
Int J Multimed Info Retr (2013) 2:229–241
DOI 10.1007/s13735-013-0046-4

TRENDS AND SURVEYS

Very large scale nearest neighbor search: ideas, strategies
and challenges

Erik Gast · Ard Oerlemans · Michael S. Lew

Received: 16 June 2013 / Revised: 16 September 2013 / Accepted: 17 September 2013 / Published online: 2 October 2013
© Springer-Verlag London 2013

Abstract Web-scale databases and big data collections are
computationally challenging to analyze and search. Similar-
ity or more precisely nearest neighbor searches are thus cru-
cial in the analysis, indexing and utilization of these massive
multimedia databases. In this work, we begin by reviewing
the top approaches from the research literature in the past
decade. Furthermore, we evaluate the scalability and com-
putational complexity as the feature complexity and data-
base size vary. For the experiments, we used two different
data sets with different dimensionalities. The results reveal
interesting insights regarding the index structures and their
behavior when the data set size is increased. We also sum-
marized the ideas, strategies and challenges for the future.

Keywords Large scale retrieval · High performance
indexing · Big data · Web scale search · k-nearest neighbors ·
Similarity search

1 Introduction

Very large scale multimedia databases are becoming common
and thus searching within them has become more important.
Clearly, one of the most frequently used searching paradigms
is k-nearest neighbor (k-NN), where the k objects that are
most similar to the query are retrieved. Unfortunately, this k-
NN search is also a very expensive operation. To do a k-NN

E. Gast · A. Oerlemans · M. S. Lew (B)
Leiden University, Niels Bohrweg 1,
2333 CA Leiden, The Netherlands
e-mail: mlew@liacs.nl

E. Gast
e-mail: gast@liacs.nl

A. Oerlemans
e-mail: aoerlema@liacs.nl

search efficiently, it is important to have an index structure
that can efficiently handle k-NN searches on large databases.
From a theoretical and technical point of view, finding the
k-nearest neighbors less than linear time is challenging and
largely unsolved. Also implementing the structure can be a
challenge because of memory, CPU and disk access time
restrictions. Various high-dimensional index structures have
been proposed trying to solve these challenges. Because of
the number of different indexing structures and the big differ-
ences in databases, it is hard to determine how well different
index structures perform on real-life databases, especially
when doing a k-nearest neighbor search.

Similarity searches on low-dimensional features have
been reported from the research literature to work very
well, but it is still unclear under what conditions they
give superior performance. This phenomenon is called the
‘curse of dimensionality’ and is caused by the fact that vol-
ume increases exponentially when a dimension is added.
Intuitively, increasing a hypersphere just slightly in high-
dimensional space, the volume of the sphere will increase
significantly. For nearest neighbor searching, this is a prob-
lem, because with high-dimensional data, it will look like the
distances between the points in this high-dimensional space
and the query point all have the same distance. This will result
in a search space (sphere) around the query which is so large
that it will capture all the points in space.

In this paper, we investigate the performance of impor-
tant index structures when doing k-nearest neighbor search.
For the experiments, we use the MIRFLICKR [1] database,
which consists of one million images that were extracted
from the Flicker1 website. Two different MPEG7 image
descriptors were extracted and used for testing.

1 http://www.flickr.com.

123

http://www.flickr.com

230 Int J Multimed Info Retr (2013) 2:229–241

The paper is organized as follows: In Sect. 2, we dis-
cuss a number of important index structures and we give
a formal description of k-nearest neighbor search and we
describe the ‘curse of dimensionality’. In Sect. 3, we give
a more detailed description of the methods we have tested.
In Sect. 4, the experiments are described and the results are
given. The results are discussed in Sect. 5 and we conclude
with challenges for the future.

2 Related work

There are two main types of indexing structures: data-
partitioning and space-partitioning methods. Data-parti-
tioning methods divide the data space according to their
distributions. Many of the data-partitioning indexing struc-
tures are derivatives of the R-tree [2]. Space-partitioning
methods divide the data space according to their location in
space. Index structures that use a space-partitioning method
are often similar to KD-trees.

The R∗-tree [3] and X-tree [4] are both variants of the
R-tree and are designed to handle multi-dimensional data.
They do work well on low-dimensional data but their perfor-
mance deteriorates quickly when dimension increases. This
is due to the ‘curse of dimensionality’ (Sect. 2.1). The SS-
tree [5] is a R-tree like structure that uses minimum bounding
spheres instead of bounding rectangles. The SS-tree outper-
forms the R∗-tree, but high-dimensional data are still a prob-
lem. To overcome the problem that bounding spheres occupy
more volume with high-dimensional data than the bounding
rectangles do (the problem of which the SS-tree suffer from),
the SR-tree [6] integrates bounding spheres and bounding
rectangles into the structure. This increased performance
in high-dimensional space. Another option which has been
explored is to use Voronoi clusters for the partitioning [7].

Henrich et al. [8] proposed the LSD-tree and it was later
improved to become the LSDh-tree [9] The LSD-tree and
the LSDh-tree are both space-partitioning structures similar
to that of the KD-tree. With the LSDh-tree, they combined the
KD-tree with a R-tree to reduce the empty spaces and keep
low fan-out. Their results showed that the LSDh-tree reduces
the fan-out and that the tree is independent of the number of
dimensions but only as long as the distribution characteristics
of the data allow for efficient query processing.

