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Abstract
Pullulan is a microbial exopolysaccharide hydrogel biopolymer that is biodegradable, renewable, and environmentally 
friendly. However, to meet the demands of the utilization, it is still necessary to enhance the yield and molecular characteris-
tics of pullulan formed by different strains. Available in powder form, pullulan enhances the benefits of this natural material 
when combined with nanoparticles (NPs) and synthesized into pullulan NPs. NPs are gaining attention as a cutting-edge 
technology in the fields of pharmaceuticals, medicine, food, agriculture processing, and packaging. Pullulan biopolymers 
provide an environmentally friendly solution that effectively addresses the world's waste disposal issue by removing untreated 
waste from the agro-food industries and using this waste as a potential substrate for pullulan biosynthesis. Nowadays, pullulan 
in the form of NPs, nanocomposites, and nanoformulation has become increasingly popular because of their specific applica-
tion needs with enhanced molecular properties like strength, durability, electrical conductivity, and catalytic activity. This 
approach offers a valuable product called pullulan-based nanopolymer, which holds promise in various industries. Pullulan 
with the highest yield capacity to date has the potential to significantly decrease production costs and increase applicability 
range. This review provides detailed insights into the latest methods for extracting pullulan biopolymers from agricultural 
and food waste materials in the form of polysaccharides. Moreover, the article covers the synthesis of various types of 
pullulan-based nanoparticles, nanocomposites, and nanoformulations. Furthermore, it delves into the diverse applications 
of these pullulan nanopolymers across agriculture, food and medical sectors.
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Abbreviations
AgNp	� Silver nanoparticle
CAPL	� Charge reversible pullulan-based shell
CFC	� Trichlorotrifluoroethane
CHP	� Cholesterol-modified pullulan
CMP	� Carboxymethyl pullulan
CNC	� Cellulose nanocomposite
CNFs	� Cellulose nanofibril
CQD	� Carbon quantum dots
CuO	� Copper oxide
DCW	� Dry cell weight
DOX	� Doxorubicin
EPS	� Exo-polysaccharide
GRAS	� Generally regarded as safe
HeLa	� Henrietta Lacks
HEK293	� Human embryonic kidney 293 cells
H2O2	� Hydrogen peroxide
HepG2	� Human hepatocellular carcinoma cells
h	� Hour
MCF-7	� Michigan Cancer Foundation-7
L929	� Mouse fibroblast cells
mcl-PHA	� Medium chain length polyhydroxyalkanoate
MHCC	� Human hepatocellular carcinoma cell line
PBAE	� Poly(β-amino ester)
PBS	� Poly(butylene succinate)
PLAG	� Poly(lactic-co-glycolic acid) core
PLV	� Pullulan-encapsulated lovastatin
PNCs	� Polymer nanocomposites
PTX	� Paclitaxel
SiO2	� Silicon dioxide
TNBC	� Triple-negative breast cancer
TiO2	� Titanium dioxide
ZnO	� Zinc oxide

Introduction

Pullulan is a polysaccharide made up of repeating subunits 
of maltotriose, also called glucan which is synthesized by 
yeast-like fungus Aureobasidium pullulans by an aerobic 
synthesis method [1, 2]. It was first observed by Bauer in 
1938 as a polysaccharide in A. pullulans after that it was 
first isolated and characterized by Bernier from A. pullu-
lans broth culture [3, 4]. The industrial market of pullulan is 
expanding quite quickly. The initial company that commer-
cialized pullulan synthesis was Hayashibara Co. Ltd. in 1976 
[5]. Up to the year 2000, the industrialized process of pul-
lulan manufacturing was restricted by patent rights obtained 
by Hayashibara. However numerous other industries began 
producing pullulan commercially after Hayashibara's pat-
ent expired. The USA's Sigma-Aldrich, Inc. is among the 
leading manufacturers of pullulan. Pullulan's unique quali-
ties and future uses are driving up its popularity, which is 

growing daily. According to Singh and coworkers, the mar-
ket cost of standard pullulan developed by Sigma-Aldrich, 
Inc. USA was US $ 2000 kg−1 in 2009 [6]. By 2020, that 
price had risen to US $12,000 kg−1 [1].

It exhibits renewable, odourless, tasteless, non-muta-
genic, toxin-free, non-immunogenic, and non-carcinogenic 
natural polymeric properties [7–9]. Therefore, due to its 
considerable adaptability and flexibility, it plays a wide 
role in various fields [10–12]. Pullulan is typically used as 
a prebiotic, a filler in beverages and sauces, and as a textur-
izer in culinary pastes like mayonnaise. In the food sector, 
pullulan is favoured as a low-calorie food material used to 
produce low-calorie products including baked pastries, low-
calorie noodles, and synthetic rice. Because pullulan has 
sufficient adhesive properties, it can be used as a binder [13]. 
In comparison to other polysaccharides, it has a compara-
tively low viscosity and does not change throughout a broad 
pH range of 2–11 [14]. It can withstand temperatures as 
high as 250–280 °C. It begins to break down at temperatures 
higher than this. It may produce a film with strong oxygen 
(O2) barrier properties but also is water soluble, non-toxic, 
biodegradable, and edible. It has been a GRAS product 
since 2002, and the EU subsequently recognized it for use 
as a food additive in 2004 [15]. Due to its superb O2 barrier 
properties, pullulan film is used in most food and agriculture 
industries as a packaging application. Foods high in unsatu-
rated lipids (such as meat, fish, and nuts) and vitamins (such 
as fruits and vegetables) are especially well protected by 
these films [5]. In the 1990s, pullulan coating was used for 
the first time to protect food, and it quickly gained popularity 
as an edible thin protective layer [16]. Additionally, because 
this polymer is non-immunogenic, non-carcinogenic, and 
non-mutagenic, researchers use it in targeted drug and gene 
delivery [11, 17]. Pullulan derivatives must possess hydro-
phobic and cationic moieties to function as an appropriate 
macromolecule in the nanoparticle production process for 
drug delivery [18]. Pullulan can easily be chemically modi-
fied as it exhibits multiple hydroxyl groups. Pullulan-based 
NPs also showed remarkable non-immunogenicity so it is 
useful as a plasma expander [19] and has an inherent affin-
ity for the liver [18, 20]. Despite these advantages, pullulan 
production is another challenge concerning (i) economical 
production and its utilization in different industries that com-
pletely depend on inexpensive substrates, and (ii) physico-
chemical similarity with synthetic plastic.

Raw substrates limit the industrial production and com-
mercial application of pullulan. As its production proved 
to be expensive ($25 kg−1) than other exopolysaccharides 
[21]. Pullulan production under submerged fermentation 
containing a medium supplemented with carbon, nitrogen 
and other essential nutrients makes the upstream process 
expensive that affects the final cost of pullulan [7]. Since 
media components are responsible for about 30% of the total 
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production cost, choosing cheaper ones can lower the overall 
production price [21]. In this regard, many agricultural and 
agro-derived substrates are utilized as inexpensive substrates 
for the commercial synthesis of pullulan [7].

Global population growth has raised the need for agro-
food production and, consequently, the need for agro-food 
processing wastes has also been raised. About 1.3 billion 
tonnes of food are discarded annually, based on the latest 
assessment from the Food and Agriculture Organisation 
(FAO) [22]. Food businesses and household wastes are 
major contributors to agro-food waste, which is harmful to 
the environment in both prior and after-market sites [23]. 
Such wastes are frequently dumped in landfills or used to 
make compost. However, the production of value-added 
products like pullulan from these agro-food wastes would 
not only encourage waste recovery but also generate higher 
benefits [24].

However, the natural physiochemical structure of ligno-
cellulose present in agro-food waste creates a hindrance to 
the effective valorization of these substrates for pullulan 
biopolymer production due to their heterogenic and recal-
citrance properties. This rigidity of the substrates poses an 
economic and technical challenge in biomass conversion to 
biopolymer. To sort out these problems different pretreat-
ment methods are utilized separately and in combination. 
These treatments alter the physicochemical structure of the 
agro-food biomass which gives it more accessibility to the 
substrate for pullulan production [15].

The second drawback related to their physicochemical 
properties such as poor mechanical property, insolubil-
ity in organic solvent, and absence of hydrophobic group, 
limits the application of pullulan in various fields [11, 25]. 
These drawbacks can be overcome by the conjunction of 
pullulan with another nanomaterial. Different studies on 
pullulan-based nanocomposite showed their possible uses 
in agro-food, medical, and pharmaceutical industries. The 
incorporation of some functional ingredients like NPs into 
pullulan for their application on the agro-foods products sur-
face promotes safety or even nutritional and sensory attrib-
utes [26]. Pullulan nanocomposites are an example that is 
formed by blending a pullulan with NPs that can effectively 
resolve the problem of biopolymer film/coating. These NPs-
incorporated biopolymers exhibit properties such as good 
antibacterial, antifungal, and antiviral features compared 
to only pullulan biopolymer film [27]. Whereas, they also 
have a critical role as a nanoformulation in biomedical and 
pharmaceutical research and development such as nanogels, 
nanoparticles (NPs), and microspheres in drug delivery, 
gene delivery, plasma expander, vaccination and anticoagu-
lants [1, 15, 16]. This review highlights the recent research 
on the synthesis of pullulan polymer from renewable agro-
food waste resources and its transformation into valuable 
commercial biomaterials as a solution to waste management. 

Furthermore, it also elaborates on the conjunction of pullu-
lan with other nanoparticle and their relevance in the appli-
cation of various sectors.

Agro‑food waste as a substrate for pullulan 
production

Pullulans are biological polymers that are produced by 
microbes using polysaccharide resources like agro-food 
waste [28]. These wastes  are the consequences of the 
increasing worldwide population and their lifestyle which 
has increased the requirement for agriculture products and 
food. These untreated agro-food waste creates severe dam-
age to the environment in the way of pollution [29, 30]. The 
agro-food waste is tough to manage because it is enriched 
with many nutrients and its unsafe disposal could create an 
extensive negative impact on the environment and human 
health. Traditional waste management such as landfilling, 
bio-composting, and incineration is previously practiced for 
agro-food waste management. That proved to be time-con-
suming and unsafe generating landfill leachate and exposure 
to toxic gases [31]. Keeping this in consideration, various 
research on agro-food waste is carried out on merging agro-
food management with additional commercial goods like 
volatile fatty acids (VFA), biohydrogen, bioplastic (PHA), 
and more [30].

Over the last decades, biopolymers have become more 
famous among other valuable agro-food wastes-derived 
products in many different industrial fields including food, 
agriculture, pharmaceutical, biomedical, and other indus-
trial sectors. This is because of their biodegradability/com-
postability, biocompatibility, and their sustainable charac-
teristics [23, 24]. Agro-food waste acts as a polysaccharide 
substrate that can be specifically converted into bio-derived 
compounds that exhibit various chemical behaviour. These 
compounds can then be utilized to yield new biopolymers 
as a substitute for petroleum-derived polymers [32]. Out 
of agro-food-derived polymers, the extracellular polysac-
charides (EPS) derived from fungal polysaccharides like 
pullulans biopolymers show great interest. Therefore, the 
transformation of these agro-food waste by-products through 
different pretreatment methods shows two main benefits: (i) 
The sustainable degradation of agro-food waste that directly 
decreases environmental pollution, and (ii) helps a circular 
bio-economy by the development of value-added biomateri-
als such as biopolymers that show a broad range of opportu-
nities in different industrial fields.

Furthermore, there remains a need to acquire biomaterials 
through economically viable methods that can guarantee the 
complete utilization of agro-food wastes utilizing sustain-
able practices. Polysaccharides are the least expensive and 
most readily biodegradable of these biomolecules, making 
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up around 75% of all organic compounds on Earth [33]. 
These are consequently among the most prevalent polymers 
that occur naturally, acting as important components of both 
plants and animals (like cellulose in plants and hyaluronic 
acid in mammals) or as a method of storing food (like starch 
or glycogen). All of these biopolymers, composed of algal or 
microbial polysaccharides like xanthan gum and pullulan as 
well as exudates from plants like gum arabic, karaya gum, 
and tragacanthin gum, are the most basic natural carbohy-
drate molecule building blocks that are made up of repeat-
ing units accompanied to one another through glycosidic 
bonds. They are frequently employed as chemical markers, 
especially for cell identification [34].

