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Abstract 
To develop an effective and novel adsorbent material consisting of three-layered core–shell particles with magnetic and 
photocatalytic properties, this study has utilized a sol–gel technique to synthesize  Fe3O4/SiO2/TiO2/PAM (polyacrylamide) 
nanocomposite (FSTP NCs)-functionalized  Fe3O4/SiO2/TiO2NPs as core and PAM as shell for water purification. The surface 
of the  TiO2 layer has been treated with silane A-174 (AA) as a coupling agent. In the final step, NPs were coated with PAM 
as an organic layer through radical polymerization of AA, to prepare a well-structured nanocomposite. FTIR, SEM, EDX, 
TEM, XRD, and VSM were applied to investigate the novel composed bonds, morphological properties of the surface and 
elemental analysis, core–shell structures, NPs size, samples phase and superparamagnetism of the NC and NPs, respectively. 
The R2 values in three models of Langmuir (0.89), Freundlich (0.84), and Dubinin-Radushkevich (0.98) were calculated and 
the isotherm model followed a model with the highest R2. The maximum efficiency of arsenate removal was recorded in 0.1 
g concentration of adsorbent, pH 2, contact time of 700 min, and ion concentration of 50 mg/L.
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Introduction

Regularly, a wide variety of chemicals with detrimental 
effects on the environment are found in water. Although 
water is often taken for granted, it is undoubtedly one of 
nature's most precious gifts. However, with increasing 
population, desertification, deforestation, and other ages of 

industrialization legacies, the demand for water resources 
has increased exponentially [1–3]. The potential adverse 
effects of arsenic-contaminated water on human health 
are a matter of significant concern. It should be noted that 
approaches only focused on reducing the arsenic content to 
a level of 10 parts per billion (ppb) may not provide a com-
prehensive solution. Hence, professionals and governmental 
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authorities place significant importance on this matter [4–6]. 
Water contaminants such as organic and inorganic pollutants 
have critical consequences on human health and even the 
ecosystem [7, 8]. In recent decades, various methodologies 
have been investigated for water purification [9–11]. The 
imperative need to reduce the pollutant content of wastewa-
ter necessitates the use of technologically advanced solu-
tions that prioritize high efficiency and cost-effectiveness 
while adhering to principles of sustainable and environmen-
tally friendly practices [12, 13].

Polymeric nanocomposites have been taken into consid-
eration in chemistry, material science, catalyst, biomaterial, 
etc., due to their significant properties such as mechanical, 
thermal, optical, and electrical properties, and also improve 
flexible processability [14, 15]. Many factors influence these 
properties such as the size and concentration of inorganic 
nanofiller materials, as well as their interactions with a poly-
mer matrix [16–18]. One of the most applicable methods for 
the synthesis of polymeric nanocomposites is the sol–gel 
method which has been applied in different applications [19, 
20]. The molar ratio of reactants, concentration, temperature, 
time, and pH play vital roles in the sol–gel method [21–23].

Among several applicable NPs, magnetite iron oxide NPs 
have spectacular performances (perform strikingly) [24–26]. 
There are various forms of iron oxides, such as goethite, 
amorphous, and crystalline ferric oxide [27]. Magnetite iron 
oxide NPs were selected for assorted goals, including water 
and air purification [28, 29], removal of metal ions [30, 31], 
cancer therapy, magnetic resonance imaging, drug delivery 
systems, catalyst, and magnetic sensing [32]. In the world 
of irretrievable (irrecoverable) materials, magnetite iron 
oxide NPs are readily degradable [33, 34]. Besides other 
significant advantages like high biocompatibility, avail-
ability, low cost, large surface area, and large surface-free 
energy, a double-edged sword, they easily aggregate [35]. As 
the high surface energy was responsible for the aggregation 
of  Fe3O4 NPs, reducing the surface energy is a challeng-
ing issue. Surface modification with surfactants, coupling 
agents, and organic ligands can solve the problem [36–38].

