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Abstract The accuracy of content-based image retrieval
(CBIR) systems is significantly affected by the discrimina-
tory power of image features and distance measures. This
paper performs an investigation towards finding the best local
and global features and distance measures for content-based
image retrieval. It provides insights into the trade-offs regard-
ing computational costs, memory utilization and accuracy
on several standard datasets which include MIRFLICKR,
Corel, Holidays and ZuBuD. First, low-dimensional global
and local features are extracted individually to generate a
bank of small image features. Second, multilevel descriptor
forms are utilized to produce highly discriminative image
representations based on multi-features aggregation scheme.
The relationship is highlighted between features (local and
global) and other retrieval factors such as quantization
approaches, visual codebooks, distance measures, vector-
ization methods, memory and retrieval speed. The resulting
composite image representations are compact, i.e., only 32–
64 vector dimension and 32–128 codebook size, and preserve
high discriminative levels which further boost the retrieval
accuracy and performance. The experimental results show
that the presented multi-features image representations are
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efficient and outperform many competitive methods of the
state-of-the-art.
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1 Introduction

Content-based image retrieval (CBIR) is one of the fast-
advancing research areas in computer vision [1–4]. Feature
extraction is a crucial part in the retrieval process and com-
puter vision applications. The aim of feature extraction is to
extract and formulate a meaningful and discriminative image
representation to return the most similar and relevant images
to query images. The majority of the works presented in typ-
ical CBIR systems/approaches are based on low-level image
features [5–17], including color, texture, shape, and spa-
tial information. Global features usually describe the whole
visual contents of the image instead of only considering cer-
tain points of interests.

On the other hand, local image descriptors, e.g., scale-
invariant feature transform (SIFT) [18], speeded-up robust
features (SURF) [19], and histograms of oriented gradients
(HOG) [20], have recently gained a great attention from
the research community in computer vision. Local image
descriptors generally describe local information using key
points of some image parts such as region, object of inter-
est, edges, or corners. Recently, local descriptors have shown
their superiority in a range of computer vision applications,
e.g., scene categorization, panoramic stitching, visual object
classification, object tracking, and image retrieval. Local
descriptors havemany advantages over traditional global fea-
tures due to their invariance to image scale and rotation, and
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they provide a robust matching across a wide range of differ-
ent situations [18].

As an integral part of this work, exploiting the bene-
fits of both global and local image features, to strengthen
the robustness and discrimination of image representation,
is an interesting challenge. On one hand, local descriptors
improve the system robustness against scale variance and
many image deformations, e.g., noise, rotation, and view-
point changes. On the other hand, global features consider
the whole image structure, which is close to the human
vision characteristics, including objects and spatial rela-
tions. Thus, it is an indispensable demand to extract proper
features to gain high retrieval accuracy. Furthermore, the
dimension of feature vector should be carefully considered
as it substantially affects the CBIR system’s performance
in terms of memory and computation cost. Since this work
targets generating very low-dimensional features and quan-
tization, high-dimensionality reduction scheme is applied
based on the principal component analysis (PCA)/whitening
approach.

Basically, increasing the dimension of feature vectors
means extracting more information from images. But, does
that provide more distinctiveness on image representation?
Will that improve the retrieval accuracy of CBIR system?
And, importantly, how will different image features per-
form and relate with other retrieval aspects, e.g., vector size,
quantization, and similaritymeasures/metrics? Exploring the
relationship between these factors is one of the core parts
of this paper. Distance measures, used in finding the sim-
ilarity/dissimilarity between query images and all dataset
images, affect the retrieval accuracy and image ranking.
However, the majority of typical CBIR methods in the lit-
erature utilize one distance measure in a particular context.
Accordingly, there is no sufficient evaluation on how differ-
ent distance measures act under different retrieval settings,
and its impact on the retrieval accuracy and system perfor-
mance. This work employs many commonly used distance
measures in the CBIR baseline system to enable a strong base
for model optimization.

In this paper, a CBIR scheme is developed based on a
multi-feature analysis to generate compact image signatures.
The baseline CBIR evaluation is adopted using a multilevel
retrieval schemewhere each level is fed by the result obtained
from the previous ones. The extracted features are formed
into small-size image vectors including local descriptors. The
system performance is also evaluated at all stages of devel-
opment and optimization, which is observed under various
POI detectors, similarity distances, vector dimensions, and
quantization approaches. Our contribution presented in this
paper is threefold:

– Employing a multilevel evaluation scheme based on
image multi-feature analysis towards finding the best

compact and discriminative local and global image
representations for the CBIR task. First, we extract
low-dimensional global features (color, texture,multires-
olution, and local patterns) and local descriptors using
different points of interest detectors, e.g., features from
accelerated segment test (FAST) [21] andHarris. Second,
best discriminative features are identified and passed to
the next level of the CBIR system. Finally, the resulting
image signatures are formed based on a robust combi-
nation between the extracted features to generate further
discriminative image representations;

– investigating the relationship between image represen-
tation and other retrieval factors with trade-off analysis,
including quantization approaches, various visual code-
books, similarity measures, retrieval speed, and memory
usage.We provide an insight onwhen composite features
can be expected to work efficiently, and how the benefit
of using different vectorization setups can be exploited;
and

– adapting the CBIR model to handle different queries
based on a proper weighting of both image represen-
tations and distance measures. New insights are also
provided into using particular distance measures such as
Spearman for CBIR with thorough comparisons made
between distance measures. The resulting CBIR model
is evaluated on several standard image datasets.

The remaining part of this paper is organized as follows:
Sect. 2 introduces the related works to this paper along with
an overview on global and local image features; Sect. 3
illustrates the baseline framework of CBIR model and the
methodology adopted for image retrieval, including feature
extraction, image dataset, and evaluation protocol; Sect. 4
presents thorough experiments and results obtained by the
baseline CBIR system; Sect. 5 demonstrates the procedure
and results of compact quantization based on various retrieval
factors utilized; Sect. 6 presents comparisons with the liter-
ature; and Sect. 7 concludes this paper.

2 Related work

This section introduces the most common global and local
features used in the literature, main quantization approaches,
and the most related works to this paper with certain limita-
tions to be addressed.

