
Int J Multimed Info Retr (2014) 3:259–274
DOI 10.1007/s13735-014-0067-7

REGULAR PAPER

Improving the quality of K-NN graphs through vector
sparsification: application to image databases

Michael E. Houle · Xiguo Ma · Vincent Oria · Jichao Sun

Received: 18 July 2014 / Revised: 26 August 2014 / Accepted: 29 August 2014 / Published online: 21 September 2014
© Springer-Verlag London 2014

Abstract K -nearest neighbor (K-NN) graphs are an essen-
tial component of many established methods for content-
based image retrieval and automated image annotation. The
performance of such methods relies heavily on the semantic
quality of the graphs, which can be measured as the propor-
tion of neighbors sharing the same class label as their query
images. Due to the noise in image features, the K-NN graphs
produced by existing methods may suffer from low semantic
quality. In this article, we propose NNF-Descent for the effi-
cient construction of K-NN graphs based on nearest-neighbor
and feature descent, in which selective sparsification of fea-
ture vectors is interleaved with neighborhood refinement
operations in an effort to improve the semantic quality of
the result. A variant of the Laplacian Score is proposed for
the identification of noisy features local to individual images,
whose values are then set to 0 (the global mean value after
standardization). We show through extensive experiments on
several datasets that NNF-Descent is able to increase the pro-
portion of semantically-related images over unrelated images
within the neighbor sets, and that the proposed method gen-
eralizes well for other types of data which are represented by
high-dimensional feature vectors.

M. E. Houle
National Institute of Informatics, 2-1-2 Hitotsubashi,
Chiyoda-ku, Tokyo 101-8430, Japan
e-mail: meh@nii.ac.jp

X. Ma · V. Oria · J. Sun (B)
New Jersey Institute of Technology, University Heights,
Newark, NJ 07102, USA
e-mail: js87@njit.edu

X. Ma
e-mail: xm23@njit.edu

V. Oria
e-mail: oria@njit.edu

Keywords K-nearest neighbor graph · Semantic quality ·
Image database · Feature selection · Locally noisy feature ·
Vector sparsification · Iterative method

1 Introduction

The construction of K -nearest neighbor (K-NN) graphs has
been widely adopted as an essential operation for many appli-
cations, such as object retrieval [21], data clustering [4], man-
ifold learning [2,25], and other machine learning tasks [33].

In the research field of multimedia where images are rep-
resented by high-dimensional feature vectors, K-NN graphs
built for fixed image sets serve as important data structures for
a number of established methods. For example, Qin et al. [21]
proposed a method for improving the accuracy of image
retrieval wherein different ranking functions are applied to
disjoint subsets of the database, the ‘close set’ and the ‘far
set’, as defined relative to the query image. A K-NN graph
is pre-computed to efficiently identify the reciprocal nearest
neighbors of the query image, which constitute the initial
close set. The close set is then expanded to include more
images according to certain selection rules.

Manifold ranking, which has received much attention in
the context of content-based image retrieval (CBIR), often
uses K-NN graphs to represent the similarity relationships
between images. Initially, a positive score is assigned to the
query image, and a score of 0 is assigned to all other images.
Each image iteratively computes its score as a weighted com-
bination of its initial score and the scores of its neighbors.
At termination, those images with larger scores are consid-
ered to be more related to the query. Examples following this
protocol include [13] and [29].

Practical search engines for general images often require
that the images be annotated beforehand. Due to the inherent

123

260 Int J Multimed Info Retr (2014) 3:259–274

difficulty of preparing large volumes of images for search
through manual annotation, automated image annotation
(AIA) techniques have been extensively researched in recent
years. One important approach to AIA is image label prop-
agation, in which confidence scores are disseminated from
initially labeled images to unlabeled images via a similar-
ity graph, in which the nodes represent individual images,
and the edges join pairs of images that meet certain similar-
ity criteria. For each initially-unlabeled node in the graph,
scores are computed individually for each label-node com-
bination; at termination, the label with the highest score is
assigned to the node. In [15], a keyword propagation method
was developed using a modified K-NN graph in a graph-
based semi-supervised learning framework. This work has
been extended in [16] in a way that the graph edges are clas-
sified into ‘strong’ and ‘weak’ edges, with the strong edges
having a higher weighting in the propagation process. In [28],
the authors proposed a sparse graph reconstruction method
to reduce links between semantically unrelated images in tra-
ditional K-NN graphs. The label inference step is formulated
by minimizing a label reconstruction error function.

One major difficulty with the use of K-NN graphs for
image databases is the large computational cost of construc-
tion. Due to the quadratic time complexity of brute-force
methods, much effort has been devoted to the development
of faster approximate K-NN graph construction techniques.
One straightforward solution is to invoke approximate K-NN
search for every graph node, using such indexing techniques
as cover trees [3] or locality sensitive hashing [11]. Another
approach involves the batch construction of K-NN graphs.
Chen et al. proposed one such method based on recursive data
partitioning in L2 space [5]. In [7], NN-Descent was devel-
oped for iterative K-NN graph construction in generic metric
space based on a simple transitivity principle: a neighbor of
a neighbor is also likely to be a neighbor. A description of
NN-Descent will be given in Sect. 4.1.

Another difficulty with the use of K-NN graphs for image
databases lies in its semantic quality, which can be measured
as the proportion of edges connecting two nodes with identi-
cal labels. The semantic quality of K-NN graphs depends
crucially on the feature vectors describing the images. If
many features are noisy or irrelevant for the class associ-
ated with the query image, the images in its neighborhood
list may not be semantically related to the query, severely
limiting the effectiveness of K-NN graph-based approaches.
For example, for the case where the query image belongs
to the database in question, a smaller number of correct
neighbors in its K-NN list directly indicates a lower query
result accuracy. In image label propagation, each graph
edge connecting two unrelated image nodes is a source
of error, in that it suggests that these two images should
share the same label despite their belonging to different
classes.

The negative impact of noisy or irrelevant features has
motivated the use of feature selection techniques for improv-
ing the semantic quality of CBIR [8,12,18]. For image
datasets, such feature selection techniques would also be rel-
evant to our problem, since K-NN graph construction can be
viewed as a batch of in-dataset content-based query opera-
tions. Traditional feature selection methods have been suc-
cessfully applied in the reduction of noisy features in many
contexts. However, as a rule, such reduction is performed
over the entire dataset: any feature deemed to be noisy is dis-
carded for each data point. This neglects the possibility that
the importance of the feature may vary across different data
points or classes of data points.

In this article, we present NNF-Descent, a new method
for the efficient construction of K-NN graphs with improved
semantic quality, for scenarios involving image databases
where class label information is not available.

First, we propose the Local Laplacian Score (LLS), a vari-
ant of the Laplacian Score (LS) [14], to identify features that
are ‘locally noisy’—that is, noisy relative to the neighbor-
hood of a given target image. We show that if a feature is
indiscriminative for an image class, it is very likely that the
feature will be identified as locally noisy for many images
from this class.

Since we are interested in identifying features that are
noisy only with respect to subsets of images (that is, neigh-
borhoods of query images), and not with respect to the full
image dataset, traditional feature selection techniques cannot
be applied directly. To reduce the negative impact of locally
noisy features, we modify the feature value so as to encour-
age the reduction of intra-class distances. Ideally, one suitable
value for such replacement could be the mean for that fea-
ture, taken over all images from the class to which the image
belongs. However, this is not feasible in practice, as the class
labels of the images are not known in advance. As a heuristic
solution, we instead change noisy feature values to the global
mean for that feature. Assuming that the feature values have
been standardized, as is common practice, this amounts to
a replacement of noisy feature values by 0. This operation,
referred to here as feature sparsification, is then embedded
into the above-mentioned K-NN graph construction frame-
work, NN-Descent. During the iterative feature sparsification
process, as more and more images from a common class have
had their locally noisy features identified and sparsified, the
image vectors from this class gradually converge to a new
class center in the image domain.

The initial version of this study previously appeared as
[17]. We extend our work in the following significant aspects:

– The research literature of feature selection techniques for
images, focusing on their applications to CBIR, is dis-
cussed.

123

Int J Multimed Info Retr (2014) 3:259–274 261

– More details of the proposed method and its variants are
provided.