Chakrabarti and Mehrotra [10] introduced the hybrid-tree
which combines the advantages of space-partitioning and
data-partitioning structures. The Hybrid-tree guaranties that
the tree is dimension independent so that it is scalable to high-
dimensions. The super hybrid-tree (SH-tree) [11] is also a
combination of a space and data-partitioning structure. The
SH-tree combines a SR-tree and a kd-based structure. They
were unable to compare the performance of the SH-tree to
other indexing structures.

In [12], the Pyramid Technique is introduced and is based
on a mapping of high-dimension space to 1-dimension keys.
A B+-tree is used to index the 1-dimensional keys. The basic
idea is to divide the data space such that the resulting parti-
tions are shaped like peels of an onion. The d-dimensional
space is divided into 2d pyramids with the center point of the
space as their top. Then, the pyramids are cut into slices which
form the data pages. The Pyramid Technique outperformed
both the X-tree and the Hilbert R-tree [13]. The NB-tree
[14] also maps the high-dimensional data to a 1-dimensional
key and uses the B+-tree to index them. The index key is
the Euclidian distance of a d-dimensional point to the cen-
ter. Their results showed that their NB-tree outperformed the
Pyramid Technique and the SR-tree, it did also scale better
with growing dimensionality and data set size. Cu et al. [15]
introduced pcDistance which is also a 1-dimensional map-
ping method. First, data partitions are found in the data set
and principal component analysis (PCA) [16] is applied. The
distance of a point to the center of its partition is used as key
and is indexed using a B+-tree. To improve the query perfor-
mance, the principal component is used to filter the nearest
neighbor candidates. Their results show that pcDistance out-
performs iDistance [17] and the NB-tree.

Weber et al. [18] proposed the VA-file. The VA-file tries to
overcome the ‘curse of dimensionality’ by applying a filter-
based approach instead of the conventional indexing meth-
ods. The VA-file keeps two files: one with approximations
of the data points and another with the exact representations.
You can see the approximation file as a (lossy) compressed
file of data points. The approximation file is sequentially
scanned to filter out possible nearest neighbor candidates
and the exact representation file is used to find the exact
nearest neighbors. The VA-file outperforms both the R∗-tree
and the X-tree. Researchers have also looked at combining
VA-file with partial linear scan [19] which has the advan-
tage of a linear scan but avoids scanning the entire database
using 1D mapping values. An improvement of the VA-file
is the VA+-file [20]. The VA+ improves the performance on
non-uniformly distributed data sets using PCA and using a
non-uniform bit allocation. They also integrated approximate
k-NN searches.

2.1 Curse of dimensionality

Similarity searches on low-dimensional generally work very
well, but when the dimensionality increases the performance
can degrade badly. This phenomenon is called the ‘curse of
dimensionality’ [21] and is caused by the fact that volume
increases exponentially when a dimension is added. This also
that when even increasing a hypersphere just slightly in high-
dimensional space, the volume of the sphere will increase
enormously. For nearest neighbor searching, this is a prob-
lem, because with high-dimensional data, it will look like

123

Int J Multimed Info Retr (2013) 2:229–241 231

that the distances between the points in this high-dimensional
space and the query point all have the same distance. This
will result in search space(sphere) around the query which is
so large that it will capture all the points in space. Also when
the radius of the sphere increases, the volume of the sphere
will grow resulting in a lot of empty space inside the sphere.

2.2 k-Nearest neighbor search

k-Nearest neighbor (k-NN) searches for the k objects that
are closest to the query. A more formal description would
be: Given a d-dimensional dataset DB in the data space D
and a query q ∈ D, to find the set S = {s1, s2, . . . , sk} with
the k elements most similar to q the following must hold.

∀si ∈ S∀b j ∈ DB − S, dist(q, si) ≤ dist(q, b j) (1)

3 Indexing structures

In this section, we give a more detailed description of the
index structures we have used. Please note that we have not
used recent approximate nearest neighbor methods such as
[7,22], because in this evaluation we are examining exact
nearest neighbors only. We have tested five different struc-
tures which use a data-partitioning or space-partitioning
method or use both.

3.1 NB-tree

The normalized B+-tree (NB-tree) [14] is an index struc-
ture where the d-dimensional data points are mapped to a
1-dimensional value. To map the d-dimensional data, the
Euclidian norm (2) is used. The values resulting from the
dimension reduction can be ordered and be used for search-
ing. The d-dimensional data points are inserted into a B+-tree
with their Euclidian norm as index key. After the insertion,
the data points inside the leaves of the B+-tree will be ordered
according their Euclidian norm values. An example of this
dimension reduction for 2D points is shown in Fig. 1.

‖P‖ =
√

p2
1 + p2

2 + · · · + p2
d (2)

The basic idea of the k-NN search algorithm of the NB-
tree is to find an initial starting location and then gradually
increasing the radius rof a search sphere until the knearest
neighbors are found. Increasing the radius in the case of the
NB-tree is searching along the leaves of the B+-tree. This
is possible because the leaves are ordered. The first initial
starting location is acquired by locating the leaf with the key
that is near or equal to the Euclidian norm of the query. Now,
because the leaves are linked sequentially, the leaves can be
navigated freely. Increasing the search sphere is nothing more
than navigating the leaves to the right and left. Increasing the

Fig. 1 NB-tree dimension reduction

sphere with r is the same as finding the leaves (points) to the
right that have a key index KeyIndex ≤ q + r and finding
the leaves on the left that have KeyIndex ≥ q −r. During the
visiting of the leave nodes, the distance between the query
and the point at the leave node is computed. If the distance is
smaller than the farthest current near neighbor, then the point
is stored in a list. The radius of the sphere is increased until
there are k points in the list and when the distance between
the kth nearest point and the query is less than the radius of
the sphere. The pseudo-code of the algorithm is shown in
Algorithm 1.

