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Abstract This paper characterizes a new method for
video–soundtrack retrieval based on environmental sounds.
Actually, a set of 26 semantic audio concepts is employed.
This set is chosen for its helpfulness to the users in terms
of video browsing. Additionally, a set of 2000 videos has
been annotated with these concepts. To enhance a new signal
processing, we start with the separation of the audio sources.
In addition, using a fundamental representation of the audio
signal as a sequence of Mel Frequency Cepstral Coefficient,
we can carry out experiments with three signal represen-
tations: the Support Vector machines, the Gaussian Mixture
Model and theHiddenMarkovModel. Throughout the exper-
iment synthesis, we maintain the Gaussian Mixture Model
classifier based on the Kullback–Leibler distance measure.
As a matter of fact, we preserve this audio concept classifica-
tion to integrate a video retrieval system. Hence, the obtained
results mirror the effectiveness of our approaches in distin-
guishing environmental sound and researching video.

Keywords Concepts · Environmental sound · Sound
indexing · Sound query · Video retrieval

B Issam Feki
feki_issam@yahoo.fr

Anis Ben Ammar
anis.benammar.tn@ieee.org

Adel M. Alimi
adel.alimi@ieee.org

1 REGIM: Research Group on Intelligent Machines, University
of Sfax, ENIS, BP 1173, 3038 Sfax, Tunisia

1 Introduction

At the outset, the strength of a video document lies in its
capability to transmit a rich semantic presentation through
the audio sync, text and visual presentations over time. In
the early Content-Based Video Retrieval research, most of
the efforts were made to extend the systems and algorithms
from images and texts. Although this research trend has cer-
tainly added a degree of success, it is not satisfactory for all
the applications because video contains other components
that can enrich its semantic meaning. Despite its neglect,
the audio component within video remains an important
source which is worth being explored and exploited in the
CBVR. Therefore, the CBVR system should satisfy the var-
ious needs of the users. For instance, image-based indexing
usually fails to meet the goals of the users in their search for
a particular event in video such as finding the event of an
explosion in a video clip. Unfortunately, in some video clips,
this event is produced just through sound effects but without
any visual effect. To meet most of the users’ requirements,
many techniques have been proposed to bridge the semantic
gap between the features that can be automatically extracted
to upgrade the quality of the users’ queries in video retrieval.
Among these techniques, we can point up the approach that
makes use of the distinctive characteristics of an audio to
design the most useful tools for the content extraction and
indexing as well as the related browsing and retrieval. In this
paper, the emphasis is laid on audio as it is an attraction for
a universal audience. Moreover, such a novel use of video
would establish a strong foundation for the use of the CBVR
system. Compared to other video components, audio causes
a number of exclusive challenges. Among these challenges,
we can cite its dependence on the context such as music
and particular sound effects. In addition, it is produced with
diverse modes of limited effects depending on the need to
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describe some effects. More importantly, it can be appealing
for diverse purposes such as speech, music analysis and envi-
ronmental sound. This work takes in hand these challenges
using the acoustic information of the video soundtrack to
spot which descriptors can be dependably extracted from this
modality. If the visual information in video is deemed to be
rich, audio is also a valuable and complementary source of
information. This paper is organized in the following way:
Sect. 2 presents an overview of video retrieval based on audio
modality. Section3details the suggested framework for video
retrieval system. The assessment and discussion of experi-
mental results are presented in Sect. 4.

2 Overview

The previous work on audio analysis has classically focused
on distinguishing between two categories such as speech,
music, silence, noise, or applause. The request field has
relatively produced sources, such as movie soundtracks or
audio broadcasts. The authors in [1] offered a method of
speech/music discrimination based on the zero-crossing rate
and short time energy features and used the Gaussian classi-
fier for radio broadcasts. This research reported an accuracy
rate of 98 %. In [2], the authors used the same approach to
distinguish between speech and music to classify 50 differ-
ent phone sounds and achieved the same results. In [3], the
authors classified 2.4 segments of radio-data broadcasts as
speech and music. This research used temporal and spectral
features pursue by the Gaussian mixture model (GMM) clas-
sifier. The results indicate an error rate of 1.4%. The authors,
in [4], implanted a speech/music distinguishing framework
based on the hidden Markov model (HMM) classification.
The entropybasedonposterior probabilities of speech classes
is used as features. In [5], the authors presented a system to
distinguish between additional classes other than speech and
music, such as song, speechwithmusic background, environ-
mental sound, and so on from TV programs or movies. The
heuristic rule-based classifier using the zero-crossing rate,
spectral peak tracks, energy and pitch features, indicates an
accuracy rate of 90 %.