The amount of polysaccharides that can be derived from 
agro-food waste, which amounts to roughly 300 billion 
tonnes annually [7], is far greater than the amount of natu-
ral raw materials available in nature that are able to produce 
polysaccharides. Utilization of these wastes will allow for 
the preservation of natural resources for future generations 
while also removing some pollutants and lowering green-
house gas (GHG) pollution [28]. Agro-food waste offers 
numerous benefits, but it also has drawbacks as it contains 
a significant amount of lignocellulosic materials, which are 
difficult to process due to their complex structural makeup. 
This prevents microorganisms from using them as a source 
of food. It is regarded as a significant barrier in the way of 
producing biopolymers by microbial fermentation. There-
fore, the pretreatment of the lignocellulosic feedstock turned 
out to be an extremely significant phase in the fermentation 
process. The efficiency of these pretreatment procedures 
controls the availability of free sugars and subsequent con-
version towards biopolymers. Enzymatic, physiochemical, 
chemical and a mix of several processes are some of the pre-
treatment procedures for breaking lignocellulosic material 

[30]. According to Kumar and Sharma [35], the choice of 
pretreatment is based on the characteristics and content of 
the lignocellulosic material for the hydrolysis process that 
produces a favourable outcome. This part highlights the pre-
treatment method selected to synthesize pullulan from food 
and agricultural waste.

Biosynthesis strategies for pullulan

A general method of pullulan production is illustrated in 
Fig. 1. Biosynthesis of pullulan was highly influenced by 
substrate type, environmental conditions, and strain modi-
fication at the genetic level that is described in this section.

Role of different agro‑food waste on pullulan 
production

Previously, pullulan was produced from A. pullulans using 
sugars such as sucrose, glucose, fructose, and maltose. How-
ever, it can also be alternatively synthesized with various 
agro-food wastes such as green gram husk [36], cassava 
starch, corn steep liquor, and soybean meal hydrolysate [37], 
Sesame seed oil cake [38], potato starch hydrolysate [39], 
cassava waste [21], sugarcane bagasse hydrolysate [40] and 
cassava bagasse and Asian palm kernel [41], etc. The com-
position of saccharified intermediate affects pullulan pro-
duction from different agro-food wastes. This part covers 
the pullulan production from the most common agro-food 
wastes.

The potatoes in the food industry have been investigated 
most frequently when it comes to developing ready-to-
eat items. The processing units for potatoes produce a lot 
of trash. According to Huang and coworkers [42], potato 

Fig. 1   Illustrates a general 
method for pullulan production 
from strains of Aureobasidium 
spp
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trash has a rich starch content (2.0%-2.5%) and a low con-
tent of reducing sugars (0.08%-0.12%). Potato waste dis-
posal can lead to serious problems for the environment and 
human health. Different microbial flora may utilize starch 
to serve as a carbon source for pullulan fermentation. The 
two molecules that makeup starch are amylose and amy-
lopectin. Because of their complexity in structure, almost 
all industrially significant microbes find it difficult to use 
these compounds in their original state. Despite this, starch 
that has been hydrolyzed serves as simple sugars, making 
it an excellent substrate for the growth of microorganisms. 
Two processes are involved in the enzymatic breakdown of 
starch: first, α-amylase administration, and then partially 
hydrolyzed starch is exposed to a mixture of pullulanase and 
glucoamylase. α-Amylase breaks down the α-1,4 glucose 
bonds in amylose, resulting in liquefied gelatinized starch. 
To efficiently hydrolyze starch, pullulanase and glucoamyl-
ase are combined [43]. Pullulanase hydrolyzed the α-1,6 glu-
cose links of amylopectin, while glucoamylase hydrolyzed 
the α-1,4 glucose linkages at the same time for the produc-
tion of high-glucose syrup. The rate of starch liquefaction 
is increased by the immobilization of glucoamylase and 
pullulanase in Ca-alginate beads, and the resultant hydro-
lysate can function as a potential source for pullulan biosyn-
thesis [44]. The hydrolysate that is produced by β-amylase 
instead of glucoamylase increases pullulan up to two times 
[45]. Certain strains of A. pullulans can partially undergo 
hydrolysis of potato starch due to the presence of amylase 
a starch-degrading enzyme. Pullulan synthesis can be greatly 
enhanced by this partially hydrolyzed potato starch [46]. A. 
pullulans has produced more pullulans in a 10-L bioreactor 
if potato starch hydrolysate is enriched with sucrose [39]. 
The stimulating effect on the microbial enzyme skilfully 
raised the pullulan yield in a potato starch hydrolysate-based 
medium [39].

Grapes constitute a crucial raw substrate used in the 
production of juice and wine. The grape skin is peeled off 
and the juice is drawn from the pulp during the processing 
step. This grape skin and juice-free pulp during processing 
constitute a waste called grape pomace, while grape juice 
is primarily utilized in the production of ready-to-drink 
beverages. According to Israilides and coworkers [47], the 
composition of grape pomace is as follows: protein (7.8%), 
total sugars (85.2%), reducing sugars (3.4%), and glucose 
(1.28%). While grape pomace in its solid state can be chal-
lenging to work with, grape skin and pulp extract are more 
user-friendly. One method for making grape pomace extract 
is to add hot water to the pomace, agitate for 30 min, and 
then filter the mixture [48]. The pullulan made up of grape 
pomace extract exhibited homogeneity and high molecular 
weight, resulting in increased yield [46].

Whey is a liquid byproduct produced after the coagula-
tion of protein and fat present in the milk during the process 

of making cheese. According to Yang and coworkers [49], 
whey comprises lactic acid (0.1%-0.8%), proteins (0.8%), 
lactose (4.5%), and salts (1.0%). It is an efficient and afford-
able medium for pullulan biosynthesis because of these 
components. Furthermore, the proteins in whey might be 
eliminated by boiling it to 90 °C for 20 min, which will 
increase its usefulness for fermentation operations. By fil-
tering out the protein precipitates, deproteinized whey is 
produced, which has around 80% lactose [50]. It has been 
claimed that A. pullulans may produce pullulan in shake-
flask fermentations using deproteinized whey as a possible 
carbon feedstock [50].

Rice hull is the outer brown covering of rice obtained dur-
ing rice processing. The primary components of rice hull are 
lignocellulose including cellulose (50%) and lignin (25%-
30%), as well as silica (15%-20%). Rice hull is a promising 
substrate for fermentation due to these components [51, 52]. 
The majority of microbes are unable to use lignocellulosic 
carbohydrates in their natural state. Thus, rice husk hydro-
lysate is formed by transforming the complex carbohydrates 
into fermentable sugars through the process of saccharifica-
tion of the rice hull. The process used to saccharify rice hull 
determines the quantity of sugars found in the hydrolysate 
[53]. Wang and coworkers [54], reported that the hydrolysate 
of rice hulls contains the following constituents: xylose 
(25.52% ± 0.83%), glucose (5.89% ± 0.18%), arabinose 
(3.37% ± 0.18%), galactose (0.22% ± 0.20%), and acetic acid 
(0.35% ± 0.02%). A. pullulans was successfully utilized to 
produce pullulan using rice hull hydrolysate in a stirred-
tank fermentor. The presence of acetic acid in hydrolysate 
could hinder fungal growth and negatively impact pullulan 
synthesis. Therefore, to get over this problem, the original 
strain of A. pullulans can be evolved adaptively from acetic 
acid to increase the pullulan yield throughout fermentation.

Molasses is a byproduct of sugarcane or sugar beet juice 
refining to form tiny sugar particles. It is a viscous liquor 
with a dark brown colour that contains around 45%-55% 
of all fermentable sugars, along with non-sugar molecules 
(2%-4%), fructose and glucose (10%-25%), minerals, and 
moisture [55, 56]. The sugar factory releases substantial 
quantities of molasses into the closest water supply, which 
significantly contaminates the environment. Because of these 
types of sugars, molasses can be readily metabolized by A. 
pullulans and used as a carbon source for pullulan synthesis 
[47]. But molasses additionally includes heavy metals (Cu, 
Fe, Mn, Zn, Ca, Mg, etc.) that prevent microbial growth, 
deactivate beneficial enzymes, and reduce the production 
rate of the end product [57]. Therefore, pretreating the 
molasses is a crucial step in achieving a satisfactory product 
yield both qualitatively and quantitatively. The easiest way 
to remove heavy metals from molasses is by treating it with 
H2SO4. Molasses were pretreated by adding 1 N of H2SO4, 
letting the mixture rest for 24 h, and then centrifuging the 
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liquid to extract the supernatant [57]. The pullulan obtained 
from the pretreated molasses was twice as high in the shake-
flask fermentation than untreated molasses. In this manner, 
pretreated molasses proved to be an economical production 
medium for pullulan synthesis [58]. Pullulan production is 
increased by 49.0 g/L when pretreatment molasses is used, 
according to several studies [59], 23.0 g/L [60] in stirred 
tank reactors and 18.5 g/L in an airlift reactor [61].

Brewery waste is a good substrate for pullulan produc-
tion. The brewing plants produce a byproduct called spent 
grain liquor. This spent grain liquor is obtained as liquid 
waste after the extraction of wort from spent grains. The 
brewing sector produces a significant volume of discarded 
grain liquor, which is an incredible source of waste. Both 
suspended particles and organic compounds can be found in 
spent grain liquor. According to Xiros and coworkers [62], 
it is composed of hemicellulose (40%, w/v), cellulose (12%, 
w/v), starch (2.7%, w/v), proteins (14.2, w/v), lignin (11.5%, 
w/v), lipids (13%, w/v), and ash (3.3%, w/v). The organic 
content of spent grain liquor is expressed as biochemical 
oxygen demand (BOD) and is the main pollutant of the water 
ecosystem. A. pullulans uptakes this spent grain liquor and 
is responsible for the pullulan production [50].

Role of physico‑chemical/fermentation condition 
on pullulan biosynthesis

The microbial-assisted approach for the biosynthesis of pul-
lulan by bio-polymerization of agro-food waste is dependent 
on fermentation [19]. Fermentation is a versatile approach to 
synthesize products of added value like microbial biopoly-
mers, since fermentation factors influence the feasibility and 
the economic side of the method [63]. Process optimization 
plays a crucial role in cutting the expenses of any industrial 
production [58]. Therefore, optimizing the fermentation pro-
cess is crucial to advance the formation of microbial EPS. 
Growth conditions such as pH, temperature, oxygen con-
centration, agitation, and culture medium composition are 
important factors to optimize [64, 65]. Microbial type plays 
an important role in the chemical structure, monomer com-
position, physical, chemical, and rheological characteristics 
of polysaccharides and in this way, the process is strain-
specific [66]. Consequently, management of the fermentation 
conditions, such as selecting suitable substrates and exploit-
ing excellent productive strains, makes the industrial produc-
tion of polysaccharides efficient with the required charac-
teristics possible [67]. Since carbon- and energy-intensive 
activities play a major role in EPS synthesis, dietary needs, 
and environmental factors also have an impact on the strains 
needed to synthesize EPS. As a result, there is controversy 
over microbial growth, nutrient availability, and other fer-
mentation factors that affect polysaccharide synthesis. Thus, 
it seems likely that these circumstances have strain-specific 

impacts on polysaccharide synthesis [65]. Yeast-like cells 
are the main producers of pullulan in cultures during the late 
exponential and early stationary phases [5, 68, 69]. Addi-
tionally, on the basis of microbial growth, various fermen-
tation circumstances, like batch, batch-fed, or continuous 
process, may be used for polysaccharide synthesis [70, 71].

pH has the potential to alter the growth profile, which 
can significantly raise or lower the pullulan yield. It is fre-
quently noted that the ideal temperature and pH conditions 
for the highest biomass yield and for the synthesis of poly-
saccharides are distinct. Therefore, it could be necessary to 
reach the highest biomass within one set of conditions before 
changing culture conditions to acquire the highest polysac-
charides. pH of the medium progressively lowers from initial 
pH 6.5 throughout the course of the first 24 h fermenta-
tion [72]. Pullulan productivity is impacted by structure of 
A. pullulans, which is influenced by the pH of the medium 
[73]. According to Lee et al. [74], mycelia are formed at pH 
2.5, and yeast-like colonies are formed at pH 4.5. Pullulan 
synthesis requires a pH of around 5.5 and 7 [73]. There is an 
optimum pH for polysaccharide synthesis or biomass growth 
than this [74, 75]. While pullulan biosynthesis is poor at 
lower pH values, and biomass growth increases [46, 76]. 
Published data indicate that pullulan synthesis increased 
when the medium pH was permitted to naturally decline 
instead of being kept constant [74, 77]. As shown by Lee 
et al. [74], pullulanase function causes a progressive decline 
in the fraction of high molecular weight pullulan when the 
pH is not regulated. But if the pH drops below 2.5, pullulan 
yield may be negatively impacted by extreme acid exposure 
[76, 78]. The ideal pH and temperature for pullulan synthesis 
are not always specified same in the literature; they might 
range between 5.5 to 7.5 and 25 to 30 °C, based on the physi-
cal characteristics of the microbe [58, 79].