Algorithm 1: k-NN search algorithm for the NB-Tree.

123

232 Int J Multimed Info Retr (2013) 2:229–241

3.2 pcDistance

pcDistance [15] is a method that is similar to the iDistance
[17] method. It also maps, just like the iDistance and the
NB-tree, d-dimensional points to a 1-dimensional value. In
iDistance, the dataset is partitioned and a reference point for
each partition is defined. The reference points are used to
calculate the index key for the B+-tree. The index key is
calculated as follows:

IndexKey = i ∗ c + dist(Oi , p), (3)

where i is the partition number of the partition that is closest
to point p,c is a constant which is used to stretch the index
range so that the indexes inside de B+-tree are also ordered
based on the partition numbers and dist(Oi , p) is the dis-
tance between p and its closest reference point. The main
difference between pcDistance and iDistance is that pcDis-
tance uses PCA [16] to transform points to PCA space and
it uses a filtering algorithm based on the first principal com-
ponent. The filtering algorithm is used to prune more data
points. The idea behind this is that the probability to satisfy
both dist(qi , p1) ≤ r and dist(Oi , q) − r ≤ dist(Oi , p) ≤
dist(O, q) + r simultaneously is much lower than satisfy-
ing dist(qi , p1) ≤ r or dist(Oi , q) − r ≤ dist(Oi , p) ≤
dist(O, q) + r . Where q is a query point and r is the search
radius.

pcDistance uses the same mapping value (3) as index key
for the B+-tree as iDistance. The only structural difference
is that not only the points are stored inside the leaves but also
the first principal component of each point. To acquire the
partitions, the K-means clustering algorithm [23] is used. The
reference points O of the different partitions are the centers
of each partition. Furthermore, all the points that are stored
inside the tree or used as query are first transformed to PCA
space.

The k-NN search algorithm in pcDistance and iDistance
is similar. The essence of the algorithm (just like the NB-
tree) is to first find an initial location and from there you start
searching with a small sphere and incrementally enlarging the
sphere until all the k nearest neighbors are found. Because
(3) mapping is used, the leaf nodes cannot be traversed like
in the B+-tree algorithm. You have to distinguish searching
towards the reference point (inward) and away from the ref-
erence point (outward). Because it is possible that the search
sphere intersects with multiple partitions, you have to inspect
which partition contains the query or intersects with its search
sphere. This is done by searching inwards and outwards when
the partition contains the query point and search inward when
the partition and the search sphere intersect. When searching
inward and outward, the points inside the leaves are com-
pared to the query and if the distance is smaller than the
kth point in the kNN list, it is added to this list. To reduce
the distance calculation between the query and the points,

Fig. 2 The spatial relationship between the query and the partition

pcDistance filters the points using the first principal compo-
nent. Only when (4) and (5) hold, then the distance between
the point and the query must be calculated.

max(w
′
, pcMin) ≤ p1 ≤ min(v

′
, pcMax) (4)

max(q1 − r, pcMin) ≤ p1 ≤ min(q1 + r, pcMax), (5)

where p1 is the first principal component of point p, pcMin
and pcMax are, respectively, the minimum and maximum
values of the first principal component of the whole partition
and w

′
and v

′
are the projections of the intersection between

the partition and the search sphere onto the first principal
component. An example intersection is shown in Fig. 2.

One thing I should note, something not mentioned in the
original article, is that you should be careful when applying
the pcDistance filter if the search radius is larger than the par-
tition radius. It could happen that the partition is completely
inside the search sphere (Fig. 3, left) and, therefore, there
would not be any sphere intersection points to calculate w

′

and v
′
. It is also possible that the partition is partially ‘swal-

lowed’ by the search sphere (Fig. 3, right) which results in
intersection points that cannot be used to filter using the first
principal component. This larger search sphere compared to
the partition size is almost always due to a bad number of
object/number of partitions ratio.

3.3 LSDh-tree

The LSDh-tree [9] is an extension of the LSD-tree [8] and
both are kd-tree-based access structures. Kd-trees are space
partitioning data structures where the whole space is divided
into subspaces. Kd-tree-based access structures, unlike most
other access structures [2–4], have the nice property that there
is no overlap between different nodes (space regions). Also
the LSDh-tree divides the data space into pair wise disjoint
data cells. With every data cell, a bucket of fixed size is asso-

123

Int J Multimed Info Retr (2013) 2:229–241 233

Fig. 3 Examples when the
pcDistance filter fails

ciated where all the objects that the cell contains are stored.
When a bucket has reached its capacity and another objected
has to be inserted into this bucket, then the bucket is split and
the objects in the bucket are distributed equally among the
bucket and its bucket sibling (if present). Before the bucket
can be split, a split dimension has to be computed. The LSDh-
tree uses a data dependent split strategy, i.e., a split dimension
and value is chosen based on only the objects stored in the
bucket which has to be split. If there are different feature val-
ues for dimension (dold + i)modt in this bucket, use dimen-
sion (dold + i)modt as split dimension. Otherwise increase i
by 1 until there are different feature values for the dimension.
dold is the split dimension used in the node referencing the
bucket to be split. The new split value is computed by taking
the average of the values in the new dimension of the objects.
To avoid bucket splits, objects in an full bucket can also be
redistributed. If there is a sibling bucket that is not yet full,
one object is shifted to that sibling.