For environmental sounds l, the research community has
examined problems such as the content-based retrieval. A
well-liked audio framework is to analyze, cluster, and clas-
sify the environmental sound into concepts like applause,
whistle, airplane, breeze glasses and ringtones with evalua-
tion of a small amount of data. The authors in [6] usedSVMto
classify the Muscle Fish audio data classifiers with a collec-
tion of perceptual and cepstral features. This research work
provides approximately the same errors rate in [7]. To show
the efficiency of the linear auto encoding neural networks
and the Gaussian mixture model (GMM), the authors in [8]
suggest a classification of the environments such as outdoor

and office. The arrangement of these two techniques showed
a better performance. The authors in [9] presented research
advancements in the environmental sound classification field
on a handy device. They employed the MFCC classified fea-
tures and the HMM speech recognition. The results showed
more than 90%accuracy for 11 environments distinguishing.
A comparison of the nearest neighbor (NN),GMM, andSVM
classifiers with a large collection of features on a five con-
duct classification assignment is made in [10]. The use of the
scheme integrating SVM classifiers and a subset of features
presented the best performance. In [11], the authors suggest
an environmental sound identification system. They exploit
the local discriminate bases method for feature extraction
progression and HMM as a classifier. The experimentation
results show that 21 audio concepts were distinguished, but
the average recognition accuracy did not exceed 81% for the
test set. But when the scene includes more than one audio
source, the averages of the accuracy decrease to 28.6 %.

The researchwork that goes alongwith the present paper is
[12] in which the authors studied the recognition of 13 audio
concepts such as explosion, automobile, helicopter, water,
wind, and rain. By comparing different collections of features
and classifiers, they could realize an excellent efficiency with
an uncomplicated approach of distinguishing based on SVM
and Audio Spectrum Flatness, Centroid, Spread, and Audio
Harmonicity (ASFCS-H) features. The assessment gives the
best performance with an average measure value of 80.6 %.

Actually, none of the previous works has immediately
attended to the CBVR by their soundtracks. This research
field witnessed an amount of novel issues that are dealt with
for the first time in this paper. First, we are interested in
26 concepts which outnumber the concepts mentioned in
[12]. Second, our concepts stem from the user’s study of
video retrieval. Accordingly, they replicate concrete types of
queries that the users asked more willingly rather than the
simple retrieval that we suppose to be apparent in the video
data. Our approach is stimulated by a related work in CBVR
which has a number of visual concepts [13]. Third, our data
set is different from any earlier reported data in the field of
environmental sounds; in otherwords, it is composed of 2000
soundtracks taken from the Daily Motion and the YouTube
videos. These soundtracks are not considered useful in the
research area as they are very rich noise. Unlike the previous
works, however, the working procedure in this paper is more
demanding.

Not only does this paper discuss the originality of the
problem, but it also presents some new specific techniques.
On the one hand, we expound the practicability of retrieval
based only on the environmental sounds because the video,
in its visual aspect, does not reflect sound. For example, the
search for video shots containing the sound of a helicopter
concept results in video with its sound and image unrelated
to helicopter. On the other hand, we prove the technical solu-
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Fig. 1 System overview

tion to the problem of overlapping sounds through a new
soundtrack segmentation process. Our audio concepts have a
different distinctiveness in terms of the frequent needs of the
user to video retrieval. For example, the users always seek the
exciting moments in the video. These moments are usually
expressed by the concept “explosion”, “glass breaking” and
“police alarm”, etc.

3 Proposed system overview

In the proposed system, there are two major steps as shown
in Fig. 1. The first one, named Sound track Processing (StP),
supports the acoustic treatment. The second, untitled Video
Retrieval Processing (VRP) handles the video shot retrieval.
In the StP step, we start by extracting the soundtracks from
video. The pre-treatment and segmentation module supports
the removal of the silence fragments and the accomplish-
ment of the proposed segmentation strategy. In addition,
audio sources separation, as a secondary step, puts in appear-
ance, speech, music and environmental sound signals. Then,
the environmental sound distinguishing module applies the
classifiers trained on the annotations of the audio concepts
to categorize the environmental sound signals. Finally, VRP
calculates the link between the sound query vectors and the
environmental sound vectors and extracts the video shots
from the corresponding audio sample.