The medium's temperature needs to be kept at 30 °C for 
the cell growth which usually peaks at 75 h. The production 
of pullulan starts if nutrients start dropping low at the final 
stage of the logarithmic growth cycle. Pullulan biosynthe-
sis reaches its peak during the stationary phase, which lasts 
from 70 to 90 h. Pullulan biosynthesis is favoured by nitro-
gen deprivation. Ammonium ion level reduction inhibits bio-
mass formation, which is a key factor in the redirection of 
carbon sources to polysaccharide synthesis. But towards the 
end of the growth cycle, A. pullulans also synthesizes pullu-
lanase, an enzyme that breaks down pullulan. Consequently, 
pullulan-degrading enzymes cause a reduction in pullulan 
productivity after the stationary phase [80]. Pullulan yields 
of roughly 70% and higher are typically attainable [72, 76].

No matter the scale of polysaccharide production, the 
nitrogen content of the nutritional medium is the limiting 
factor [81]. Therefore, the fermentation medium is designed 
to have a high carbon-to-nitrogen ratio. Although the sub-
strates to be used should be inexpensive, the nutrient needs 
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for the industrial production of microbial polysaccharides 
remain the same [63, 82]. Growth conditions such as on 
substrate composition (breeding factors), fermentation 
conditions (pH, temperature), and the improvement of A. 
pullulans strains also play a key role in the production of 
microbial EPS including pullulan [83]. Both the cell growth 
and metabolite production enhancement depend on the cul-
ture media contents, mainly proper amount of media nutri-
ents with an optimized carbon/nitrogen concentration [84, 
85]. Yeast-like fungus Aureobasidium pullulans exhibited 
quality to use a multiple type carbon substrate and can 
produce pullulan by the simple and complex sugars, for 
example glucose, fructose, mannose, maltose, as well as 
xylose, ribose, arabinose, sucrose, and lactose [86]. Pullu-
lan is made commercially with starch hydrolysate that has 
40%–50% dextrose equivalent (DE). A range of 5% to 15% is 
kept for the sugar content. Pullulan formation is checked by 
extreme sugar content [44]. According to reports, too much 
sugar prevents the biosynthesis of pullulan by inhibiting the 
enzymes that produce pullulans, such as α-phosphoglucose 
mutase, UDPG-pyrophosphorylase, and glycotransferase. 
Pullulan synthesis is therefore more suited for fed-batch 
reactors [76]. Several carbon substrates, such as mono- or 
disaccharides, may be employed to produce pullulan. The 
impact of six distinct sugar supplies (glucose, sucrose, dex-
trin, fructose, maltose, and xylose) on the pullulan biosyn-
thesis through A. pullulans Y68 was investigated by Duan 
et al. [86]. According to their findings, pullulan production 
from glucose (8%) was found the highest possible level, 
while significantly lowering the yields in sucrose, fructose, 
xylose, dextrin, and maltose [87].

According to Singh and Saini [88], the capacity to uptake 
several carbon substrates was likely a unique trait of strains 
for pullulan biosynthesis. Agricultural waste [72], olive oil 
and sucrose [89], deproteinized whey [60], beet molasses 
[90], sweet potato [73], and potato starch hydrolysate [73] 
were all used as inexpensive substrates in order to effec-
tive production of pullulan through fermentation method by 
employing A. pullulans [58]. This is because the fast growth 
of the biotechnology sector remains linked to the require-
ment to broaden the raw material base using new, less expen-
sive carbon substrates [84].

According to reports, pullulan is a secondary metabolite 
that yeast-like cells synthesize when there is an ammonium 
shortage [5, 91]. Additionally, each strain is nitrogen spe-
cific in order to produce pullulan i.e. present in the growth 
media [85]. The majority of the strains have been favoured 
ammonium sulfate as a choice of nitrogen for growth [88]. 
However, additional nitrogen sources such as soybean hydro-
lyzate, peptone or tryptone, ammonium acetate, and sodium 
nitrate, may also be utilized for the biosynthesis and secre-
tion of pullulan in the fermentation medium [84]. Addition-
ally, pullulan yields and the physical characteristics of fungal 

strains are directly influenced by the pH of the growth media 
[84]. A polymorphic fungus called Aureobasidium pullulans 
can produce mycelia, colorless chlamydospores segmented 
by septa, budding blastoconidia (yeast-like cells), and spores 
that secrete black melanin. Pullulan is currently only known 
to be produced by chlamydospores and unicellular blastoco-
nidia [2, 92]. The range of 5.5–6.5 pH is the ideal beginning 
pH for the synthesis of pullulan [69]. Varying strains of A. 
pullulans have slightly varying optimal temperatures for the 
production of pullulan, which have been observed to range 
from 25 to 28 ˚C [93].

It is generally known that microorganisms including 
bacteria and fungus produce extracellular metabolites, like 
polysaccharides [94]. Exopolysaccharides (EPS), intracel-
lular polysaccharides, and structural polysaccharides are all 
examples of polysaccharides that fall under the category of 
biopolymers [94]. The extracellular biosynthesis of pullu-
lan occurs at the cell wall membrane as a loose and slimy 
coating on the outermost layer of the cell [95]. Accord-
ing to recent theories, pullulan biosynthesis may occur 
in the Aureobasidium melanogenum P16's cell wall and 
periplasm [2, 96]. Pullulan is the primary linear glucosic 
polysaccharide derived from fungus Dematium pullulans 
(de Bary) or yeast-like fungus Aureobasidium pullulans 
(de Bary) Arnaud (earlier known as Pullularia pullulans 
de Bary) [88]. However, some species of A. pullulans show 
limitation to high synthesis of exopolysaccharide pullulan 
[97]. While various species are identified as pullulan pro-
ducers, including genus of Aureobasidium, namely A. mel-
anogenum, A. leucospermi, A. proteae, A. thailandense, and 
A. nambiae [2, 98, 99]. Fungal species also contributed in 
the pullulan production such as saprophytic fungus Tremella 
mesenterica [100], parasitic fungal strains Teloschistes flavi-
cans [101] and Cryphonectria parasitica [102]. The pullulan 
production potential was also observed in the other fungal 
varieties such as edible mushrooms Cyttaria harioti and Cyt-
taria darwinii [103, 104], yeasts such as Rhodotorula bac-
arum and Rhodosporidium paludigenum [105, 106], as well 
as in bacteria like Micrococcus luteus [107]. The formation 
of pullulan by A. pullulans results in the unwanted black 
pigment known as melanin. It develops and is discharged 
throughout the medium near the finish of the exponential 
cycle, providing it with a black colour [76]. To overcome 
this problem, the producer strain of A. pullulans shifts to a 
colour variant that fails to produce melanin [6, 87].

Role of biosynthetic mechanism on pullulan biosynthesis 
by A. pullulans

A complex metabolic reaction occurs during the biosynthe-
sis of pullulan. Precursors synthesized inside the microbial 
system accelerate the rate of pullulan production. Accord-
ing to Simon and coworkers [108], pullulan biosynthesis 
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is facilitated by the deposition of carbohydrate residues 
within the cell at the early phases of fermentation. Pullu-
lan is biosynthesized in the microbial cell's cytoplasm and 
subsequently excreted to the cell surface by penetrating the 
β-glucan layer. This creates a lightly adhered slimy coating 
over the cell surface which is made up of pullulan biopoly-
mer [109]. Metabolic route for pullulan biosynthesis was 
described by Duan et al. [86] and Sugumaran and Ponnusami 
[94]. A. pullulans is able to consume various carbon sources 
such as mannose, sucrose, maltose, fructose, galactose, 
xylose and even the agro-industrial waste. It took a while to 
determine which enzymes and encoding genes play a role 
in the synthetic pathways of this EPS, and the process of 
pullulan synthesis was not fully understood before the year 
2020 [2]. There are two main phases in the biosynthesis of 
pullulan. Initially, uridine diphosphate glucose (UDPG), the 
precursor, is produced [109]. UDP-glucose is a widely rec-
ognized precursor of pullulan biosynthesis [110]. However, 
Shingel also hypothesized that lipid intermediates carrying 
glucose could potentially have a role in this pathway [111]. 
Second, pullulan is created by polymerizing the precursor 
molecules [109]. The transformation of glucose into pullulan 
compounds depends on the existence of important enzymes 
like α-phosphoglucose mutase, uridine diphosphoglucose 
(UDPG) pyrophosphorylase, and glucosyltransferase [86, 
88]. α-phospho glucomutase enhances the formation of glu-
cose-1 phosphate from glucose-6 phosphate [86]. Pullulan 
precursor, UDP-glucose is formed from glucose 1 phosphate 
by UDPG-phyrophosphorylase [1]. Figure 2 illustrates the 
detail regarding a general fungal metabolic process for the 
formation of pullulan and the key enzyme involved.

Pullulan production is dependent on biosynthesis regu-
lation. Pullulan's low productivity, low Mw, and impurities 
notably black-pigmented melanin [112]  have  restricted 
its commercialization currently [113]. Because of the 

significance of pullulan's characteristics,  its production 
price, bioprocessing, and strain alteration are being exten-
sively researched as ways to increase pullulan's Mw and 
yield. Genetic engineering is used in numerous attempts 
to control pullulan production by effective genome edit-
ing methods which were developed in 2019 [2]. It helps to 
control the appropriate genes and enzymes involved in the 
pullulan production pathway in various strains of Aureoba-
sidium spp. [103].

Chen et al. [92] simultaneously deleted duplicated AMY1 
genes encoded α-amylase and duplicated PKS1 genes 
involved in melanin production in A. melanogenum TN3-
1. This resulted in a mutant AMY-PKS-11 that converted 
140.0 g/L glucose to yield 103.50 g/L pigment-free pullulan 
with an Mw of 3.2 à 105 Da [114]. When cultivated in a 10-L 
fermentor, the triple mutant DT15 produced 58.14 g/L of 
pullulan with the same Mw of 3.02 × 106 Da. However, its 
wild-strain P16 yielded 65.5 ± 3.5 g/L of pullulan with a Mw 
of 0.35 × 106 Da [113].

Therefore, further work needs to be done to increase pul-
lulan yield and to enhance the chemical characteristics of 
pullulan by altering on molecular level of the producer by 
synthetic biology techniques. Byproducts such as melanin, 
glucan, and polymalic acid are typically present in pullu-
lan produced through A. pullulans fermentation [19, 115, 
116]. However, the existence of these contaminants makes 
pullulan purification much more challenging. The A. pul-
lulans strains has a potential to suppress the formation of 
melanin compounds which is a crucial component of the 
industrial synthesis of pullulan [85]. Melanin was one of the 
challenges of pullulan production [93], and this substance 
was eliminated using an appropriate solvent throughout the 
fermentation and precipitation of EPS.

