detector from 5 tomore than 10 frames
per s in their experiments.

2.2 Shape-based methods

The authors, in this approach, do not absolutely consider
color segmentation as a discriminative feature due to its sen-
sitivity to various factors such as the distance of the target,
weather conditions, time of the day, and reflection of the
signs. Conversely, detection of the signs is made from the
edges of the image analyzed by structural or comprehensive
approaches. Shape-based methods are generally robust than
colorimetric methods by reason they can process images in
grayscale and treat their gradients. However, they are costly
in computation time, given the fact that the rate of treatment
depends largely on the number of detected edges. However,
shape-based methods can treat grayscale images; in some
countries, such as Japan, there are pairs of different signs
in the highway code which, when converted to grayscale,
appear exactly the same. To be able to distinguish them, an
amount of color information is absolutely needed [7]. On the
other hand, some authors adopt the color feature to localize
the region of interest and complete with shape methods in
order to detect the signs position and recognize its geometric
form.

Vitabile et al. [18] use the totality of pixels to recognize
the geometric form of the sign, where each form of a road
sign is represented by a binary image of fixed size (36 ×
36 pixels). After detecting the regions of interest with the
dynamic aggregation technique of pixels, they resize them
on the same scale of binary image to calculate a measure of
similarity with all forms of road signs using the Tanimoto
coefficient: The value of this coefficient is normalized, i.e.,
the more it is close to 1, the more the model and region of
interest are similar. If X and Y are considered sets of pixels of
binary images to be compared, then the Tanimoto coefficient
S will be defined as follows:

S = |x ∩ y|
|x ∪ y| (18)

The results obtained show that more than 86% of signs are
detected among 620 images of 24 classes. Authors in [25]
used template matching to filter out the regions which do not
contain traffic signs. A sliding window, having the same size
of the template, slides on the image to search its most similar
region. The function of similarity used is the mean square
error (MSE).

MSE = 1

MN

N∑

y=1

[T (x, y) − I (x, y)]2 (19)
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Table 1 Results achieved by
Youssef et al. [81]

Dataset Prohibitive Danger Mandatory

Accuracy (%) Time (ms) Accuracy (%) Time (ms) Accuracy (%) Time (ms)

GTSDB 98.67 231 96.01 234 90.43 243

DITS 97.87 198 98.12 197 89.71 200

• T (x, y): the intensity value of the pattern image at the
position (x, y);

• I (x, y): the intensity of the input image at the position
(x, y);

• M and N : thewidth and height of the image, respectively.

A Hough transform has been used by [26] to detect edges of
the panels and select the closed contours which make their
approach sensitive to noise and occlusion. This approach is
able to detect 97%of the 435 speed limit signs and94%of312
danger signs in a time ranging between 20 and 200ms/img
according to the number of processed outline. It is worth
mentioning that Miura et al. [26] have also applied the trans-
formed Hough for circular signals.

Youssef et al. [81] also choose to use HOG descriptor
with a 40×40 detection window (block of 10×10 and 2×2
striding). The GTSRB dataset is used for first round training,
DITS (The Data Set of Italian Traffic Signs) is used to the
second round, and the both are used in the third round. In
the aims to reduce both the false positive and time execu-
tion, a color segmentation step with improved HSV is used
before the detection step. Established results are illustrated
in Table 1.

In [27], the authors preferred to use Radial Symmetry
Transformation to detect speed limit signs. This method, a
variant of the circular Hough transform, is particularly made
to detect possible occurrences of circular signs. The authors
reached a detection rate of 96% for 10% false positives in
a 50ms/img for a 320–240 image. Authors in [28] are also
using Radial Symmetry Transform to detect other geomet-
ric shapes like octagon, square, and triangle. However, they
reached a detection rate of 100% for triangle shape, and the
major drawback is that it can only find the size and position
of forms: It cannot distinguish a Yielding passing panel from
an intersection one.

In [29], a process of extracting contours with their asso-
ciated tangents accuracy is made, and they also propose
three algorithms: RANSAC type of quadrilateral, ellipse,
and triangle detection. The final shape will be chosen based
on compatibility degrees provided by each algorithm. The
method presented in [30] is adopted to estimate the center of
the shape using only three points with their tangents. Over
80% of 1400 test images are properly detected, with 5% false
positive, in a processing time that ranges between 15 and 20s
for 1980 1024 image.

Fig. 2 CDT (ColorDistance Transform) normalized: a original image
in discrete color, b black CDT, c white CDT, d red CDT. Shadows
regions mean a small distance, extract of [8] (color figure online)

Qin et al. [31] exploit Fourier descriptors (FDs) to describe
the contour, the main reason of using FDs is their robustness
to the rotation, scaling, and translation, and then, a process of
matching FDs is applied. A database containing over 20000
images has been created by recording sequences from over
350 km of Swedish highways and city roads; this database is
used to evaluate the proposed approach. The average detec-
tion rate achieved is 77.08% with 641 images in total.

Several works, like [8], preferred to use the distance trans-
form which converts a binary image to an image where
each pixel value represents the distance from the pixel to
the nearest pixel feature. The researchers propose a vari-
ant of DT called Color Distance Transform (CDT) in which
they applied a comparison between the real image and the
template one in a representation of the discrete color. To
facilitate the comparison, they calculate a distance trans-
form DT for each discrete color. Then, pixels having a
discrete color are considered as feature pixels while other
pixels are not. The result of this process is illustrated in
Fig. 2.