Color feature is one of the most extensive vision char-
acteristics due to its close relation with image objects,
foregrounds, and backgrounds. Moreover, it does not depend
on the state of image contents, e.g., direction, size and angle.
The popular color representations are color histogram (e.g.,
linear color spaces such as RGB, XYZ, CMY, YIQ, YUV,
and non-linear color spaces such as L/a/b, HSV, Nrgb, Nxyz,
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L/u/v), color moments [5], color co-occurrence matrix [6],
and dominant color descriptor (DCD) [7], which is one of the
MPEG-7 color descriptors. Image global texture is another
widely used feature for describing innate surface properties
of a particular object and its relationship with the surround-
ing regions [8]. Some features commonly utilized as global
texture descriptors are Gabor filters, Wavelet transforms,
probabilistic texture retrieval [9], stochastic multivariate
modeling [10], gray-level co-occurrence matrix (GLCM)
[11], and Tamura features [12]. Image shape is also used as
a global feature that basically carries semantic information,
and it is broadly based on image boundary or regions. Some
of the common shape descriptors include Fourier descriptors,
deformable templates, invariant moments, B splines, aspect
ratio, curvature scale space (CSS), circularity, and consecu-
tive boundary segments [4,13].

However, most of the low-level features lack spatial infor-
mation in the extracted representation, e.g., histograms and
shape points. Consequently, using an abstract representation
alone is not sufficient to represent the pictorial semantic con-
tent of images. Many spatial-based features have recently
gained more attention, including regions of interest (ROIs)
[14], graph/tree-based representations [15], strings-based
[16], and matrices-based [17]. Moreover, none of a single
global feature has a discriminative power under different
image contents and deformations, e.g., lightening, noise, and
rotation. Even though some research works [13,22–24] have
been presented as a combination scheme between global fea-
tures to increase the retrieval accuracy, there is no sufficient
evaluation on the robustness and distinctiveness of those fea-
tures. Therefore, handcrafted low-level visual features, e.g.,
SIFT and HOG, are extensively used to capture the local
characteristics of image objects and to preserve some local
patterns of image contents.

Among the most popular local point descriptors are SIFT,
SURFandHOG.Thediscrimination level of local descriptors
is mainly influenced by the detector type of point of interests
(POI). The most commonly used detectors are blob-based
detectors (e.g., SIFT), SURF detector, corner detectors (e.g.,
Harris and Hessian) [25], FAST [21], and maximally sta-
ble extremal regions (MSER) [26]. Investigating the impact
of using different detectors to formulate different image
descriptors is an interesting aspect in the domain of CBIR.
Typically, a large number of local descriptors are extracted
from each image and then used for direct matching between
similar batches. This is not feasible in the CBIR context due
to the high-speed equipment and memory storage needed.
The PCA is well suited for representing key point patches,
and it provides more compact image descriptor than the stan-
dard representations [27]. Therefore, local image descriptors
are usually quantized using aggregation-based approaches.

Bag of words (BOW) [28] is one of the widely applied
state-of-the-art approaches for image quantization. BOW

assigns the extracted local descriptors from images to the
closest visual words from a visual vocabulary, i.e., ‘code-
book’. The codebook’s k centers are usually computed
and learned by k-means clustering approach. This high-
dimensional sparse vector represents the image which is then
weighted using term frequency inverse document frequency
(TF-IDF). Fisher vector (FV) [29] is another approach that
provides a compact and dense representation which is prob-
ably more adequate for retrieval applications. Fisher kernel
is a probabilistic model that identifies the similarity between
objects using a set of measurements for each object with a
higher order of statistics than BOW. Recently, a simplified
non-probabilistic version of Fishers kernels has been intro-
duced, referred as vector of locally aggregated descriptors
VLAD.

VLAD [30] is also trained using k-means to accumulate
the local descriptors, which is followed by L2 normaliza-
tion. VLAD addresses the efficiency andmemory constraints
by aggregating local descriptors into a moderate fixed-size
vector representation. Some recent research efforts have
introduced different schemes on features combination and
their impact on the retrieval accuracy [31–35]. Lakovidou
et al. [31] evaluate a set of MPEG-7 and MPEG-7-like
global descriptors, e.g., scalable color descriptor (SDC) and
color edge directivity descriptor (CEDD), for CBIR tasks
in conjunction with SIFT and SURF local descriptors. Their
proposed combination scheme is tested usingBOWquantiza-
tion where the system performance is only evaluated in terms
of retrieval accuracy. Elalami et al. [32] integrate the color co-
occurrence matrix (CCM) and the difference between pixels
of scan patterns (DBPSP) as texture representation, and the
artificial neural network (ANN) is used as a classifier. Zhang
et al. [33] combine SIFT with color histograms, moments,
coherence, and autocorrelogram. Deselaers et al. [34] com-
bine many features for image retrieval, including SIFT, color
histogram, Tamura, MPEG7, and others. Walia and Verma
[35] investigate several local texture descriptors (e.g., LBP)
on Log-Gabor filters response for CBIR evaluation. Bosch
et al. [36] use pyramid histograms of visual words (PHOW)
descriptor that extracts dense SIFT descriptors at multiple
scales on three HSV image channels and stacked them up.
The work introduced by Alzu’bi et al. [37] also combines a
single SIFT local feature with single color feature as image
representation.

However, the aforementioned works only handle certain
retrieval aspects to evaluate some extracted features in terms
of accuracy. Limited types of feature representations are
introduced with no sufficient involvement of both global and
local features in the CBIR scheme. In addition, many impor-
tant factors are not included or analyzed, e.g., quantization
and similarity/dissimilarity analysis, which largely affects
the retrieval performance, especially the retrieval speed and
memory usage. Accordingly, our work is distinguished from
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the other related works by addressing the aforementioned
limitations along with obtaining low-dimensional but highly
discriminative image representations. The presented CBIR
model employs amultilevel retrieval structure to extract com-
pact single and aggregated image features and highlights the
relationship between all of the utilized factors in the retrieval
model. System performance is evaluated and reported at all
stages of model development and optimization, and it is
observed under various POI detectors, similarity distances,
vector dimensions, and quantization approaches.

3 CBIR framework

This section presents the baseline CBIR framework, the
extraction scheme of global and local features, distance
measures, benchmarking image dataset, and performance
measures (i.e., accuracy, retrieval time, and memory usage)
used throughout this work.

3.1 The general retrieval framework

Figure 1 demonstrates the adopted methodology in building
the baseline CBIR system into a set of correlated blocks and
steps. The process is summarized as follows: first, a query
image is submitted to the system, i.e., query-by-example.
Second, a set of individual global and local features is
extracted from both query image and all of dataset images.
Third, each feature type is separately evaluated at each stage
of themultilevel procedure under certain setups. Specifically,
the retrieval performance is tested on individual and com-
bined global features; then, the best global feature obtained
is used in the next level. Subsequently, the best local image
descriptors, extracted by various POI detectors, are aggre-
gatedwith the best performing global features obtained in the
previous stage. Finally, a robust image signature is acquired
and used as a base in the later optimization stages.

