
Vol.:(0123456789)1 3

Iranian Polymer Journal (2023) 32:1111–1122 
https://doi.org/10.1007/s13726-023-01189-2

ORIGINAL RESEARCH

Molecularly imprinted CaCO3/polydopamine hybrid composite 
for selective protein recognition

María de los Milagros Citta1,2 · Federico Fookes1 · Carlos Busatto1 · Diana Estenoz1,2   · Natalia Casis1,2

Received: 13 February 2023 / Accepted: 7 May 2023 / Published online: 24 June 2023 
© Iran Polymer and Petrochemical Institute 2023

Abstract
Molecular imprinting has shown significant advances in the recognition and separation of small molecules. This technol-
ogy has been proposed for different applications, including solid-phase extraction, stationary phases in HPLC, chemical 
sensing, drug-delivery systems, passive sampling, among others. However, imprinting of biological macromolecules with 
increased structural complexity is still challenging. In this work, CaCO3 microparticles were synthesized using a precipita-
tion method and employed as a novel support for the preparation of molecularly imprinted polymers (MIPs) towards a model 
protein (bovine serum albumin, BSA), through the polymerization of dopamine. Microparticles exhibited a rhombohedral 
morphology and a narrow size distribution (2.5 ± 0.4 µm). Reaction times showed to increase the polydopamine coating 
thickness, the MIP adsorption capacities, and the impression efficiency, reaching values of 5.1 nm, 50.2 ± 5.9 mg BSA/g 
sample, and 8.1 after 24 h, respectively. In addition, lower adsorption capacities were observed against proteins with similar 
physicochemical properties, such as ovalbumin (25.07 ± 2.5 mg/g) and casein (19.62 ± 7.01 mg/g). The adsorption kinetic 
assay indicated that MIPs present the highest BSA adsorption capacity after 1 h. In this regard, a methodology that offers a 
simple approach for the synthesis of materials designed for the specific recognition and separation of biological molecules 
is presented. The microparticles developed represent a potential use for protein separation in applications such as stationary 
phase in liquid chromatography.
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Introduction

Molecular imprinting technology allows the preparation of 
polymers with specific binding sites towards a molecule 
used as a template [1]. Molecularly imprinted polymers 
(MIPs) exhibit specific and selective recognition capac-
ity towards the analyte of interest due to the presence of 
complementary binding sites in terms of shape, size, and 
functionality [2]. This is achieved by forming a cross-
linked polymeric matrix around the template, which is 
then removed to generate complementary binding sites 
capable of subsequently recognizing the template mole-
cule. Additionally, MIPs present unique features, such as 
high stability, easy preparation, low cost, and reusability 
[3], that have made them promising candidates in a wide 
variety of applications, including solid-phase extraction 
for different chemical families (proteins [4], antibiotics 
[5], non-steroidal anti-inflammatory drugs [6, 7], and 
contaminants [8]), stationary phases in HPLC for reten-
tion of proteins [9], enantiomers [10], hormones [11], and 
toxins [12], and removal of organic pollutants from waste-
water [13, 14]. Additionally, MIP has been proposed for 
the development chemical sensors [15–17], drug-delivery 
systems [18–20], and passive sampling [21, 22], analysis 
of protein biomarkers [23], among others. However, the 
developed method still suffers from disadvantages such as 
sophisticated sensor fabrication, high chemical consump-
tion, and expert operator for sensor construction as well.