Qin et al. [32] use the vector of the distance to border
(DTB): It is the distance between the outer contour and the
bounding box in which they calculate, for each segmented
blob, the four DTB vectors (left, right, top, and bottom) as
shown in Fig. 3. This distance is robust to translations and
rotations. Since the blobs should be zoomed to 36 × 36,
the proposed approach is not robust to scale changes. DTB
vectors will be then chosen as a feature to classify blobs with
SVM. The use of four distance vectors for each segmented
blob makes the DTB robust to occlusions, that is why it is
also used by [63] as a feature to recognize the geometric form
of signs.

Another approach is proposed by [11] to recognize the
shape of the sign candidate; the idea is to compare the
detectedpatternwith theBoxOut rectangle that encompasses.
A score of intersections is calculated between the contour of
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Fig. 3 Distance to border
(DTB) a segmented blob, b
binary image of a, c DTB of
blob [32]

Fig. 4 The proposed detection approach of [11] a rectangle, b triangle,
c circle, d octagon

the pattern and the four lines of the BoxOut; it is shown in
Fig. 4. This approach is capable of detecting 95.65% with
2.17 % false alarms. The used dataset consists of 48 images
with 360×270 pixels containing three different traffic signs.
The disadvantage of this approach is its weakness to occlu-
sions and noises.

Recently, a new circle detection algorithm EDCircles [75]
is used by [76] to detect circular traffic signs. The algorithm
consists to, firstly, use EdgeDrawing Parameter Free (EDPF)
to detect edges in grayscale images, then extract circular arcs
from edges and combine arcs having similar radius together,
and finally, the candidate circles are validated. The accuracy
rate detection achieved by GTSDB dataset is 93.78% with
0.99% false positive for prohibitive signs and 75.51% with
2.04% false positive for mandatory signs.

Table 2 summarizes shape-based methods; it is clear from
the table that the previous detection methods do not use the
same database, which prevents us from comparing them to
one another. Authors in [29] use a big dataset with large
images, reached an acceptable detection rate that is still very
far from the real-time application. The method used by [11],
however having real time, its dataset is small, which keeps
us from considering it a highly efficient method.

2.3 Learning-based methods

The previous methods share a common weakness in several
factors such as lighting changes, occlusions, scale change,
rotation, and translations. However, these problems could
also be treated using machine learning, but it requires a large
database of annotated data.

Increasing complexity detectors cascade is used by Viola
and Jones [33], each detector is a set of classifiers based on
Haar wavelet, and these classifiers use a learning algorithm
AdaBoost.

Authors in [34] used the Viola–Jones detector to detect
triangular traffic sign. The detector was trained using about
1000 images of relatively poor quality. The obtained detector
achieved a very high true positive rate (ranging from 90 to
96%) depending on the training set and the configuration of
the detector. In their experiments [34,35], they observed two
main weaknesses of the Viola–Jones detector:

• the requirement of a large number of training images;
• false positive rates.

Nevertheless, their research also indicates that the Viola–
Jones detector is robust to noise and low-quality training data
[36].
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Bario et al. [37] proposed an attentional cascade which
is composed of a set of classifiers where each entry of the
cascade is the region of interest detected by the previous
classifier, and Adaboost algorithmwas used to learn the clas-
sifiers. The researchers also proposed a classification strategy
Forest-ECOC (Error Correcting Output Codes) to overcome
the multiclass problem, and the idea is to integrate several
trees in the Framework ECOC. The authors obtained the fol-
lowing results:

• Prohibition circle: 70% of detections with 3,65% false
positives per image;

• Obligation circle: 60% of detections with 0,95% false
positives per image;

• Danger triangle: 65% of detections with 2,25% false pos-
itives per image;

• Triangle Right of way: 75% of detections with 2,8% false
positives per image.

The rate of treatment is not given because the algorithm
is operated offline. The case of rectangular panels is not
addressed, and the color information is not used.

Priscariu et al. [38] usedAdaboost classifier based on viola
and Jones detector, followed by an SVM operating on nor-
malized RGB channels. The system is robust to motion blur
through 3D region-based tracking.

Chen et al. [85] explore both exploring Adaboost and
support vector regression (SVR) together to detect traffic
signs. The proposed approach is evaluated over three datasets
(GTSD, BTSD, STSD) using an Intel Core-i7 4770 with 8G
RAM. This approach is not real time, the detection time
varied from 0.05 to 0.5 s, and the training time is 16min.
The recall obtained on STSD is 80.85% with a precision of
94.52%, and Table 3 shows the results achieved on GTSD
and BTSD.

Researchers in [19] used genetic algorithms in the detec-
tion step. The authors applied a parallel search in different
directions following by an optimization process that mim-
ics natural evolution and selection. However, their approach
is robust to scale changes, rotation, weather conditions, and
partial occlusion, and it is not a real-time application. The
neural networks are used by [39] to recognize the shape of
the panels, but this process is not linear with time 2s/img.