At every level of feature extraction and aggregation,
different distancemeasures, e.g.,Minkowski, Cityblock, cor-
relation, and Spearman, are used and assessed against each
feature or descriptor to identify its impact on system per-
formance, accuracy, and results ranking. For the current
stage, VLAD is used to quantize local descriptors into image
vectors; but FV and BOW quantization approaches will
be involved in the model optimization level. The returned
images are sorted and ranked as a list of images from the
most to the least similar images. The performance measures,
i.e., accuracy, speed, and memory, are also reported at every
stage of the CBIR system.

3.2 Feature extraction

In this section, all of the global and local image features
are described, including features/descriptors extraction, local
points detectors, and quantization methodology.

3.2.1 Global features

The proposed CBIR model utilizes ten global features that
represent image color, texture, shape, and spatial features.
The diversity of selected features provides more information
on image representation. Particularly, the following global
features are extracted from each image:

1. Color The RGB and HSV histograms are used to repre-
sent the color channels of image, and the color distrib-
ution of each channel is represented using the first two
color moments [5].

2. Texture Extensive texture representations are extracted
with a variety of global features; including, Gabor
wavelets [38], wavelet moments [39], GLCM [11], SFTA
[40], LBP [41,42], and GIST [43].

Fig. 1 The baseline CBIR framework
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Table 1 Compact global features used in the baseline CBIR model

Feature Category Extraction procedure in this paper Vector size

RGB histogram Color 3 color channels are quantized into 3 histogram bins then
normalized by L2 norm. The color value is: C = 3R + 3G + 3B

24

HSV histogram Color H component is quantized into 8 ranks non-uniformly and S and V
components are quantized into 2 ranks uniformly. The color
value is: C = 8H + 2S + 2V

32

Color moments Color Image distribution of color is represented as vector of first 2 color
moments: mean and standard deviation for each color channel

40

Chromaticity moments Shape Statistics extracted from a bidimensional color distribution as
implemented in [44]

10

Segmentation-based fractal
texture analysis (SFTA)

Texture A set of 4 thresholds is computed from the input image to get the
final SFTA feature vector normalized by summation

24

Gabor wavelets Texture 4 scales and 6 orientations are used. For each scale and orientation,
mean and squared-mean are computed and concatenated into a
feature vector

48

Wavelet moments Texture Two-dimensional discrete wavelet transform (DWT) is used to
obtain the first two moments of normalized wavelet coefficients,
i.e. standard deviation and mean

40

Gray-level co-occurrence
matrix (GLCM)

Texture/spatial 4 statistical properties are extracted: energy, contrast, correlation,
and homogeneity. Each property part is of size 20 that are
concatenated together into a single GLCM feature vector

80

LBP Texture A normalized histogram of LBP is computed using 8 sampling
points defined around the origin coordinates (0, 0) of a circle of
radius 1

10

GIST Texture Standard GIST is applied using 4 scales, 8 orientations per scale,
and 4 blocks

512

3. Shape The chromaticity moments feature [44] is used to
extract image edges, which is based on the bidimensional
distribution of image colors.

In addition, some spatial information is used from the sta-
tistical properties extracted in the GLCM algorithm. Table 1
summarizes the global features used in the baseline CBIR
model along with the conducted extraction procedure for
each type. It is clear that the size of the extracted image vec-
tors is very small, which is an advantage for more efficiency
and less memory usage.

3.2.2 Local points detectors

Since different points of interest (POI) or corner/region
detectors may provide different levels of discrimination for
local image descriptors, the proposed CBIR system is capa-
ble of handling a set of POI detectors to explore their
effectiveness under different setups. The impact of detector–
descriptor pairs on the final image signature is also evaluated.
The following are the local detectors involved in our experi-
ments:

1. Blob-based detectors This method aims at detecting
regions of interest that are distinguished in properties

and almost constant. One of the most common methods
adopted to detect image blobs is based on scale-space
interest point detectors such as Laplacian of the Gaussian
(LoG) and difference of Gaussian (DoG), which is used
in SIFT [18] image descriptors. The scale-normalized
determinant of the Hessian calculated from Haar wavelet
is also another successful method used as interest point
detector in SURF [19] image descriptors.

2. Corner-based and minimum eigenvalue detectors These
methods also detect local interest points for which there
are two dominant and different edge directions, i.e., the
intersection of two edges. Among the most commonly
used approaches are: Harris–Stephens [25], FAST [21],
and minimum eigenvalue [45]. These algorithms return
the detected corners object that contains information
about feature points detected in the 2-D grayscale input
image.

3. Region/intensity-based detectors These types detect sta-
ble regions based on the intensity range of input images.
The MSER [26] algorithm incrementally tests the vari-
ation of region area size between different intensity
thresholds until a stable region is detected. On the other
hand, LIOP [46] algorithm divides local image patches
into subregions using affine covariant region detectors,
which is based on the intensity order.
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Table 2 Detectors of POI/regions/corners used in the baseline CBIR model

Detector Parameters (I = input image) Type

Gaussian blobs Scales = 7, scale factor
√
2, bin size = 8 pixels, step = 4 pixels,

σ = 0, contrast-threshold = 0
Blob-based

SURF Threshold = 700, octaves = 3, scale levels = 4, ROI = [1 1 size (I, 1)] Blob-based

FAST Threshold = 0.10, contrast = 0.2, ROI = [1 1 size (I, 2) size (I, 1)] Corner-based

Harris Threshold = 0.01, Gaussian filter size = 5, ROI = [1 1 size (I, 2)
size (I, 1)]

Corner-based

Minimum eigenvalue Threshold = 0.01, Gaussian filter size = 5, ROI = [1 1 size (I, 2)
size (I, 1)]

Corner-based

MSER Threshold = 2, region size = [30 14000], variation=0.25, ROI = [1
1 size (I, 2) size (I, 1)]

Region/intensity-based

LIOP Threshold = −0.02, neighbors sample = 4, sampling radius = 5,
spatial bins = 6

Region/intensity-based

Table 2 briefly describes all detectors of local points/
regions used to construct the local descriptors.

3.2.3 Local features

This section presents the local image descriptors used in the
proposed CBIR system and the quantization methods (i.e.,
FV, VLAD, and BOW) used to encode them.