Silane groups are widely used modifiers in many applica-
tions owing to their favorable attributes such as biocompat-
ibility, biosafety, accessibility, facile surface modification, 
cost-effectiveness, and convenient regulation of interparti-
cle interactions. Silica has been acknowledged as a secure 
substance that has potential for utilization within the phar-
maceutical sector [39]. Over the last decade, silica coatings 
have attracted intense attention in water remediation [40]. 
Because of the open-pore structures, pore size distribution, 
large pore volume, and high surface, it could be helpful in 
adopting industrial pollutants [40].

Nanocrystalline  TiO2 is an extraordinary (a promi-
nent) multifunctional nanoparticle due to its inexpensive-
ness, availability, long-term stability, biocompatibility, 

nontoxicity, and photoactivity properties [41, 42]. Possess-
ing remarkable capacity decomposition of many organic 
compounds from wastewater, antibacterial effect, and strong 
photo-catalytic reaction, titania is reported to opt for pre-
paring nanocomposite for water purification purposes [43]. 
The photochemical activity of titania will be enhanced by 
doping or suppressing with metal ions such as nickel, zinc, 
iron, etc. [44, 45]. One of the most functional synthetic 
polymers in various applications is polyacrylamide (PAM). 
Anionic polyelectrolytes, of which acrylamide is one, are 
water-soluble polymers that carry a negative charge and are 
employed in a wide range of settings, including lubrication, 
wastewater restoration, mining, paper production, and water 
management. Hence, nanocomposites of this polymer have 
been extensively used as flocculants [46–48].

One of the most controversial issues in the study of nano-
materials is decreasing the surface energy to avoid agglom-
eration. Furthermore, NPs naturally possess high activity 
and are easily oxidized in the air, which reduces their mag-
netic properties. So, the surface modification should be a 
final remedy [49, 50]. It is noteworthy that the strength of 
the interaction between NPs and polymer matrix should be 
observed to prevent gas voids and destructive effects on 
nanocomposite characterization. Recently, several mag-
netic photocatalytic NCs have been synthesized. Yin et al. 
prepared (γ-Fe2O3 on  SiO2) on  TiO2 hybrid as a catalyst to 
degrade methylene blue [51]. Oxidation of oxalic acid in the 
presence of  Zn0.35Ni0.65Fe2O4/SiO2/TiO2 NPs was carried 
out by Shchukin et al. [52]. Despite some advantages, such 
as a strong covalent bond, the methodology of grafting and 
polymerization of AA on the surface of  TiO2 NPs is still a 
challenge [53, 54].

The aim of this research is to illustrate a sol–gel method 
to construct a  Fe3O4/SiO2/TiO2/PAM nanocomposite with 
a photocatalytic performance. The selection of  Fe3O4 was 
chosen to impart magnetic properties to the particles. To 
construct the initial shell and prevent aggregation of the 
magnetite nanoparticles, TEOS and DEDMS were utilized 
as silane sources. The second shell was fabricated using tita-
nium dioxide nanoparticles  (TiO2 NPs) due to their excep-
tional photocatalytic properties derived from the titania 
source. The attainment of the final shell was accomplished 
through the process of radical polymerization of acrylamide 
on the outermost surface of the preceding shell. Water puri-
fication has been examined for the removal of arsenic ions, 
although acrylamide and its derivatives are known in water 
treatment and industrial wastewater treatment. The novelty 
of this study lies in the development of a nanocomposite 
material composed of three-layered core–shell particles 
with both magnetic and photocatalytic capabilities. This 
nanocomposite is synthesized using acrylamide as a base 
material, which exhibits a porous structure suitable for the 
removal of hazardous metal oxides from water. Furthermore, 
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this material has the advantages of user-friendly application 
and facile separation. An additional contribution of this work 
is the examination of the behavior of the composite material 
used for the separation of 5-valent arsenic, using established 
isotherm and synthetic models for analysis. Thus, this well-
established core–shell nanocomposite is versatile and could 
be applied in various fields such as water treatment, drug 
delivery, antibacterial effect, and catalyst.