– Experimental results on two additional (non-image)
datasets are given, for the evaluation of our method on
other types of data.

– In the experimental comparison of performance, an addi-
tional recent unsupervised feature selection method is
included.

The remainder of this article is organized as follows. The
related research literature is reviewed in Sect. 2. Section 3 for-
mally introduces the Local Laplacian Score and explains the
rationale for feature sparsification. Section 4 describes NN-
Descent and our proposed K-NN graph construction method,
NNF-Descent. In Sect. 5, we present and discuss the results of
experiments in which our method is compared on six datasets
against unsupervised feature extraction and selection meth-
ods, with respect to the semantic quality of the K-NN graphs
produced. We conclude this paper in Sect. 6 with a discussion
of future research directions.

2 Related work

In this section, we review the research literature of feature
selection techniques, focusing on their applications in the
field of CBIR, which is closely related to our research.

The existence of noise features has a negative impact on
the discrimination of data from different classes. This has
motivated the use of feature extraction and selection tech-
niques on images represented by high-dimensional feature
vectors. Feature extraction projects the original features into
a new lower-dimensional vector space. Popular extraction
techniques include principle component analysis (PCA) and
linear discriminant analysis (LDA), to name two. Feature
selection, on the other hand, selects a subset of features from
the original vector space, and is superior to feature extraction
in terms of interpretability as the original feature values are
maintained in a reduced feature space.

Feature selection methods can be broadly categorized as
wrapper-based [19] or filter-based [24]. The wrapper model
finds subsets of features using heuristic search strategies, and
evaluates the quality of each reduced feature set using a target
learning algorithm. The filter model instead evaluates fea-
ture relevance in terms of the intrinsic characteristics of the
data. In the context of K-NN graph construction, filter-based
approaches are more desirable, since no specific learning
algorithm is required, and since the computational costs are
typically much lower than with wrapper-based approaches.

Feature selection techniques have been widely used in
image retrieval for better semantic quality of the query result.
Most of them are supervised. For example, in [30], a fam-
ily of feature selection methods was designed based on the

maximization of the mutual information between features
and class labels. The selection of discriminative features and
the reduction of redundant features are performed jointly
for image retrieval and recognition. Guldogan and Gab-
bouj [12] integrated three feature selection criteria involv-
ing mutual information, intra-cluster relationships, and inter-
cluster relationships. For the determination of the final rank-
ing of features, majority voting is applied across the feature
rankings computed according to each individual criteria.

Rashedi et al. [23] combined image feature adaptation and
selection in a simultaneous process. The authors claimed that
each image database should have its own parameters for the
extraction of features, controlling such aspects of the process
as (for example) the quantization levels in color histograms.
The values of these parameters were encoded together with a
binary vector corresponding to the selected features. A mixed
gravitational search algorithm [22] was used for optimizing
the parameter values.

Jiang et al. proposed a relevance feedback learning method
for online image feature selection [18]. Given a query image,
the returned results are labeled as ‘relevant’ or ‘irrelevant’ by
the user. The most representative features for the query con-
cept are then selected based on a form of similarity between
the two labeled sets. A similar method was presented in [27],
with feature selection being guided by a combination of a
Bayesian classifier with a measure of inconsistency from rel-
evance feedback. The mean feature vectors of the positive
and negative labeled samples are constructed online in each
feedback session, and the angle between the two vectors is
computed as a measure of the inconsistency from relevance
feedback.

The methods listed above require ground truth input for
training images—either as a semantic labeling, or from rel-
evance feedback. Dy et al. [8] proposed a wrapper-based
unsupervised feature selection method for medical image
retrieval. Sequential forward selection [9] is applied to pro-
duce candidate feature subsets, which are then used in
expectation-maximization (EM) clustering. The quality of a
feature set is then evaluated according to a measure of com-
pactness and separability on the resulting clusters. However,
the requirement of a target learning algorithm, as well as
the huge computational costs involved, hinder the applica-
tion of such wrapper-based methods to databases with high-
dimensional feature vectors.

Laplacian Score (LS) [14] and spectral feature selection
(SPEC) [32] were proposed as two powerful unsupervised
filter-based methods for generic data. The basic idea of LS is
to rank features according to their locality-preserving abili-
ties. LS favors features whose values are similar within each
local neighborhood, but which have a large variance over the
entire dataset. SPEC presents a unified framework based on
spectral graph theory for both supervised and unsupervised
feature selection, in which features are evaluated according

123

262 Int J Multimed Info Retr (2014) 3:259–274

to their consistency with the structure of a weighted similarity
graph. Three ranking functions (φ1, φ2, and φ3) were pro-
posed; it is claimed that LS is equivalent to SPEC-φ2 under
certain conditions. Both methods achieve good generaliza-
tion performance on learning tasks with reduced dimension-
ality. However, we cannot assume that the same also applies
to the case of the semantic quality of image retrieval, espe-
cially when comparing them with the use of full feature vec-
tors.

More recently, Yang et al. [31] proposed the unsuper-
vised discriminative feature selection (UDFS) algorithm by
incorporating discriminative analysis and L2,1-norm mini-
mization into a joint framework. Important features can be
selected in batch mode, based on the optimization of an objec-
tive function. However, this algorithm requires the number
of classes as an input, and suffers from large time complex-
ity for data represented in high-dimensional feature spaces.
Furthermore, the authors only evaluated UDFS in cluster-
ing scenarios—the performance of their method on semantic
retrieval remains unknown.

Traditional feature selection computes a uniform set of
features for all images in the database. However, it is pos-
sible that the discriminative power of a feature varies for
different images. In our previous work [16], we proposed a
feature selection method for linking labeled images to unla-
beled images in a similarity graph for label propagation.
Each feature of a labeled image is used in isolation to rank
other labeled images; the features that assign high ranks to
related neighboring images are treated as more important. By
deleting the least important features, a different feature set
is computed for each labeled image, for subsequent use in
the ranking of unlabeled images. In this article, we also pro-
pose a scheme in which noisy features are identified locally
for individual database images; however, unlike the method
of [16], the entire process is fully unsupervised.

3 Locally noisy feature detection and sparsification

In this section we propose a local variant of the Laplacian
Score (LS), the Local Laplacian Score (LLS), for the ranking
of features with respect to individual data points. We then
show the use of LLS in the identification of locally noisy
features and the characterization of the features identified.
The section concludes with a discussion of the effectiveness
of sparsification of locally noisy features for the reduction of
intra-class distances.

3.1 Local Laplacian Score

Given a dataset D consisting of n data points represented
by m-dimensional feature vectors, we denote the r -th fea-
ture of the entire dataset by an n-dimensional vector fr =

(fr1, . . . , frn)T , where r = 1, . . . , m, and fri (i = 1, . . . , n)
is the feature value of fr taken from data point xi ∈ D (more
generally, let fr denote the r -th feature from an individual
data point). For the sake of convenience, we will not distin-
guish between the r -th feature and its value(s), and simply
refer to the feature in question as fr (or fr).

Given a nearest neighbor graph G (for example, the K-NN
graph) of dataset D, the Laplacian Score of the r -th feature
over the entire dataset can be computed as follows [14]:

LS(r) =
∑

i j (fri − fr j)
2Si j

var(fr)
, (1)

where var(fr) is the estimated variance of the values of feature
fr , and Si j is the (Gaussian) RBF kernel on feature vectors xi

and x j representing the i-th and j-th data points, respectively:

Si j =
{

exp(−||xi − x j ||2/2σ 2) if i and j are connected,
0 otherwise,

where σ is a bandwidth parameter. LS favors those features
that both preserve the nearest neighbor graph structure and
have large variance values across all data points. Note that the
similarity Si j places a high weighting on node i’s close neigh-
bors, which are more likely to be from the same class as i .

LS evaluates the importance of a feature as regards its
overall power in locality preservation, taken over all objects
of a dataset D. Only one ranking score for each feature
fr is computed. When it is used as the criterion for tradi-
tional feature selection, fr is either preserved for, or discarded
from, the entirety of the dataset. This, however, neglects
the possibility that a feature that is important for one data
class (or one data point) may be irrelevant for another class
(or point).