3.1 Sound track processing

We start by constructing only one video file (F) from all the
video portions and sequences in the database. This merger of
files is usually recommended due to the operating principle of
our system. This fusion is based on a continuous time axis.
All the videos used for research are bound and spread on
a single timeline. This alternative is explained by the need
of audio concept localization by the system. It is noticed
that the main goal is to search an audio concept in a large

variety of video data. After the merger of video sequences,
our systemextracts automatically the sound track of the video
and produces an audio stream (AS). The obtained AS can be
in any audio format.

3.1.1 Pre-treatment and segmentation

It is obvious that data analysis usually requires a pre-
treatment process. Just like the image, the audio track needs a
different treatment ready to use in the analysis process. Some
actions, like segmentation and filtering, must be imperatively
executed to the audio track.

Regarding segmentation, our main goal is to discover an
entity of sound sources. The elementary subject in the tem-
poral segmentation of sound tracks is the one that precisely
represents the source. This phenomenon is not only explained
by the overlap of sound sources but also by the existence of
silence between the different audiences. The previous work
in audio segmentation has paid attention to speech [14] and
music [15]. The additional approaches deal with the segmen-
tation of continuous environmental sound signals [16–18]. A
number of methods [16,17] attend to segmentation essen-
tially in terms of the semantic context (e.g., “shopping”)
despite the fact that these approaches are helpful in indexing.

In this paper, the acoustic sources are a distinct and,
structurally, significant entity of speech, music and environ-
mental sounds. Therefore, noise and silence have never been
considered as sound sources. For that reason, a new audio
segmentation strategy is now presented to ensure the filter-
ing of sound tracks and the separation of sound sources

• Sound track: first segmentation and silence detection
As shown in Fig. 2, the system makes the first segmentation
for the wave AS. The sound track is segmented into frames
(Si) of length (L) equal to 3 seconds with 1 second overlap-
ping with the previous ones. Each clip is then divided into
frames that are 512 samples long and are shifted by 256 sam-
ples from the previous frames. The idea behind this proposal
is to detect and remove long runs of silence from the audio
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Fig. 2 The novel audio segmentation process

frame. Its significance as a construction block resides in its
interest in solving two problems. The first one is lightness
requirements of audio which are important; i.e., any reduc-
tion in terms of the total audio ground required by the system
is a significant benefit. The second is the removal of silence
which is essential in our research context; our goal is to index
the audio concepts and develop a video retrieval systembased
on these indexing concepts. It is obvious that the users have
no need for silence research in video. We use the STE (Short
Time Energy) feature to detect silence [19]. The energy E of
a distinct time signal x(n) is computed by

E =
∞∑

n=−∞
x2 (n) (1)

For lots of audio signals, such a measurement is less
significant since it provides modest information about time-
dependent characteristics of such signals. The amplitude of
an audio signal shows a discrepancy with time. A suitable
illustration that reproduces these amplitude variations is the
STE of the signal. It is defined as follows:

Em =
∑

n

x (n)2 h (m − n) (2)

where h(m) =w2(m). In the above expression h(m) is deduced
as the impulse response of a linear filter. The character of
STE representation is determined by the alternative of the
impulse response, h(m). If the STE function is continuously
lower than a certain set of thresholds (there may be durations
in which the energy is higher than the threshold, but the dura-
tions should be short enough and far apart from each other),
the segment is indexed as silence. Silence frames will be
removed from the audio segments. For the remaining frame,
we extract Short Time Energy (STE) value, the set that will
be used to determine the silence frames. These frames are

automatically eliminated because they are not part of our
concepts.

• Sound track: second segmentation
After removing silence from all the frames, our system
merges them and produces a new sound track. This audio
tape is characteristically without silence. The system makes
a second segmentation for AS. The sound track is segmented
into frames (Si) of length (L) equal to 1 s with 0.5 second
overlapping with the previous ones. Each clip is then divided
into frames that are 512 samples long and are then shifted by
256 samples from the previous frames. Our audio segmen-
tation strategy allows, at the same time, the correct filtering
of the soundtrack and a beneficial specific treatment for the
separation of sound sources. Although the source separation
is not our focal point, our method does yield a rough idea of
where a certain sound source can be distinguished [20].