In recent years, the molecular imprinting technology 
has made significant advances in the selective recogni-
tion of small molecules [24–26]. However, biological 
macromolecules and microorganisms (proteins, viruses, 
and bacteria) have a large size and increased structural 
complexity, making it difficult to develop MIPs for their 
specific recognition [27–29]. In particular, the size of the 
protein templates hampers their penetration in the MIPs 
to access the binding sites. In this regard, surface imprint-
ing technology has been proposed as a promising alterna-
tive to overcome these drawbacks [30–32]. This technique 
is based on functional monomers’ polymerization on the 
surface of different substrates introduced into the polym-
erization system. In this way, proteins can easily access 
the specific recognition sites of the MIPs [33]. On the 
other hand, the preparation conditions of protein-imprinted 
polymers must be similar to the biological environment 
to ensure their conformational integrity [34]. Dopamine 
(DA) is a functional, water-soluble monomer with excel-
lent biological compatibility. The self-polymerization of 
DA in mild conditions on different particulate substrates 
has been reported to prepare protein-selective molecularly 
imprinted nano- and microparticles preserving the target 
molecule conformational integrity during the synthesis 

[9, 34]. Wang et al. prepared poly(glycidyl methacrylate)/
polystyrene microparticles imprinted with bovine serum 
albumin (BSA) exhibiting various morphologies ("rasp-
berry", "golf ball", and porous-shaped microspheres) [34]. 
Although the imprinting efficiency (IE) was similar for 
all particle types, some differences in adsorption capacity 
(Q) were observed. This parameter was higher for porous 
microparticles (72.70 mg BSA/g particles) compared to 
"raspberry" and "golf ball"-shaped microparticles (53.35 
and 49.15 mg BSA/g particles, respectively). On the other 
hand, Nematollahzadeh et al. developed a nanometer coat-
ing of human serum albumin (HSA)-imprinted polydo-
pamine (PDA) by oxidative polymerization of DA on 
the pore surface of HSA-modified porous silica particles 
[9]. The thickness of the coating increased with reaction 
time, reaching 12 nm at 48 h. The adsorption capacity 
also improved with the reaction time (11.6 mg protein/g 
particles). However, the best performance of the MIPs was 
obtained at 24 h, where the Q was lower (6.2 mg protein/g 
particles), but the IE was higher than that achieved at 48 h 
(9.5 versus 2.8, respectively). The relatively low IE for 
the longer reaction times is attributed to the fact that the 
surface coating of the MIP hinders the protein removal 
or uptake.

Despite the investigations, several issues related to 
DA polymerization on different substrates, as well as 
MIP–protein interactions, remain to be elucidated. In 
this sense, calcium carbonate (CaCO3) microparticles 
are promising substrates for the development of surface 
MIPs due to their controlled morphology and particle size, 
abundance, reduced cost, and low environmental impact. 
The synthesis of CaCO3 particles can be carried out by 
different methodologies, including wet precipitation or 
carbonation, the use of emulsion membranes, and novel 
technologies such as high gravity reactive precipitation 
[35]. The precipitation method, based on the mixture 
of saturated aqueous solutions of sodium carbonate and 
calcium nitrate, is relatively simple and allows obtaining 
nano- and microparticles of controlled size. Furthermore, 
this methodology is an environmentally friendly approach, 
since it does not involve the use of organic solvents. Com-
monly employed protein separation techniques include 
ion-exchange chromatography, affinity chromatography, 
dialysis, ultrafiltration, size-exclusion chromatography, 
SDS-PAGE, isoelectric focusing, and capillary electro-
phoresis. In this sense, MIPs present a facile and low-cost 
process for the preparation of materials, which eliminates 
the need of complex or expensive equipment. In light of 
these benefits, MIPs have gained significant interest and 
attention as a promising route for the separation and puri-
fication of proteins. The objective of this work is to study 
the synthesis of molecularly imprinted microparticles by 
surface coating of CaCO3 microparticles with PDA for the 
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specific recognition of proteins. For this purpose, CaCO3 
microparticles were synthesized and used to prepare MIPs 
in the presence of BSA as a model protein. The MIPs were 
characterized in terms of morphology, coating thickness, 
composition, thermal properties, and recognition capacity 
towards BSA and proteins with similar physicochemical 
characteristics. These types of materials present a potential 
application as stationary phase in liquid chromatography 
and could be applied for the selective recognition of pro-
teins of biological interest.