Experimental

Materials and reagents

The deionized water (DI) utilized for all experiments was 
provided by aquaMAX-Basic 360 Series (Korea Made). All 
chemicals were of analytical grade and were used as received 
without any purification. Iron (III) chloride hexahydrate 
 (FeCl3.6H2O), Iron (II) sulfate heptahydrate  (FeSO4.7H2O), 
and acrylamide monomer (AA) were purchased from Merck. 
Potassium persulfate (KPS), Tetra-n-butyl ortho-titanate 
(TBOT, 97%), ammonium hydroxide (25% by weight), and 
hydrochloric acid (HCl, 37% by weight) were purchased 
from Merck, Sigma-Aldrich, Merck, and Merck, respec-
tively. Tetraethyl ortho-silicate (TEOS, ≥ 98%) and diethoxy 
dimethylsilane (DEDMS), and silane A-174 were purchased 
from Merck, Sigma-Aldrich, and Sigma-Aldrich, respec-
tively. Absolute ethanol (99.9%, Merck), acetylacetone 
(97%, Merck), and butanol (99%, Merck) were used as a 
solvent without further purification.

Preparation of  Fe3O4 NPs

6.945 g (0.025 mol) of  FeSO4.7H2O and 13.45 g (0.05 mol) 
of  FeCl3.6H2O were dissolved in 500 mL of deionized water 
(DW) at (60–70 °C) temperature. Subsequently, to establish 
the desired pH range of 9–11 and induce the precipitation 
of magnetite, the ammonia solution with a concentration of 
25% was gradually introduced in the form of drops. After 
the completion of the reaction, the resultant was filtrated 
and washed with DI and then put into an oven at 60 °C for 
24 h [49].

Preparation of  Fe3O4/SiO2 NPs

Fe3O4 NPs of 0.44 g were dispersed under sonication in 
a mixture of ammonia/water/ethanol. A solution of TEOS 
in ethanol and diethoxydimethylsilane was added gradually 
into the mentioned suspension under mechanical stirring 
(140 rpm), and the hydrolysis continued for 8 h. The result-
ant was separated with a magnet, washed three times with 
ethanol, and dispersed in ethanol for use [49].

Preparation of  TiO2 NPs

First of all, TBOT was dissolved in butanol under magnetic 
stirring. Then acetylacetone (as a chelating agent to control 
the rate of hydrolysis and condensation reactions) was added 
and the mixture was stirred at ambient temperature [20]. The 
molar ratio of TBT/EAcAc/butanol was 1:1:20. The hydroly-
sis began by adding  TiO2 (anatase) and was prepared by 8 h 
reflux of the sol at 80 °C [20].

Preparation of  Fe3O4/SiO2/TiO2 NPs

The prepared  TiO2 nanoparticle sols and a certain amount 
of iron chloride (to transfer into visible light range) were 
added to the dispersed  Fe3O4/SiO2 suspension dropwise 
under 16 h vigorous stirring with water reflux and aged for 
24 h [43, 55].

Preparation of  Fe3O4/SiO2/TiO2/PAM NC

First of all, to increase surface attaching capacity, the sur-
face of magnetite/silica/TiO2particle was functionalized 
by silane A-174 which was carried out on  TiO2 surface as 
the outer surface. The magnetite/silica/TiO2 nanocompos-
ite was added to a mixture containing silane A-174,  H2O, 
and ammonium hydroxide (25% by weight). The combina-
tion was sonicated for 10 min and then stirred for 3–4 h 
at (70–80 °C) temperature. Second, a solution of 10% (by 
weight) of acrylamide under a nitrogen atmosphere was pre-
pared. The modified nanocomposite and potassium persul-
fate (with a ratio of 1000:1) were mixed under the nitrogen 
atmosphere and then added to the reaction vessel. Then, 
acrylamide was polymerized under an  N2 atmosphere and 
constant stirring at 75 ± 5 °C for 4 h [43, 55]. Ultimately, the 
white viscous solution was cooled at room temperature. The 
product was first purified using MeOH, and then by dissolv-
ing in water and ethanol three times. Scheme 1 signifies the 
various steps of nanocomposite synthesis.