3.1.2 Audio sources separation

Contrary to the previous studies, this paper aims to distin-
guish the appropriate class of environmental sounds. For a
robust discrimination of these sound categories, we propose
the following design using Low Short Time Energy Ratio
(LSTER), Spectrum Flux (SF) and Band Periodicity (BP)
features [21].

As shown in Fig. 3, a two-step scheme is proposed to
classify audio clips into oneof the three audio classes: speech,
music, and environment sound.

• Environmental sound distinguishing
Our objective is to provide the users with the pertinent
classification to browse their personal video collections;
accordingly our concepts should reproduce their requests.
The selected concepts are correctly labeled by humans as
shown in Table 1. The majority of the concepts are essen-
tially acoustic, although several concepts, such as explosion
and helicopter, are first and foremost visual.

Our elementary frame-level feature is theMFCC regularly
used in speech identification and additional auditory classi-
fication. The soundtrack of a video is first passed to 8 kHz.
After that, a short time Fourier scale spectrum is calculated
over 25-ms windows every 10 ms. The spectrum of every
window is distorted by the Mel frequency scale, and the log
of these acoustic spectra is intended for MFCCs by means of
a discrete cosine transform.

Subsequent to the preliminary MFCC analysis, all sound-
tracks are represented as a set of 21-dimensional MFCC
feature vectors. We experiment with more than one tech-
nique: the Support Vector Machines (SVM), the Gaussian
mixture modeling (GMM), and the Hidden Markov Model
(HMM). Each of them argued in more detail below. These
representations are at that timemeasured up to one another by
a number of distancemeasures: the cosine similarity [20], the

123



Int J Multimed Info Retr (2016) 5:105–115 109

Fig. 3 Audio sources
separation design

Table 1 Counts of manually labeled examples of each concept from
2000 videos

Concept Designation Examples

Ringtones Phone 110

Train The sound of the train horn 77

Motorcycle The sound of the motorcycle engine 74

Explosion Sudden increase 64

Helicopter Airliner 59

Slamming door Doors that close 71

Dog barking Animal 88

Bird singing Aves 68

Glass breaking Glass giveway 92

Applause One or more people applauding 51

Horse The sound of a horse walking 49

Cat Animal 66

Car Engine sound of a car 118

Slot machine Casino machines sound 63

Wind The wind blowing 73

Plane An aircraft in flight 89

Laugh One or more people laughing 52

Police alarm Police car 111

Whistle Hiss, pipe, blow, boo 57

Car braking Sudden and sharp braking car 119

Draws fire Gun shot 327

Wolf Animal 43

Fight Kicking, slap 413

Rain It is raining 95

Bell Bell watches 74

Coin Shekel 87

Total 26 concepts 2000

Kullback–Leibler divergence [22] and the Euclidian distance
[23].

• Support Vector Machines
SVM is a two-class classifier constructed from sums of a
kernel function K(.,.),

f (x) =
N∑

i=1

αi yi K (x, xi ) + b (3)

where x is the vector (environmental sound signal) needed
to classify and xi are the support vectors obtained from the
training sets by an optimization process, yi is either 1 or −1
depending on the corresponding support vector belonging to
class 0 or class 1,

N∑

i=1

αi yi = 0 (4)

αi (i = 1, 2, . . . , N ) are constant terms and αi > 0.
A single SVM solves only two-class discrimination prob-

lems. For amulti-class discrimination, the one-against others
strategy is usually used. It needs to train SVM for each
class and we use a nonlinear support vector classifier to
discriminate the various categories [24]. The classification
parameters are calculated through the support vectormachine
learning.