1. SIFT [18,47] It performs a reliable matching between
different views of objects. To find the position and scale,
SIFT detects the locations of key points in the scale space
of image using scale space extrema in the difference-of-
Gaussian (DoG) function included in the image I , D(x, y,
σ ), which is calculated from the difference of two nearby
scales (x, y) separated by a constant multiplicative factor
k as follows:

D(x, y, σ ) = (G(x, y, kσ) − G(x, y, σ )) × I (x, y)

(1)

The standard SIFT uses a 4×4 array of histogramswith 8
orientation bins in each,which yields a (4×4)×8 = 128-
dimensional descriptor for each key point. This vector is
then normalized to unit L2 norm to reduce the effects of
illumination change. In our proposed CBIR framework,
the standard SIFT is densely extracted and computed at
7 scales by a factor

√
2 between successive scales, bin

size of 8 pixels wide and a step of 4 pixels. Finally,
the rootSIFT [47] is obtained that utilizes the square
root Hellinger kernel instead of the standard Euclidean
distance to measure the similarity between SIFT descrip-
tors, which is proved to achieve a superior performance
in most cases without increased processing or storage
requirements.

TheHellinger kernel for twoL1-normalized n-length his-
tograms, x and y, is defined as:

H(x, y) =
n∑

i−1

√
xi yi (2)

Comparing rootSIFT descriptors using Euclidean dis-
tance (dE) is equivalent to using the Hellinger kernel to
compare the original SIFT vectors as follows:

dE
(√

x,
√
y
)2 = 2 − 2H(x, y) (3)

2. SURF [19] It is mainly based on the sums of 2D Haar
wavelet responses and makes an efficient use of integral
images. The standard detector of interest points in the
SURF is based on the Hessianmatrix which detects blob-
like structures at the locations where the determinant is
the maximum. Unlike the Hessian–Laplace detector, this
method relies on the determinant of the Hessian for the
scale selection.
In addition, SURF descriptor identifies the distribution of
intensity content within the interest point neighborhood,
which is similar to the gradient information extracted by
SIFT. The SURF also includes a new indexing step based
on the Laplacian sign which reduces the time needed for
feature computation and matching, and it increases the
robustness simultaneously.

3. HOG [20] It characterizes the local object appearance
and shape by edge directions or the distribution of local
intensity gradients, even without an accurate knowledge
of edge positions or the corresponding gradient. The
HOG divides the image window into small spatial cells
as regions, and accumulates edge orientations over the
pixels of each cell or a local l-D histogram of gradient
directions. As a result, the image representation is formed
by the combined histogram entries. Furthermore, it accu-
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mulates ‘energy’ as a measure of local histogram over
‘blocks’.

4. DAISY [48] It is inspired by SIFT and GLOH and retains
their robustness to reduce the computational require-
ments and convolutions using Gaussian filters. DAISY
feature is densely extracted over all pixels. It com-
putes the orientation maps of different sizes at low
cost as convolutions with a large Gaussian kernel can
be obtained from several consecutive convolutions with
smaller kernels.

5. Local intensity order pattern (LIOP) [46] It encodes the
local ordinal informationwhich is used to divide the local
patch into sub-regions. Then, a LIOP of each point is
defined based on the relationships between the intensi-
ties of its neighboring sample points. Next, all LIOPs
of points in each ordinal bin are accumulated and then
concatenated together to construct the LIOP descriptor.
LIOP descriptor is robust and invariant to image rotation,
monotonic intensity changes, and geometric transforma-
tions, e.g., viewpoint change and image blur.

Table 3 summarizes all of local descriptors used in our
CBIR system.

In this work, three quantization approaches are used to
quantize local descriptors extracted from any input image,

Table 3 Local descriptors used in the baseline CBIR model

Descriptor Vector size Detectors

rootSIFT 128 Gaussian blobs

SURF 128 SURF/Harris/FAST/MSER/MinEign

HOG 144 SURF/Harris/FAST/MSER/MinEign

DAISY 200 SURF/Harris/FAST/MSER/MinEign

LIOP 144 LIOP batching

i.e., VLAD, FV, and BOW. The VLAD is used as a base-
line method to evaluate the baseline CBIR system introduced
in Sect. 4. In Sect. 5, FV and BOW are utilized to inves-
tigate their impact on the performance of the proposed
image representations. As aforementioned, VLAD is formu-
lated based on regions/corners/POIs that are extracted from
images. Each descriptor is assigned to the closest cluster
(i.e., image class) of a vocabulary of size k. For each clus-
ter, differences between descriptors and cluster centers (i.e.,
residuals) are formed into a vector, and k× size(descriptor)
sums of residuals are concatenated into a single vector. In
the recent standard scheme, VLAD vectors are normalized
by a signed square rooting (i.e., an element xi is transformed
into a sign(xi )sqrt(|xi |), and the transformed vector is L2-
normalized. In this work, the standard VLAD settings are
adopted, and a visual vocabulary of 256 clusters built by k-
means approach is used in all experiments.

3.3 Distance measures

To achieve more retrieval accuracy and better performance,
the evaluation scheme of CBIR system employs effective
similarity matching measures to characterize and quantify
the perceptual similarities. Distance measures are an integral
part of system evaluation. The key advantage of using dif-
ferent distance measures is to find out adequate and robust
measures under various retrieval setups. Table 4 describes all
distance measures d(X,Y ) used in the experiments for any
two images, X and Y , represented in a data space by two
n-dimensional vectors (x1, x2, . . . , xn) and (y1, y2, . . . , yn),
respectively.

3.4 Performance measures

For each query initiated in the retrieval system, the top 20
images are retrieved and ranked according to the similarity

Table 4 The distance measures
used in the baseline CBIR model

Measure Equation

Relative Manhattan d(X, Y ) =
n∑

i=1

|xi−yi |
1+xi+yi

(6)

Euclidean (L2) d(X, Y ) =
(

n∑
i=1

|xi − yi |2
)1/2

(7)

Standard L2 d(X, Y ) =
n∑

i=1
weight(xi ) × (xi − yi )2 (8)

Chebyshev (L∞) Equation (6), where r = ∞
Cosine d(X, Y ) = 1 − cos θ = 1 − X×Y

‖X‖×‖Y‖ (9)

Correlation d(X, Y ) = 1 − d2(X,Y )
2n , where d(X, Y ) = L2 distance (10)

Cityblock (L1) d(X, Y ) =
n∑

i=1
|xi − yi | (11)

Spearman d(X, Y ) = 1 − 6×∑n
i=1 (rank(xi )−rank(yi ))2

n(n2−1)
(12)
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Fig. 2 Image samples selected from each category

scores computed, and then, the precision of ranked images
(P(Rk)) is computed to measure the retrieval accuracy for
any query as follows:

P(Rk) = # (relevant images ∩ retrieved images)

# (retrieved images)
, (4)

where the retrieved images are the top images retrieved (Rk)

and the relevant images are only the relevant images to the
query image, i.e., belongs to the same image category. A
set of representative images is taken as queries from each
image category. The average precision (AP) is then computed
for each category, and the mean average precision (mAP) is
reported for the whole dataset, i.e., the average of the AP
of each image category. For a single query image, AP is the
average of the precision value obtained for the set of top k
images existing after each relevant image is retrieved, and this
value is then averaged over all queries in the image category.
Therefore, if the set of relevant images for a query q j ∈ Q
is {I1, . . . , Im} where Q is the set of all queries, then mAP
is defined as:

mAP(Q) = 1

|Q|
|Q|∑

i=1

1

m

m∑

k=1

P(Rk) (5)

Other performance measures are evaluated in terms of
retrieval speed (in ms/s) and memory usage (in B/kB).