The biosynthetic pathways of distinct strains vary, leading 
to variations in the product molecular weight among strains 

Fig. 2   Schematic presentation 
of the mechanism of pullulan 
biosynthesis
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because of variances in metabolic routes and cell structure 
[12, 94]. In this reference, Chen and coworkers [12] studied 
the regulation of the biosynthesis of pullulan in A. pullulans 
BL06. They discovered that by regulating the key synthesis 
pathway of pullulan impurities such as deletion of the impor-
tant genes, the Mw of pullulan products can be changed in 
addition to the yield and purity of extracellular pullulan. 
A. pullulans BL06 was isolated from the environment and 
shown to produce large yields of pullulans. Additionally, 
three strains with knockout genes were created: A. pullulans 
BL06 ΔPMAs, A. pullulans BL06 Δmel, and A. pullulans 
BL06 ΔPMAsΔmel. In addition, a fermentation output of 
83.4 g/L pullulan in a 5 L bioreactor with a molecular weight 
of 3.3 × 106 Da was obtained. The strain BL06 has great 
prospects for industrialization since it offers the benefits of 
high production and high Mw. Moreover, a different com-
mercial strain of A. pullulans, BL06 ΔPMAs, was developed 
by deleting the gene encoding for polymalic acid (PMA) 
synthase. This strain can produce moderately high yields 
of pullulan with high purity. After being transformed, the 
strain was able to produce 1.3 × 105 Da pullulan at a yield of 
140.2 g/L in a 5 L bioreactor, without the presence of PMA 
or melanin. It has been observed that pullulan synthesis is 
increased by overexpressing the pullulan synthase enzyme 
[2].

In addition to low Mw, low pullulan yield was another 
barrier for pullulan industrial application. Usually, high pul-
lulan biosynthesis takes place in a high sucrose medium that 
avoids glucose. The reason behind this is that pullulan is 
glucose sensitive and the existence of a high glucose con-
centration in the culture media represses many genes linked 
to pullulan biosynthesis and declines the pullulan yield 
[85, 117]. Hence, depression of glucose is required for the 
enhancement of pullulan biosynthesis [2].

A previous report indicated that the removal of gene 
coding for CreA from a glucose-derepressed mutant of 
A. melanogenum showed a higher pullulan yield. CreA or 
MIG1 genes are global regulators in fungi, including yeasts 
that encode glucose repression that takes part in glucose 
repression. The Mig1 and CreA proteins, Cys2His2 (C2H2) 
zinc-finger proteins, are able to bind the well-characterized 
50-SYGGRG-30-rich sites in the promoters of a variety of 
glucose-repressed genes, including those responsible for 
pullulan biosynthesis [117, 118]. Another study showed 
that a higher yield of pullulan (64.93 g/L) from glucose at 
a concentration of 120.0 g/L was produced by the glucose-
derepressed mutant of A. melanogenum P16 in comparison 
to the corresponding native strain (52.0 g/L) in the simi-
lar growth conditions [117]. The other proteins that play 
a role in glucose repression and derepression include the 
transcription factor Mig1, the hexose kinase Hxk2, the pro-
tein kinases Reg1-Glc7, Med8, Cyc8-Tup1, Snf1, the pro-
tein kinase Adr1, and the catalase Cat8 [118]. Additionally, 

it is hypothesized that Msn2 and the associated signaling 
pathway control pullulan production in A. melanogenum 
P16. The Msn2 protein, a C2H2 Zn finger, has a DNA-bind-
ing domain that detects the particular promoter sequences 
(AGGGG and CCCCT) of the regulated genes, containing 
the majority of the genes involved in pullulan biosynthesis 
[2]. The UGP1 gene, which codes for UDPG-pyrophosphor-
ylase (Ugp1), catalyzes the production of UDP-glucose, the 
sole precursor of pullulan biosynthesis, that is responsible 
for accelerated pullulan biosynthesis when the Msn2 protein 
is localised in the nucleus of A. melanogenum P16 [2].

However, hexokinase and isomerase are required for the 
transformation of various carbon substrates to the pullulan 
precursor, UDPG [85]. A second gene, UGT1, which codes 
for a protein, i.e., similar to the UDP glucose, glycoprotein 
glucosyltransferase (Ugt1), has also been identified as being 
involved in the production of pullulan [110]. Pullulan was 
overproduced when this gene was overexpressed in A. mel-
anogenum P16 as produced 63.38 g/L in the natural strain as 
compared to 80.2 g/L in a modified one. Whereas its deletion 
greatly lowered the amount of pullulan that was biosynthe-
sized. For incompletely glucosylating folder glycoproteins, 
the Ugt1 protein was proposed to serve as a "folding sensor" 
[92]. Currently, it was shown that the PUL1 gene encodes for 
the pullulan synthetase protein may function as an auxiliary 
protein for a component necessary for the glucan synthetase 
2 (AmAgs2) activity, a crucial enzyme for the production 
of pullulan. In two mutants of A. pullulans, the PUL1 gene 
deletion prevented the production of pullulan [15, 92].

Recent methods to extract pullulan from agro‑food wastes/
downstream process

The most important stage in every biotechnology sector is 
the planning and establishment of an effective bioprocess. 
Process development is eventually impacted by the grow-
ing requirement to lower the rising product costs [119]. 
Pullulan undergoes a multi-stage downstream processing 
step to ensure its security during purity recovery. It must be 
effective, and reliable, and enhance pullulan extraction pro-
ductivity while requiring the least amount of manufactur-
ing expenses [120]. Downstream becomes more difficult 
to extract the pullulan because of interference from con-
taminants, leftovers from fermentation, and substrate and 
medium additives employed in the formulation of the fer-
mentation medium.

The choice of an inexpensive, complex substrate typi-
cally results in reduced upstream processing costs for pul-
lulan when the fermentation medium is formulated at an 
industrial level. Additionally, these inexpensive, complex 
substrate components go unused during fermentation, and 
isolating them raises the additional steps in the downstream 
procedure and adds to the price of production. However, 
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the employment of pure substrates in the fermentation 
medium reduces the number of steps involved in pullulan’s 
downstream processing, but achieving so comes at a cost. 
To meet the specifications for pullulan's particular usage, 
different downstream processing techniques are employed 
to attain the required degree of purity in the material. Gener-
ally, the number of downstream processing steps needs to be 
kept minimum to minimize production costs and handling 
times while also preventing pullulan loss at various stages 
of purification [121].

Liquid–liquid separations are processed after solid–liquid 
separations in the product recovery stage. Pullulan's down-
stream processing begins with the separation of solids from 
liquids. These solids are culture supernatants present in the 
cellular biomass after fermentation. The efficacy of filtration 
or sedimentation during solid–liquid separation is influenced 
by various factors. These factors include the kind of microbe 
employed in fermentation, as well as its shape and floccula-
tion capabilities [121]. In this stage, cell biomass can be 
separated by filtering or centrifugation.

Pullulan is processed further by a series of procedures 
called liquid–liquid separation. Pullulan can be purified 
using both alcoholic and non-alcoholic organic solvents 
due to its renowned insolubility in organic solvents. Pul-
lulan has also been processed downstream using standard 
methods such as chromatography, ultrafiltration, gel filtra-
tion, and dialysis. Aqueous two-phase systems have also 
been employed in a few situations to purify pullulan [121]. 
Pullulan undergoes a sequence of separate unit activities 
in its downstream processing that are combined to purify 
the product. The following steps are used for the extraction 
of microbial pullulan from the fermentation medium: (1) 
microbe harvesting; (2) removal of unwanted by-products, 
like cellular proteins and melanin; (3) polysaccharide pre-
cipitation; (4) ultracentrifugation/dialysis; and (5) freeze 
drying (product polishing step) [94].

Centrifugation

The type of association between the polysaccharide to be 
extracted and the cell determines the separation as well as 
purification procedures for capsular polysaccharides. Cen-
trifugation is used to accomplish separation whenever the 
capsular extracellular polymeric substances (EPS) have a 
poor association with bacteria [82, 122].

Various techniques are used to extract various exopolysac-
charide types from bacteria. Centrifugation is typically used 
to recover EPS that has slime forms. The kind and viscosity of 
the polysaccharide determine centrifugation speed and dura-
tion. Ultracentrifugation can be used to extract microbial bio-
mass or waste products from the growth culture for improved 
outcomes in the lab [82]. For the separation of pullulan, the 
solid-state fermented medium was centrifuged at 10,000 r/

min for 25 min. Pullulan present in the resultant supernatant 
was precipitated by adding double volumes of cold acetone 
for complete pullulan precipitation. Eventually, the precipi-
tated pullulan was separated by centrifugation at 10,000 r/min 
for 20 min [21]. Centrifugation and cross-flow filtration are 
two methods for removing cell biomass [85]. While, activated 
carbon adsorption or the use of a salt and alcohol mixture are 
two methods for removing the melanin pigment [5]. Pullulan 
is soluble in water and insoluble in the majority of organic 
solvents. Thus, it is possible to extract the product from the 
purified supernatant through the addition of an adequate vol-
ume of organic solvents like ethanol, acetone, and isopro-
pyl alcohol. The polysaccharides start to precipitate when 
the organic solvent is added. For greater purification, the first 
two stages must be repeated. Ion exchange and/or ultrafiltra-
tion are used to pullulan solutions to get a higher purity of the 
biopolymer [76].

Pullulan is usually purified by removing the cells from the 
culture, removing the melanin from the culture, removing the 
melanin pigment from the broth, precipitating the pullulan by 
adding the appropriate solvents and resuspending the precipi-
tate. Finally, purifying the resultant mixture through ultrafil-
tration or chromatography [76]. It is possible to precipitate, 
dry, and mechanically grind purified pullulan into a powder 
[76, 85].

Physical treatment

Heat treatment has been utilized to enhance the separation of 
microbial cells from the broth in the case of thermostable EPS. 
Heat treatment has no impact on the viscosity of these polysac-
charides; however, it does cause pasteurization, which destroys 
the microbes and inactivates the enzymes of the culture broth 
[82]. Extraction of capsular polysaccharides requires a distinct 
process because the capsular EPS must first be separated from 
the cells [123].

Chemical treatment

Centrifugation is preceded by more intensive treatments 
(e.g., alkaline treatment, treatment with NaCl, EDTA, and 
C2H5OH precipitation) for the tightly attached capsular EPS 
with the cells. In addition to chemical treatments, the microbial 
cell suspensions can be boiled for 15 min, heated at 60 °C in 
a saline solution, 65 °C in a mixture of phenol and water, or 
sonicated [82, 124].
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Pullulan nanoparticles/nanocomposites/
nanoformulation synthesis

The goal of nanotechnology is to know about and take 
advantage of the nanoscale processes that nature uses to 
create its constituent parts. According to Coltelli et al. 
[28], it is the process of creating and characterizing mate-
rials and structures at the nanoscale that has improved 
physicochemical qualities over bulk materials. To obtain 
a single material with better physicochemical properties, 
pullulan must be modified to combine the advantages of 
natural polymers with other substances [11]. Pullulan's 
function and application scope can be expanded through 
derivatization. It is possible to increase pullulan's activity 
by adding different chemical structures to its framework. 
It is possible to substitute other chemical groups for the 
nine hydroxyl groups that are found on Pullulan's repeat-
ing units (C6H10O5)n. Chemical processes such as amidi-
fication, copolymerization, sulfation, esterification, oxida-
tion, etherification, and others are used in derivatization. 
Every derivative has distinct physicochemical features as a 
result of chemical change [125]. All the three types of pul-
lulan derivatives preparation under the specific preparation 
condition are described in this section. There are various 
ways to prepare pullulan derivatives with their specific 
preparation condition.