• Gaussian mixture model
Themixturemodels are a kindof densitymodel. They include
a set of, usually Gaussian, component functions. These con-
stituent functions are jointly used to provide a multi-modal
density. A Gaussian mixture density is a biased sum of M
component densities and is specified by the form:

P
( x

λ

)
=

M∑

i=1

Cibi (x) (5)

where x is a dimensional random vector, bi(x); i = 1, …,
M is the component density and ci; i = 1, …, M is the
mixtureweight. Each density component is a variedGaussian
function of the form:
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Fig. 4 Video shots research

bi = exp
{−1/2 (x − ui )2 (

∑
i )

−1 (x − ui )
}

(2π)1/2
∣∣∑

i

∣∣1/2
(6)

with the mean vector ui and the covariance matrix
∑

i. The
mixture weights assure the restraint:

M∑

i=1

Ci = 1 (7)

The complete Gaussian Mixture density is parameterized by
the signify vectors, the covariance matrices and the mixture
weights from the entire constituent densities. These parame-
ters are expressed together by the notation:λ = {

Ci,Ui,
∑

i

}

i = 1, . . ., M . Each environmental sound signal is expressed
by GMM and is referred to as a class. The GMM parameters
are expected to use the standard Expectation Maximization
algorithm. Then, by means of the logarithms and the inde-
pendence between the observations, the feature identification
system normalizes and calculates p

( x
λ

)
to create feature

recognition decisions [25].

3.1.3 Hidden Markov model

A discrete HMM is determined by three groups of parame-
ters: the state transition probability

A = {aij} , where {aij} = p (qt + 1 = j |qt = i) (8)

The observation symbol probability

B = {bj, (k)} , where bj (k) = p (ot = vk|qt = j) (9)

and the initial state distribution π = {π i}, where π i =
P(ql = i). Here, qt is the state at time t , vk is the dis-
tinct observation symbols in the observation space and ot is
the observation vector in time t. For convenience, we use
λ = (A, B, π) to indicate the model parameters. In our case,
the observation space is the feature space and we need to
quantize it to a finite number of vectors before we use the dis-
crete HMM. Here, we generate the codebook using a binary

split algorithmdescribed in [25].HMMhasbeen successfully
applied in several large-scale laboratories and commercial
speech recognition systems. In a traditional speech recog-
nition system, a distinct HMM is trained for each word or
phoneme, and the observation vector is computed in every
frame (10–30 MS).

3.2 Video retrieval processing

In fact, the audio modality is a very suitable and efficient
technique as it allows for a better discrimination between
the concepts. Nevertheless, the retrieval results will be in
the form of a whole sequence involving all the components.
However,we propose a scheme to solve the indexing problem
formulated on both modalities.

Since the audio stream segments are sequential i, in Si,
i represents the essential part to get video shots correspon-
dence. Therefore, a simple calculation is used to keep the
retrieved shot. Since the segmentation length is L , i × L
refers to the time of the segment whose order is i . As the
audio time is synchronouswith the input stream, the outcome
i × L is the time location of Si in F. As shown in Fig. 4, the
label of the frame S (results of query) is i = 17. Remember
that the frame length is L = 1; consequently, the 17th visual
frame is the start of the video shot playing the query concept
sound. The main challenge facing this work is how to get the
fundamental structure of a video despite the doubt caused
by the temporal dissimilarity. Based on the sound extracted
from a given database, the process presented here looks for a
distinctive acoustic segment. The significance of these audio
segments corresponds to the concepts in the semantic space.
Therefore, the resulting similarity is a proximity measure
between the sound query signal and the video shots.

4 Experiments and results

We evaluate our system in terms of the Average Precision
(AP) for the distinctionof the 26 environmental sounds across
the 2000 videos. Our testing strategy is based on two comple-
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mentary levels; the environmental sounds classification level
and the video shots research level.

4.1 Environmental sounds classification experiments

We assess our approaches using threefold cross-validation:
SVM, GMM and HMM. Every fold is trained for 40 % of
the signal, and, then, tested on the remaining 60 %. Figure 5
shows the results of the SVM with the three different dis-
tance measures; namely, the cosine similarity, the Euclidian
distance, and the Kullback–Leibler divergence.

SVM+ Kullback–Leibler divergence gives a better per-
formance for the audio concepts classification such as
“Ringtones”, “Explosion” and “Police Alarm”; by distinc-
tion, the concepts such as “Car braking” and “Rain” are the
best with the SVM+cosine similarity. The Concept “Laugh”
is well detected by SVM+Euclidian distance, probably, for
the reason that the human audio source takes an important
part in discriminating other concepts. On average, SVM+
Kullback–Leibler divergence is the greatest among the three
distance measures.

Figure 6 shows the results of the HMM with the same
distance measures. The most favorable results of HMM is

powerfully reliant on the total length of the positive exam-
ples of the concept; the HMM+Kullback–Leibler divergence
gives and takes the greatest Average Precision and is capable
to detain the feature across all the concepts.