3.5 Image dataset

A subset of Corel image dataset1 is used in the baseline CBIR
system, which is widely utilized in computer vision applica-
tions. It consists of 1000 colorful images with 10 different
image categories, i.e., 100 images per category.This semantic
categorization of image dataset reflects the human perception
of image similarity. Figure 2 shows a representative image
for each image category.

1 http://wang.ist.psu.edu/docs/related/.

4 Experiments and discussion on the baseline
CBIR model

In this section, we present and discuss the system per-
formance using three different image representations, i.e.,
individual global features, combined global features, and
combined global and local features. Each representation is
evaluated in terms of retrieval accuracy mAP, speed, vector-
ization time, and memory usage.

4.1 Individual global features

Figure 3 shows the retrieval accuracy (mAP) obtained by
every single global feature at top 20 ranked images. It is evi-
dent that the color histograms achieve the highest retrieval
accuracy among all global features under the same retrieval
setup. Specifically, theHSVhistogramoutperforms all global
features over all of distance measure, where the best results
for HSV are 76 and 75 % reported using relative Manhat-
tan and Cityblock similarity distances, respectively. Table 5
presents other performance measures achieved by all global
features in terms of average vectorization time, speed, and
memory usage.

The retrieval speed is the average time in seconds elapsed
from the time of query submission until ranking and show-
ing the top 20 images, which includes the average time of
image vectorization. The memory size is the average actual
memory required to store the image vector of the extracted
global feature. As shown in Table 5, HSV feature still records
a superiority according to the time elapsed for vectorization
and search imageswith only197Bof requiredmemory.How-
ever, other features such as RGB, color moments, GIST, and
LBP have comparable accuracy results (see Fig. 3), but they
suffer from either the long search time or the large memory
size. As a result, the HSV color feature is selected to be the
basis of the combination between global features, i.e., HSV
is combined with every individual global feature to assess its

Fig. 3 Retrieval accuracy of global features
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Table 5 System performance using individual global features

Feature Vectorization
time (s)

Retrieval
speed (s)

Memory
size (B)

HSV 0.093 0.273 197

RGB 0.115 0.577 126

Color moments 0.009 0.569 307

Chromaticity 0.144 0.494 73

Gabor wavelets 0.305 0.575 364

Wavelet moments 0.150 0.570 307

SFTA 0.585 0.643 184

GIST 0.125 0.623 1833

LBP 0.165 0.601 75

effectiveness in increasing the discrimination level of image
signature as well as the retrieval performance.

4.2 Composite global features

In this section, the impact of adding more information to
the extracted individual HSV features is examined. Figure 4
shows the mAP results obtained by conducting extensive
experiments on combining HSV with every single global
feature. As shown, a slight increment is gained by this combi-
nation; especially, the features plotted by solid lines achieve
the best accuracy when combined with HSV. Other features
do not positively influence the retrieval accuracy, shown in
Fig. 4 as markers without lines.

The best combinations recorded using two global fea-
tures are as follows: (HSV + RGB, 78 %, relative Manhattan
vector_size = 59), (HSV + Colormoments, 78 %, relative
Manhattan, vector_size = 72), (HSV + SFTA, 78 %, relative
Manhattan,vector_size = 56), (HSV + GIST, 78 %, Euclid-
ean, vector_size = 544), and (HSV + LBP, 78 %, relative
Manhattan, vector_size = 42). However, these combinations
necessarily require more time for vectorization and search

Fig. 4 Retrieval accuracy of composite global features with HSV

as well as more memory storage. Furthermore, the amount
of accuracy improved by these representations over a single
HSV feature is negligible. As a result, only the best single
global features (i.e., HSV, RGB, color moments, GIST, and
LBP) are passed to the next level of combination (i.e., with
local descriptors) in the proposedCBIRscheme, as illustrated
in the next section.

4.3 Composite global and local features

Based on the results reported on the system performance
using single and combined global features,more experiments
are conducted on using single local descriptors and com-
bined global–local descriptor. The aim is to monitor how
the CBIR system acts using different image signatures, and
to figure out the impact of adding more data to the image
vector. The main conclusion acquired in Sect. 3.2 is that
adding many global features together does not necessarily
yield an improvement in accuracy or performance. Accord-
ingly, investigating different image signatures constituted of
global and local descriptors is aworthy and an interesting test.
First, the performance of single local descriptors is presented.
Then, the performance of feature combinations between the
best performing global and local descriptors is evaluated.

It is worth mentioning that SURF, HOG, and DAISY
descriptors are formulated using five different detectors so
that only the best result achieved among these detectors is
used in the next development phases of the CBIR system.
Figure 5 depicts the retrieval results using different detec-
tors.

It is clear that all of the three descriptors (i.e., DAISY,
HOG, and SURF) achieve the best accuracy using the
minimum eigenvalue detector over almost all of distance
measures. Therefore, these descriptorswill be comparedwith
SIFT and LIOP descriptors extracted by the minimum eigen-
value detector. Figure 6 shows the retrieval mAP for all local
descriptors obtained by the baselineCBIR system.As shown,
SIFT (rootSIFT and SIFT are used interchangeably) largely
outperforms the other local descriptors under the same eval-
uation setups. Moreover, Table 6 compares between local
descriptors in terms of time and storage. Here, we weigh
between the accuracy shown in Fig. 6 and the performance
metrics to pass only the best performing image local feature
to the next phase, i.e., SIFT.However, SURF,HOGandLIOP
provide better retrieval speed and lower memory consump-
tion; while at the same time, they gain lower mAP accuracy
compared to SIFT.Accordingly, SIFTwill be used in the next
combination level, i.e., local and global features. The vector-
ization and search speed of SIFT vector as well as memory
usage will be considered later in the optimization phase.

For now, SIFT is selected from the best local descriptors,
while HSV, RGB, colormoments, GIST, and LBP are used as
global features to be aggregatedwith SIFT. TheCBIR system
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Fig. 5 ThemAP of DAISY, SURF, andHOGdescriptors using various
detectors

performs two types of global–local combinations: one global
feature is combined with SIFT, and two global features with
SIFT.