In this article, we propose the Local Laplacian Score (LLS)
for the identification of noisy features relative to each data
point. LLS represents the contribution to Eq. 1 that can be
attributed to data point xi :

LLSi (r) =
∑

j (fri − fr j)
2Si j

var(fr)
. (2)

As fr = (fr1, . . . , frn)T , it is easy to verify that

LS(r) =
∑

i

LLSi (r). (3)

As with LS, a smaller LLS value indicates less variation
in the feature value among the neighbors of the data point.
Intuitively, by minimizing LLSi (r), LLS favors those features
that have a high global variation and that have the greatest
impact in establishing the neighborhood of data point i .

3.2 Locally noisy features and LLS

We adopt a straightforward method for the detection of noisy
features local to node i using LLS, in which the m features

123

Int J Multimed Info Retr (2014) 3:259–274 263

are sorted in descending order of LLSi (r), and returns the
first z features (for some supplied value z > 0). We refer to
these z features as the locally noisy features of xi , and to the
remaining (m − z) features as the subjective features of xi .

Let us assume that all feature values have been standard-
ized in advance. If the original values of feature fr are denoted
by f′r , the standardized value of the r -th feature for data point
xi is:

fri =
{

(f ′
ri − μf′r)/σf′r if σf′r �= 0,

0 otherwise,
(4)

where

μf′r =
∑

i f ′
ri

n
, and σf′r =

√∑
i (f ′

ri − μf′r)
2

n

are the mean and standard deviation of the original feature
values f′r , respectively. As a consequence, each standardized
feature fr has a mean of 0 and a variance of 1.

Standardization is possible provided that σf′r �= 0. Note
that if σf′r were equal to 0, all the feature values for f′r would
be identical, and thus f′r would have no impact in the com-
putation of distances between data points, and could safely
be eliminated altogether. We therefore consider only those
cases in which σf′r �= 0 for every original feature f′r .

Given that the values of feature fr have been standardized
in advance, LLS reduces to the following simpler form:

LLSi (r) =
∑

j

(fri − fr j)
2Si j . (5)

Equation 5 can be viewed as a form of weighted local vari-
ance of the feature values for fr in the neighborhood of node
i . As with the computation of LS (Eq. 1), the close neighbors
of node i are given higher weighting in the computation of
LLSi (r), since they are more likely to belong to the same
class as i .

Denoting the class label of i by I , when standardized fea-
ture fr is discriminative for class I , the variance of the values
for fr within I is likely to be relatively small. As a result,
the LLS scores for the r -th feature are expected to be small
for most data points from I . If feature fri nevertheless had
a relatively high score LLSi (r) for node i , then fri is likely
to be an outlier among all the feature values for fr within
class I .

On the other hand, when feature fr is a noisy feature for
class I , the variance of the standardized feature values for fr

is large in I . Thus, many data points from I are very likely
to have large LLS scores for fr , and to identify fr as one
of their own noisy features. In other words, if feature fr is
indeed noisy for a given class, many data points from this
class would tend to agree on its identification as such. A
consensus, however, does not in general occur among data
points drawn from different classes.

 0
 10
 20
 30
 40
 50
 60

 1 200 400 600 784

F
re

qu
en

cy
 (

%
)

Feature(a)

 0
 10
 20
 30
 40
 50
 60

 1 200 400 600 784

F
re

qu
en

cy
 (

%
)

Feature(b)

 0
 10
 20
 30
 40
 50
 60

 1 200 400 600 784

F
re

qu
en

cy
 (

%
)

Feature(c)

 0
 10
 20
 30
 40
 50
 60

 1 200 400 600 784

F
re

qu
en

cy
 (

%
)

Feature(d)

Fig. 1 Frequencies of features identified as noisy features in three
image classes of MNIST. a Images of the digit 0, b images of the digit
6, c images of the digit 7, d images of digits 0, 6 and 7

This situation is illustrated in Fig. 1 for the MNIST hand-
written digit image set [20] (see Sect. 5.1 for a description
of this set). For three classes of handwritten digits, LLS is
used to identify the top 50 noisy features from a total of
784 features. Figure 1a–c show the frequency by which each
feature is identified as a noisy feature for the digit classes
0, 6 and 7, respectively. Figure 1d shows the frequency by
which each feature is identified as a common noisy feature
for all the three classes. It can be seen that even with less
than 7 % of the features from each image deemed as noise,
many features are selected as such for 40–60 % of the images
within each class. However, the noisy feature sets receiving
the most votes in the three image classes are very different.
For all the three classes, the frequencies of noisy features are
more balanced, with no feature receiving more than 30 % of
the votes.

123

264 Int J Multimed Info Retr (2014) 3:259–274

−1
0

1
2

−1
0

1
2

−1

−0.5

0

0.5

1

class 1
class 2
class 3
centers

(a)
−1

0
1

2

−1
0

1
2

−1

−0.5

0

0.5

1

class 1
class 2
class 3
centers

(b)

−1
0

1
2

−1
0

1
2

−1

−0.5

0

0.5

1

class 1
class 2
class 3
centers

(c)
−1

0
1

2

−1
0

1
2

−1

−0.5

0

0.5

1

class 1
class 2
class 3
centers

(d)

Fig. 2 Distribution of 3-D data points in a dataset of three classes. a Original data points, b noisy feature values changed to local mean, c 50 %
noisy features sparsified, d 100 % noisy features sparsified

3.3 Feature sparsification

Traditional feature selection methods cannot be applied
directly in the reduction of noisy features identified by LLS,
as the feature importance is different across individual data
points—each data point has its own subjective feature set.
Instead of discarding a feature from the entire dataset, we
modify the noisy feature values for individual data points in
an effort to reduce intra-class distances.

Given a subset D′ ⊂ D, we denote the mean value of the
r -th feature for the data points in D′ by:

mean(D′, fr) =
∑

xi ∈D′ fri

|D′| . (6)

More specifically, we denote the global mean of the r -th
feature computed over the entire dataset by mean(D, fr),
the class mean of the r -th feature computed in class P by
mean(P, fr), and the local mean of the r -th feature with
respect to node p ∈ P by mean(Q, fr), where Q is the K-
NN set of p.

Let us consider a simplified example wherein the data
points of class P have a common noisy feature fr . Ideally, if
for all data point p ∈ P we replace fr p with mean(P, fr),

the intra-class distances of P would tend to decrease (as
the intra-class variance attributed to this feature dimension
is eliminated), whereas the class mean value mean(P, fr)
would not change. As a consequence, the data points of class
P become closer, and the distances between P and other
classes measured as the distances between the class centers
remain the same.

Figure 2a, b illustrate a configuration of three classes
of synthetic 3-D data points before and after such replace-
ment. Figure 2a depicts the original distributions of the three
classes of 3-D points and their class centers. The data points
of each class share a common noisy feature, the noisy fea-
ture being different for each of the three classes. It can be
seen from Fig. 2b that after replacing locally noisy fea-
ture values by their class mean values, the points of each
class converge towards their class centers, while the class
centers remain the same. Outlying feature values are effec-
tively corrected, and discrimination of the classes is clearly
improved.

Unfortunately, replacement of locally noisy feature val-
ues by class mean values is impractical, as the class labels
are generally unavailable. As a heuristic solution, we instead
perform a sparsification of the data vectors, by replacing

123

Int J Multimed Info Retr (2014) 3:259–274 265

the value of each noisy feature fr with the global mean
mean(D, fr) for standardized features, which is 0. Figure 2c,
d show the configurations of the three classes after 50 and
100 % (respectively) of the data points in each class have
been sparsified. During the sparsification process, the cen-
ters of the classes can change. In this example, the dis-
tances between the centers of classes 1 and 2, and classes
2 and 3, both increase; between the centers of classes 1
and 3, we observe a decrease. However, the data points in
each class still converge towards their new centers as the
sparsification rate increases. In fact, in Fig. 2d, the spar-
sified data points are reduced to 2-D points which con-
verge towards their new class centers in three different 2-D
planes.