Experimental

Materials

Sodium carbonate, sodium hydroxide, calcium nitrate tet-
rahydrate, sodium nitrate, sodium dodecyl sulfate (SDS), 
methanol, ethanol, hydrochloric acid, and phosphoric acid 
were all pro analysis (ACS) supplied by Cicarelli, Argentina. 
Dopamine hydrochloride, Tris–HCl, and Coomassie bril-
liant Blue G-250 were purchased from Sigma-Aldrich, USA. 
Polyanionic cellulose (PAC) and BSA were provided by MI 
Swaco Company, USA and Biorgen, Argentina, respectively. 
All reactants were used without further purification. Deion-
ized water was used to prepare all solutions.

Methodology

Synthesis of CaCO3 microparticles

Microparticles were synthesized by the chemical precipi-
tation method from saturated aqueous solutions of sodium 
carbonate and calcium nitrate employing the procedure 
developed by Babou-Kammoe et al. [35] with slight modi-
fications. The sodium carbonate solution consisted of 0.53 g 
of sodium carbonate (NaCO3), 0.4 g of sodium hydroxide 
(NaOH), and 0.765 g of sodium nitrate (NaNO3) in 50 mL 
of 0.5% polyanionic cellulose (PAC) solution, and the cal-
cium nitrate solution consisted of 0.82 g of calcium nitrate 
Ca(NO3)2 in 50 mL of 0.5% PAC aqueous solution. For 
particle preparation, 40 mL of calcium nitrate solution was 
added dropwise to 40 mL of sodium carbonate solution 
using a peristaltic pump with a flow rate of 1 mL/min, under 
continuous stirring at 9000 rpm using a homogenizer (Pol-
ytron 2500e, Kinematica, Switzerland) and in an ice bath at 
4 °C. The resulting dispersion was kept under continuous 
stirring for 1 h. Subsequently, microparticles were separated 
by centrifugation at 7500 rpm for 5 min. Finally, the parti-
cles were washed three times with distilled water and dried 
in an oven at 90 °C.

Synthesis of PDA‑based MIPs

A polymeric coating was generated on the surface of CaCO3 
microparticles using DA as a functional monomer and BSA 
as a model protein following the methodology reported by 
Wang et al. [34]. Aqueous solutions of BSA (1.66 mg/mL) 
containing DA (6.25 mg/mL) were prepared and the solu-
tion was left under agitation for 30 min to allow the interac-
tion between the functional monomer and the protein. Then, 
6 mL of an aqueous dispersion of CaCO3 microparticles 
(8.3 mg/mL) and 3 mL of Tris–HCl buffer (0.01 M, pH 8.5) 
were added to 6 mL of DA and BSA solution to initiate the 
polymerization reaction. The mixture was left to react for 
different times: 1, 5, and 24 h (MIP-1 h, MIP-5 h, and MIP-
24 h, respectively). The structures obtained were washed 
with ethanol and distilled water to remove the adsorbed oli-
gomers. Also, BSA template was removed by successive 
washings with 0.5 M NaCl solution and allowed to dry in an 
oven at 40 °C. Non-imprinted polymeric structures (NIPs) 
were also synthesized in the absence of BSA.

Characterization of particulate systems

Size and  morphology of  microparticles  CaCO3 particulate 
suspensions were observed under an optical microscope 
(DM 2500 M, Leica, Germany) equipped with an imaging 
camera (DFC 290 HD, Leica). To determine the average size 
and size distribution of the particles, approximately 300 par-
ticles per sample were measured using an image processing 
software (ImageJ, National Institutes of Health, Bethesda, 
Maryland, USA).

The particle size and morphology were also studied by 
scanning electron microscopy (SEM). Samples were placed 
on a piece of aluminum and coated with gold under an 
argon atmosphere (SPI Supplies, 12,157-AX, USA) using 
mild conditions (two sputtering sprays of 40 s each with an 
intensity of 15 mA). The samples were examined using an 
accelerating voltage of 5 kV on a Phenom ProX microscope 
(Thermo Fisher Scientific, USA).