The LSDh-tree also stores so-called coded actual data
region (cadr) in the nodes. This is an approximation of the
actual data region which is the minimal bounding rectangle
containing all points stored in the bucket. Using the coded
actual data region, the amount of storage space for cod-
ing the region can be reduced. Using the coded actual data
region instead of the actual data region reduces the size of
the tree and therefore the fan-out. In our implementation,
we do not use coded actual data region but the actual data
region because we load the whole tree in the memory and the
memory size is big enough to hold the structure.

The k-NN search algorithm for the LSDh-tree works as
follows: First, the bucket that contains (or could contain)
the query point is searched for. During the search, when a
left child is followed, the right child is inserted in a priority
queue NPQ with the distance of the query to the minimal
bounding rectangle of the right child as priority. And when
the right child is followed, then the left child is inserted in
the priority queue. When the bucket is found, all the objects
inside the bucket are inserted in another priority queue OPQ
with their distance to the query as priority. All objects in OPQ

that have a smaller or equal distance than the first element
of NPQ are the nearest neighbors. Until k-nearest neighbors
are found, the directory or bucket is taken from NPQ and
a new search is started as described above. The algorithm
stops when k nearest neighbors are found or OPQ and NPQ
are empty. Pseudo code of the k-NN algorithm is shown in
Algorithm 2.

One important thing to note is that the order of inser-
tion into the LSDh-tree matters and you should never insert
an ordered list of objects, because that will result in a very
unbalanced tree. Also, because the k-NN search algorithm
makes use of priority queues, you are bound to the perfor-
mance of the priority queues. If the LSDh-tree is unable to
efficiently prune candidates, then a lot of nodes and objects
will be inserted into the priority queue which makes the per-
formance deteriorate fast.

Algorithm 2: The k-NN algorithm for the LSDh-Tree.

3.4 SH-tree

The SH-tree [11] is a very complex tree and is a mixture of
a SR-tree [6] and a KD-tree-like structure. The KD-tree-like
structure is used to overcome the fan out problem and the
SR-tree is used to keep data clusters together. Because the
structure is very complex, we will only discus its structure

123

234 Int J Multimed Info Retr (2013) 2:229–241

Fig. 4 A possible partition of an example data space and the corresponding mapping to the SH-tree

quickly. If you need a more detailed description, we refer
to [11]. The SH-tree has three kinds of nodes: internal, bal-
anced and leaf nodes. The internal nodes are organized as in
the Hybrid tree. It is a KD-tree like structure but overlap is
possible. Inside the internal nodes, a lower and higher bound-
ary is stored to code the overlap of its children. The balanced
nodes are similar to the nodes of the SR-tree. They contain
the bounding sphere (BS), the minimum bounding rectangle
(MBR) and pointers to the leaf nodes. Inside the leaf nodes,
data objects are stored. The balanced nodes have a minimum
and maximum number of entries (leaf nodes) which can be
stored inside the node. Also the leaf nodes have a minimum
and maximum number of objects that can be stored. A pos-
sible SH-tree structure can be found in Fig. 4. When a leaf
node is full and an object needs to be stored inside this full
leaf, then there are three possibilities. First, if the leaf has
not yet been reinserted into the tree, then a part of the leaf is
reinserted into the tree. Second, if reinsertion is not possible,
try to redistribute one data object to a leaf sibling. Third, if
the reinsertion and redistribution are not possible, then the
leaf node is split. A split position is chosen, and the BS and
the MBR of the balanced node are adjusted. If a balanced
node is full (e.g. because of a leaf split) then, if possible,
an entry of the full balanced node is shifted to a balanced
node sibling. If this is not possible, the balanced node is
split and a similar split algorithm to that of the R∗-tree is
employed [3].

The writer proposed two different k-NN search algorithms
for the SH-tree. The first one implements a depth-first search
method and the second algorithm makes use of a priority

queue. We use the first algorithm (depth-first search), because
it does not have the performance overhead of the priority
queue. The algorithm is fairly simple: you do a depth-first
search and visit only nodes that have a bounding rectangle
where a possible nearest neighbor can be found. When a leaf
node is reached, all the possible objects are inserted into the
k-NN list, but only if their distance to the query is smaller
than the distance of the farthest current neighbor. Pseudo
code for both the algorithms can be found in [11]

3.5 VA-File

The approach of the vector-approximation file (VA-file) [18].
is different from the other approaches. It does not use a data-
partitioning approach, but rather uses a filter-based approach.
Vector space is partitioned into cells and these cells are used
to generate bit-encoded approximations for each data object.
Each encoded object is put into the VA-file which itself is
just a single array. Actually, the VA-file is just a (lossy) com-
pressed array of vector objects.