Arsenic removal

The effectiveness of the nanocomposite in removing arsenate 
(V) from an aqueous solution was used to assess its potential 
for use in water purification. Nanocomposite samples (typi-
cally 0.1 g) were introduced directly to aqueous solutions of 
varying arsenic (V) concentrations. After a 12 h incubation 
period, the nanocomposite was magnetically extracted. The 
arsenic content in the supernatant was analyzed by induc-
tively coupled plasma (ICP) [49]. To find the effect of the pH 
solution, pH was adjusted between 2 and 7. Also, the results 
of the amount of adsorbent, contact time, and ion concentra-
tion were studied. Here, isotherm and kinetic models were 
applied [56].
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Characterization

Fourier transform infrared (FTIR) spectra of the samples 
were recorded as KBr pellets on an FT-IR Equinox 55 
spectrophotometer in the range of 4000–400   cm−1. The 
morphological properties of the surface of the gold-coated 

samples were investigated using scanning electron micros-
copy (SEM) on a Cambridge S360 microscope at 20 kV and 
2.85 A probe current. The EDX spectroscopy was performed 
by SEM–EDX mapping (LEO 440) to investigate elemental 
analysis. Using TGA/DSC1, Mettler Toledo (Switzerland) 
thermal stability and the amount of inorganic content of 

Scheme 1  Various steps of 
nanocomposite synthesis
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hybrid nanocomposites were studied under nitrogen flow at 
a heating rate of 10 °C/min. Transmission electron micros-
copy (TEM) provided data on the particle shapes, sizes, and 
thickness of the modified layers on the surface of NPs. The 
TEM image was obtained by Philips EM 208, H-7100. The 
phases of the samples were identified by X-ray diffraction 
(XRD) Siemens, D5000 X-ray diffractometer at room tem-
perature. The magnetic feature of NPs was examined using 
a vibrating sample magnetometer (VSM) made by Daghigh 
Kavir Corporation.

Results and discussion

FTIR analysis

To scrutinize the interface bonding in the  Fe3O4/SiO2/TiO2/
PAM NC, the FTIR spectrum of samples 1 to 5 was meas-
ured and indicated in Fig. 1a–e. In all spectra, the wave-
number around 570–590  cm−1 represents the characteristic 
Fe–O bending vibration in magnetite [49]. In Fig. 1b, the 
stretching vibrations at around 1100–1150, 950, 805, and 
500–600  cm−1 are related to Si–O–Si, Si–OH, Si–O, and 
bending of Si–O, respectively. The presence of the Fe–O–Si 
band at around 1050  cm−1 indicates that the sample has suf-
ficiently  SiO2 doping [57]. In Fig. 1c, characteristic peaks 
of  TiO2 were overlapped with the  Fe3O4 and  SiO2 but the 
intensity of this spectrum was lowered meaning the cover-
age of  Fe3O4/SiO2by  TiO2 [41]. In the spectrum of PAM 
(Fig. 1d), vibrations of C = O happened at 1703  cm−1. Bend-
ing vibrations of hydrogen in  CH2 and vinyl groups appeared 
at 1452 and 1407  cm−1, respectively [58]. Stretching vibra-
tion of C–H was recorded at 2950  cm−1. In the spectrum 
of  Fe3O4/SiO2/TiO2/PAM NC (Fig. 1e), bands at around 
570 and 1600  cm−1 might belong to the  Fe3O4/SiO2/TiO2 
NPs, which were absent in the spectrum of PAM (Fig. 1d). 
Scheme 2 shows the proposed schematic presentation for 
two steps of nanocomposite preparation as well as hydro-
gen bonding between the OH groups of the modified  Fe3O4/Fig. 1  FTIR spectra of: (a)  Fe3O4, (b)  Fe3O4/SiO2, (c)  Fe3O4/SiO2/

TiO2, (d) PAM, and (e)  Fe3O4/SiO2/TiO2/PAM

Scheme 2  Schematic presenta-
tion for 2 steps of nanocompos-
ite preparation and hydrogen 
bonding
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SiO2/TiO2 NPs and amide groups of the acrylamide in the 
nanocomposite [43].