Pullulan nanoparticles

The primary goal of nanotechnology is to create nano-
particles with predictable shape and size, polymeric film 
and even distribution. It is commonly known that different 
metal NPs have a wide range of beneficial uses in many 
fields, such as biomedicine and health care. As a result of 
their extensive use, metals like gold, silver, zinc, copper, 
and so forth are mainly in the spotlight. Nanoparticles can 
be prepared using a variety of techniques, such as chemi-
cal and physical approaches. This can effectively gener-
ate pure, well-defined nanoparticles, however, are costly, 
unstable, lengthy, and possibly hazardous to human wel-
fare and the environment [126]. Green chemistry-based 
eco-friendly approaches to nanoparticle production could 
be a substitute for chemical synthesis [127].

Recently, a new "green" idea called the biosynthesis of 
biopolymers-mediated metal NPs has been developed in 
light due to their excellent water dispersity, abundance, 
non-toxicity, stability, biocompatibility, biodegradability, 
and eco-friendly qualities. So far, biopolymers such as 
pullulan have been widely employed for the synthesis of 
NPs [128]. But lately, research has mostly focused on the 
use of pullulan as a stabilising and reducing agent [129]. 

Pullulan was utilized for developing compression mould-
ings, fibres, drug delivery carrier materials, and edible 
films because of its promising adhesive and film-forming 
capabilities [13, 130].

Ghaffarlou and coworkers [131] synthesized a simple and 
green method for pullulan-stabilized silver and gold nano-
particles for the inhibition of quorum sensing. Using this 
approach, 15 mL of deionized water was stirred at 40 °C 
until pullulan was fully dissolved. Subsequently, 1 mL of 
either 0.01 mL of silver nitrate (AgNO3) or 0.01 mL of 
HAuCl4·3H2O was added to this mixture. The mixture was 
continuously stirred for 5 h while it was at room tempera-
ture. Ag(I) or Au(III) were reduced into zerovalent metallic 
states present in the metal ion-absorbed pullulan solution 
by heating it to 70 °C and shaking it for 5 h at 150 rpm. 
It resulted in the formation of AgNPs/Pull and AuNPs/Pull. 
Pull-Ag and Pull-Au solutions changed colour after heating 
to pink and light brown, respectively, signifying the produc-
tion of metallic Ag and Au NPs. AgNPs/Pull and AuNPs/
Pull solutions were employed unfiltered.

Additionally, pullulan-capped Ag NP was effectively cre-
ated with the use of radiation-induced techniques including 
gamma irradiation. A reducing agent was not used in the 
preparation of stable Ag-NP/PL nanocomposites, which had 
an average size of 3.98 nm. Ag NP production was verified 
by UV–visible spectroscopy, which found a plasmonic band 
at 410–420 nm. The XRD pattern demonstrated that the Ag-
NPs’ crystalline structure was fcc for every sample. TEM 
imaging confirmed that the Ag-NPs were evenly distributed 
throughout the pullulan matrix. Further, the fragmentation 
was induced by γ in the Ag-NPs. This resulted in a gradual 
decrease in the particle diameter of silver nanoparticles at 
higher doses of 50 kGy. Ag-NP/PL was discovered to have 
a negatively charged zeta potential and to be a stable, well-
dispersed particle in a colloidal suspension. This Ag-NP/PL 
biofilm exhibited potential antibacterial properties against S. 
aureus. As a result, pullulan-capped Ag NPs are suitable for 
a wide range of applications such as antimicrobial biofilm 
packaging [132].

Hong and coworkers [133], synthesized phthalyl pullulan 
NP. They dissolved 1 g of pullulan in 10 mL of dimethyl for-
mamide (DMF) and introduced 0.1% (by mole) of dimeth-
ylaminopyridine per pullulan sugar residue to the mixture 
as a catalyst. To the aforementioned solution, more phthalic 
anhydride was added at various molar ratios per pullulan: 
6:1 (phthalic anhydride: pullulan; PPN1), 9:1 (phthalic anhy-
dride: pullulan; PPN2), and 12:1 (phthalic anhydride: pul-
lulan) (PPN3). This resulted in PPNs with varying levels of 
phthalic group substituted. The reaction was run in nitrogen 
for 48 h at 54 °C. To create self-assembled phthalyl pullulan 
nanoparticles, the resulting PPNs were dialyzed twice: once 
in DMF to eliminate any unreacted phthalic anhydride, and 
again in distilled water (D.W) for 1 day at 4 °C. Following 
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ultra-centrifugation of the produced PPNs, the unreacted 
pullulan was extracted [133].

In support of this, Jayeoye and coworkers [134] dem-
onstrated that pullulan (PUL) not only acted as a stabiliz-
ing agent but also took part in the production of the NP by 
adjusting the reaction environment's surface energy. They 
used tannic acid (TA) to synthesize pullulan-stabilized Au 
NP and then explored hazardous Ag+ detection based on 
Au/Ag core–shell nanostructure creation. Initially, 8 g of 
pullulan was dissolved in 100 mL of water and agitated at 
room temperature to create an 8% pullulan solution. The 
solution was held for an hour after being heated to 60 °C. 
The solution was kept swirling while the heat supply was 
cut off. After that, it was kept for an entire night at 4 °C to 
guarantee the polymer's total dissolution. The fabrication 
of TA/PUL-AuNPs was done as follows. 40 mL of 2.5% 
PUL (optimal amount of biopolymer) was poured into an 
aluminium foil-shielded beaker while shaking. Next, 0.8 mL 
of tannic acid (18 mM) was introduced, followed by 1.2 mL 
of 0.1 M NaOH, and lastly, 1 mL of Au (III) chloride tri-
hydrate (78 mM) was quickly introduced. Before being uti-
lized, the combination was kept at room temperature for an 
hour while being vigorously stirred. Finally, it was then kept 
in an amber bottle at 4 °C [134].

In another study, a polymeric NP carrying valsartan was 
produced [135]. Valsartan is a cardiovascular drug function 
as an angiotensin II receptor blocker. Pullulan acetate served 
as a degradable polymeric structure, while Pluronic F127 
was used as a stabilizer to create pullulan NP by the nano-
precipitation process. In short, 5 mL of acetone was used 
for dissolving pullulan acetate. A pullulan/acetone solution 
was used to precisely weigh and dissolve valsartan. 15 mL 
of D.W was used to dissolve 10 mg of pluronic-F127. The 
aqueous phase solution was mixed with the organic phase 
dropwise until the organic solvent completely evaporated. 
This was done while the mixture was magnetically agitated 
at 1000 rpm and room temperature (25 °C). To extract the 
unbound drug from the created NP, the final nanosuspen-
sion was centrifuged for 30 min at 30 °C and 10,000 rpm. 
According to Pavaliou and coworkers [135], the precipitate-
carrying NP was resuspended in D.W and screened through 
a 0.22 μm Millex filter membrane after the supernatant was 
thoroughly drained. The NP-carrying valsartan exhibited 
a limited dispersity (polydispersity index < 0.2), nanomet-
ric diameters (below 200 nm), and high trapping capacity 
of valsartan. According to this study, pullulan and its deriva-
tives have a lot of possibilities for creating NPs that could be 
used to carry drugs for the cardiovascular diseases.

According to reports, pullulan-based NPs are  effec-
tive against a range of microbes with their antibacterial 
properties. Pullulan was utilized as the reducing and sta-
bilizing agent which shows the fast technique for the bio-
synthesis of silver nanoparticles (AgNPs) stabilized by 

pullulan [128]. The resulting NPs have been discovered to 
be in spherical shape and range in size from 10 to 55 nm 
on average. Additionally, the antimicrobial activity of these 
pullulan stabilized AgNPs was assessed by employing the 
agar well diffusion technique against two Gram-positive 
(Bacillus subtilis and Staphylococcus aureus) and two 
Gram-negative (Escherichia coli and Serratia marcescens) 
bacteria. According to the results obtained by this experi-
ment, it was clearly indicated that all pathogenic bacteria 
were suppressed in a dosage-dependent way. Nevertheless, 
the examined strains of B. subtilis, S. aureus, S. marescenes, 
and E. coli showed a reduction in the inhibitory impact of 
pullulan-stabilized NPs [128].

Pullulan-mediated NPs showed notable effectiveness 
against foodborne and multidrug-resistant bacteria along 
with common infectious microorganism. Pullulan biopoly-
mer was used with AgNPs, which then tested for antibacte-
rial, antifungal, and antibiofilm properties in vitro [136]. 
These NPs, which ranged in size from 2 to 40 nm, possessed 
a rod-like shape and a hexagonal shape. Their antibacterial 
activity was tested against infectious agents, i.e., responsible 
for foodborne illnesses and are drug-resistant, including E. 
coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and 
L. monocytogenes. They were also tested for their antifungal 
and antibiofilm properties against pathogenic organisms that 
form biofilms, including E. coli, Bacillus cereus, L. mono-
cytogenes, and P. aeruginosa.

According to the findings, P. aeruginosa, K. pneumoniae, 
and E. coli are the three pathogenic bacteria that are most 
sensitive to AgNPs. Contrarily, L. monocytogenes, a patho-
gen found in food has been shown to be less sensitive to 
biogenic AgNPs. Both fungal pathogens were discovered to 
be sensitive to AgNPs in a way, i.e., dose-dependent with 
regard to antifungal action. Additionally, beneficial behav-
iors against all biofilm microorganisms have been observed 
[136]. The formation of AgNPs has also been explored with 
pullulan produced from the fungus Aureobasidium man-
grovei, which was isolated from Oman. Additionally, the 
antibacterial and antifungal properties of the resulting pullu-
lan-AgNPs were also assessed towards bacteria including E. 
coli, S. aureus, B. cereus, and P. aeruginosa as well as fungi 
including Curvularia lunata and Fusarium incarnatum.

All investigated bacteria and fungi responded well to the 
ability of pullulan-mediated silver nanoparticles to limit 
their growth [137]. The previous findings of many authors 
revealed that Gram-negative bacteria are more susceptible 
to pullulan-capped AgNPs than Gram-positive bacteria, 
i.e., generally described in terms of distinctions between the 
cell wall compositions of both bacteria [136, 138]. As Gram-
positive bacteria are made up of a thicker three-dimensional 
peptidoglycan layer than Gram-negative bacteria. In this 
way, the peptidoglycan layer prevents AgNPs from penetrat-
ing Gram-positive bacteria [139].
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The previous studies regarding the antibacterial activity 
of pullulan-stabilized NPs are in conflict [128, 136]. The 
physical and chemical characteristics of NPs, such as size, 
shape, and surface charge, may represent the primary cause 
of the variation in AgNPs' action on the two types of bac-
teria [140, 141]. When comparing three different shapes of 
AgNPs such as spherical, rod-shaped, and truncated trian-
gular, it was found that the latter truncated triangular had the 
strongest antibacterial properties [142]. But most recently, it 
was revealed that spherical AgNPs had the highest antibacte-
rial activity in the inhibitory zone, followed by disk AgNPs 
and triangular plate AgNPs [143]. The pullulan-stabilized 
AgNPs produced in the two investigations mentioned above 
have also multiple forms [144].

AgNPs' antibacterial properties result in the release of Ag 
ions [Ag +] from the NPs [Ag°]. Because of this, the surface 
area of NPs which is determined by their shape depends 
on the number of Ag ions they discharge [143]. Pullulan is 
regarded as a biopolymer substance for the production of 
Ag NPs to enhance the reduction mechanism excluding the 
use of accelerating, reducing, or complexing agents. Pullu-
lans polysaccharide structure is also thought to increase its 
antibacterial properties by surrounding Ag-NPs, resulting in 
more stable, uniform, and monodisperse NPs. Furthermore, 
the particle size can be adjusted to the appropriate size by 
adding capping agents like polymers, which include pul-
lulan [132].