Although the global mean of each feature is 0 due to stan-
dardization, individual feature values could be positive or
negative, and thus in general, if two data points have dif-
ferent features sparsified, the distance between them could
increase or decrease. Ideally, data objects from a common
class should identify the same sets of noisy features. Two data
points from different classes could conceivably share many
sparsified features, resulting in an undesirable reduction of
the distance between them. However, one would expect this
to be more than offset by the sparsification of common noisy
features across many members of the same class, since the
LLS ranking favors such features.

For data points with outlying feature values in a class
(the features in question are otherwise discriminative for
the class), the sparsification of the outlying features does
not guarantee a reduction of the distances between the data
points and the other members of their class. The reason is
that the features in question are less likely to be identified
as noisy features by the other data members and thus remain
unchanged. However, even if the distances did increase, one
would expect the number of such outliers (data points with
outlying feature values) to be relatively small, and thus the
overall negative impact would likely be outweighed by the
positive impact on class cohesion by the sparsification of
common noisy features for the class.

With more locally noisy features detected, data points
from different classes are more likely to share common noisy
features. Thus, unlike traditional feature selection methods,
the feature sparsification scheme should be employed con-
servatively, by modifying only a relatively small proportion
of features.

Another heuristic solution is to replace each noisy fea-
ture value fr p by an approximation of the class mean
mean(P, fr). Here, we use the local mean mean(Q, f) as
the approximation, where Q is the K-NN set of p taken with
respect to the full feature set. The K-NN set of each data
point could be precomputed in the process of the initial graph
construction for LLS feature ranking. However, this strategy
suffers from several drawbacks:

– Averaging featue values incurs cost overheads that can
significantly reduce the efficiency when the dataset is
large.

– It is difficult to determine whether the original or the
updated feature values should be used in subsequent aver-
aging processes.

– The local mean of a feature is not fixed for a data class,
so that data points from the same class may have their
common noisy features changed to different values.

In our experimentation, we compare this variant with
the feature sparsification scheme, and discuss the result in
Sect. 5.3.

4 K-NN graph construction with feature sparsification

In this section, we give the details of our proposed adaptation
of NN-Descent for the construction of a K-NN graph for
images described as high-dimensional vectors. As will be
seen, this method generalizes well for non-image data having
similar representations. A brief description of NN-Descent,
and the complete algorithm of our method NNF-Descent, are
given in Sects. 4.1 and 4.2, respectively.

4.1 NN-Descent

NN-Descent is an iterative algorithm for the construction
of approximate K-NN graphs with arbitrary similarity mea-
sures [7]. Let p, q and r denote three data points. NN-Descent
seeks to take advantage of a tendency toward transitivity in
the neighbor relationship: if q is a neighbor of p, and r
is a neighbor of q, then r is likely to be a neighbor of p
(Fig. 3). Starting from a random tentative K-NN graph, the
NN-Descent strategy is to repeatedly check for each point
p as to whether any neighbors of its neighbors (such as r)
could serve as a closer neighbor of p than any of the nodes
currently in the neighbor list of p.

If the neighborhood relationship is undirected, checking
data pairs of the form (p, r) is equivalent to checking all
pairs of neighbors of a common point q. This operation is
referred to as a local join. The NN-Descent strategy can thus
be described as that of checking whether two neighbors of a

Fig. 3 The principle of NN-Descent

123

266 Int J Multimed Info Retr (2014) 3:259–274

Algorithm 1: NN-Descent
input : dataset D, distance function dist , neighborhood size K
output: K-NN graph G

1 foreach data point p ∈ D do
2 Initialize G by randomly generating a tentative K-NN list for

p with an assigned distance of +∞;
3 end
4 repeat
5 foreach data point p ∈ D do
6 Check different pairs of p’s neighbors (x, y) in p’s K-NN

and R-NN (reverse nearest neighbor) lists, and compute
dist (x, y);

7 Use 〈x, dist (x, y)〉 to update y’s K-NN list, and use
〈y, dist (x, y)〉 to update x’s K-NN list;

8 end
9 until G converges;

10 Return G.

common data point could improve over any of the tentative
neighbors in each other’s neighbor list.

The basic algorithm of NN-Descent is summarized in
Algorithm 1. The algorithm starts with an initial random
K-NN graph that will be iteratively refined in an effort to
produce the true K-NN graph (lines 1–3). Lines 6–7 corre-
spond to the local join operation. In the implementation, a
K-NN list of a query point consists of K entries, each of
which is an ordered pair 〈x, d〉 with x being a data point
ID, and d being the distance between x and the query point.
In line 7, the K-NN entry 〈x, dist(x, y)〉 is used to update
y’s K-NN list if and only if dist(x, y) < dist(qK , y), where
qK is the K -th neighbor of y. The same rules apply to the
case for 〈y, dist(x, y)〉. The algorithm stops when the graph
G is not changed in consecutive iterations, or the propor-
tion of updated K-NN entries is smaller than a user-specified
threshold.

4.2 NN-Descent with sparsification

We now show how LLS feature ranking and sparsification
can be integrated into the NN-Descent framework. Starting
from a near-exact K-NN graph, noisy features are gradually
sparsified as the nearest-neighbor descent progresses. After
each sparsification, the feature vector is updated for use in
subsequent refinements of neighborhoods. This allows the
effects of sparsification and graph refinement to influence
each other promptly: an updated K-NN graph improves the
feature ranking accuracy, and the sparsification of noisy fea-
tures improves the semantic quality of the K-NN graph in
return.

The details of the NNF-Descent method can be found in
Algorithm 2. For simplicity, we sparsify a fixed number of
features from each feature vector per iteration, which is con-
trolled by the parameter z. As mentioned before, the value
of z should be relatively small in comparison with the total

number of features. The other two parameters, K and N ,
determine the neighborhood size of the target graph, and the
desired number of iterations, respectively.

Lines 1–2 of Algorithm 2 are preprocessing steps, the lat-
ter of which uses the original NN-Descent to compute a K-
NN graph for the original (standardized) feature vectors. We
expect this graph to be of reasonable semantic quality; other-
wise, the initial feature ranking may be too unreliable for the
sparsification strategy to further improve the graph. Although
chosen for reasons of efficiency, NN-Descent can be replaced
with other exact or approximate K-NN graph construction
methods if desired.

Lines 3–13 correspond to one iteration of our method,
in which three main phases are involved: feature ranking,
sparsification, and K-NN updates.

In line 6, the updated K-NN graph is used to rank the
features for data point p. If desired, the feature ranking step
may use a subset of the K-NN lists. For example, a 10-NN
graph can be used for LLS feature ranking in the construction
of a 100-NN graph.

Line 7 sparsifies a small number of highly-ranked (noisy)
features for p. The value of parameter z is chosen empiri-
cally as described in Sect. 5. Since the values of the noisy
features will eventually be changed to 0, we considered only
those features having non-zero values. In particular, if the
original data points have identical values for a given feature,
the standardized values of this feature will be 0 for every
point, as indicated by Eq. 4. In traditional feature selection,
such features will be removed, as they provide no discrimina-
tive information. However, LLS sparsification simply ignores
zero-valued features as they do not affect the semantic qual-
ity of the K-NN graph. Ignoring zero-valued features also
ensures that a sparsified feature will not be sparsified again
in further iterations.

Lines 8–11 correspond to the K-NN update phase. Lines
8 and 9 update the current K-NN graph to be consistent with
the newly-sparsified feature vector. The distances between p
and its current K-NN and R-NN neighbors are recomputed,
and the lists of neighbors are re-sorted. Note that as a heuris-
tic method, for the sake of efficiency, NNF-Descent does not
recompute the K-NN lists of p or of p’s R-NNs. However,
the implementation of the local join operation requires that
the order of the K-NN entries be correct. In the local join
operations performed in lines 10–11, new candidate K-NN
members are created and compared with the existing neigh-
bors, after which the neighbor lists are updated. A data pair
(x, y) that has been checked is subsequently flagged in order
to prevent it from being checked again.