(1) Single global feature with rootSIFT Since humans are
usually interested in certain parts of images (e.g., objects),
object-based retrieval that benefits from local descriptors
tend to be more effective in satisfying the human needs. On

Table 6 System performance using individual local descriptors

Feature Vectorization
time (s)

Retrieval
speed (s)

Memory
size (kB)

SIFT 0.429 1.113 110.26

SURF 0.151 0.971 104.75

DAISY 0.889 1.566 102.18

HOG 0.376 0.704 83.16

LIOP 0.042 0.596 0.512

the other side, global features provide ameaningful represen-
tation of the whole image which is very close to the human
vision system.Therefore, oneof the integral parts of thiswork
is to construct a composite global and local feature signature
to provide more representative descriptions for visual image
contents. However, system efficiency and memory usage of
this aggregation procedure will be closely handled.

Figure 7 shows various combinations between the best
global features (i.e., HSV, RGB, color moments, GIST, and
LBP) with SIFT. Many conclusions can be drawn from these
results. First, HSV feature has the superiority over other
global features when it is combined with SIFT. Second,
all of the combined representations improve the discrimina-
tion level of image signature compared to the single global
or local features. Specifically, the retrieval accuracy (mAP)
obviously is increased for all of image signatures. Third,
some of global features outperform others if combined with
SIFT; for example, GIST performs better than LBP as a sin-
gle global feature (see Fig. 3), while LBP outperforms GIST
when both combined with SIFT as shown in Fig. 7. In addi-
tion, image signatures of the combined features have different
accuracy and efficiency levels using different distance mea-
sures, e.g., it varies with Euclidean but almost similar with
standard Euclidean. Finally, the retrieval time and memory
required for each combined features vary, which will be fur-
ther analyzed in the optimization phase of the proposedCBIR
system.

As a result, HSV combined with SIFT is the best image
signature constructed in our CBIR system. The mAP rises

Fig. 6 The retrieval accuracy
of single local descriptors
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Fig. 7 The retrieval accuracy
(mAP) of combined single
global feature with SIFT

Table 7 System performance using two global features with rootSIFT

Image signature Vector sizea Best mAP
(%)

Distance
measure

Vectorization
time (s)

Retrieval
speed (s)

Memory
size (kB)

SIFT + HSV 256 × 128 + 32 83 L2/cosine/correlation 0.517 0.868 110.35

SIFT + HSV + colMom 256 × 128 + 32 + 40 79 Manhattan/Spearman 0.522 0.996 110.38

SIFT + HSV + GIST 256 × 128 + 32 + 512 83 L2 0.709 0.895 112.14

SIFT + HSV + LBP 256 × 128 + 32 + 10 83 L2/cosine/correlation 0.679 0.830 110.39

a Codebook size used in VLAD is 256

from 76 % for HSV and 79 % for SIFT to be 83 % for the
combined HSV and SIFT. However, SIFT achieves 79 %
of accuracy with higher vectorization time (∼3 s) using the
Spearman distancemeasure, but it achieves 76% of accuracy
with a lower time (∼0.429 s). Consequently, the new com-
bined feature improves the accuracy over the single HSV and
SIFT by 7%. However, the proposed CBIR system considers
the best two signatures from different image representation,
which means both SIFT +HSV and SIFT + LBPwill be used
later for system optimization in Sect. 5. The RGB color his-
togram is not involved since it is outperformed by the HSV
color histogram so that the LBP is considered to involve dif-
ferent characteristic (i.e., texture).Next, another combination
level will be examined in the system by adding the remaining
best global features (i.e., color moments, GIST, and LBP) to
the image vector SIFT + HSV to evaluate the retrieval per-
formance from different aspects.

(2) Multiple global features with rootSIFT Table 7 sum-
marizes the retrieval performance of integrating two global
features with SIFT. It is very clear that only adding HSV
features with SIFT still outperforms other features consti-
tuted of three features. Furthermore, it achieves 83 % of
accuracy with lower search time and memory size. Gener-
ally, the experimental results on this level of combination
shows that in most cases, the retrieval accuracy is decreased
by adding more features to SIFT + HSV, e.g., color moments
and GIST are lowering the accuracy with a noticeable perfor-
mance degradation. These results confirm that adding more
features to the image representation does not always guar-
antee improving the retrieval accuracy and performance of

the CBIR system. As a result, only a single global feature is
combined with SIFT and involved in the next stage of CBIR
system development, i.e., SIFT + HSV and SIFT + LBP.

5 Compact quantization

In this section, a further analysis is established with regard
to the efficiency of the CBIR system with minimum pos-
sible search time and memory storage. It is important to
weigh between these constraints and the retrieval accuracy.
Therefore, we consider two important factors that affect the
retrieval performance: dimensionality reduction and quanti-
zation approaches. Here, only the best obtained signatures
from the baseline system, i.e., SIFT + HSV and SIFT + LBP,
are further evaluated under different optimization setups.

One of the conclusions reported in the previous sections
is that different distance measures provide different accuracy
results (mAP) and require different vectorization time, search
time, andmemory storage. In consequence, the CBIR system
only involves the leading distance measures that provide the
best performance through all previous extensive experiments
on average. Specifically, relativeManhattan, Euclidean,City-
block, and cosine distances are used for similarity matching
in the current stage of multi-feature analysis. One of the
main reasons to exclude some of distance measures such as
Spearman, that achieved a comparable accuracy with other
distances, is the long time required for image vectorization
(∼3.0 s), while it is (∼0.5 s) in average using others. In the
remaining part of this section, a thorough analysis is pre-
sented on the impact of reducing the dimension of image
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Fig. 8 The retrieval accuracy (mAP) of rootSIFT at different PCA-
based reductions

vectors using different quantization methods (i.e., VLAD,
FV, and BOW) on the system performance in terms of accu-
racy and efficiency.

The baseline CBIR system uses 128-D SIFT descriptor
aggregated with 32-D HSV and 10-D LBP separately. Here,
the PCA/whitening is utilized to gradually reduce the size
of rootSIFT descriptor into four dimensions, i.e., 96, 64, 32,
and 16. The retrieval accuracy may decrease while reduc-
ing the descriptor size down; thus, it is important to monitor
both the accuracy and performance. Therefore, we attempt
to exploit the correlation between some of image dimen-
sions using the PCA/whitening approach. More precisely,
the covariance matrix of image patches and its eigenvectors
are computed. Then, the size of descriptor vectors is reduced
by projecting their rotated version into a low-dimensional
space based on the computed eigenvectors (components).
Finally, the resulting reduced image descriptors are whitened
by dividing each matrix component by the square root of its
eigenvalue. This gives all of the image descriptors the same
variance. Figure 8 shows the retrieval accuracy (mAP) of all
rootSIFT image vectors at different dimensions. As shown,
the retrieval accuracy directly proportionally decreases as
the dimension size of rootSIFT is reduced except at size 32,
which is unforeseen since the image vector is expected to lose
some distinctive features. On average, the PCA-rootSIFT at
32-D outperforms other vectors by 2 %.