Table 3 Results achieved on GTSD and BTSD by Chen et al. [85]

Categories GTSD (%) BTSD (%)

Mandatory 99.87 97.78

Danger 100 99.88

Prohibitory 100 93.45
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Table 4 Detection rate of algorithms cited in Houben et al. [43]

Algorithm Prohibition (%) Warning (%) Mandatory (%)

HOG+LDA 91.3 90.7 69.2

Hough-like 55.3 65.1 34.7

Viola-Jones 98.8 74.6 67.3

Zaklouta et al. [40] use the histogramof orientedgradients,
proposed by Dalal and Triggs [41] for pedestrian detec-
tion due to its scale-invariance, local contrast normalization,
coarse spatial binning, and weighted gradient orientations.
The HOG descriptors are computed and used as a feature to
train a linear SVM classifier. To improve the precision of the
SVM detector, they use a morphological operator (blackhat)
to filter the detected candidates. The blackhat transform is
defined as the difference between the closing and the input
image. A large part of the image is eliminated using this lter,
and the number of false alarms is reduced.

HOG transformer is also used byWang et al. [42], and they
use LDA and SVM as a classifier. The proposed approach
achieves high recall and precision ratios in GtSDB dataset,
it is robust to bad lighting condition, partial occlusion, low
quality, and small projective deformation, but this method is
not real time.

In [43], the authors use the German Traffic Sign Detection
Benchmark presented as a competition at IJCNN2013 (Inter-
national Joint Conference on Neural Networks) to evaluate
some of the most popular detection approaches such as the
Viola–Jones detector based onHaar features and a linear clas-
sifier relying on HOG descriptors, and they also evaluate a
recent algorithm exploiting shape and color in amodel-based
Hough-like voting scheme presented in [44]. The detection
rate of the three algorithms is presented in Table 4.

Salti et al. [84] propose an approach based on interest
regions extraction rather than sliding window detection. The
authors test their approach on ground-truth dataset which
contains 6580 images. The dataset is created by using 5 cam-
eras to correctly geo-referenced the signs; however, using 5
cameras is not practical for a real-time application because it
increases the execution time (Instead of processing 1 image,
5 images will be processed). They achieved 78.21% for pro-
hibitory signs, 82.13% for danger signs and 72.78% for
mandatory signs.

Integral Channel Features detector built on HOG features
and boosted decision trees is used by [45], on BTSD dataset
they obtained 97.96% formandatory signs, 97.40% forwarn-
ing signs and 94.44% for prohibitory signs, on GTSDB
dataset they have 96.98% for mandatory signs, 100% for
warning signs and 100% for prohibitory signs.

To address the multiclass traffic sign detection (TSD)
problem, [48] presented traffic sign localization framework

that is capable to detect multiclass traffic sign rapidly in
high-resolution image. They proposed three new ideas: first,
multi-block normalized local binary pattern (MN-LBP) and
tilted MN-LBP (TMN-LBP) are used as discriminant fea-
tures to express multiclass traffic signs effectively. Second,
a tree structure called Split-Flow Cascade is designed. It
uses the common features of multiple classes to build a
coarse-to-fine pyramid structure named SFC tree. Third, to
design an efficient SFC-tree a Common-Finder AdaBoost
(CF AdaBoost) is developed to find common features among
different training sets. All these new contributions make the
system work in real time with high recall, and they have
good results on GTSDB dataset: 100% for prohibitory signs,
99.2% for warning signs, 98.57% for mandatory signs, and
97.24% for other signs.

In [47], a good run time has been achieved (6–8 fps on
video sequences). The solution presents a novel approach,
called Categories-First-Assigned Tree (CFA-Tree) where
they integrate the detection and the classification phase in one
module, this novel system has high accuracy about 93.5%,
and however, this search tree can only detect three categories
and has low efficiency in handling high-resolution images
[48].

Due to the success of CNN in traffic sign classification, the
authors in [77] propose a lightweight and optimizedConvNet
with sliding window to detect traffic signs in high-resolution
images. The accuracy rate detection achieved is 99.89% on
the German Traffic Sign Detection Benchmark dataset. Time
execution on GPU (GeForce GTX 980) is 26.506ms which
is equal to processing 3772 frames per s. Obtained results
make this approach a real-time application.

Wu et al. [46] use convolutional neural networks CNN to
localize and recognize traffic sign, firstly they use support
vector machine to transform the original image from RGB to
grayscale to avoid falling into the problem of sensitivity to
color difference due to various lighting conditions, secondly
they use the fixed layer in the CNN to localize region of inter-
est which are similar to traffic sign, and the learnable layers
are used to extract discriminant features for classification.
They use GTSDB as a dataset and they obtained 99.73% in
warning signs and 97.62% in mandatory signs, but it is too
far from a real-time application.

Cascaded convolutional neural networks (CNNs) are
recently used by [83] to reduce false positive regions detected
using the local binary pattern (LBP) feature detector com-
bined with the AdaBoost classifier. Results achieved on
GTSDB using an Intel Core 2 Duo 2.2GHz are illustrated
in Table 5.

In Table 7, we resume detection methods based on
machine learning. Best accuracies (>99%) are achieved by
[84], [45] and [42], and however, can really these methods be
a commercial application and have a high rate and precision
in ground truth with other complex conditions? However,
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Table 5 Results achieved by Zang et al. [83]

Categories Rate (%) Time (ms) False positive

PROHIBITORY 99.45 35 1

MANDATORY 96.50 34 0

DANGER 98.33 35 0

these methods give best results, and they are not real-time
application. On the other hand, [82] achieve good results
with real-time execution (35 ms). Ordinarily, most learning-
based detection methods achieve a detection rate higher than
95%, so it is time to create new datasets more complicated
because current dataset is saturated.