It is worth mentioning that we do not re-standardize the
dataset after sparsification, for the reason that sparsification
would introduce large computational overheads, and change
the representation of the feature vectors dramatically. During
the iterative process of feature sparsification, with respect

123

Int J Multimed Info Retr (2014) 3:259–274 267

Algorithm 2: NNF-Descent
input : dataset D, distance function dist , neighborhood size K ,

number of sparsifications per iteration z, and number of
iterations N

output: K-NN graph G
1 Standardize the original feature vectors of D;
2 Run NN-Descent(D, dist, K) until convergence to obtain an

initial K-NN graph G;
3 repeat
4 Generate a list L of all data points in random order;
5 foreach data point p ∈ L; do
6 Rank p’s features in descending order of their LLS

computed from p’s current K-NN;
7 Change the values of the top z ranked features to 0;
8 Recompute the distances from p to its K-NN and R-NN;
9 Re-sort p’s K-NN list and p’s R-NN’s K-NN lists;

10 Check different pairs of p’s neighbors (x, y) in its K-NN
and R-NN, and compute dist (x, y);

11 Use 〈x, dist (x, y)〉 to update y’s K-NN list, and use
〈y, dist (x, y)〉 to update x’s K-NN list;

12 end
13 until Max number of iterations N is reached;
14 Return G.

to a given class, the class mean of an affected feature fr

eventually tends to 0 if most or all data points of this class
have this feature sparsified; the variance of fr tends to 0 as
well. For simplicity, when computing the LLS for a feature
fr ∈ fr , we treat the global mean and variance of fr as if they
maintained their original (standardized) values throughout
the sparsification process: with the mean fixed at 0, and the
variance fixed at 1.

In the implementation, the length of an R-NN list is limited
to K for efficiency. As a result, in terms of the number of
distance computations, the time complexity of each NNF-
Descent iteration is in O(K 2n), determined by the maximum
cost of local join operations. If the dist function is L2, the cost
in terms of the number of operations on feature values is in
O(K 2mn). The feature ranking and selection performed by
LLS entails a small run-time overhead of O(K mn) for each
iteration of NNF-Descent. This indicates that the algorithm
scales well in terms of n, for reasonable values of K . Several
optimizations of NN-Descent can be applied directly to NNF-
Descent (Algorithm 2); we refer the reader to [7] for the full
details.

4.3 Variants of NNF-Descent

In this section, we present several variants of NNF-Descent
that will also be evaluated in the experimentation.

First, as an alternative to feature sparsification, another
heuristic solution for adjusting the values of a locally noisy
feature is to replace it with the approximate class mean (that
is, the local mean) for that feature. More formally, we create
a variant (Var1) from Algorithm 2 by modifying line 7 to:

For each feature fr p appearing among the z top-ranked
noisy features of p, set fr p to mean(Q, fr), where Q
is the current K-NN set of p.

Note that:

1. Unlike NNF-Descent, Var1 does not skip the zero-valued
features. However, a modified feature will not be modi-
fied again in subsequent iterations.

2. The computation of mean(Q, fr) uses the original stan-
dardized feature values of fr instead of newly computed
values.

In order to illustrate the effect of iterative feature ranking,
we also contrast NNF-Descent against two variants (Var2
and Var3) of Algorithm 2 with iterative feature ranking
disabled. Var2 maintains only the nearest-neighbor descent
procedure of NNF-Descent, while Var3 performs neither
nearest-neighbor descent nor feature descent. Both Var2 and
Var3 compute the LLS for features of each data point only
once before the iteration begins, based on the initial K-NN
graph. In each iteration, both variants sparsify z noisy fea-
tures from each feature vector, with the features occupying
ranks i z − z + 1 to i z being sparsified in the i-th iteration.
The two variants differ in the K-NN update phase:

– Var2 maintains the iterative K-NN updating step as in
Algorithm 2 (lines 8–11), so that the K-NN graph is grad-
ually changed.

– At the end of each iteration, after all data points have had
z noisy features sparsified, Var3 recomputes in its entirety
an exact K-NN graph from the new feature vectors.

5 Experiments

We conducted experiments using six datasets, of which four
were image sets. First, the influence of the rate of feature spar-
sification was investigated. NNF-Descent was then compared
with the proposed variants so as to demonstrate the effective-
ness of feature sparsification and iterative feature ranking.
Finally, we compared our method with several unsupervised
feature extraction and selection methods with respect to the
semantic quality of the K-NN graphs produced, and for a
labeling task.

5.1 Datasets

Table 1 summarizes the datasets used in our experimentation.
ALOI-100 and Google-23 are described in [15]. The for-

mer is a subset of the ALOI image dataset [10]. It con-
tains 10,800 images of 100 simple objects, each image being
described by a 641-D color and texture histogram. The latter

123

268 Int J Multimed Info Retr (2014) 3:259–274

Table 1 Datasets used in the experiments

Datasets Features Instances Subjects Instances
per
subject

ALOI-100 641 10,800 100 108

MNIST 784 10,000 10 1,000

Google-23 1,937 6,686 23 97–406

ORL faces 10,304 400 40 10

Movement 90 360 15 24

Secom 590 1,567 2 1,463 and 104

dataset consists of 6,686 faces extracted from web images of
23 celebrities. The dimension of the face descriptors is 1,937.

The original MNIST dataset [20] contains 70,000 images
of handwritten digits, each image being represented by 784
texture values. As in [16], we constructed a reduced set for
our experiments by randomly selecting 1,000 images for each
digit.

The ORL face dataset [26] (collected by AT&T Laborato-
ries Cambridge) contains 400 images of 40 distinct subjects,
each image consisting of 92 × 112 pixels. Each pixel is an
8-bit (0–255) gray scale integer, and is treated as one image
feature.

The competing methods were also evaluated on two non-
image datasets, Libras Movement and Secom, whose data
objects are represented by high-dimensional feature vectors.
Libras Movement (referred to as Movement for the remainder
of this article) [6] contains 15 classes of 24 instances each,
with each class referring to a hand movement type in Brazil-
ian sign language. The 90-D feature vector for each instance
is composed of normalized coordinates captured in 45 frames
of a video clip of the hand gesture. Secom [1] consists of sur-
veillance data from a semi-conductor manufacturing process.
Each instance represents a single production entity with 590
measured features. This dataset has 1,463 positive instances
and 104 negative instances.

We used the four image datasets for the testing of para-
meter z, and the comparison between NNF-Descent and
its variants. All six datasets were used in the comparison
between NNF-Descent and other methods for feature selec-
tion or extraction. For each experiment, image descriptors
were standardized within each dataset, and the Euclidean
(L2) distance was employed. The class labels of data objects
were used solely for evaluating the quality of the resulting
K-NN graph.

5.2 Number of features sparsified per iteration

Testing was performed for different choices of the number of
features to be sparsified from each data object per iteration,
using the four image sets.

On ALOI-100, MNIST and Google-23, the choices of z
were in {3, 5, 10, 15, 20}, whereas on ORL faces the choices
were in {30, 50, 100, 150, 200}. K was set at 10, and the
updated K-NN graph in each iteration was used for LLS
feature ranking. The parameter σ in the RBF kernel was
set to the average distance value stored in the exact 10-NN
graph.

For the evaluation of the semantic quality of the result-
ing K-NN graphs, we define the graph correctness as
follows:

graph correctness = #correct neighbors

#data × K
,

where a correct neighbor is one whose class label coincides
with that of the query object. An alternative measure for the
semantic quality of K-NN graphs could be the edge preci-
sion, which is the proportion of graph edges connecting two
data points from the same class. Of the two evaluation cri-
teria, we present experimental results only in terms of graph
correctness, since all methods tested exhibited very similar
performance trends for both criteria.

In Fig. 4 we plot the performances of our method with
different values of z, reporting the graph correctness at every
second iteration. As a baseline, the correctness of the exact K-
NN graph computed from the original feature vectors is also
presented in the figure (indicated as ‘exact K-NN’). At iter-
ation 0, instead of performing NN-Descent without feature
selection, we simply used the correctness values produced
by the exact K-NN for all configurations of NNF-Descent,
so that all curves converged to a single point at the left-hand
side of the figures.

On the four image datasets, our proposed method achieves
significant improvements in terms of the graph correctness,
indicating that the the average number of correct neighbors
per individual images is increased. With a larger number
of features z sparsified per iteration, our method achieves
its performance peak after fewer iterations, but thereafter
degrades faster, as the number of sparsified features shared
by images of different classes increases. Smaller choices of z
lead to more gradual changing in performance, and occasion-
ally a better peak performance (for example, on ALOI-100
and MNIST). However, it may require substantially more
iterations to reach the performance peak. In practice, as a
reasonable starting point for parameter tuning, we recom-
mend that z be set to approximately 1 % of the number of
features.