It has been noted that the pullulan polymer works as a 
capping and stabilising agent, causing the synthesis of sta-
bilized pullulan-capped AgNPs after gamma irradiation, 
which first decreased the Ag ions [132]. AgNPs are sta-
bilized and protected from agglomeration by the capping 
process. Additionally, after capping, surface-capped AgNPs 
exhibit improved antibacterial properties [15, 145]. These 
pullulan-stabilized AgNPs have a surface charge of -72 mV, 
making them extremely stable with little tendency to aggre-
gate. The significant antibacterial action of these NPs for S. 
aureus was also mentioned in the reports [132]. Similar to 
this, a nanocomposite thin film synthesized from transpar-
ent pullulan and AgNPs was assessed for its effectiveness 
against A. niger [146]. On observation, disruptive effects on 
conidia following this interaction were clearly seen in the 
scanning electron microscopic analysis of A. niger conidia 
after treatment with this pullulan nanocomposite film. These 
results imply that conidial damages may be linked to cell 
wall breakdown and eventual cytoplasmic leakage, which 
results in cell death [146].

Additionally, it has been noticed that the cell disrup-
tion process is dependent on the AgNP concentration in 
the film; the greater the concentration, the greater the cell 
disruption observed.

The aforementioned research demonstrates that pullulan-
based NPs have significant antibacterial capability against 

a variety of microbial diseases, among which multidrug-
resistant and biofilm-forming organisms [15].

Pullulan nanocomposites

Pullulan showed a potential application in food packaging 
and biomedical applications. However, pure pullulan films 
have significant disadvantages regarding their low physical 
and chemical properties such as brittleness and antimicrobial 
properties. In the food sector, designing pullulan-derived 
blends and composite films is the best way to get beyond 
these inherent restrictions. Thus, it acquires multipurpose 
packaging solutions that enhance the safety of food, pres-
ervation time, and quality. Moreover, combining nanoparti-
cles with biopolymer has drawn interest as a way to modify 
biopolymers [147, 148]. When compared to traditional 
micro composites, the high surface area and uniform dis-
persion of the nanoparticles in the polymeric matrix pro-
duce exceptional qualities [148, 149]. However, because of 
their strong antibacterial and antioxidant properties, natu-
ral essential oils are a viable option for creating innovative 
packaging materials that will extend the period of storage of 
food items [150]. A derivative of pullulan showed enhanced 
mechanical properties.

Pullulan’s mechanical properties can be improved by 
carboxymethylation and periodate oxidation, which in 
turn improve the efficiency of nanocomposite materials. The 
process of carboxymethylation requires adding carboxylate 
or carboxymethyl chitosan to the chemical makeup of pul-
lulan. As illustrated in Fig. 3, carboxymethylated pullulan 
can be made by reacting pullulan with isopropyl alcohol and 
sodium chloroacetate. As an outcome, pullulan's structure 
acquires carboxylate groups [11, 151].

The mechanical durability of pullulan is also improved 
by periodic oxidation. Pullulan's compatibility with blood 
and biodegradation properties have led to its selection as 
a carrier. Nevertheless, there is no functional group in the 
pullulan structure that can transport the macromolecular 
product. Pullulan's interaction with sodium periodate that 
adds an aldehyde group is known as "periodate oxidation 
of pullulan." The polysaccharide directly couples with the 
drug upon the addition of the aldehyde group, making it an 
appropriate transporter [25].

Pullulan has been combined with different functional 
agents like sakacin-A [152], thymol [153, 154], silver nano-
particles [131, 155], essential oils and nanoparticles [150, 
155, 156], lysozyme [157], cholinium carboxylate ionic 
liquids [158], graphene oxide [159], bacterial cellulose 
[160, 161], nanofibrillated cellulose [162, 163], and gela-
tine [103]. Due to the interaction of the different individual 
components, either chemically or physically, it enhances the 
films' mechanical properties [148] or provides their bioactiv-
ity, especially antibacterial properties [158].
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Additionally, silicon oxide was used to create nano-
SiO2 (NS), an amorphous powder that exhibits a tridimen-
sional structure, using the SiO(2-x) formulation, where x 
ranges between 0.4 and 0.8 [148]. Because of its remark-
able properties such as its small size, high surface energy, 
wide specific surface area, unsaturated chemical bonds, 
and hydroxyl group on the surface, NS is easily dispersed 
across polymer matrices and is increasingly being used as 
a nanofiller in nanocomposites [148]. SiO2 is the primary 
component of sand in various world regions [164]. Nearly 
every NP exhibits a few negative impacts on the human 
body. However, there is little worry regarding NS's eco-
pollution [148, 164].

Pullulan was utilized to create a nanocomposite bone 
scaffold. Ag-silica Janus particles (Ag-silica JPs) are a 
nano-platform, exhibiting a ball-stick morphology. Ag-silica 
JPs and pullulan were combined to create a nanocomposite 
scaffold that had improved mechanical and biological char-
acteristics. The synergistic capabilities of Ag and silica’s 
antibacterial and bioactive activities were obtained by syn-
thesizing Ag-silica JPs using a one-step sol–gel technique 
[165].

Utilizing polysaccharide-based nanofillers is a good way 
to create bio-nanocomposite films. These films are far bet-
ter suited to applications such as surface hydrophobicity, 
mechanical strength, and barrier than pure biopolymer coat-
ings. This study examined the effects of starch nanocrystals 
derived from waxy rice starch (WSNC) and native starch 
(NSNC) on the physical–chemical characteristics of pullu-
lan-based nanocomposite films and the successful mainte-
nance of fresh beef [166].

Chitosan-pullulan-silver-nanocomposite (CSPN) films 
is a novel model drug moxifloxacin (Mox) loaded ternary 
nanocomposite. This was effectively created employing tra-
ditional solvent casting of an aqueous composite solution. 
Pullulan and chitosan, two polysaccharides, were used as 
reducing, capping, or stabilizing agents in ternary nanocom-
posites. Both were shown to be a potential carrier system 
for Mox and AgNPs. The produced films known as ternary 
nanocomposite (CSPN) showed antibacterial effectiveness. 
Thus, it may be used successfully in tissue engineering, drug 
delivery, scaffolding for skin conditions, wound healing, and 
other medical uses [167].

Pullulan nanoformulation

Drugs are delivered at a predefined rate through sustained-
release drug delivery nanoplatforms. This keeps the deliv-
ery of drug dosage steady for a predetermined rate of time 
while minimizing adverse reactions. Sustained-release drug 
delivery nanomaterials can be classified into several types. 
First is the lipid-based nanoplatforms (including nanostruc-
tured lipid carriers, solid lipid nanoparticles, cubosomes, 
microemulsion, and liposomes). Second is the polymer-
based nanoplatforms (dendrimers, polymeric nanocarriers 
micelles, hydrogels); metallic nanocarriers (superparamag-
netic nanocarriers, silver, and gold-based nanocarriers); 
carbon-based nanoplatforms (fullerenes, carbon nanotubes, 
nanodiamond); nanoplatforms derived from cells or biomi-
metic ones (exosomes, virus-based nanocarriers). Third is 
the protein-based nanoplatforms (zein and albumin nano-
particles) [125].

Fig. 3   Schematic representa-
tions of carboxymethyl pullulan 
preparation
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Biodegradable polymeric nanosystems are now becoming 
one of the most interesting drug/gene delivery systems and 
anticoagulants. Pullulan is a type of biopolymer known to 
be both extremely biocompatible and biodegradable. Due to 
their special ability to self-assemble into core–shell struc-
tured NPs, they are, therefore, frequently employed in these 
nanoformulations [168]. Since NPs can greatly minimize 
drug adverse reactions and increase the efficiency of drugs, 
targeted therapy using NPs has gained attention in the treat-
ment of cancers [169]. Its blood compatibility and biodeg-
radation features make it suitable to be utilized as a carrier 
for macromolecules. However, there is no functional group 
in the pullulan structure that can transport the macromo-
lecular product. Moreover, it is a hydrophilic polymer that 
dissolves in water, which makes it challenging to encapsulate 
charged and hydrophobic proteins [170]. Thus, its low sta-
bility, hydrophilic nature, and lack of functional groups are 
the major challenges limiting the application of the delivery 
system. These three bottlenecks remarkably affect the in vivo 
release and bioavailability of the drugs [168].

Pullulan stability and hydrophilicity can be modified by 
means of succinylation, cholesterol integration, and ure-
thane derivatization and employed as a stabilizing agent. 
To address this problem, pullulan was modified to carry 
hydrophobic or charged regions. Through a reaction with 
negatively charged succinic anhydride (acetic, propionic, 
and butyric anhydrides), succinylation triggers the integra-
tion of the carboxylic group into pullulan. It results in the 
formation of pullulan acetate (PLAc), pullulan propionate 
(PLPr), and pullulan butylate (PLBu). This renders pullulan 
suitable for the transport of positively charged proteins in 

drugs [11, 171]. As illustrated in Fig. 4, when 4-dimethyl-
aminopyridine (DMSO) is present as a catalyst, succinyla-
tion takes place for 24 h at 40 °C.

In pullulan, C-6 acts as the chosen location for succinic 
anhydride. It is necessary for N, N′-carbonyldiimidazol to 
activate the COOH group in succinylated pullulan. The 
amine and the resultant derivative can be linked [170]. 
SPA (succinylated pullulan acetate) was used to create a 
microsphere for the transportation of protein. The double 
emulsion approach was used for loading lysozyme (Lys) as 
a model protein drug into the microsphere, replacing PLGA 
[poly (dl-lactic acid-co-glycolic acid)] with SPA. As a result, 
extended stability of proteins and three times greater protein 
loading capacity were observed.

Cholesterol content modification is another method to 
improve the long-term viability of the pullulan nanoformula-
tion. Pullulan integrated cholesterol as a hydrophobic group. 
Pullulan which had been treated with cholesterol was used 
to create an epirubicin self-assembled nanoparticle. To do 
this, a hydrophobic component, like long carbon chains or 
cholesterol groups, must modify pullulan [172]. An amphi-
philic polymer will be produced as a result of this. This can 
be used to create the NP that self-assembles. Pullulan with 
a hydrophobic group is made by attaching the cholesterol 
group to pullulan using alkylenediamine and monochloro-
acetate as depicted in Fig. 5.

Cholesterol-modified nanoparticles demonstrated 
improved drug stability with an extended half-life, increased 
blood plasma concentration, and relatively low toxicologi-
cal effects for drugs [172]. To load the drug mitoxantrone 
(MTO), an additional NP was developed utilizing pullulan 

Fig. 4   Schematic representa-
tions of succinylated pullulan 
preparation
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conjugated with cholesterol. The chosen drug has a lot of 
negative consequences because it is not specific to cancers. 
Targeted administration of the drug improved stability, per-
meability, retention impact, effectiveness, and decreased 
drug update by normal tissues. These were the outcomes of 
loading MTO in cholesterol-modified pullulan NP. Human 
serum albumin (HAS) was added again to the MTO-CHP 
NP, which stabilized the release of the drug by decreasing 
the rate of drug distribution in acidic environment [173].

Yuan and coworkers [174] worked on cholesterol content 
modification of pullulan and synthesized three kinds of pul-
lulan NP polymers by the dialysis method. These three pul-
lulans were called CH-modified animated pullulan (CHAP), 
CH-modified carboxylated pullulan (CHSP), and cholesteric 
hydrophobically (CH)-modified pullulan (CHP). This dem-
onstrated the interaction between HSA protein and the vari-
ous surface elements of NPs. When polymers have the same 
degree of cholesterol substitution, the number of charge 
groups changes the size of NPs. The quantity and kind of 
charge of nanomaterials were strongly correlated with their 
size, charge, drug loading characteristics, interaction with 
HSA, and drug release. With greater amino substitutions, 
CHAP NPs comprised the largest, followed by CHSP NPs 
in the next place, and CHP NPs in the last place, all hav-
ing a similar level of hydrophobicity alteration. The prop-
erties like the binding constant, the delayed drug release, 
and the HSA coverage all depended on the size and surface 
charge of the NPs. CHP NPs exhibited the maximum cover-
age, while the positively charged CHAP binding constant 
remained the strongest, indicating the quickest drug release. 
The drug release of NPs was further delayed by the addition 

of HSA. The slowest rate of drug release was observed when 
CHAP NPs adsorbed HSA.