2.4 Publicly available detection datasets

• The German Traffic Sign Detection Benchmark—
GTSDB dataset [43]: The GTSDB is a single-image traf-
fic sign detection, it consists of 900 images 1360 × 800
pixels divided into 600 training images and 300 eval-
uation images, and it is classified into three classes
mandatory, warning, and prohibitory. It allows an online
evaluation system with immediate analysis and ranking
of the submitted results.

• The Belgium Traffic Sign Dataset—BTSD dataset: The
BTSD [49]: It consists of more than 10,000 annotations,
and images are divided into three categories manda-
tory, warning, and prohibitory. It contains four video
sequences captured in Belgium which can be used for
tracking experiments.

• Laboratory for Intelligent and Safe Automobiles—LISA
dataset [50]: It contains videos and annotated frames, it
is composed of 7855 images containing 47 categories of
traffic signs, and only 6610 images are annotated, and the
size of images is varied from 640 × 480 to 1024 × 522.

• STSD dataset (Swedish Traffic Signs Dataset) [31]: It
consists of more than 20,000 images that are created by
taking recordings on over 350km of Swedish highways
and city roads, and every fifth frame from the sequence
is manually annotated. Sequence of STSD can be used
for tracking application.

• DITS data (Data Set of Italian Traffic Signs) [81]: It is
a recent dataset generated from 43,289 images extracted
from 14h of videos (1280 × 720 at 10 fps) captured in
Italy at date and night time. The detection dataset is com-
posed of 1416 training images and 471 test images, it
contains also text file with annotations, and three shape-
based super-classes are defined: Prohibitive, Indication,
and Warning.

Traffic sign detection datasets are summarized in Table 6.

Table 6 Publicly available traffic sign detection datasets

Dataset Images Properties

GTSDB [43] 900 Image’s size: 1360 × 800 pixels
Country: Germany

BTSD [49] 10,000 Image’s size: 1628 × 1236 pixels
Contain 4 videos With
annotations Country: Belgium

LISA [50] 7855 Contain videos With annotations
Image’s size: 640 × 480 to
1024x522 Country: USA

MASTIF [51] 10,000 Image’s size: 720× pixels
Composed of 3 datasets With
annotations Country: Croatia

STSD [31] 20,000 Image’s size: 1280 × 960 pixels
With annotations Country:
Sweden

DITS [81] 1887 With annotation Country: Italy

3 Classification methods

In this section, we highlight some recent and efficient meth-
ods in traffic sign classification. Firstly, we describe some
methods use hand-crafted features such as HOG, LBP, SIFT,
and BRISK; secondly, deep learning methods surpassed the
human performance are cited (Table 7).

3.1 Learning methods based on hand-crafted features

Fatin Zaklouta et al. [52] used different size histogram of
oriented gradients (HOG) descriptors and Distance Trans-
forms to evaluate the performance of K-d trees and random
forests, and the random forests are more robust to variations
in the background than the K–d trees. The rate classification
achieved for random forest is 97.2% with HOG descriptors
and 81.8%with Distance Transform, K–d trees improve 92.9
and 67%, respectively.

Ellahyani et al. [86] calculate the histogram of oriented
gradients (HOG) features in the HSI color space; then, it
combined with the local self-similarity (LSS) features. The
authors prefer to use random forest as a classifier. The recog-
nition rate achieved is 97.43% on the GTSDB and 94.21%
for the entire system in 8–10 frame/s.

Authors in [53] compared traffic sign recognition per-
formance of human and machine learning methods; they
also show results of a linear classifier trained by linear dis-
criminant analysis (LDA). The performance of LDA was
dependent on the feature representation. The authors achieve
best results with HOG2 representation by an accuracy of
95.68, 93.18% for HOG1 and 92.34% for HOG3.

The analysis of training data carried out by [62] demon-
strates that there is an imbalance in the distribution of samples
in the traffic sign classes. The biggest class can contain more
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than 1000 images while the smallest class can contain only
several images. This imbalance can negatively impact on the
classification performance; to overcome this problem, the
authors proposed a hierarchical classificationmethod for traf-
fic sign recognition, and the classification tree is composed of
two layers. In the first layer, theAdaboost classifier combined
with Aggregate Channel Features (ACF) is used to classified
sings into three categories according to their geometric shape.
TheACF is used for feature representationwhere 10 channels
are used (three color channels of RGB color space, the gra-
dient magnitudes, the six oriented gradient maps: horizontal,
vertical, 30, 60, 120, and 150), and then, these features are
used for training Adaboost classifier. In the second layer, a
traffic sign is identified by a random forest classifier which
is trained on three features: histogram of oriented gradients
(HOG), local binary pattern (LBP), and HSV; they achieved
as accuracy 95.97% with GTSRB dataset and 97.94% with
STSD dataset.

Yakimov et al. [61] achieved a real-time traffic sign recog-
nition using multithreaded programming technology CUDA
on a mobile GPU Nvidia Tegra K1, which contains 192
graphics cores and 4 CPU cores of ARM architecture. The
authors proposed a modified generalized Hough transform
(GHT) algorithm to classified traffic signs, and they show that
the algorithm achieved a good compromise between execu-
tion time and accuracy with preprocessed images comparing
to result obtained in [43] as it is illustrated in Table 8. The
German traffic sign dataset was used, but only 9987 among
50,000 images were taken into account.