Although the number of iterations at which peak per-
formance is reached varies from dataset to dataset, it also
is influenced by the semantic quality of the initial K-NN
graph, and the number of features sparsified in each itera-
tion. It is difficult to determine an ideal value for parameter
N ; however, we still observe a notable improvement of NNF-
Descent over the exact K-NN in the first 30–50 iterations.

123

Int J Multimed Info Retr (2014) 3:259–274 269

Fig. 4 Performances of
NNF-Descent for different
numbers of features sparsified
per iteration. a ALOI-100, b
MNIST, c Google-23, d ORL
faces

 90

 91

 92

 93

 94

 95

 96

 97

 98

 0 5 10 15 20 25 30

G
ra

ph
 c

or
re

ct
ne

ss
 (

%
)

Number of iterations

exact K-NN
z=3
z=5

z=10
z=15
z=20

(a)

 81

 83

 85

 87

 89

 91

 0 5 10 15 20 25 30

G
ra

ph
 c

or
re

ct
ne

ss
 (

%
)

Number of iterations

exact K-NN
z=3
z=5

z=10
z=15
z=20

(b)

 65

 66

 67

 68

 69

 70

 71

 0 10 20 30 40 50

G
ra

ph
 c

or
re

ct
ne

ss
 (

%
)

Number of iterations

exact K-NN
z=3
z=5

z=10
z=15
z=20

(c)

 52

 54

 56

 58

 60

 62

 64

 66

 0 5 10 15 20 25 30 35 40

G
ra

ph
 c

or
re

ct
ne

ss
 (

%
)

Number of iterations

exact K-NN
z=30
z=50

z=100
z=150
z=200

(d)

For the remainder of the experiments, the value of N was
not fixed—instead, we show the results over a large range of
iterations.

5.3 Replacing noisy feature values by the local mean

We compared NNF-Descent with Var1 on the four image sets
using K = 10. As in Sect. 5.2, the K-NN graphs produced
were subsequently used by LLS for feature ranking. The value
of z was set at 5 for ALOI-100, MNIST and Google-23, and
at 100 for ORL faces.

The results can be found in Fig. 5, from which we see that
both methods can improve the correctness of produced K-
NN graphs, indicating the effectiveness of the feature modi-
fication scheme. On Google-23, Var1 achieves better results,
whereas the performance gap is small—the largest difference
between Var1 and NNF-Descent is roughly 0.6 %. On the
other three datasets, NNF-Descent outperforms Var1 within
several iterations, and has higher peak values for graph cor-
rectness.

In practice, the local mean of a feature is computed from
different neighborhoods, and is not fixed for a data class—
this can be observed by considering a semantic image class
that contain several visually distinct subclasses. As a result,
data objects from the same class may be assigned differ-
ent values for a common noisy feature, and thus, the intra-
class distances of the objects may not be reduced by assign-
ment of the local mean. One possible explanation of the

better performance of Var1 on Google-23 is that the cases
in which neighboring images have many noisy features in
common may occur less often than with the other three
datasets.

5.4 Effectiveness of iterative feature ranking

To demonstrate the effectiveness of iterative feature ranking,
we compared NNF-Descent with the two remaining vari-
ants, Var2 and Var3. The framework for the experiments of
Sect. 5.3 was employed here as well.

The results can be found in Fig. 6. They show that the per-
formance of NNF-Descent is consistently better than those
of the two variants. This implies that iterative feature ranking
and K-NN updating are mutually beneficial: an updated K-
NN graph improves the accuracy of feature ranking, and the
sparsification of noisy features improves the semantic quality
of the K-NN graph in return.

It is also interesting to note that Var2 outperforms Var3 on
Google-23 and ORL faces. On ALOI-100, Var2 has better
performance after 12 iterations. On MNIST, Var3 is better,
but the difference is small. A possible reason for the relatively
poor performance of Var3 is that in each iteration, the K-NN
graph is computed from scratch using new feature vectors.
If the feature ranking is unreliable, the semantic quality of
the graph is severely affected. In contrast, Var2 adopts a con-
servative neighborhood updating scheme in which a K-NN
graph is updated from its previous status.

123

270 Int J Multimed Info Retr (2014) 3:259–274

Fig. 5 Comparing
NNF-Descent with Var1. a
ALOI-100, b MNIST, c
Google-23, d ORL faces

 91

 92

 93

 94

 95

 96

 97

 98

 0 5 10 15 20 25 30

G
ra

ph
 c

or
re

ct
ne

ss
 (

%
)

Number of iterations

exact K-NN
NNF-Descent

Var1

(a)

 81

 83

 85

 87

 89

 91

 0 5 10 15 20 25 30

G
ra

ph
 c

or
re

ct
ne

ss
 (

%
)

Number of iterations

exact K-NN
NNF-Descent

Var1

(b)

 65

 66

 67

 68

 69

 70

 71

 72

 0 10 20 30 40 50

G
ra

ph
 c

or
re

ct
ne

ss
 (

%
)

Number of iterations

exact K-NN
NNF-Descent

Var1

(c)

 54

 56

 58

 60

 62

 64

 66

 0 10 20 30 40 50

G
ra

ph
 c

or
re

ct
ne

ss
 (

%
)

Number of iterations

exact K-NN
NNF-Descent

Var1

(d)

Fig. 6 Comparing
NNF-Descent with Var2 and
Var3. a ALOI-100, b MNIST,
c Google-23, d ORL faces

 91

 92

 93

 94

 95

 96

 97

 98

 0 5 10 15 20 25 30

G
ra

ph
 c

or
re

ct
ne

ss
 (

%
)

Number of iterations

exact K-NN
NNF-Descent

Var2
Var3

(a)

 81

 83

 85

 87

 89

 91

 0 5 10 15 20 25 30

G
ra

ph
 c

or
re

ct
ne

ss
 (

%
)

Number of iterations

exact K-NN
NNF-Descent

Var2
Var3

(b)

 66

 67

 68

 69

 70

 71

 0 10 20 30 40 50

G
ra

ph
 c

or
re

ct
ne

ss
 (

%
)

Number of iterations

exact K-NN
NNF-Descent

Var2
Var3

(c)

 54

 56

 58

 60

 62

 64

 66

 0 10 20 30 40 50

G
ra

ph
 c

or
re

ct
ne

ss
 (

%
)

Number of iterations

exact K-NN
NNF-Descent

Var2
Var3

(d)

5.5 Comparison against existing methods with respect to
graph correctness

On all six datasets, we compared NNF-Descent with PCA,
LS, SPEC-φ1, SPEC-φ3 and UDFS with respect to the cor-
rectness of produced K-NN graphs. Among the competing
methods, NNF-Descent, PCA, LS and SPEC-φ1 are fully

unsupervised, while SPEC-φ3 and UDFS require the num-
ber of classes as an input.