This is an interesting start for more optimization in the
image representation. Distinctly, this reduction in vector size
will substantially reduce the computation cost and memory
requirements. Now, it is important to examine the impact of
using the new rootSIFT dimension with HSV and LBP, i.e.,
rootSIFT(32) + HSV(32) and rootSIFT(32) + LBP(10).

As aforementioned, the new image representation with
its compact size will be assessed using three quantization
approaches: VLAD, FV, and BOW. All experiments are car-
ried out using five different visual codebooks provided by
k-means clustering: 512, 256, 128, 64, and 32. Figure 9

shows the retrieval accuracy achieved using each quanti-
zation approach at different codebook sizes and different
distance measures.

Coming to the BOW, as shown in Fig. 9e, f, the mAP
largely fluctuates using different codebook sizes. Unlike
VLAD and FV, BOW has a noticeable drop in accuracy
(∼10 %) of rootSIFT + HSV feature using Euclidean and
cosine. However, BOW is still comparable with VLAD and
FV using the rootSIFT + LBP feature, which shows more
stability in the retrieval accuracy. The overall evaluation of
image representations, based on the accuracy results obtained
from the CBIR system, outweighs VLADover FV andBOW.
It shows higher accuracy at smaller sizes of visual code-
book, which is a crucial factor that affects other performance
criteria (i.e., retrieval time and memory usage). Therefore,
rootSIFT+HSVand rootSIFT+LBPwill be quantized using
small VLADs in the final CBIR system.

Based on the conducted extensive multi-feature analysis,
the CBIR system will be further optimized by: (1) exploit-
ing the most beneficial conclusions reported; (2) involving
rootSIFT + HSV and rootSIFT + LBP in the final CBIR sys-
tem; and (3) weighting the similarity measures according to
the relationship between image vector, image representation,
query image, and distance measures.

The optimized CBIR system is capable of handling differ-
ent types of query images with different sizes and structures.
The selection and weighting of the new constructed image
signatures (i.e., rootSIFT + HSV and rootSIFT + LBP) are
processed automatically, which is based on the strength of the
extracted local and global descriptors. The impact of using
such small sizes of image features on the systemperformance
is shown in Table 8. It is clear that the resulting image rep-
resentation provides high and comparable retrieval accuracy
(mAP) with the baseline representations, even a higher accu-
racy (86 %) achieved using rootSIFT(32)–HSV(32). This
confirms that the resulting image representation in our CBIR
system is not largely affected by reducing the dimension of
rootSIFT as well as VLAD’s codebook size. Moreover, it
benefits from the substantial reduction reported in the vec-
torization time, retrieval time, and memory usage by 22, 35,
and 96 %, respectively.

For example, Fig. 10 shows the top 20 relevant images
to the elephant query image. Other image categories, e.g.,
Buses and Dinosaurs, achieve 100 % of retrieval accuracy
(mAP) at top 20 ranked images. Furthermore, the top returned
images are very similar in colors, direction, and contents
(e.g., objects and background), which indicates a high quality
of ranking due to the discriminating characteristic of image
representation.

To evaluate the resulting model on a larger image dataset,
we use MIRFlickr [49] dataset with Corel dataset. The MIR-
Flickr consists of 25,000 images and acts here as distractor
images for the standard image categories used in the Corel,
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Fig. 9 The retrieval accuracy (mAP) of combined features using VLAD (a, b), FV (c, d), and BOW (e, f) at different codebooks

Table 8 System performance of optimized and baseline CBIR systems

Image signature Vector
size

mAP at Vectorization
time (s)

Retrieval
speed (s)

Memory
size (kB)

Top 10 (%) Top 20 (%)

VLAD(256): SIFT(128) + HSV(32) 32800 89.6 83 0.517 0.868 110.35

VLAD(32): SIFT(32) + HSV(32) 1056 91.4 86 0.406 0.566 3.67

VLAD(256): SIFT(128) + LBP(10) 32778 80.4 77 0.564 0.882 110.30

VLAD(32): SIFT(32) + LBP(10) 1034 79.8 74 0.513 0.590 3.60

which makes the querying process more challenging. The
MIRFlickr images represent a wide range of common daily
life events, natural scenes, human, animals, and general
objects. In addition, thousands of images are very similar to
the Corel images and intersect with all of image categories,

which makes the retrieval procedure of the standard queries
more complicated. Figure 11 shows some sample images
from the MIRFlickr image dataset.

The same experiment setup is applied on this dataset using
the smallest vector dimension of image representation, i.e.,
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Fig. 10 Sample results of our CBIR model on Corel dataset

Fig. 11 Sample images of MIRFlickr dataset

Table 9 The accuracy results on Corel with MIRFlicker dataset

rootSIFT(32) + HSV(32) mAP (%)

Codebook size Euclidean Manhattan CityBlock

VLAD-512 51.7 60.8 62.2

VLAD-256 53.4 65.2 66.3

VLAD-128 55.8 61.3 62.9

VLAD-64 55.1 65.3 67.6

VLAD-32 57.3 63.2 65.1

rootSIFT(32) and HSV(32). The results are also reported on
different sizes of visual codebooks ranging from 32 to 512.
All of the experimental results are listed in Table 9.

The results reported for the MIRFlickr + Corel show a
noticeable variance in performance using the three distance
measures. The retrieval model is best performing with City-
Block measure (67.6 % using codebook size 64) followed
by relative Manhattan, and then, it has shown a degradation
of 10 % in average using Euclidean measure. In general,
the compact representation used for this composite dataset
has shown high discrimination level with good performance
even with high similarity overlapping between images. In
addition, the accuracy is increased when the codebook size
is decreased, emphasizing the high capability of the image

signature in preserving the most representative descriptors of
images.

As aforementioned, we only use the same queries of the
standard Corel categories; therefore, the similar images in
each of ten categories are only considered as relevant images
for accuracy computations. Numerous images in the MIR-
Flickr are very similar to the initiated queries but have not
been included in their similar categories. This confirms the
effectiveness of our image presentations on retrieving images
from a large diverse dataset.

6 Comparisons

The retrieval model is compared with some related state-of-
the-art methods on three standard dataset in image retrieval:
(1) Wang’s Corel, (2) Holidays, and (3) ZuBuD.