For the construction of the file, the number of bits b that is
used for encoding one dimension has to be determined. The
VA-file will use an even distribution of bits per dimension.
Also the partition points of the cell have to be calculated to
encode the object. We analyze the entire data set to compute
the partition points. The approximation ai of vector vi is
generated as follows. A point that falls into a region numbered
ri, j is defined as:

p j
[
ri, j

]
,= vi, j < p j

[
ri, j + 1

]
, (6)

123

Int J Multimed Info Retr (2013) 2:229–241 235

Algorithm 3: VA-NOA k-NN search algorithm for the VA-File.

where ri, j is the region number, vi, j is the dimension j of
vector i and p j [e] is the partition point e of dimension j .
The generated approximation can be used to derive higher
and lower bounds between a query and a object (vector).
You can find how this is done in [18].

The k-NN search algorithm we use is the ‘Near-Optimal’
search algorithm (VA-NOA). This algorithm has two phases.
The first phase tries to eliminate as much objects as possible
before phase two starts. In the first phase, the whole VA-file
is sequentially scanned, and the lower and upper bounds of
each object are computed. If the lower bound is greater than
the farthest nearest neighbor, then it can be eliminated. Oth-
erwise, the lower bound and the approximation are inserted
into a priority queue with the lower bound as priority. In the
second phase, all objects in the priority queue are examined
and the real distance between the object and the query is com-
puted. If this distance is smaller than the farthest k-nearest
neighbor, then it is inserted in the nearest neighbor list. Algo-
rithm 3 shows the pseudo code of the search algorithm.

The benefit of the VA-File is that it can effectively elim-
inate a lot of objects, so that only a few objects have to
be retrieved. The drawback of the VA-File is that decod-
ing every approximation and calculating both its lower and
upper bounds are computationally expensive.

4 Experiments

With our experiments, we try to measure how well the dif-
ferent indexing structures perform when the database size
increases. As a ground truth, we use the results of a lin-
ear sequential search method which is a naïve method that
is known to degrade gracefully. With all the experiments

we measure the averages using two thousand 10-nearest
neighbor searches. The two thousand queries are randomly
selected from the database.

We use the Euclidian distance as distance measurement
and is defined as follows:

dist(Q, P) =
√√√√

N∑

i=1

(Qi − Pi)2. (7)

We measure two different things: the computation time and
the feature vector access ratio. The feature vector access ratio
is defined as follows:

ar = nfv

N
, (8)

where nfv is the number of feature vectors that has to
be accessed during the search and N is the total number of
objects stored in the index structure. The access ratio is an
important measurement because often the feature vectors are
not stored (or only partially) inside the memory but on a hard
disk. And because hard disk access is slow, this could have
a big influence on the performance of the index structures.

4.1 Implementation details

All the structures and algorithms are implemented in C++
and are all implemented from scratch. To improve memory
management, the Boost C++ library is used and OpenCV is
used to calculate PCA and do K-Means clustering. When pos-
sible, different components are reused for the different index
structures e.g. the exact same B+-tree is used for the NB-
tree and the pcDistance implementation. To more accurately

123

236 Int J Multimed Info Retr (2013) 2:229–241

Table 1 Configurations of the different index structures

Index structure Properties Values

NB-tree Max. number of childs per node 60

Delta 0.01

pcDistance Number partitions 64

Number of samples for
K-Means and PCA

500,000

Max. number of child per node 60

LSDh-tree Max. bucket capacity 12

SH-tree Max. balanced node capacity 4

Max. leaf node capacity 12

VA-file Bits per partition 8

measure CPU performance, the whole structure is loaded
into the memory to eliminate influence of the disk IO. The
configuration details of the index structures are shown in
Table 1.

The experiments are carried out on an Intel Core 2 Quad
Q9550 2,83 GHz with 4 GB of DDR2 RAM memory. The
computer runs Windows 7 64-bit. One thing we should note
is that, because our implementations are not optimized for
multi-core systems, the program will only run on one core
(out of four). This means that it does not use all the com-
putation power of the CPU and running the program on a
single-core system might give a better performance.

4.2 Dataset and feature descriptors

The real-life dataset we used in the experiments is the MIR-
FLICKR dataset. This dataset consists of one million images
that are obtained from the Flickr (see footnote 1) website.
In our experiments, we use three different feature descrip-
tors; MPEG-7 Edge Histogram (eh), MPEG-7 Homogeneous
Texture (ht) descriptors and a set of random feature vectors.
Extracting the edge histogram from the images results in
a 150-dimensional feature vector, the homogeneous texture
descriptor results in a 43-dimensional feature vector and the
random set of feature vectors was also created with 43 dimen-
sions. So, for the experiments, three collections of one million
feature vectors are used: one with 150-dimensional edge his-
togram features, one with 43-dimensional homogenous tex-
ture features and one with 43-dimensional random feature
vectors. The whole dataset along with the extracted edge
histogram and homogeneous texture descriptors is publicly
available2.

4.3 Results

Figure 5 shows the performance comparison between the dif-
ferent index structures when using the homogeneous texture

2 http://press.liacs.nl/mirflickr/.

feature descriptor database. The figure shows the average
computation time of the different index structures to do a 10-
nearest neighbor search. A thing that you will notice is that
both pcDistance and the LSDh-tree outperform the sequen-
tial search. They perform both more than 55% better than
the sequential search. The NB-tree performs slightly better
and the SH-tree and the VA-file perform far worse. The bad
performance of the VA-file is due to the fact that it has to
‘decode’ every approximation vector. But when comparing
the access ratio of the structures, the VA-file performs by
far the best. When searching in the 1 million sized database,
it only has to access about 200 feature vectors. The access
ratio of the different index structures is shown in Fig. 6. Also
the pcDistance and the LSDh-tree perform here really well
compared to the other structures. When the database size is
increased, the access ratio of the pcDistance will converge to
about 0.06 and about 0.08 for the LSDh-tree.