The value of z was set at 5 for ALOI-100, MNIST, Google-
23 and Secom, at 100 for ORL faces and at 1 for Movement.
The neighborhood size K for the target graph was set at
10, 20, 30, 50 and 100 on ALOI-100, MNIST, Google-23
and Secom. On ORL faces and Movement, only K = 10

123

Int J Multimed Info Retr (2014) 3:259–274 271

Fig. 7 Comparing the graph
correctness of NNF-Descent
with that of competing methods.
a ALOI-100, b MNIST,
c Google-23, d ORL faces,
e Movement, f Secom

 65

 70

 75

 80

 85

 90

 95

 100

10 20 30 50 100

G
ra

ph
 c

or
re

ct
ne

ss
 (

%
)

Neighborhood size K

NNF-Descent
PCA

LS
SPEC-φ1
SPEC-φ3

UDFS
exact K-NN

(a)

 70
 72
 74
 76
 78
 80
 82
 84
 86
 88
 90
 92

10 20 30 50 100

G
ra

ph
 c

or
re

ct
ne

ss
 (

%
)

Neighborhood size K

NNF-Descent
PCA

LS
SPEC-φ1
SPEC-φ3

UDFS
exact K-NN

(b)

 35

 40

 45

 50

 55

 60

 65

 70

 75

10 20 30 50 100

G
ra

ph
 c

or
re

ct
ne

ss
 (

%
)

Neighborhood size K

NNF-Descent
PCA

LS
SPEC-φ1
SPEC-φ3

UDFS
exact K-NN

(c)

 45

 50

 55

 60

 65

 70

10

G
ra

ph
 c

or
re

ct
ne

ss
 (

%
)

Neighborhood size K

NNF-Descent
PCA

LS
SPEC-φ1
SPEC-φ3

UDFS
exact K-NN

(d)

 35

 40

 45

 50

 55

 60

10 20

G
ra

ph
 c

or
re

ct
ne

ss
 (

%
)

Neighborhood size K

NNF-Descent
PCA

LS
SPEC-φ1
SPEC-φ3

UDFS
exact K-NN

(e)

 85

 86

 87

 88

 89

 90

 91

 92

10 20 30 50 100

G
ra

ph
 c

or
re

ct
ne

ss
 (

%
)

Neighborhood size K

NNF-Descent
PCA

LS
SPEC-φ1
SPEC-φ3

UDFS
exact K-NN

(f)

and K ∈ {10, 20} were tested, respectively, since the num-
ber of objects in each subject of the two datasets is small.
The full K-NN graph was used for feature ranking in LS,
SPEC, UDFS and our method NNF-Descent. The RBF ker-
nel spread parameter σ for LS, SPEC and NNF-Descent, and
the regularization parameter for UDFS, were tuned using
K = 10 for all datasets. For each method, the best values
obtained by tuning were chosen for use in the remainder of
the experiments.

For each experimental run of NNF-Descent, we computed
the best graph correctness score over 50 iterations. The aver-
age computed from 5 runs was reported for each dataset.

For the other methods, for each data point, the z least
important features were sparsified per iteration, and a K-NN
graph was computed from the resulting set of reduced feature
vectors. Over all K-NN graphs produced (one per iteration)—
from the original full-sized vectors to those having fewer
than z features—the best correctness value achieved over the
feature reduction process was reported.

Note that we did not compare the running time used
for the methods evaluated in the experiments. Unlike NNF-
Descent, which integrates LLS in a graph construction frame-
work, for the other methods feature selection and graph
computation are two separate processes. After every z fea-
tures are discarded by LS, SPEC, UDFS and PCA, an
exact K-NN graph is computed—at a computational cost of
O(mn2)—so as to allow a fair comparison among the meth-
ods.

The results can be found in Fig. 7. The performance of
the exact K-NN graph computed from the original feature
vectors is plotted as a baseline. On all six datasets tested,
for all choices considered for the value of K , NNF-Descent
is able to achieve graph correctness scores better than those
of the exact K-NN graphs. In almost all cases, our method
clearly outperforms its competitors.

On ALOI-100, our method has consistently better results
than its competitors. PCA fails to construct a K-NN graph
better than exact K-NN except when K = 100. LS, SPEC and

123

272 Int J Multimed Info Retr (2014) 3:259–274

Fig. 8 Comparing
NNF-Descent with its
competitors on a labeling task

 50

 60

 70

 80

 90

 100

ALOI-100 MNIST Google-23 ORL faces Movement Secom
La

be
lin

g
ac

cu
ra

cy
 (

%
)

NNF-Descent
PCA

LS
SPEC-φ1
SPEC-φ3

UDFS
exact K-NN

UDFS feature selection methods outperform PCA and exact
K-NN by taking advantage of the high semantic quality of
the initial K-NN graphs for this simple dataset.

On ORL faces, our method outperforms its competitors
by a large margin. When K = 10, the best correctness value
achieved by our method is 67.1 %, while the nearest com-
petitors SPEC-φ3 and exact K-NN achieve 60.0 and 58.8 %,
respectively.

On MNIST, although LS and SPEC-φ1 are both better
than exact K-NN, the best-performing methods are PCA,
SPEC-φ3, UDFS and NNF-Descent. When K ≤ 30, our
method outperforms SPEC-φ3, which in turn outperforms
PCA. When K = 50, PCA overtakes SPEC-φ3, and when
K = 100, it also outperforms NNF-Descent slightly, by
0.3 %. Similar outcomes were observed for PCA and our
method on Google-23, where LS, SPEC and UDFS failed to
make improvements over exact K-NN. NNF-Descent main-
tains its advantage over PCA until K = 50. When K = 100,
PCA outperforms our method by a margin of 0.9 %. This
outcome can be explained by the semantic quality of the K-
NN graphs upon which NNF-Descent rank features. As can
be seen from the degradation of the performance of exact K-
NN in Fig. 7a–c, e, when the neighborhood size increases, the
proportion of correct neighbors in the K-NN graph becomes
smaller. All of the evaluated methods except for PCA utilize
K-NN graphs for feature ranking: if the semantic quality of
the K-NN graph degrades, the detection of noisy features
becomes less reliable.

On Movement and Secom, NNF-Descent outperforms its
competitors, which indicates that it can be easily adapted to
other data types as long as the instances are represented as
high-dimensional feature vectors. It is worth mentioning that
on Movement, NNF-Descent is able to improve the semantic
quality of the K-NN graph, even when the initial K-NN graph
has a correctness value less than 40 %. On Secom, there is
no obvious degradation of the quality of produced K-NN
graphs when K increases, the reason being that there are
many more positive examples than negative examples in this
dataset.

5.6 Comparison against existing methods in data labeling

We performed in-dataset labeling using the K-NN graphs
produced during the procedure of feature sparsification (for
NNF-Descent) and reduction (for the other methods).

We chose the same values for z as in the experiments of
Sect. 5.5. With all six datasets, 10 % of the data objects from
each category were randomly selected for initial labeling in
each run. A simple labeling strategy was adopted: the class
label of each initially unlabeled data object is determined by
its nearest labeled object in its K-NN list. A large K was used
to guarantee that each object would be labeled eventually
(K was 100 in this experiment). The neighborhood size for
feature ranking was set at 10 for all methods evaluated (except
for PCA).

The semantic quality of the K-NN graphs was assessed
using the labeling accuracy:

labeling accuracy = #correctly labeled data

#initially unlabeled data
.

As in Sect. 5.5, for our method, we computed the best
labeling accuracy over 50 iterations; for its competitors, fea-
tures were reduced iteratively (z per iteration), until all fea-
tures were exhausted. All results reported in Fig. 8 were
obtained by averaging the best accuracies from 5 trials of
experiments for each method evaluated.

NNF-Descent has the best performance over all the com-
peting methods on the six datasets. With respect to the label-
ing accuracy, the differences between our method and its
closest competitor are 1.3, 1.8, 1.6, 5.3, 2.9 and 1.9 % for
ALOI-100, MNIST, Google-23, ORL faces, Movement and
Secom, respectively. For all methods tested, the results shown
in Fig. 8 present a trend for labeling accuracy that is gener-
ally consistent with that of graph correctness when K = 10
(Fig. 7).

The experiment provides evidence that our method can
improve the semantic quality of K-NN graphs, in that seman-
tically related data objects are ranked higher within the neigh-
borhoods in which they appear.

123

Int J Multimed Info Retr (2014) 3:259–274 273

6 Conclusion and future work

In this paper, we presented a K-NN graph construction
method, NNF-Descent, that uses sparsification of feature val-
ues within a nearest-neighbor descent framework to improve
the semantic quality of K-NN graphs for image databases,
when the class labels are unavailable.

We proposed the use of a local variant of the Laplacian
Score for assessing whether a feature helps or hinders the
association between an image and the other members of
the class to which it belongs. To reduce intra-class image
distances, we adopted a heuristic solution in which locally
noisy features (as identified using the Local Laplacian Score)
are sparsified from initially standardized feature vectors.
Feature ranking and sparsification steps were then incorpo-
rated into the NN-Descent iterative K-NN graph construc-
tion framework so as to improve the semantic quality of the
graph.

An experimental comparison was provided of the per-
formance of our method against those of several unsuper-
vised feature extraction and selection methods, with respect
to the correctness of the K-NN graphs produced, and in an
in-dataset labeling task, on four image datasets and two non-
image datasets whose objects are also represented by high-
dimensional feature vectors. Our method significantly out-
performed its competitors in most cases.