6.1 Corel dataset

Figure 12 shows that our proposed image representations
outperform the other methods at top 20 ranked images. It is
important tomention that the best retrieval accuracy achieved
by Zhang et al. [33] is taken from a figure at top 20 with

Fig. 12 A comparison of mAP obtained at top 20 images using Corel
dataset
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approximate error ±1. In addition, the implementation of
PHOW in [50] is used for comparisons.

6.2 Holidays dataset

The Holidays dataset [51] is a set of images that contains
some of Holidays photos. It is one of standard bench-
marking dataset to measure the robustness against image
rotations, viewpoint and illumination changes, blurring, etc.
The dataset includes 1491 high-resolution images with a
large variety of scene types (e.g., natural, man-made, water
and fire effects, etc.), as shown in Fig. 13. The dataset con-
tains 500 image groups, each of which represents a distinct
scene or object. The first image of each image group is the
query image and the correct relevant images are the other
images of the group.

Table 10 compares the performanceof our image represen-
tation with the related state-of-the-art methods on Holidays
dataset. The proposed image representation outperforms the
other related methods, even that we only use 32-D of root-
SIFT and small codebook sizes. The mAP of 72.47 %
improved the accuracy by ∼7 % over the best method.

6.3 ZuBuD dataset

The ZuBuD [55] consists of 1005 images of 201 different
buildings (5 images of each building). For testing, 115 dif-
ferent and disjoint images from the database are used as
queries. The ZuBuD is a challenging dataset, because the
building images are taken by two cameras under different
angles, illuminations, and weather conditions, as shown in

Fig. 13 Sample images of Holidays dataset

Table 10 Comparisons of mAP obtained on Holidays dataset

Features mAP (%)

BOW-200K [30] 54.00

FV [30] 59.50

Improved Fisher [52] 62.60

SIFT + VLADintra + innorm [53] 65.30

LCS + RN [54] 65.70

This paper (based on manhattan L1 similarity distance)

rootSIFT(32-D) + HSV/VLAD (64) 70.63

rootSIFT(32-D) + HSV/VLAD (128) 71.17

rootSIFT(32-D) + HSV/VLAD (256) 72.47

rootSIFT(32-D) + HSV/VLAD (512) 72.21

Fig. 14. The mAP is computed at the top five images to eval-
uate the retrieval accuracy for all of 115 queries. Table 10
compares the performance of our CBIR system using both
SIFT-HSV and SIFT-LBP with a related work achieving the
best results on the ZuBuD image dataset. The best results
reported in [31] are taken using different global or local fea-
tures.

As shown, the main difference between the proposed sys-
tem and their work is the size of both features and codebook.
Using only 32-D of SIFT and 32-HSV, the retrieval accuracy
mAP outperforms almost all other image representations.We
only report the obtained results in [31] using a codebook of
512 centers, because they conducted their experiments on
a codebook of size 512 and 2048. However, we take into
account other performance factors, e.g., vectorization time
and memory usage. Table 11 shows the results obtained by
our proposed image representation over a range of visual
codebooks, i.e., 32–512.

It is clear that the best accuracy achieved is 80 % using
VLAD codebook of size 128-D which outperforms all of
the results reported in [31] even that they use larger SIFT
and BOW codebooks. As aforementioned, the best achieved
result of mAP in our representation is 80% using 32-D SIFT,
32-D HSV, and 128-D VLAD codebook. These accuracy
results are reported based on theminimumsimilarity distance
obtained using Euclidean, relativeManhattan, andCityBlock
distance measures. In addition, the SIFT–HSV performs bet-
ter than SIFT-LBP on ZuBuD even that both are increasing

Fig. 14 Sample images of ZuBuD dataset

Table 11 Comparison of mAP obtained using ZuBuD dataset

Features (+size) Codebook size mAP (%)

SIFT(128) + CEDD [31] 512 67.26

SURF(128) + SLD [31] 512 79.01

Rnd(600) + CEDD [31] 512 76.75

GaussRnd(600) + CEDD [31] 512 77.29

This paper

rootSIFT(32) + HSV 32 69.74

rootSIFT(32) + HSV 64 70.96

rootSIFT(32) + HSV 128 80.00

rootSIFT(32) + HSV 256 74.96

rootSIFT(32) + HSV 512 76.87
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directly proportional to the size of VLAD codebook. Con-
sequently, the proposed image representation still achieves
high and comparable accuracy on ZuBuD.

7 Conclusions

This paper presents a thorough investigation towards find-
ing compact and discriminative image representations using
global and local multi-feature scheme. The conducted exper-
iments provide insights into the relationship between image
features and other retrieval factors, including distance mea-
sures, quantization andvisual codebooks, retrieval speed, and
memory requirements. A bank of image features is extracted
and then formulated into compact image representations. All
of the extracted features are evaluated against eight different
distance measures for similarity matching. The experimental
results show that different image features and combinations
provide different performance. At the last evaluation phase,
Euclidean, cosine, and correlation measures show almost the
same impact on both retrieval accuracy and efficiency. The
Spearman distance measure has shown the highest retrieval
accuracy for single local descriptors compared to the com-
bined global or local ones. However, it takes more matching
time than other distance measures.

Also, the experimental results confirm that adding more
features to the image representation does not guarantee
gainingmore distinctiveness or improving the system perfor-
mance. The reported retrieval results show that aggregating
three features together degrades the system performance by
3–20 % using certain distances, e.g., Euclidean and Cheby-
shev. Therefore, our CBIR model exploits the strength of
image features extracted globally and locally using very
low dimensionality. Moreover, it shows a high robustness
against two important factors of image retrieval, dimension-
ality reduction and codebook size. First, the image signature
is not largely affected by reducing the dimension of rootSIFT
from 128 to only 32 using PCA/whitening. This reduces the
vectorization time, retrieval time, and memory size of image
signature by 22, 35, and 96 %, respectively.

The model performance is also evaluated using three dif-
ferent quantizationmethods for local descriptors, i.e.,VLAD,
FV, and BOW. The system quantized the final image signa-
ture (rootSIFT + HSV and rootSIFT + LBP) using only 32-D
visual codebook of VLAD, which is another intrinsic utility
for more improved performance in terms of retrieval speed
and efficiency requirements. In addition, theminimumeigen-
value detector has shown the highest retrieval accuracy for
local descriptors over all distancemeasures. Finally, ourwork
presented in this paper proves that a proper selection and
extraction of global and local features with a suitable aggre-
gation scheme can compensate any performance degradation

that may occur using different similarity measures, dimen-
sionality reduction, and quantization.
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