The morphology of CaCO3 microparticles coated with 
MIPs was investigated by transmission electron microscopy 
(TEM). The samples were placed on a carbon-coated copper 
grid, air-dried, and observed at an accelerating voltage of 
200 kV using a JEOL-2100 Plus electron microscope (JEOL, 
Tokyo, Japan).

Thermogravimetric analysis (TGA)  Thermogravimetric 
analysis of microparticles were performed using a thermo-
gravimetric analyzer (Q500 TA instrument, USA) under a 
nitrogen atmosphere at a flow rate of 80 mL/min. Samples 
of approximately 5 mg were prepared and heated from 10 to 
800 °C at a heating rate of 10 °C/min.
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The PDA content of the functionalized CaCO3 micropar-
ticles and the thickness of the PDA coating were estimated 
from the results obtained from TGA thermograms. The coat-
ing thickness was calculated from Eq. 1 [31]

where tp is the coating thickness (nm), dp (nm) is the mean 
particle diameter of CaCO3, �CaCO3

  is the density of CaCO3 
(2.7 g/cm3), ρPDA is the density of PDA (1.2 g/cm3), and w 
is the weight percentage of PDA in the samples.

Fourier transform infrared spectroscopy (FTIR)

Microparticles were characterized by Fourier transform 
infrared spectroscopy (FTIR) using an FTIR-8201PC 
infrared spectrophotometer (Shimadzu, Japan) in the 
400–4000 cm−1 frequency region with a resolution of 4 cm−1 
and 40 scans per spectrum. Approximately 3 mg of samples 
and 100 mg of potassium bromide (KBr) were dried for 24 h 
at 40 and 105 °C, respectively. The samples were mixed in a 
mortar and the resulting mixture was compacted into discs 
using a hydraulic press at a pressure of 4–6 tons.

X‑ray diffraction (XRD) analysis

X-ray diffraction analysis (XRD) was conducted to inves-
tigate the mineralogical composition of calcium carbonate 
and PDA-coated particles. It was performed using a Malvern 
PANAlytical EMPYREAN X-ray diffractometer employing 
2 theta ranges between 5 and 90°, Cu-Kα radiation, a scan 
speed of 2°/min, and an acceleration of voltage and current 
of 40 kV and 45 mA, respectively. The HighScore Plus soft-
ware was utilized to analyze the XRD data obtained from 
the scans.

Protein adsorption assay

To study the recognition ability of MIPs, adsorption experi-
ments were performed by incubating 8 mg of MIPs and NIPs 
in 5 mL of an aqueous solution of BSA.

(0.5 mg/mL) until the equilibrium was reached (5 h) at 
room temperature. The microparticles were then centrifuged 
at 5000 rpm for 5 min and the remaining concentration of 
BSA in the supernatant was determined following the Brad-
ford method [34]. For this purpose, samples were prepared 
containing 0.1 mL of supernatant, 0.9 mL of H2O, and 5 mL 
of Coomassie blue solution. The Coomassie blue solution 
(0.1 mg/ mL) was prepared using a mixture of ethanol, phos-
phoric acid (85%), and distilled water in a 5/10/85 volu-
metric ratio; the solution was filtered before use. For BSA 
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quantification, standard solutions with different concentra-
tions were prepared: 0.1, 0.2, 0.4, 0.6, 0.8, and 1 mg/mL. 
Quantification of BSA in the samples was performed using 
a UV–Vis spectrometer (Lambda 25, Perkin Elmer, USA) at 
a wavelength of 595 nm. The adsorption capacity of MIPs 
and NIPs (Q) was calculated according to Eq. 2

where Q (mg/g) is the mass of protein adsorbed per gram of 
dried microparticles, C0 (mg/mL) is the initial concentration 
of the protein solution, C1 (mg/mL) is the equilibrium con-
centration of the supernatant after the adsorption process, 
V (mL) is the volume of the protein solution, and w (g) is 
the weight of dried microparticles. The IE was calculated 
from Eq. 3

where QMIP (mg/g) and QNIP (mg/g) are the adsorption 
capacities of MIPs and NIPs, respectively.