In Fig. 7, all the averages and its standard deviations of the
computation time and the number feature vector access are
shown. Also here you can see that pcDistance and the LSDh-
tree perform similar in computation time and feature vector
access and that pcDistance only performs slightly better on
average and has a slightly lower standard deviation.

Testing the performance of the index structures on the 150-
dimensional database with edge histogram feature vectors
yields different results. In Fig. 8, the average computation
time of the different index structures for the edge histogram
database is visualized. You notice that compared to the results
of the ht database, there is no structure that outperforms the
sequential search (computational wise). Only the NB-tree
comes close to the performance of the sequential search and
is actually almost the same. The pcDistance that performed
best on the ht database even performs worse (about 18%) than
the NB-tree. The NB-tree now even performs about 100%
better than the LSDh-tree.

In Fig. 9, the access ratio of the edge histogram database is
shown. Also here, the VA-file outperforms all the other index
structures where it comes to access ratio. pcDistance still
performs second, but there are some interesting differences
between the access ratio results of the homogeneous texture
and the edge histogram database. In Fig. 6, the access ratio
of the LSDh-tree is very close to the access ratio of pcDis-
tance, but in Fig. 9 there is a big difference between them
and even the NB-tree outperforms the LSDh-tree. Figure 10
also shows that the NB-tree is less influenced by the larger
dimensionality than the other methods.

As expected, the performance of the index structures on a
43-dimensional database with random feature vector is much
worse than a sequential search. The index structures fail to
find structure, which makes sense for random data. Figure 11
shows the average computation time of the index structures
on the random database. Sequential search outperforms all
other methods.

123

http://press.liacs.nl/mirflickr/

Int J Multimed Info Retr (2013) 2:229–241 237

Fig. 5 The average
computation time of the
different index structures with
different data set sizes. These
are the results of the
homogeneous texture DB with a
dimensionality of 43

0

100

200

300

400

500

600

0 200 400 600 800 1000

C
om

pu
ta

tio
n

T
im

e
(m

s)

DB size (x 1000)

Computation Time (ht DB)

Seq.

pcDistance

NB-tree

LSDh-tree

SH-tree

VA-file

Fig. 6 The average access ratio
of the different index structures.
These are the results of the
homogeneous texture DB with a
dimensionality of 43

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000

F
ea

tu
re

 V
ec

to
r

A
cc

es
s

R
at

io

DB size (x 1000)

Access Ratio (ht DB)

Seq.

pcDistance

NB-tree

LSDh-tree

SH-tree

VA-file

The access ratio of the random database is visualized in
Fig. 12. Again, the results are as expected for random data:
each method except VA-file needs to access all feature vectors
to find the 10 nearest neighbors (Fig. 13).

5 Discussion and challenges

In this paper, we have investigated the performance of a
diverse high performance indexing methods in the con-
text of very large scale search. The results show signifi-
cant differences in performance between the index structures,
especially regarding the dimensionality of the search space.

Recent prior research also had noted that naïve approaches
tend to degrade more gracefully in high-dimensional spaces
[7]. From our experiments, we noted that there was significant
disparity in the performance of the algorithms depending on
which evaluation measure was used. This also gives an expla-
nation of why there is a controversy in the perception of the
high performance search algorithms. If one views them from
the standpoint of the access ratio, then the high performance
methods are usually greatly outperforming linear sequential
search; however, one can see a different interpretation from
the standpoint of computation time. Each evaluation mea-
sure gives a unique view on the situation and is informative
in different ways.

123

238 Int J Multimed Info Retr (2013) 2:229–241

0

100

200

300

400

500

600

C
om

pu
ta

tio
n

T
im

e
(m

s)

Computation Time (ht DB)

0.00

20.00

40.00

60.00

80.00

100.00

120.00

A
ve

ra
ge

 F
ea

tu
re

 V
ec

to
r

A
cc

es

x
10

00
0

Feature Vector Access (ht DB)

Fig. 7 The left figure shows the average computation time and its standard deviation. On the right, the average number of feature vector accesses
and its standard deviation is shown. The homogeneous texture DB with 1 million feature vectors is used

Fig. 8 The average
computation time of the
different index structures with
different data set sizes. These are
the results of the edge histogram
DB with a dimensionality of 150

0

100

200

300

400

500

600

0 200 400 600 800 1000

C
om

pu
ta

tio
n

T
im

e
(m

s)

DB size (x 1000)

Computation Time (eh DB)

Seq.

pcDistance

NB-tree

LSDh-tree

SH-tree

VA-file

Fig. 9 The average access ratio
of the different index structures.
These are the results of the edge
histogram DB with a
dimensionality of 150

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000

F
ea

tu
re

 V
ec

to
r

A
cc

es
s

R
at

io

DB size (x 1000)

Access Ratio (eh DB)

Seq.

pcDistance

NB-tree

LSDh-tree

SH-tree

VA-file

123

Int J Multimed Info Retr (2013) 2:229–241 239

0

100

200

300

400

500

600

700

C
om

pu
ta

tio
n

T
im

e
(m

s)

Computation Time (eh DB)