In addition to the first two pullulan derivatives, the pul-
lulan urethane derivative seeks to improve the nanoformu-
lations' thermostability [1, 175]. The synthesis of urethane 
derivative improves pullulan's solubility in a wide range of 
organic solvents, water resistance, and thermostability [176]. 
The preparation involves reacting pullulan with either hexyl 
or phenyl isocyanate (HIC), which introduces N-phenyl ure-
thane or N-hexyl urethane groups into the pullulan structure. 
The insertion of PIC and HIC modifies pullulan’s features in 
different ways. For example, adding more PIC causes pul-
lulan’s tensile strength and glass transition temperature to 
drop. Pullulan becomes more soluble in ethanol when PI is 
added, whereas it becomes more soluble in acetone and H2O 
when HI is added [11, 175].

Opportunities of pullulan nanopolymer

The pullulan production from agro-food processing waste 
has been one of the exciting approaches to managing piles 
of an organic-rich substrate with the production of value-
added products such as nanoparticles/composites/hydrogels 
[177]. Pullulan nanopolymer films are superior to conven-
tional food packaging with increased antimicrobial activity, 
physico-chemical properties that increase their durability.

Furthermore, integration of other NPs with pullulan pol-
ymer would be a ground-breaking technique by shrinking 
the edible film particles' size to the nanometre (nm) range 
[178]. It enhanced the film's physicochemical strength, food 

Fig. 5   Schematic representa-
tions of cholesterol-bearing 
pullulan preparation
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bioavailability, taste, texture, and consistency, achieved 
through modification of particle size, possible cluster for-
mation, and surface charge of food materials [179]. This 
section summarizes the application of pullulan nanopolymer 
in the form of nanoparticle/nanocomposites/nanoformula-
tion in different sector.

Pullulan nanocomposite in agriculture and food

As a packaging agent

Packaging is described as a vital tool for storing food prod-
ucts for a prolonged duration of time without spoiling while 
maintaining their original, chemical, and sensory attributes 
[180]. Agricultural products (seeds and crops) and food 
products (vegetables and foods) are protected by the pack-
aging to avoid impurities, dirt, microbes, and chemicals. The 
application of non-biodegradable petroleum-derived pack-
aging for post-harvested horticulture products is extremely 
hazardous to the health of humans and the environment. 
Thus, the use of natural biodegradable packaging materi-
als for agro-food packaging has received particular atten-
tion. Due to its water-soluble, non-toxic, and non-mutagenic 
edible properties, experts think pullulan may prove a viable 
polymer for their application in this scenario. Primarily 
because of its superior film-forming and adhesion qualities, 
this biopolymer can create edible films or coatings for a vari-
ety of foodstuffs [181].

A lot of emphasis has recently been focused on the pro-
duction of edible films carrying antimicrobial chemicals as a 
successful method to increase the period of storage of fruits 
and vegetables and limit the possibility of spoilage by path-
ogens. Approximately one-third of conventionally grown 
crops suffer destruction, mostly as a result of infestations of 
insects, harm from microbes, extreme weather, poor soil per-
formance, and a lack of available nutrients. To solve these 
problems, we urgently need more advanced technology. In 
this way, the agro-technological revolution, i.e., about to 
change the current agricultural system while ensuring food 
security has been made possible in part by nanotechnology. 
As a result, NPs are evolving into cutting-edge materials, so 
they will change the way of contemporary agriculture. The 
United States Department of Agriculture-USDA first placed 
up a "roadmap" for the use of nanotechnology utilization in 
the areas of agriculture and food in December 2002 [182].

Considering the potential for the creation of biodegrad-
able polymers, nanocomposites are opening up new avenues 
for investigation. Polymer-silicate nanocomposites were 
found to have better properties, including high  thermal 
stability, durability, and enhanced gas barrier capabilities 
[183]. AgNPs were combined with petroleum-derived pol-
ymers like PVC (polyvinyl chloride), PE (polyethylene), 
and PET (polyethylene terephthalate) to provide a more 

opulent material for packaging. AgNPs are extremely effec-
tive against a variety of microorganisms, such as bacteria, 
viruses, and fungi, along with enhancing packaging protec-
tion [184–186].

In a single investigation, the authors showed the anti-
bacterial effectiveness of pullulan coatings integrating with 
AgNPs, zinc oxide NPs (ZnONPs), oregano oil (2%), and 
rosemary oil (2%) against L. monocytogenes and S. aureus. 
These bacteria cause degradation of the nutritional value of 
Turkey deli meat [187]. These findings also revealed that 
S. aureus was  less resistant to the edible pullulan coat-
ings including the aforementioned NPs and essential oils 
than L. monocytogenes. In a different investigation, pullulan 
coatings were synthesised with a combination of antibacte-
rial and anti-browning chemicals [188].

Pullulan was utilized as a thickener that may produce 
semipermeable films, chito-oligosaccharide served as an 
antibacterial agent, and glutathione proved as a powerful 
reducing agent. Additionally, the effectiveness of these 
edible coatings was assessed on apple slices stored at a low 
temperature. When compared to the control, it proved that 
pullulan coatings successfully prevented microbial growth 
and the respiration rate of apple slices. Additionally, it was 
revealed that these pullulan-based coatings prevented enzy-
matic browning, maintained firmness, and reduced weight 
loss. These results implied that the use of pullulan-based 
coatings along with glutathione and chito-oligosaccharides 
proved to be beneficial to increase the storage period of 
apple slices [129]. The pullulan-based edible coating can 
be applied to extend the storage period of eggs as well as 
fruits. An experiment conducted in which fresh eggs were 
coated with pullulan and pullulan-carrying nisin while 
kept uncoated eggs as a control [189]. According to the 
findings, pullulan-coated eggs are healthier as compared to 
uncoated and pullulan-carrying nisin-coated eggs because 
they lose less weight and yolk index.

It was observed from these investigations that pullulan 
coatings may maintain fresh eggs' internal integrity intact, 
increase their storage period, and minimize weight reduc-
tion  [189]. Additionally, other pullulan-based compos-
ites that are combined with distinct polymers, like pectin 
and chitosan, to synthesize films/coatings for food play 
an important role. Edible films were developed by combin-
ing pectin and pullulan in a variety of ratios and their effec-
tiveness were assessed in food packaging [190]. Following 
to FTIR assessment, an intermolecular H-bond was seen 
to develop between the carboxyl group of pectin and the 
hydroxyl group of pullulan, which strengthen the complex. 
Furthermore, the combination of pullulan and pectin used to 
make the film that exhibits the maximum heat resistance and 
surface hydrophobicity. Compared to the individual films, 
this combination boosted strength while maintaining flex-
ibility and stiffness.
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In a different work, researchers made pullulan-chitosan 
and pullulan-carboxymethyl chitosan (CMCH) integrated 
films and examined their viscosity, mechanical capabilities, 
barrier qualities against H2O and O2, water solubility, and 
additional features. According to reports, the mechanical and 
O2 barrier qualities of the film were considerably altered by 
the incorporation of chitosan or CMCH into pullulan. Pul-
lulan and chitosan should be blended 1:1 to produce films 
with the above-mentioned properties. The use of such films 
in food packaging has the potential to extend the storage 
period of food items [129]. Comparable to this, Li and cow-
orkers [191] investigated the pH impact on the performance 
and characteristics of pullulan-chitosan blended films. It has 
been noted that the extra conformation of chitosan in a pH 
4.0 solution raised the intermolecular interactions with pul-
lulan when compared to the more compact coiled form. This 
provides higher tensile strength and barrier capacity of the 
pullulan-chitosan film and higher viscosity of the film-form-
ing solution. All of this research showed that the inclusion of 
edible coating/ films made of pullulan considerably aids in 
maintaining the nutritional value of fruits and food items by 
preventing their spoiling from pathogenic microbes.

Pullulan-based smart packaging that is coated with NPs 
and essential oils is becoming more popular these days 
because of its potential for antibacterial use in a variety of 
industries. A report addressing the use of pullulan active 
packaging combined with AgNPs and essential oils to lessen 
the perishability of meat recently came out [192]. This 
study examined the intriguing potential of pullulan active 
packaging combined with various NPs and essential oils. 
These active coatings are particularly potent in the growth 
inhibition of Salmonella typhimurium, S. aureus, E. coli, and 
Clostridium perfringens. This has been causing outbreaks 
in meat by the elimination of cholesterol oxidation products 
that are hypothesized as the mechanism. All these infections 
may be efficiently controlled by pullulan active packaging, 
which also significantly lengthens the storage period and 
increases the popularity among consumers of meat. Previ-
ously, the antimicrobial activity of pullulan films incorporat-
ing essential oils and NPs against four foodborne pathogens 
was investigated [193]. According to preliminary research, 
2% oregano essential oil proved efficient against S. aureus 
and S. typhimurium but poorly efficient against L. monocy-
togenes and E. coli O157:H7. Although, in contrast to 1% of 
rosemary essential oil, 2% proved to be efficient over all four 
of the aforementioned microbes. They were also discovered 
to be significantly more effective when combined with zinc 
oxide and silver NPs against the tested microbes. The find-
ings showed that pullulan-based edible films in conjunction 
with NPs or essential oils increased the quality of fresh, 
chilled, or further processed meat and poultry items.

Comparable to this, a pullulan film incorporating caraway 
essential oil was created and assessed the film's impact on 

the nutritional content of fresh baby carrots as well as its 
antibacterial effectiveness against Salmonella enteritidis, S. 
aureus, Saccharomyces cerevisiae, and A. niger [194]. All 
of the examined microorganisms were found to have their 
growth severely hindered by caraway essential oil. All of 
these food-borne pathogens were discovered to be more sus-
ceptible to pullulan films carrying 8% to 10% caraway essen-
tial oil. Additionally, these films were also seen to main-
tain a higher visual appearance on fresh baby carrots than 
untreated samples [15]. The various pullulan-based edible 
films/coatings and their possible application in the agro-food 
sector are summarized in Table 1.

Pullulan nanoformulation in biomedical research 
and development

Pullulan has GRAS certification for safety by the FDA in 
the United States due to its physicochemical properties and 
eco-friendly approach [199]. Additionally, it is recognized 
as a safe material under Japanese standards for ingredients. 
It offers a wide range of possible uses in biomedical research 
and development as highlighted in Table 2. The diverse role 
of pullulan in drug delivery, gene delivery, tissue engineer-
ing, anticoagulating agent, and vaccination is indicated in 
Fig. 6 and discussed below in detail.

Pullulan and its derivatives in drug delivery

The exceptional permeability exhibited by pullulan and 
its derivatives plays a crucial role in ensuring the optimal 
preservation of pharmaceuticals. This substance is ver-
satile and can be utilized in a range of nanoformulations, 
such as nano gels, NPs, and microspheres. When combined 
with drugs, pullulan formulations exhibit reduced toxicity 
toward healthy cells and have a greater ability to target can-
cerous cells or tissues [17]. Sick cells use integrins of cell 
adhesion receptors to internally incorporate formulations, 
as explained by Haas and Plow in 1994. Drugs contained 
within cholesterol-modified pullulan nanoparticles (NPs) 
have a short half-life and a tendency to concentrate on liver 
cells [200].

Research has suggested that incorporating cyclodextrins 
into pullulan microspheres can greatly enhance the effective-
ness and speed of drug dissolution [201]. Furthermore, it has 
been reported that CHP has the potential to help transport 
drugs through the blood–brain barrier and treat neurologi-
cal conditions such as Alzheimer's disease [202]. Research 
has shown that modifying cholesterol can enhance the bio-
logical activity of insulin and provide long-term circulation 
stabilization [203]. Pullulan formulations have proven to be 
effective drug carriers for targeting multiple diseases such 
as hepatitis C virus [204], autoimmune diseases [205], ath-
erosclerosis, graft rejection, ischemia, asthma [206], liver 
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cancer [207], and intestinal cancer [208]. According to Laha 
and Maiti, a stearyl pullulan nanostructure with a core–shell 
composition containing a substantial quantity of glipizide 
in its hydrophobic core displayed consistent drug release in 
simulated gastrointestinal conditions [209].