LBP and HOG features are used by Li et al. [74] to rec-
ognize traffic signs. The accuracy rate achieved is 95.16%
for HOG and 95.38% for LBP with GTSRB dataset. Authors
in [76] use three categories of feature descriptor HOG, LBP,
and Gabor filter as input features to SVM, results obtained
are shown in Table 9.

He and Dai [72] propose a new variant of local binary pat-
tern (LBP) named multiscale center symmetric local binary
pattern (MS-CSLBP) used as a local feature and the low fre-
quency coefficients of discrete wavelet transform (DWT) as
a global feature to classified traffic signs. The great differ-
ence between LBP and CSLBP is that the latter replace the
center pixel value with the pixel value that is symmetric to

Table 8 Results achieved by Yakimov [61]

Algorithm Accuracy (%) time (FPS)

Sliding window + SVM [43] 100 1

GHT with preprocessing [61] 97.3 43

GHT without preprocessing [61] 89.3 25

Viola–Jones [43] 90.81 15

HOG [43] 70.33 20

Table 9 Results achieved by Li et al. [74]

approach Rate (%) Executing
time (ms)

LBP 93.36 1.21

Gabor 93.90 2.31

HOG 94.56 0.02

HOG+LBP 95.24 1.24

HOG + Gabor 97.00 2.40

Gabor + LBP 95.17 3.49

Gabor + LBP + HOG 97.04 3.60

the center pixel which reduce the dimension of feature vec-
tors to 2N/2 rather than 2N in LBP as it is illustrated in the
following equation:

CSLBPN
R =

N
2 −1
∑

i=0

S(gi − gi+p/2)2
i

S(x) =
{
1 x > τ

0 x < τ

(20)

A threshold τ is used to reduce the influence of the noise.
CSLBP can reduce the dimension of the feature vector and
computes very simple compared to HOG and SIFT; however,
CSLBP feature of single scale is not enough a discriminate
feature to represent traffic signs. To solve the problem, the
authors propose to calculate CSLBP in multiscale (radius =
1, 2 and 3). The MS-CSLBP is used then as input feature
to classified traffic signs with SVM; the results achieved by
[72] with GTSRB dataset are compared with two algorithms
of [73] of as it is shown in Table 10

SIFT feature matching algorithm is used by [66], and the
authors test their approach on eight videos captured in India.
The range of the rate achieved is between 75 to 100% with a
false positive does not exceed 2%. Hua et al. [67] also used
SIFT combined with the bag of visual to construct codebook
then classifying with SVM. The dataset used for evaluation
consists of 130 images (50 × 50 pixels), and they obtained
an accuracy rate 93% with time execution which consists of
0.098ms per image. To exploit the intrinsic structure of the

Table 10 Results achieved by He et al. [72] compared to results of
Tang et al. [73]

Method Rate (%) Execution
time (ms)

HOG [73] 95.92 134

DCT+LBP [73] 92.50 350

DWT+MSCSLBP [72] 97.67 121
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pre-learned visual codebook, a new feature approach using
group sparse coding is proposed by [71]. The rate of recog-
nition achieved by the proposed approach is 97.83% with
GTSRB dataset.

[63] use Speeded Up Robust Feature Descriptor (SURF)
with Artificial Neural Network (ANN) classifier to recognize
traffic signs. They create a newdataset containing 200 images
which have captured from highway roads of Bangladesh in
different weather and illumination conditions. The true posi-
tive rate achieved is 97%with 3%false positive rate; however,
they have good results, the time execution has notmentioned,
and their dataset does not contain all traffic sign types.

[64] combine SURF with K-nearest neighbor (K-NN)
search method, and they propose a novel feature selection
strategy.Not useful interest points are eliminated by applying
a threshold of the determinant of Hessian matrix, only inter-
est points with larger determinant are considered. In order
to find good matches, they propose a novel feature selection
strategy by calculating the first and the second minimum dis-
tances. Then, a good match is given as the following:

d1
d2

< t1 and d1 < t2 (21)

d1, d2: the first and the second minimum distances. t1, t2:
relative and absolute threshold, respectively.

To evaluate their approach, they create a new dataset
including more than 1200 images. They have as total false
recognition 12.81% and 0.99% of false classification rate.
The proposed approach is not robust to blur, and they
obtained a total false recognition 4% after eliminating blur
images from the dataset.

Chen et al. [69] use SURF as a feature to classify traffic
signs; firstly, they divide template signs into eight categories
based on the color and the trained Adaboost classifiers to
reduce time processing. Then approximate nearest neighbor
(ANN) algorithm is used for matching step. The recognition
accuracy achieved is 92.7% with 200 images containing 281
traffic signs.

SURF descriptor is also chosen by [11] due to the effi-
cient of SURF in execution time and robustness to changes
in lighting comparing to SIFT and PCA-SIFT. The authors
create for each class of signs a template model to eliminate
the interest points detected in the background and keep only
the points inside the sign. The recognition rate obtained is
97.72% with 48 images.

Hoferlin et al. [70] present an architecture for recognition
of circular traffic signs; it consists of two multilayer percep-
trons (MLP). The first layer uses SIFT as input feature, and
the second layer uses SURF. System performance is evalu-
ated in 30min sequence which contains 133 traffic signs, and
they achieved a rate of 96.4%.