The performance of the GMM+Kullback–Leibler diver-
gence is shown in Fig. 7. To build the surrounding substance
for this classification set, we experience the remaining dis-
tance measures. In contrast, in the three curves of the GMM
histograms, we see that GMM+Kullback–Leibler complete
are considerably superior to GMM+cosine similarity and
GMM+Euclidian distance.

• Discussion
Figure 8 compares the most excellent results for each of
the three modeling approaches (SVM+ Kullback–Leibler,
HMM+Kullback–Leibler, GMM+Kullback–Leibler).

The figure compares the presentations in terms of Aver-
age Precision and accuracy rate. The Average Precision is
computed one by one for each correct clip. The accuracy rate
is the amount of the true clips. Noticeably, accuracies can
keep the concepts high values with the little former proba-
bilities purely by regarding all the clips as unconstructive.
Equally, Average Precision is not deemed as a momentous
part of this partiality. To attain a rigid classification from our

Fig. 5 APacross all 26 concepts for the SVM, using each of the three distancemeasures, cosine similarity, Euclidian distance, andKullback–Leibler
divergence

Fig. 6 AP across all 26 concepts for the HMM, using each of the three distance measures, cosine similarity, Euclidian distance, and Kullback–
Leibler divergence
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Fig. 7 AP across all 26 concepts for the GMM, using each of the three distance measures, cosine similarity, Euclidian distance, and Kullback–
Leibler divergence

Fig. 8 Best results from Figs. 5, 6, and 7 illustrating the relative performance of each presentation

GMM-based rankings, we need to decide an entry for the
distance-to-boundary values. Accordingly, we put this entry
in competition with every class; in other words, the number
of positive classifications corresponds to the previous class.

In addition,we notice that there is little variation by the use
of this concept. It can be projected provided that the diverse
labels will be obvious in the soundtrack andmaintained by an
extensive quantity of data training. Like the former possibili-
ties, themajor determining factor of the performance of these
classifiers signifies that the larger the number of data training
is, the harder the classifier will be. This is, still, bewildering.
In some cases, these aspects may be illustrated; for instance,
the concept “explosion” has the same Average Precision as
that of the other concept “helicopter”.

A number of concepts consist of a distinctive minority;
an audio representative may be modeled by SVM rather than
by GMM.We notice that the Average Precision for the “car”
concept is visibly better with the SVM than with GMM. This
also proposes that the presentation could be enhanced by
separating some classes into additional subclasses (e.g., “car”
possibly will be refined to “truck” and “motor”).

In addition, we have discerned that several concepts such
as “explosion” “helicopter” and “draws fire” are largely con-

tained in other concepts such as “wolf” and “coin”. It is
destructive to make use of such highly overlapped labels
for SVM training since it is not possible to divide pure
positive and negative segments at the level of the entire
clips. The GMM model is unable to deal with this diffi-
culty since it is talented to represent the clip as mixture of
two concepts. This may make it clear why its performance,
averaged over all the classes, shows more than the other
approaches.

The GMM+kullback–Leibler approach constantly gives
the best results. For instance, GMM+kullback–Leibler attain
higher Average Precision than the SVM or HMM for 23 out
of the 26 concepts. Nevertheless, the edge of enhancement
is relative. The SVM or HMM achieve relative glowing in
contrast and are simpler to construct and to assess. Accord-
ingly, depending on the nature of the database and the
importance of the main precision, these may be suitable
approaches.

4.2 Video shots research experiments

Since a set of labeled audio signal training is used in the
classifiers, we are actually attracted by the way the classifier
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Fig. 9 Graphical interface for
user query integration

behaves when it faces data that it has never run before. We
can deduce that if the target is to take generalization perfor-
mance, there is no self-determining circumstance to support
one learning more than another. For this reason, to evalu-
ate our video retrieval system, an experiment approach is
pursued [26]. This approach maintains two complementary
significant cases; the subjective and objective research. The
subjective research is principally a qualitative approach to
the study of the human behavior and the reasons that govern
such a behavior. Researchers have the propensity to grow to
be subjectively engrossed by the subject substance in this
kind of research method. The objective research is princi-
pally quantitative; the researchers have a tendency to stay
objectively separated from the subject substance. The objec-
tive research is logically regarded as a quantitative approach
because it looks for the exact measurements and analysis of
the aim of the concepts that respond to its query.