XRD analysis

In the XRD pattern of  Fe3O4 NPs, crystal planes (220), 
(311), (400), (422), (511), and (440) of  Fe3O4 NPs 
appeared at 30.0∘, 35.4∘, 43.0∘, 53.6∘, 57.2∘, and 62.5∘, 
respectively [59]. Using Scherrer’s equation (Dhkl = 0.89λ/
(βcosθ), where β is the width of the XRD peak at the half-
peak height, λ is the X-ray wavelength in nanometers, and 
θ is the half diffraction angle of 2θ in degrees). The aver-
age crystallite size of  Fe3O4 was calculated using Scher-
rer’s formula and from D311, which was around 12 nm 
[60]. The diffraction pattern of  Fe3O4/SiO2 nanoparti-
cles (Fig. 2b) reveals the presence of a semi-crystalline 

structure of  SiO2, as well as the observation of diffraction 
peaks corresponding to  Fe3O4. This observation provides 
confirmation of the successful production of  Fe3O4/SiO2 
[61]. Following the encasing of  Fe3O4/SiO2 with  TiO2 (as 
seen in Fig. 2c), a distinct peak emerged at about 25º, sig-
nifying the occurrence of anatase phase development [62, 
63]. Upon the integration of  Fe3O4/SiO2/TiO2into PAM, 
diffraction patterns of the nanofiller were seen (as shown 
in Fig. 2d). This observation indicated that the incorpora-
tion procedure failed to have a noticeable effect on the 
structure of the nanofiller.

EDX analysis and SEM

To ascertain the presence of the constituents of the nanofiller 
PAM, analytical techniques including EDX and elemental 
mapping were used (Fig. 3). As seen in the EDX spectrum, 
Fe, Si, and Ti were well characterized, and according to 
the elemental mapping, they were uniformly dispersed into 
PAM. Furthermore, the SEM image of  Fe3O4/SiO2/TiO2 and 
 Fe3O4/SiO2/TiO2/PAM are shown in Fig. 4. It is evident that 
 Fe3O4/SiO2/TiO2 has a porous structure, as seen in (Fig. 4a), 
and, when embedding in PAM, the resulting material also 
retains its porous nature (Fig. 4 b). This porous structure 
makes the nanocomposite potent for the adsorption process.

Fig. 2  XRD patterns of: (a)  Fe3O4, (b)  Fe3O4/SiO2, (c)  Fe3O4/SiO2/
TiO2, and (d)  Fe3O4/SiO2/TiO2/PAM

Fig. 3  EDX spectrum and elemental mapping of  Fe3O4/SiO2/TiO2/
PAM NCs
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TEM imaging

To examine the morphology, dimensions, and distribution 
of produced nanoparticles, transmission electron micros-
copy (TEM) was used. Figure 5 presents the visual repre-
sentations of  Fe3O4/SiO2/TiO2 and  Fe3O4/SiO2/TiO2/PAM. 
 Fe3O4/SiO2/TiO2 (Fig. 5a) illustrates the polygonal particles 
with a size of less than 40 nm. The TEM imagine shown in 
Fig. 5b reveals that the  Fe3O4/SiO2/TiO2 particles are envel-
oped by a layer of polyacrylamide (PAM). This image pro-
vides evidence of a favorable distribution of the nanofiller 
inside the PAM matrix, corroborating the results obtained 
from elemental analysis [64, 65].

Vibrating sample magnetometer (VSM)

Vibrating sample magnetometry (VSM) is a very effective 
methodology used for the examination of magnetic charac-
teristics in various materials, including those pertaining to 
water treatment and the elimination of arsenate. The use of 
VSM enables the examination of the magnetic properties of 
the adsorbents before to and subsequent to the adsorption 

of arsenate. This analytical technique aids in discerning 
whether the adsorption process is driven by magnetic inter-
actions or other processes, such as surface complexation or 
ion exchange. The magnetic characteristics of  Fe3O4 and 
 Fe3O4/SiO2/TiO2 NPs and  Fe3O4/SiO2/TiO2/PAM NC were 
examined using VSM analysis (Fig. 6). For  Fe3O4 NPs, a 
superparamagnetic behavior was observed, and the residual 
and saturation magnetizations and coerciveness were 1.6 
and 67.7 emu/g, and zero, respectively.  Fe3O4/SiO2/TiO2 
NPs had residual and saturation magnetizations of 0.74 and 
16.7 emu/g, as well as coerciveness of 5.78 Gs. These NPs 
still have superparamagnetic features.