0.00

20.00

40.00

60.00

80.00

100.00

120.00

A
ve

ra
ge

 F
ea

tu
re

 V
ec

to
r

A
cc

es

x
10

00
0

Feature Vector Access (eh DB)

Fig. 10 The left figure shows the average computation time and its standard deviation. Because of the long computation time of the VA-file, it is
not shown. On the right, the average number of feature vector accesses and its standard deviation is shown. The edge histogram DB with 1 million
feature vectors is used

Fig. 11 The average
computation time of the
different index structures with
different data set sizes. These
are the results of the random DB
with a dimensionality of 43

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

C
om

pu
ta

tio
n

T
im

e
(m

s)

DB size (x 1000)

Computation Time (random-43 DB)

Seq.

pcDistance

NB-tree

LSDh-tree

SH-tree

VA-file

The SH-tree performs poorly in computation time and
access ratio for both the homogeneous texture and the edge
histogram database. This is probably due to the complex
structure and the inability to effectively prune the tree. Dur-
ing the search, the SH-tree has to calculate a lot of dis-
tances to feature vectors and to minimum bonding rectangles
and bounding spheres which increase computation time. The
reason why the SH-tree is not capable of pruning a lot of
branches is probably caused by the fact that there is a lot of
overlap in the tree. The LSDh-tree performed worse on the
edge histogram data set. This is also caused by the inabil-
ity to prune the tree effectively. This resulted in a higher
access ratio and computation time. Because the k-nearest
neighbor search algorithm of the LSDh-tree uses priority
queues, the performance of the search algorithm will degen-
erate more quickly when the algorithm is unable to prune
effectively. When too many objects and nodes are pushed to

and popped from the priority queue, the performance of the
algorithm will be bound to the performance of the priority
queue. The NB-tree had good middle-ground performance. It
was shown to be capable of maintaining a good performance
even when the dimensionality increases. The pcDistance is
certainly promising because of its good computation time
and access ratio. The tree can be effectively pruned which
results in lower computation time. Because parts of the tree
can be pruned without accessing the actual feature vector, the
access ratio is also reduced. The VA-file is interesting when
it is important to access as few feature vectors as possible.
The VA-file will also be smaller than a sequential method.

We found that for every index structure, both computa-
tion time and feature vector access grows roughly linearly
when the data set size is increased. This is the case for
the 43-dimensional homogeneous texture and for the 150-
dimensional edge histogram data set. There are differences

123

240 Int J Multimed Info Retr (2013) 2:229–241

Fig. 12 The average access
ratio of the different index
structures. These are the results
of the random DB with a
dimensionality of 43

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000

F
ea

tu
re

 V
ec

to
r

A
cc

es
s

R
at

io

DB size (x 1000)

Access Ratio (random-43 DB)

Seq.

pcDistance

NB-tree

LSDh-tree

SH-tree

VA-file

0

100

200

300

400

500

600

700

C
om

pu
ta

tio
n

T
im

e
(m

s)

Computation Time (random-43 DB)

0

200

400

600

800

1000

1200

A
ve

ra
ge

 F
ea

tu
re

 V
ec

to
r

A
cc

es
s

(x
 1

00
0)

Feature Vector Access (random-43 DB)

Fig. 13 The left figure shows the average computation time and its standard deviation. On the right, the average number of feature vector accesses
and its standard deviation is shown. The random DB with 1 million feature vectors is used

between the performance of the index structures. Some have
a good access ratio like the VA-file and others have low com-
putation time like pcDistance.

We also found significant differences in performance
between the structures when using the 43-dimensional versus
the 150-dimensional data set as described below.

In the panel sessions at several recent ACM confer-
ences and as mentioned in the research literature, a con-
troversy exists on the effectiveness of high performance
nearest neighbor search algorithms. Do they outperform
sequential linear search and if so, by what margin and how
do they perform in very large scale similarity search? We
have discovered some insights into these questions in this
work.

Specifically, we have found that for the lower dimen-
sional feature (43 dimensions), some of the high perfor-

mance indexing algorithms such as pcDistance, LSDh-tree,
and NB-tree outperform linear sequential search in all of
the evaluation measures we used. This is rather significant
because there are numerous important current societal appli-
cations and scientific areas ranging from satellite imagery
to photographic to cellular microscopy to retina databases
which can be directly improved in performance using these
approaches.

However, all approaches have weaknesses and the high
performance indexing methods are no exception. We also
found that the nature of the data is important to the per-
formance. Specifically, random or high-dimensional features
may lead to poor performance in all of the high performance
algorithms.

Based on our results, we conclude with the following
major challenges:

123

Int J Multimed Info Retr (2013) 2:229–241 241

The first major challenge is to develop methods which
give better performance than linear sequential search for
high-dimensional search problems. In both big data analy-
sis and in web search engines, it is more typical than not to
have high-dimensional feature vectors. While approximate
methods appear to be moderately capable of delivering good
results and high performance, it remains to be seen how the
degradation in nearest neighbor similarity is perceived by the
user.

In some situations, the feature data may appear to be nearly
random. Furthermore, some systems preprocess the data so
that it becomes evenly spread out over the feature axes which
may lead to randomization of the data. Because none of the
methods in our review performed well on random data, the
second challenge is to develop methods which perform better
than linear search on random data (at least 50 dimensional,
floating point).