Table 11 Results achieved by Malik et al. [65]

Method Recognition rate (%) Matching time(s)

Scenario 1 (%) Scenario (%) 2

SIFT 100 93.75 9.03

SURF 93.75 81.25 6.02

BRISK 93.75 87.5% 4.3

A comparative analysis of three feature matching tech-
niques SIFT, SURF and Binary Robust Invariant Scalable
Key (BRISK) points is presented by [65]. The authors cre-
ate a new dataset containing 172 images classified to 32
categories; after evaluation, they observed that SIFT is out-
performed SURF and BRISK. In execution time, however,
BRISK is almost twice as fast as SIFT, but it is not in real
time. The authors evaluate the system in two different scenar-
ios: in the first scenario, signs aremanually segmented, while
in the second one, signs are the result of segmentation step.
Table 11 shows results obtained by the authors which demon-
strate that classification performance depends on results of
segmentation step.

Recently, SURF was chosen by [68] because they con-
sider that SURF is a method that achieved the best results
in a reasonable time. The accuracy rate achieved is 94.28%
with 179 images of the created dataset, and execution time
obtained is 0.04 ms for a single SURF keypoint and 5 ms per
image. In this approach, objects detected in a similar area of
the scene are merged to one object, so that two superimposed
signs can be considered as a single sign which can influence
the matching performances.

Learning methods based on hand-crafted features are less
accurate than ConvNets; however, both methods are not
scalable and they cannot classify signs of other region or
novel dataset. Due to the scalability of visual attributes, they
are used by [89], combined with Bayesian networks which
can estimate the probable class of a novel input using the
observations. Rate classification achieved for each class of
GTSRB is 97.01% for the speed limit, 97.09% for manda-
tory, 96.31% for danger and other class so in average they
achieved 98.04%.

we summarize classification methods based on hand-
crafted features in Table 12. However, all methods achieve a
good rate classification, and there is not a method with high
rate classification and less false positive process in real time
it still an open field of research.

3.2 Deep learning methods

The traditional hand-crafted features have a limited rep-
resentation power and they are strongly related to expert
knowledge; consequently, they cannot be discriminativewith
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Table 12 Traffic sign
classification methods based on
hand-crafted features

Authors Dataset used Feature Rate (%)

Abedin et al. [63] 200 images SURF+ANN 97

Aghdam et al. [89] GTSRB Visual attributes with
Bayesian network

98.04

Ali et al. [11] 48 images SURF 97.72

Berkaya et al. [76] GTSRB GABOR 93.90

LBP 93.36

HOG 94.56

HOG+LBP 95.24

HOG+GABOR 97.00

Gabor+LBP 95.17

HOG+LBP+GABOR 97.04

Chen et al. [69] 200 images SURF+ANN 92.7

Ellahyani et al. [86] GTSRB HOG in HSI+LSS with
random forest

97.43

Han et al. [64] 1200 images SURF+KNN 96

He and Dai [72] GTSRB MS-CSLBP+DWT with
SVM

97.67

Hoferlin et al. [70] 30min sequence SIFT+SURF with MLP 96.4

Houben et al. [43] GTSRB Sliding window with
SVM

100

Viola–Jones 90.81

HOG 70.33

Hua et al. [67] 130 images SIFT+bag of visual 93

Lasota et al. [68] 179 images SURF 94.28

Li et al. [74] GTSRB HOG 95.16

LBP 95.38

Liu et al. [71] GTSRB Group sparse coding 97.83

Malik et al. [65] 172 images SIFT 93.75

SURF 81.25

BRISK 87.5

Qu et al. [62] GTSRB ACF with Adaboost 95.97

STSD 97.94

Sathish et al. [66] Videos captured
in India

SIFT 75 to 100

Stallkamp et al. [53] GTSRB LDA+HOG1 93.18

Tang et al. [73] GTSRB HOG 95.92

Yakimov [61] GTSRB GHT with preprocessing 97.3

GHT without
preprocessing

89.3

a very large dataset. To overcome this problem and push the
recognition performance, deep features are necessary. Pierre
Sermanet andYann LeCun [54] use Convolutional Networks
(ConvNets) to learn invariant features of traffic sign in a
supervised way using 32x32 color input images of GTSRB
dataset, and they reached an accuracy of 98.97%, which is
above then the humanperformance (98.81%).Moreover, they
increased their networks capacity and depth by ignoring color
information and they established a new record of 99.17%.

The authors obtained the best result without color informa-
tion, so they suspected that normalized color channels may
be more informative than raw color, and this method is still
far from a real-time application.

Fully connected layers in convolutional neural network
(CNN) are trained through back-propagation, and the sen-
sitivity of back-propagation and the over training of fully
connected layers can make the generalization performance
of CNN sub-optimal. Ordinarily, authors use CNN as a fea-
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Table 13 Accuracies and time
processing obtained by Aghdam
et al. [58] compared with results
of [60]

Method Accuracy (%) CPU time
execution (ms)

GPU time
execution (ms)

1 ConvNet [58] – 12.96 1.06

1 compact ConvNet [58] – 12.47 1.03

1 ConvNet [60] – 14.47 1.45

5 ConvNet [58] 99.23 64.8 5.30

2 Compact ConvNet [58] 99.61 24.94 2.06

20 ConvNet [60] 99.65 289.4 29.0

ture extractor and a classifier, it is true, and they are getting
impressive results, however, with a vast and complex net-
work on a huge dataset. On the other hand, the authors in
[57] propose a new approach where CNN works as a deep
feature extractor, which means that only the first eight lay-
ers are retained and eliminating the fully connected layers.
Extreme learning machine (ELM) is used then as a classi-
fier due to its performance generalization, and it receives the
input from CNN. The proposed method takes 5–6h in train-
ing without GPU implementation and achieves a recognition
rate of 99.40% without any data augmentation and prepro-
cessing like in [56], but this method is not robust to motion
blur.