4.2.1 Subjective evaluation

To achieve a subjective experiment process, we used 2000
video clips. The details of the data clips are described in
Sect. 3.1. A diversity of 80 sound signal queries and the
release of the best corresponding shots are presented to them
one by one using a specific interface. For each sound query,
they are drilled to pick the retrieved video shots that sound
similar to it. Otherwise, they decide ‘not found’ if they end
up with the result that none of the recovered videos seem
comparable to the query.

Ten users estimate 80 sound queries by looking at the
retrieved video shot clips for each query. This is taken as 10
× 80 = 800 samples for evaluating the performance. As an
alternative to the conventional precision and to recall the rates

of retrieval, the performance is calculated in stipulations of
probability of the relevant video shots in the corresponding
clips. This experiment demonstrates the probability relative
to the relevant video shots. It can be distinguished that the
retrieved video shots are higher than the relevant shots by
40 %. In addition, the probability of the relevant retrieved
video shots is≈ 0.8. This is basically the worst-case measure
of the retrieval sound system.

4.2.2 Objective evaluation

Figure 9 shows a graphical interface for the user’s query
integration. The scale of this experiment is restricted here by
sound concepts mentioned in Sect. 3.1. Table 2 details six
sound queries by examples and the corresponding retrieved
video shot clips.Weperceive that the retrieved video shots are
perfectly related to the query. It is practical that the response
means the desired sounds by request but the visual scene does
not reflect the source of the sound. For example, in the sound
query 3wefind trees but no helicopter, and in the sound query
2 we find an image of dead soldiers rather than an explosion
flame.

Table 2 Sound query examples and corresponding video shots
retrieved

Sound query Video shots retrieved description

1/Dog barking 2 barking dogs in a home garden

2/Explosion Soldiers died in a scene of war

3/Helicopter Trees whose leaves are trembling

4/Police alarm The passage of several police cars in full speed

5/Airplane Plane landing in an airport runway

6/Car Scene of cars race
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Fig. 10 Precision v/s recall for
concepts

For the 26 sound concepts mentioned previously, the pre-
cision and recall rates recorded are illustrated in Fig. 10. The
retrieval performance is improved using about 80 sound sig-
nals as a test sample from each concept.

Recall is spotted from 0 to 1.0 by making an allowance
for video shots from the list of the retrieved shots. The pre-
cision is obtained by averaging the precision values at every
occurrence of a correctly retrieved video shot.

The objective evaluation that uses high level shows that
our process can perform as good as the other methods [27].
The advantage of this process is its easy computation. More-
over, the subjective evaluation results indicate that the system
is capable of retrieving the video shots containing sounds that
are relevant to the user’s sound query. To estimate the sys-
tem performance, it should be acknowledged that video with
text labeling-based retrieval is basically different from the
example-based retrieval. Text descriptions speak about the
concepts that reside in intense volumes. This means that it
is easier to solve particular features of descriptions of video
by counting the suitable keywords in the query. This is par-
ticularly true for complex acoustic events as queries because
they require a diversity of perceptual qualities. Based on this
analysis, the subjective experiments evaluations, in general,
are strict and conformist estimates of the system perfor-
mance.

5 Conclusion

In this paper, we have illustrated a number of variants of
a video–soundtrack retrieval system based on some envi-
ronmental sounds. Indeed, we have integrated a new audio
analysis process in an attempt to separate the audio sources.
In particular, we have tried different models for audio classi-
fication; namely, the Support Vector Machines, the Gaussian
Mixture Model and the HiddenMarkovModel using Euclid-
ian, cosine and Kullback–Leibler distance measure. We have
produced a support for GMM+Kullback–Leibler. Based on

this audio concepts classification, we have constructed a
video retrieval system. We show that the integrations of our
approaches are efficient to enhance the retrieval effective-
ness. Subsequently, video retrieval is relatively a current
research field and there are assortments of attractive ways
for the future works. Mainly, we are planning to combine
the recognition of the same sounds or with other sounds in
only one video sequence. Though there have been several
studies about the mixture of sounds, there is a little interest
in environmental sound extraction. We are currently starting
to investigate how to combine together the running of many
appropriate distinguishing processes of different sound con-
cepts.
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