Using BET analysis, the surface area of  Fe3O4/SiO2/TiO2/
PAM was calculated as 40.5  m2/g, which would be suitable 
for the adsorption process.ε2  Ce/qe.

Arsenate removal

Given the recent implementation of stricter drinking water 
regulations by the World Health Organization (WHO), which 
now limits the acceptable level of arsenic to 10 μg/L, there 
is a pressing need to identify effective sorbent materials 

Fig. 4  FE-SEM images of: (a)  Fe3O4/SiO2/TiO2, and (b)  Fe3O4/SiO2/TiO2/PAM

Fig. 5  TEM images of:(a) 
 Fe3O4/SiO2/TiO2, and (b) 
 Fe3O4/SiO2/TiO2/PAM
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capable of efficiently removing arsenic from water sources. 
The efficiency of adsorption in a certain adsorbate-adsorbent 
system exhibited a direct proportionality to the concentra-
tion of the adsorbent. This correlation can be attributed to 
the presence of several unoccupied binding sites. Addition-
ally, the adsorption process reached equilibrium rapidly. The 
process of arsenic adsorption exhibits a fast rise, eventually 
reaching a state of equilibrium when a saturation plateau is 
seen. This plateau is a result of the binding sites on the sur-
face of the adsorbent being fully occupied. Figure 7a shows 
the effect of the amount of the adsorbent on the removal effi-
ciency. As can be seen, by increasing the amount of adsor-
bent, the removal efficiency was increased. In a high amount 
of adsorbent, some aggregations may occur, and this leads 
to a decrease in removal efficiency. Thus, 0.1 g was chosen 
as the optimum amount of adsorbent. The effect of changing 

the pH of the solution was shown in Fig. 7b. Iron oxide 
has surface OH groups that undergo protonation or depro-
tonation in response to the pH level of the solution. With 
increasing the pH, the surface of the adsorbent became more 
hostile, and caused an electrostatic repulsion with negatively 
charged ions. To illustrate, the decrease in adsorption capac-
ity seen at elevated pH levels may be ascribed to the electro-
static repulsion occurring between the arsenite anion and the 
negatively charged surface of the adsorbent. Therefore, at pH 
2, maximum efficiency occurred (around 55%). Contact time 
is another crucial factor. The effectiveness of the process is 
significantly affected by the duration of contact between the 
adsorbate and adsorbent. A shorter time required to reach 
adsorption equilibrium indicates a more rapid removal of 
arsenic (As) within fewer time intervals. The effect of con-
tact time on the adsorption process is depicted in Fig. 7c. As 
seen, at first, the adsorption rate is fast and the equilibrium 
occurred after about 700 min. The effect of ions concentra-
tion on the adsorption process is illustrated in Fig. 7d. As can 
be seen, increasing the concentration up to 50 mg/L, led to 
an increase in removal efficiency (as maximum efficiency). 
The efficacy of arsenic removal may decrease when the ion 
concentration is high, especially in the presence of compet-
ing ions. This phenomenon occurs due to the competitive 
nature of these ions, as they compete for the few adsorption 
sites present on the adsorbent material, hence diminishing 
the efficacy of arsenite removal. Lower values of ion concen-
tration have the potential to augment the adsorption capacity 
of the adsorbent material, hence facilitating a more efficient 
elimination of arsenic from the solution.

To find the relationship between the adsorbent and 
adsorbate, isotherm models [66]were applied, and the plots 
and results are shown in Fig. 8 and Table 1, respectively.

Fig. 6  Magnetization curves of: (a)  Fe3O4, (b)  Fe3O4/SiO2/TiO2, and 
(c)  Fe3O4/SiO2/TiO2/PAM

Fig. 7  Effects of: (a) adsorbent 
amount, (b) solution pH, (c) 
time, and (d) ion concentration 
on the adsorption process
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The coefficient of determination  (R2 value) serves as a 
metric for evaluating the degree to which a model fits the 
observed data. The DRK model often exhibits a greater  R2 in 
comparison to other models when used on the same dataset. 
This finding suggests that the DRK model provides a more 
precise representation of the underlying adsorption behavior 
and exhibits a better agreement with the experimental data 
[67]. As seen in Fig. 8, the Dubinin-Radushkevich isotherm 
model, due to its higher amount of  R2, fits the experimental 
data better than other models. This isotherm model expresses 
a volume filling of micropores adsorption mechanism [68].