It is worth mentioning that unlike traditional feature selec-
tion schemes, NNF-Descent is not a supervised learning
method—it does not make use of separate training and test
datasets as would most classifiers. The goal of this paper is
to build a K-NN graph with better semantic quality for a
fixed dataset. This technique can be applied in such applica-
tions as in-dataset image querying, indexing, labeling, image
clustering and graph-based semi-supervised learning.

NNF-Descent is designed mainly for dense vectors and
may not work well for sparse features, such as the bag-of-
visual-words representation. When the feature vectors are
too sparse, the standardized features may still contain many
zero entries. In such situations, the sparsification process may
undesirably remove valuable information and greatly change
the K-NN graph structure. The application of locally noisy
feature selection for sparse feature vectors would be a worth-
while topic for future research.

Other research directions in this area include:

– Empirical evaluation of the K-NN graphs produced by
NNF-Descent in applications such as image clustering.

– A wider study as to the best strategies for the identifica-
tion and modification of locally noisy features.

– Investigation of the potential for adapting LLS and feature
sparsification in the development of new feature selection
methods.

Acknowledgments Michael Houle acknowledges the financial sup-
port of JSPS Kakenhi Kiban (C) Research Grant 24500135 and the JST
ERATO Kawarabayashi Large Graph Project. Vincent Oria acknowl-
edges the financial support of NSF under Grant 1241976.

References

1. Bache K, Lichman M (2013) UCI machine learning repository.
http://archive.ics.uci.edu/ml

2. Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensional-
ity reduction and data representation. Neural Comput 15(6):1373–
1396

3. Beygelzimer A, Kakade S, Langford J (2006) Cover trees for near-
est neighbor. In: Proceedings of the international conference on
machine learning, pp 97–104

4. Brito M, Chávez E, Quiroz A, Yukich J (1997) Connectivity of the
mutual k-nearest-neighbor graph in clustering and outlier detection.
Stat Probab Lett 35(1):33–42

5. Chen J, Fang H, Saad Y (2009) Fast approximate kNN graph con-
struction for high dimensional data via recursive Lanczos bisection.
J Mach Learn Res 10:1989–2012

6. Dias DB, Madeo RCB, Rocha T, Bíscaro HH, Peres SM (2009)
Hand movement recognition for Brazilian sign language: a study
using distance-based neural networks. In: Proceedings of the inter-
national joint conference on neural networks, pp 697–704

7. Dong W, Charikar M, Li K (2011) Efficient k-nearest neighbor
graph construction for generic similarity measures. In: Proceedings
of the 20th international conference on world wide web, pp 577–
586

8. Dy JG, Brodley CE, Kak AC, Broderick LS, Aisen AM (2003)
Unsupervised feature selection applied to content-based retrieval
of lung images. IEEE Trans Pattern Anal Mach Intell 25(3):373–
378

9. Fukunaga K (1990) Introduction to statistical pattern recognition,
2nd edn. Academic Press, San Diego

10. Geusebroek JM, Burghouts GJ, Smeulders AWM (2005) The Ams-
terdam library of object images. Int J Comput Vision 61(1):103–
112

11. Gionis A, Indyk P, Motwani R (1999) Similarity search in high
dimensions via hashing. In: Proceedings of the 25th international
conference on very large data bases, pp 518–529

12. Guldogan E, Gabbouj M (2008) Feature selection for content-based
image retrieval. Signal Image Video Process 2(3):241–250

13. He R, Zhu Y, Zhan W (2009) Fast manifold-ranking for content-
based image retrieval. ISECS Int Colloq Comput Commun Control
Manag 2:299–302

14. He X, Cai D, Niyogi P (2006) Laplacian score for feature selection.
In: Advances in neural information processing systems, vol 18.
MIT Press, Cambridge, MA, pp 507–514

15. Houle ME, Oria V, Satoh S, Sun J (2011) Knowledge propaga-
tion in large image databases using neighborhood information. In:
Proceedings of the ACM multimedia, pp 1033–1036

16. Houle ME, Oria V, Satoh S, Sun J (2013) Annotation propagation
in image databases using similarity graphs. TOMCCAP 10(1):7

17. Houle ME, Ma X, Oria V, Sun J (2014) Improving the quality
of K-NN graphs for image databases through vector sparsifica-
tion. In: Proceedings of the international conference on multimedia
retrieval, pp 89–96

18. Jiang W, Er G, Dai Q, Gu J (2006) Similarity-based online feature
selection in content-based image retrieval. IEEE T Image Process
15(3):702–712

19. Kohavi R, John GH (1997) Wrappers for feature subset selection.
Artif Intell 97(1–2):273–324

123

http://archive.ics.uci.edu/ml

274 Int J Multimed Info Retr (2014) 3:259–274

20. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based
learning applied to document recognition. Proc IEEE 86(11):2278–
2324

21. Qin D, Gammeter S, Bossard L, Quack T, Gool LJV (2011) Hello
neighbor: accurate object retrieval with k-reciprocal nearest neigh-
bors. In: Proceedings of the 24th IEEE conference on computer
vision and pattern recognition, pp 777–784

22. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravi-
tational search algorithm. Inf Sci 179(13):2232–2248

23. Rashedi E, Nezamabadi-pour H, Saryazdi S (2013) A simultaneous
feature adaptation and feature selection method for content-based
image retrieval systems. Knowl Based Syst 39:85–94

24. Robnik-Sikonja M, Kononenko I (2003) Theoretical and empirical
analysis of ReliefF and RReliefF. Mach Learn 53(1–2):23–69

25. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by
locally linear embedding. Science 290:2323–2326

26. Samaria FS, Harter AC (1994) Parameterisation of a stochastic
model for human face identification. In: Proceedings of the second
IEEE workshop on applications of computer vision, pp 138–142

27. Sun Y, Bhanu B (2010) Image retrieval with feature selection and
relevance feedback. In: Proceedings of the 17th IEEE international
conference on image processing, pp 3209–3212

28. Tang J, Hong R, Yan S, Chua TS, Qi GJ, Jain R (2011) Image anno-
tation by kNN-sparse graph-based label propagation over noisily
tagged web images. ACM Trans Intell Syst Technol 2(2):14

29. Tong H, He J, Li M, Ma WY, Zhang HJ, Zhang C (2006) Manifold-
ranking-based keyword propagation for image retrieval. In: Pro-
ceedings of EURASIP journal advances in signal processing

30. Vasconcelos N, Vasconcelos M (2004) Scalable discriminant fea-
ture selection for image retrieval and recognition. Proc IEEE Conf
Comput Vis Pattern Recognit 2:770–775

31. Yang Y, Shen HT, Ma Z, Huang Z, Zhou X (2011) l2,1-norm regu-
larized discriminative feature selection for unsupervised learning.
In: Proceedings of the international joint conferences on artificial
intelligence, pp 1589–1594

32. Zhao Z, Liu H (2007) Spectral feature selection for supervised and
unsupervised learning. In: Proceedings of the 24th international
conference on machine learning, pp 1151–1157

33. Zhu X, Ghahramani Z, Lafferty JD (2003) Semi-supervised learn-
ing using gaussian fields and harmonic functions. In: Proceedings
of the 20th international conference on machine learning, pp 912–
919

123

	Improving the quality of K-NN graphs through vector sparsification: application to image databases
	Abstract
	1 Introduction
	2 Related work
	3 Locally noisy feature detection and sparsification
	3.1 Local Laplacian Score
	3.2 Locally noisy features and LLS
	3.3 Feature sparsification

	4 K-NN graph construction with feature sparsification
	4.1 NN-Descent
	4.2 NN-Descent with sparsification
	4.3 Variants of NNF-Descent

	5 Experiments
	5.1 Datasets
	5.2 Number of features sparsified per iteration
	5.3 Replacing noisy feature values by the local mean
	5.4 Effectiveness of iterative feature ranking
	5.5 Comparison against existing methods with respect to graph correctness
	5.6 Comparison against existing methods in data labeling

	6 Conclusion and future work
	Acknowledgments
	References