Carboxymethyl pullulan (CMP) NPs have the capability 
to form hydrazone bonds with drugs that possess antioxidant 
properties. This interaction is crucial in the safe delivery of 
drugs to cancer cells and provides a significant increase in 
binding affinity for lymph nodes, spleen, and other tissues 
[210]. Formulations that include pullulan acetate (PA) could 
coat hydrophobic drugs. This allows for targeted delivery to 
tumor cells and prolonged circulation times in the blood-
stream. [211]. A glucose-sensitive CMP hydrogel has been 
described as a means of achieving regulated and intelligent 
insulin release [212]. The sensitivity of PA nanoparticles 
to ionic strength makes them ideal for delivering radioiso-
topes to tumor cells [213]. The modification of pullulans 
using folate particles has been shown to improve its ability 
to target cancer cells in various areas of the body such as the 
kidney, brain, lung, breast, and ovary [214].

Several additional pullulan derivatives have proven to 
be highly effective in delivering drugs to specific targets. 
It includes succinylated pullulan [215], diethylenetriamine 
pentaacetic acid pullulan [204], pullulan-deoxycholic 
acid [216], and polyethyleneimine pullulan [97, 217]. A 
poly(acrylamide) graft pullulan derivative that responds 
to electricity has been identified as a transdermal delivery 
technique [218]. Some pullulan formulations are sensitive 
to changes in pH and temperature. These formulations have 
lower toxicity to normal cells and better retention in tumor 
cells, resulting in improved drug effectiveness.

Pullulan and its derivatives in gene delivery

Pullulan has been found to be an excellent carrier for DNA 
or genes due to its exceptional potency. When transformed Ta
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into hydrogel nanoparticles with a hydrophilic core, it 
becomes a safe and secure option for delivering genes to spe-
cific targets. These nanoparticles can be further improved by 
attaching a ligand to their surface, allowing for even greater 
accuracy and efficiency in gene delivery. Modified pullulan 
formulations show great promise in targeted gene delivery, 
protecting the genes from degradation. New research find-
ings have revealed that pullulan could exhibit self-aggrega-
tion features when it is joined together with a cholesterol 
group [17], forming a hydrophobic core within the formu-
lation. Such characteristics allow the specific delivery of 
diverse hydrophobic proteins or genes using CHP [241]. Pro-
teins for immune cell treatment, like truncated HER2-147, 
have been successfully delivered using this method [242]. 
Pullulan hydrogels have the remarkable ability to deliver 
DNA to cancer cells for an extended period, while also hav-
ing the capacity to effectively load plasmid DNA [243].

Utilizing cationic pullulan formulations like polyethyle-
neimine pullulan (PEIP) can confidently target the liver with 
specific genes [244]. PEIP is often used to target cancer-
ous cells because it reduces the negative effects on DNA or 
genes [245, 246]. Pullulan made of diethylaminoethylamine 
can be formed into tubular or three-dimensional matrices to 
deliver genes to nearby arteries or muscle cells while also 
shielding them from DNase destruction [247]. The effective-
ness of gene transfection is increased by modification with 
folate [54], which also improves gene silencing. According 
to reports, pullulan spermine supports the release of dopa-
mine and is said to supply the notch intracellular gene for 
the treatment of Parkinson's disease [248]. Additionally, it 
is employed to transport genes for neurons [249] and target 
genes for human bladder tumor cells [250]. Formulations 
of pullulan derivatives, such as pullulan-g-poly(L-lysine) 
[251], pullulan-protamine [221, 252], and succinylated pul-
lulan [253] are effective for the delivery of specific genes 
with minimal cytotoxicity.

Pullulan and its derivatives in tissue engineering

Pullulan derivatives have proved to be highly effective in 
tissue engineering and wound healing. Various pullulan 
derivatives were utilized to develop three-dimensional scaf-
folds with the aim of improving the self-healing process of 
damaged tissues or organs [17, 254, 255]. The formulations 
exhibit outstanding mechanical properties, high hydration 
capacity, and exceptional biocompatibility [256].

The scaffolds made from pullulan exhibited macro-poros-
ity which facilitated the controlled release of nutrients and 
metabolites for tissue engineering purposes [257]. In tissue 
engineering and wound healing, pullulan derivatives have 
found extensive use. These derivatives have been employed 
as scaffolds for bone, vascular endothelial, and skin cell 
regeneration. Additionally, they possess anti-adhesion 

properties, which help to reduce the risk of intestinal block-
age and postoperative discomfort [258] as well as avoid 
infection of the wound [259, 260]. These hydrogels have a 
crucial role in the growth of osteoid tissue, orthopedic pro-
cedures, and recovery of maxillofacial injuries. By promot-
ing the migration of osteoprogenitor cells, pullulan hydro-
gels accelerate the healing process of bone deformities in 
the skull [261, 262] and aid in cartilage tissue regeneration 
[263]. Pullulan scaffolds can be utilized to replicate skin 
architecture for effective wound recovery [264]. Nanogels 
from CHP are beneficial for wound healing as they promote 
controlled release of prostaglandin E1, leading to neovascu-
larization and neoepithelialization [265].

Pullulan derivatives in the form of phosphorylated pul-
lulan, carboxylated pullulan [266], pullulan-cellulose acetate 
[267], and others have been employed for tissue engineering 
purposes. The antioxidant capabilities of the salt-induced 
pullulan hydrogels shield cells from oxidative damage 
and promote wound healing [268]. Small to massive bone 
abnormalities are repaired with pullulan microspheres [263]. 
Pullulan-based films have great significance in skin tissue 
engineering since they are extremely biodegradable and 
biocompatible [1]. Research has shown that pullulan mem-
branes can enhance the growth and division of fibroblasts, 
ultimately aiding in the process of wound healing by allow-
ing for the necessary movement of cells [269, 270].

Pullulan derivative for improved anticoagulant property

Anticoagulants are used to prevent the development of blood 
clots and thickening. Heparin is a commonly used anticoagu-
lant, but sulfated pullulan has been developed as an effective 
substitute. To produce sulfated pullulan, pullulan is reacted 
with a sulfur trioxide-pyridine complex in DMF at 75 and 
95 °C for 3 to 8 h. Alternatively, pullulan reactions using 
N, N-dimethylformamide (DMF) complex can also provide 
sulfated pullulan, but this may result in highly reactive and 
less viscous pullulan. Therefore, SO3-Py (pyridine) com-
plexes are preferred to produce stable and viscous deriva-
tives. Sulfation at C-6 is the most favourable location for 
sulphated pullulan, followed by C-3, while C-4 is primarily 
left unsulfated. Pullulan sulfate has been found to act as an 
anticoagulant by interacting with various coagulation phases 
[11, 271].

Pullulan and its derivatives in vaccination

Treatment of cancer cells requires an appropriate immune 
response to antigen peptides, which can be accomplished 
with peptide and protein vaccines. According to reports, 
CHP has been responsible for cancer immunotherapy by uti-
lizing the protooncogene for human epidermal growth fac-
tor receptor 2 to treat carcinomas of the stomach, breast, 
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bladder, ovary, and dendritic cells. CHP has been coupled 
with additional cancer-related antigens, such as NY-ESO-l or 
MAGE A4, to develop a cancer vaccine [272]. The killer and 
helper T immune cells that deliver antigens can be stimu-
lated by this pullulan complex. The CHP-based NY-ESO-1 
vaccine stimulates an efficient immune response for the ther-
apy of esophageal cancer [273]. As a mucosal vaccination, 
the cationized version of CHP is utilized to defend against 
Pneumococcus-related respiratory infections and coloniza-
tion [274, 275].

An effective vaccination that first adheres to the nasal 
epithelium and then affects the mucosal dendritic cells is 
made up of cationic CHP and Clostridium botulinum type-
A neurotoxin [276]. According to reports, the cationic ver-
sion of CHP can combine with tetanus toxoid and aids in 
the development of potent mucosal and systemic immune 
responses. Because it contains fluorescent quantum dots for 
labelling inner body cells and creating visual representa-
tions of the inside of the body, the amine-modified CHP has 
prospective for medical imaging [277]. Infrared dye 900 is 
more effectively retained in sentinel nodes and has a smaller 
dispersion when combined with CHP NPs [278].

In addition, diethylenetriamine pentaacetic acid pullu-
lan has drawn interest in cancer treatment using magnetic 
resonance imaging [279]. Pullulan derivatives are highly 
effective in enhancing insulinotropic action. Pullulan sul-
fonyl urea was previously mentioned in the production of 
an artificial pancreas to activate the insulinotropic function 
of pancreatic islets to re-establish an ordinary insulin secre-
tion pattern [280]. It encourages the release of insulin both 
at low and high blood glucose concentrations.

Pullulan and its derivatives in expanding plasma

Patients who have experienced a medical condition or injury 
experience severe bleeding, which lowers their osmotic pres-
sure and causes their blood vessels to burst. Shallow blood 
circulation might result in immediate death or chronic 
problems for the patients. Pullulan and its derivatives are 
employed in place of blood plasma to resolve these issues 
[281]. Pullulan is known to be entirely non-toxic and very 
compatible with the human body. Thus, it can be utilized to 
support normal blood flow by preserving the osmotic pres-
sure inside blood vessels. After the intended therapeutic 
effect, it can be readily removed and metabolized to balance 
the loss of blood [1, 282]. It was observed that a γ-irradiated 
pullulan with low molecular weight and viscosity may 
expand blood plasma [281]. Chemical changes cause pullu-
lan to develop a resistance against the amylase and give it the 
capacity to survive in blood vessels [283]. By substituting 
isovolumetric blood, pullulan aids in the regulation of blood 
microcirculation to a healthy condition, cardiac contraction 
rate, cardiac output, and blood circulation index [88].

Conclusion

The current review provides useful information regarding 
the production of pullulan from agro-food waste and their 
agro-food and biomedical applications. Pullulan, in par-
ticular, offers important advantages like non-mutagenic, 
toxin-free, non-immunogenic, and non-carcinogenic nat-
ural polymeric properties. Unfortunately, its high price 
restricts its successful applications at commercial and 
industrial level. The agro-food wastes are rich in nutri-
ents, organic and inorganic matter. These wastes proved 
to be a good feedstock for pullulan production. Agro-food 
wastes showed recalcitrance to degradation that makes the 
utilization of them as substrate difficult by microbes dur-
ing fermentation for pullulan production. This drawback 
could be overcome by applying various valorization meth-
ods. Thus, exploitation of these agro-food waste proved 
to be a cost-effective feedstock for pullulan production. 
Another drawback of this polymer is its poor mechani-
cal property and the unavailability of functional groups to 
carry macromolecules, which restricts its application in 
various fields. Reinforcement of biodegradable pullulan 
with any active substance such as nanoparticles, nanogels, 
microspheres, and essential oils may be selected as the 
alternative technology. Additionally, the nanoparticles 
of pullulan derivatives created their prospects in serving 
as gene/drug vehicles or carrier in the biomedical field. 
To increase the biocompatibility and stability of pullulan 
for biomedical and tissue-engineering applications, novel 
methodologies for the preparation of pullulan nanoformu-
lations are preferred. These nanoformulations improved 
its multifunctionality and broke the barrier between its 
pilot-scale and large-scale applications.

Future prospective

Pullulan is approved for usage in agro-food, pharmaceuti-
cal, and medical devices due to its distinct physicochemi-
cal characteristics. Chemical derivatization has been car-
ried out to broaden its application. This has increased 
pullulan’s solubility in organic solvents, as well as its 
mechanical, pH-sensitive, anticoagulant, and antibacterial 
properties. Although the potential uses of pullulan nano-
polymer in food products are largely known and accepted, 
they have not been thoroughly investigated on an industrial 
basis. Furthermore, pullulan is present in many commer-
cialized formulations and is the subject of much research; 
pullulan derivatives, however, are currently being studied 
and have not yet received commercial approval. The future 
perspective is to describe pullulan’s chemical and physical 
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characteristics, which are consistently enhanced to pro-
duce a derivative that is more suited for the pharmaceuti-
cal, medicinal, and agro-food industries.
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