The findings obtained from the fitting of the kinetic 
experiments using the two models are summarized in 

Table 2 and Fig. 9. The kinetics is determined within an 
optimal time frame. The kinetic experimental data exhibit 
a strong agreement with both a pseudo-first order kinetic 
model (R2 = 0.9777) and a pseudo-second order model 
(R2 = 0.9953). The study of kinetics has significant intrigue 
for the potential use of this sorbent in the field of water 
treatment [69]. As can be inferred, the higher amount of 
R2 for pseudo-second-order and closer the amount of  qe, cal 
to the experimental value indicated that this model fits 
better the experimental data. Thus, it could be said that 
the primary interaction between arsenate and hydrogel is 
chemical (like electrostatic attraction).

Fig. 8  Plots of: (a) Langmuir, 
(b) Freundlich, and (c) Dubinin-
Radushkevich isotherm models

Table 1  Isotherm equations and 
the obtained parameters

Ce = Concentration of adsorbate (mg/L)
qe = Adsorption capacity in the equilibrium state (mg/g)
qm = Maximum adsorption capacity (mg/g)
KL = Langmuir constant (g/mg)
KF = Freundlich constant (L/g)
nF = Sorption intensity
qD = Maximum sorption capacity (mg/g)
BD = Dubinin-Radushkevich constant  (mol2/kJ)
R = Ideal gas constant (8.314 J/(Kmol))
T = Absolute temperature (K)

Isotherm models Equations Parameters

Langmuir Ce/qe = 1/KL.qm +  Ce/qm qm = 20 mg/g,  KL = 0.02 (L/mg),
R2 = 0.89

Freundlich lnqe =  lnKF + 1/nFlnCe KF = 0.66 (L/g),  nF = 1.50,
R2 = 0.84

Dubinin-Radushkevich lnqe =  lnqm−BD-R[RTln(1 + 1/Ce)]2 qm = 14 mg/g,  KD-R = 0.003 
 (mol2/J2),  R2 = 0.98
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Conclusion

The issue of water pollution has generated significant 
alarm among specialists. Consequently, an adsorbent was 
synthesized with the purpose of effectively eliminating 
arsenate from aqueous environments. The straightfor-
ward and sequential sol–gel process was implemented to 
produce the  Fe3O4/SiO2/TiO2/PAM nanocomposite. The 
first step was the synthesis of magnetite nanoparticles by 
the chemical co-precipitation process, serving as the core 
material. TEOS and DEDMS were employed as silane 
sources to build the first shell and modify magnetite NPs to 
prevent their aggregation. The second shell was prepared 
by  TiO2 NPs due to their great photocatalytic character 
from TBOT as a source of titania. The ultimate shell was 
achieved by radical polymerization of AA on the surface 
of the last shell. However, it would not be attained with-
out the surface functionalization of  TiO2 NPs with silane 
A-174. Silanes are essential in the preparation of FSTP 
NCs. The prepared FSTP NCs were verified using several 
analytical techniques, including FTIR spectroscopy, XRD, 
SEM–EDX, and TEM. The core–shell structure was seen 
through the application of SEM and TEM, which allowed 
for a layer-by-layer analysis. On one hand, the first shell 

serves to augment the stability of magnetite while con-
currently heightening its photocatalytic characteristics. In 
contrast, the use of silane for the purpose of surface modi-
fication of  TiO2 NPs results in the formation of novel cova-
lent solid bonds with AA monomers, leading to the estab-
lishment of a structured polymerized network of PAM. 
Water treatment tests were obtained through entrapment 
of molecules in the PAM network and chemical reactions 
through hanging PAM functional groups. As mentioned 
earlier, many other tests were applied to prove synthetic 
FSTP NCs structure. It will be expected that these sorts 
of fascinating superparamagnetic FSTP NCs with such an 
artistic frame open up the cleaner and green horizons of 
the world of tomorrow. Studies of isotherm and kinetic 
models revealed that the adsorption mechanism is a pore-
filling and chemical interaction between adsorbent and 
adsorbate is the primary interaction.
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