Qian et al. [87] also use CNN as a feature extractor and
multilayer perceptron (MLP) as a classifier. Comparing with
the classical ConvNet, in themax pooling layer the authors do
not use the max values, conversely, their position. The max
pooling positions (MPPs) consist to encoded each max value
position to a binary value of 4 bits, then concatenating allmax
positions values to obtain the MPPs feature. The accuracy
achieved using MPPs is boosted to 98.86% on GTSRB.

Xie et al. [88] observe that 80% of misclassified signs
have the same color, shape, and pictogram. To overcome this
problem, they propose a two-stage cascaded CNN. The first
stage CNN is trained on the class label, while the second
stage is trained on super-classes separately according to the
shape and pictogram. The accuracy of the proposed method
is 97.94% on GTSRB, and they decrease the misclassified
number with the cascaded CNN from 430 to 202. The time
execution is not mentioned.

A new ConvNet architecture proposed by [58] can reduce
the number of parameters 27, 22 and 3%comparedwith Con-
vNets used by [54,59,60], respectively; then they propose a
compact ConvNet which reduces the number of parameters
52% compared to the ConvNet proposed. To improve the
accuracy of classification, they also proposed a new method
for creating an optimal ConvNets by selecting an optimal
number of ConvNets with the highest possible accuracy and
with less number of arithmetic operations 88 and 73% com-
pared with [59,60], respectively. The accuracy achieved by
their proposed method on GTSRB dataset is 99.23% with

2 ConvNets (compact ConvNet) and 99.61% with only 5
ConvNets which greatly reduces the execution time as it is
illustrated in Table 13. On the other hand, [54] have as accu-
racy 99.46% with an ensemble of 25 ConvNets, and [60]
achieve an accuracy 99.65% using 20 ConvNets. To test the
scalability and the cross-dataset performance of the newCon-
vNet proposed by [58], they use the ConvNet already trained
on GTSRB to identify the traffic signs in the BTSC dataset,
and the accuracy obtained is 92.12%.

A simple architecture of deep neural network is used by
[80] to recognize circular traffic signs, and they achieved
a recognition rate of 97.5% on GTSRB. Two other archi-
tectures of CNN are proposed by [81], and single-scale
architecture consists of two stages of convolutional layers
and two local fully connected layers followed by a softmax
classifier. In multiscale architecture, the output of the first
convolutional layer is considered as input for both the sec-
ond convolutional layer and the first fully connected one. The
two architectures are evaluated on GTSRB dataset and their
novel dataset DITS (Data Set of Italian Traffic Signs). The
accuracy rates achieved on GTSRB are 97.2% for single-
scale architecture and 98.2% for the multiscale one, and for
DITS dataset the accuracy rate achieved is 93.1% for single
scale and 95.0% for multiscale.

Dan Cirean et al. [55] used a GPU implementation of a
convolutional neural network and they applied preprocessing
on input images by resizing all images to 48x48 pixels and
they test three types of normalization to overcome high con-
trast variation and they obtain a recognition rate of 99.15%by
using a committee of multilayer perceptrons (MLPs) trained
with HOG feature descriptors and CNNs trained on raw
pixel intensities to boost recognition performance. After they
won the final phase of the German traffic sign recognition
benchmark by a recognition rate 99.46% in [56], they use a
multi-column deep neural networks (MCDNN) by averaging
the output activations of several DNN columns.

Aghdam et al. [78] propose a new architecture of CNN
which sets a new record of classification accuracy 99.51%.
The proposed architecture reduces 85% of the number of the
parameters and 88%ofmultiplications comparing to thewin-
ner network reported in the German Traffic Sign Benchmark
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Table 14 Deep learning
classification methods

Authors Dataset used Method Rate (%)

Aghdam et al. [58] GTSRB New ConvNet 99.23

Compact ConvNet 99.61

BTSC ConvNet trained on GTSRB 92.12

Aghdam et al. [78] GTSRB New CNN 99.51

Aghdam et al. [77] GTSRB Single CNN 99.55

3 CNN 99.70

Cirean et al. [56] GTSRB MCDNN 99.46

Cirean et al. [55] GTSRB MLPs+HOG+CNNs 99.15

Eickeler [80] GTSRB New DNN 97.5

Jin [60] GTSRB 20 ConvNet 99.65

Qian et al. [87] GTSRB CNN+MLP 98.86

Qu et al. [62] GTSRB ACF with Adaboost 95.97

STSD 97.94

Sermanet et al. [54] GTSRB Convnets 98.97

Human performance 98.8

Convnets without color 99.17

Xie et al. [88] GTSRB Cascaded CNN 97.94

Youssef [81] GTSRB Single-scale CNN 97.2

Zeng et al. [57] GTSRB CNN+ELM 99.40

Table 15 Available
classification datasets

Dataset Classes Images Properties

GTSRB [53] 43 50000 Image’s size: 15 × 15 to 222 × 193 pixels

Country: Germany

BTSC [49] 62 6000 Image’s size: NA Country: Belgium

Revised MASTIF [51] 30 6000 Image’s size: 64 × 64 pixels Country: Croatia

DITS [81] 58 9254 Country: Italy

competition [56]. This reduction is achieved by using Leaky
Rectified Linear Units (ReLU) [79] as an activation func-
tion that use only one comparison and one multiplication to
compute the output.