The third challenge is to examine how users perceive the
search results when approximate instead of exact nearest
neighbor search methods are used. Currently, there is mini-
mal research on this matter even though it appears that many
researchers are integrating approximate search algorithms
into their systems.

References

1. Huiskes MJ, Thomee B, Lew MS (2010) New trends and ideas in
visual concept detection: the MIR flickr retrieval evaluation ini-
tiative. In: MIR ’10: Proceedings of the 2010 ACM international
conference on multimedia information retrieval. ACM Press, New
York, pp 527–536

2. Guttman A (1984) R-trees: a dynamic index structure for spatial
searching. In: SIGMOD ’84: Proceedings of the 1984 ACM SIG-
MOD international conference on management of data, Boston, pp
47–57

3. Beckmann N, Kriegel H-P, Schneider R, Seeger B (1990) The R*-
tree: an efficient and robust access method for points and rectangles.
SIGMOD Rec 19(2):322–331

4. Berchtold S, Keim DA, Kriegel H.-P. (1996) The X-tree: an index
structure for high-dimensional data. In: VLDB ’96: Proceedings
of the 22th international conference on very large data bases, San
Francisco, pp 28–39

5. White DA, Jain R (1996) Similarity Indexing with the SS-tree. In:
ICDE ’96: Proceedings of the twelfth international conference on
data engineering, Washington, pp 516–523

6. Katayama N, Satoh S (1997) The SR-tree: an index structure for
high-dimensional nearest neighbor queries. In: SIGMOD ’97: Pro-
ceedings of the 1997 ACM SIGMOD international conference on
Management of data, Tucson, pp 369–380

7. Ramaswamy S, Rose K (2011) Adaptive cluster distance bound-
ing for high-dimensional indexing. IEEE Trans Knowl Data Eng
23(6):815–830

8. Henrich A, Six H-W, Widmayer P (1986) The LSD tree: spatial
access to multidimensional and non-point objects. In: VLDB ’89:
Proceedings of the 15th international conference on very large data
bases, Amsterdam, pp 45–53

9. Henrich A (1998) The LSDh-Tree: an access structure for feature
vectors. In: ICDE ’98: Proceedings of the fourteenth international
conference on data engineering, Washington, pp 362–369

10. Chakrabarti K, Mehrotra S (1999) The hybrid tree: an index struc-
ture for high dimensional feature spaces. In: ICDE ’99: Proceedings
of the 15th international conference on data engineering, Washing-
ton, pp 440–447

11. Dang TK, Küng J, Wagner R (2001) The SH-tree: a super hybrid
index structure for multidimensional data. In: DEXA ’01: Proceed-
ings of the 12th international conference on database and expert
systems applications, London, pp 340–349

12. Berchtold S, Böhm C, Kriegal H (1998) The pyramid-technique:
towards breaking the curse of dimensionality. In: SIGMOD ’98:
Proceedings of the 1998 ACM SIGMOD international conference
on Management of data, Seattle, pp 142–153

13. Kamel I, Faloutsos C (1994) Hilbert R-tree: an improved R-tree
using fractals. In: VLDB ’94: Proceedings of the 20th international
conference on very large data bases, San Francisco, pp 500–509

14. Fonseca MJ, Jorge JA (2003) Indexing high-dimensional data for
content-based retrieval in large databases. In: DASFAA ’03: Pro-
ceedings of the eighth international conference on database systems
for advanced applications, Washington

15. Cu J, An Z, Guo Y, Zhou S (2010) Efficient nearest neighbor
query based on extended B+-tree in high-dimensional space. Pat-
tern Recogn Lett

16. Jolliffe IT (1986) Principal component analysis. Springer, New
York

17. Yu C, Ooi BC, Tan K-L, Jagadish HV (2001) Indexing the distance:
an efficient method to KNN processing. In: VLDB ’01: Proceedings
of the 27th international conference on very large data bases, San
Francisco, pp 421–430

18. Weber R, Schek H-J, Blott S (1998) A quantitative analysis and per-
formance study for similarity-search methods in high-dimensional
spaces. In: VLDB ’98: Proceedings of the 24rd international con-
ference on very large data bases, San Francisco, pp 194–205

19. Cui J, Huang Z, Wang B, Liu Y (2013) Near-optimal partial linear
scan for nearest neighbor search in high-dimensional space. Lect
Notes Comput Sci 7825:101–115

20. Ferhatosmanoglu H, Tuncel E, Agrawal D, El Abbadi A (2006)
High dimensional nearest neighbor searching. Inf Syst J 31(6):512–
540

21. Bellman R (1961) Adaptive control processes—a guided tour.
Princeton University Press, Princeton

22. Muja M, Lowe D (2012) Fast matching of binary features. In: Con-
ference on computer and robot vision (CRV)

23. Macqueen JB (1967) Some methods for classification and analysis
of multivariate observations. In: Proceedings of the fifth Berkeley
symposium on mathematical statistics and probability, pp 281–297

123

	Very large scale nearest neighbor search: ideas, strategies and challenges
	Abstract
	1 Introduction
	2 Related work
	2.1 Curse of dimensionality
	2.2 k-Nearest neighbor search

	3 Indexing structures
	3.1 NB-tree
	3.2 pcDistance
	3.3 LSDh-tree
	3.4 SH-tree
	3.5 VA-File

	4 Experiments
	4.1 Implementation details
	4.2 Dataset and feature descriptors
	4.3 Results

	5 Discussion and challenges
	References