A new record of traffic sign classification is achieved again
by Aghdam et al. [77], and they propose a new variant of
their previous CNN proposed in [78]. The authors replace
color images with that grayscale, and they remove the linear
transformation layer. And to increase the flexibility a fully
connected layer is added to the network and they reduce the
size of the first and the middle kernels also the input images
are resized to 44 × 44 pixels to reduce time processing. The
new best accuracy achieved is 99.55% with single CNN and
99.70% with an ensemble of 3 CNN. The new CNN is real
time with time processing of 0.7 ms per image.

In Table 14, we summarize deep learning methods.

3.3 Publicly available classification datasets

• German Traffic Sign Recognition Benchmark—GTSRB
dataset [53]: The GTSRB traffic sign classification

dataset is composed of 43 classes containing more than
50000 images. Theminimum of traffic signs in each class
is 9 traffic signs with a size varied between 15 × 15 to
222 × 193 pixels. To allow searchers who do not have a
background in imageprocessing to participate in the com-
petition, three pre-calculated features are provided: three
configuration of HOG features (HOG1, HOG2, HOG3),
Haar-like features and hue histograms (Table 15).

• Belgium Traffic Sign Classification–BTSC dataset [49]:
The BTSC dataset is just an extraction of regions of
interest containing traffic sign in BTSD dataset, and it
is composed of more than 4000 training images classi-
fied in 62 classes and more than 2000 testing images.

• Revised MASTIF dataset: The revised MASTIF [51]:
It is a subset of MASTIF dataset obtained by extracting
traffic sign examples from regions of interest inMASTIF
dataset. It is composed of 4028 training images and 1644
testing images. Images are distributed on 30 classes.

• DITS data (Data Set of Italian Traffic Signs) [81]: The
classification subset is composed of 8048 images for
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training and1206 for testing. It contains in total 58 classes
of signs with different sizes.

4 Future research directions

The problemwith the current state-of-art is the lack of ground
truth and universal dataset that contains sign from the differ-
ent region (including regions not adhering to The Vienna
Convention on road signs and signals) and captured in dif-
ferent conditions. Since available datasets reached saturation,
we regard that a new universal dataset and more complex is
necessary. Another problem of the datasets currently avail-
able is the imbalance in the distribution of samples in the
traffic sign class which can negatively impact on the clas-
sification performance; to overcome this problem, a new
balanced dataset is required.

We suggest for future research using the high-resolution
image in detection dataset, if we consider that a speed of
the car is 100km/h and there is a sign away from the car
about 27m; therefore, this sign will be passed in 1 s. For
this reason, dataset’s images should be in high resolution to
clearly detect distant signs. Researchers can focus more on
tracking module to follow signs for the reason that if the
system uses a camera with 30 shot frames per s, it should
be able to detect and recognize all signs of 30 frames in 1 s;
however, with tracking module, sings detected and tracked
will not be reclassified in each frame captured but only once
until the appearance of a new signs.

Traffic sign recognition systems are composed of detec-
tion and classification stages. Since classification’s perfor-
mance depends on detection results, this makes the determi-
nation of the best solution a tedious process. As it is demon-
strated in the introduction, the core of the problem is not
detecting traffic signs with high recall; however, obtaining a
high precision is more crucial. We suggest focusing research
on how decreasing false alarms in traffic sign detection.

Toenhance the accuracyof classification stage, researchers
should focus more on searching and analyzingmore discrim-
inant features which can better represent different classes of
traffic signs. Currently, deep features are more discriminant
than hand-crafted one; nevertheless, there are no studies on
learning methods, proving their scalability for new dataset
which can pave way for future research.

5 Conclusion

In this paper, we have presented an overview of some recent
and efficient traffic sign detection and classificationmethods.
Detection methods are divided into three categories: color
based that are classified according to the color space, shape
based, and learningbased that includedeep learningmethods.
The recent detection methods achieve a detection rate varied

from 90 to 100% with available dataset described briefly in
the paper. Nevertheless, it is arduous to decide which method
is the best.

To obtain a high classification rate, it is necessary to adopt
discriminative features and a powerful classifier. Acceptable
results achieved by learning methods using hand-crafted fea-
tures, and furthermore, classification methods performances
boosted with deep learning methods such as CNN and they
achieved a high accuracy rate>99%. Since available datasets
reached saturation, a new universal dataset more complex is
indispensable.

However, detection and classification methods achieved
a high accuracy rate, and they are still far from a real-time
ADAS application where the sign should be detected and
classified in real time.

The imposed question is: Can recent traffic sign detection
and classification methods prove the same performances in
real-world application or with other ground truth datasets?
Can they prove with smart phone devices the same real-time
execution obtained under cpu and gpu environment? Finally,
a universal traffic sign recognition system is still an open field
of research.
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