Selectivity assays

This assay aims to determine the recognition capacity of 
BSA-imprinted MIPs against other proteins with similar 
physicochemical characteristics: ovalbumin (OVA) and 
casein (CAS). The OVA adsorption assays were performed 
following the methodology previously described for BSA. 
For CAS evaluation, an alkaline medium (NaOH 0.25 M) 
was used due to the low solubility of the protein in aqueous 
media. Measurements were performed in triplicate.

Gel electrophoresis

The stacking and separating gels used were 5% and 15% 
polyacrylamide, respectively. Samples were loaded into the 
individual wells, and the electrophoretic separation was car-
ried out at 200 V for 75 min. Gel staining was performed 
with Coomassie blue and destaining was achieved by incu-
bation with a solution containing 15% (v/v) methanol and 
10% (v/v) acetic acid. In case desalination was required, 
samples were ultra-centrifugated into a 10,000 MWCO cen-
trifugal concentrator (Vivaspin, Sartorius, US).

Results and discussion

CaCO3 microparticles were prepared by the precipitation 
method. Several additives (including surfactants, synthetic 
polymers, and biomolecules) have been employed to obtain 
CaCO3 particles with different sizes, morphologies, and 

(2)Q =

(
C0 − C1

)V
w
,

(3)EI =
QMIP

QNIP
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polymorphs [36]. The additives can interact with Ca2+ ions 
and provide active sites for CaCO3 nucleation. In turn, the 
additives can bind to preferential crystal surfaces to prevent 
further growth on specific planes. CaCO3 exists mainly in 
four polymorphs: calcite, barite, aragonite, and amorphous 
calcium carbonate, being calcite the most thermodynami-
cally stable phase. Figures 1 and 2 show optical and SEM 
micrographs at different magnifications of the synthesized 
microparticles. From the optical microscopy observations 
(Fig. 1a), microparticles exhibit a rhombohedral morphol-
ogy, typical of calcite, and a narrow size distribution in the 
range of 1–4 µm. The particle-size distribution is shown in 
Fig. 1b. The mean particle diameter was 2.5 ± 0.4 µm.

Figure  2 shows SEM micrographs of CaCO3 micro-
particles. They exhibited a homogeneous rhombohedral 

morphology and a smooth surface. The mean particle diam-
eter determined by SEM was similar to that obtained by 
optical microscopy.

The morphology of CaCO3 microparticles before and 
after MIP coating (24 h reaction time) was studied by TEM 
(Fig. 3). Difference in particle geometries can be observed in 
the coated microparticles samples. Uncoated macroparticles 
presented defined edges and angles, while those synthesized 
with MIPs exhibited a nanometer-thick polymeric coating 
on their surface. From TEM image analysis, the thickness of 
the MIP coating was estimated to be approximately 10 nm

The thermal degradation properties of the particulate 
materials were studied by TGA. From these results, it was 
possible to estimate the PDA content in the polymer-coated 
particles and the coating thickness. The TGA thermograms 

Fig. 1   a Optical microscopy micrograph of CaCO3 microparticles, and b particle-size distribution

Fig. 2   SEM micrographs of CaCO3 microparticles
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of the samples are presented in Fig. 4. The results revealed a 
first decomposition process starting at 110 °C related to the 
loss of particles adsorbed water. The CaCO3 particles pre-
sent a high thermal stability in the temperature range from 
25 to 600 °C with a weight loss (between 600 and 720 °C) 
corresponding to its thermal decomposition into calcium 
oxide and carbon dioxide. Analysis of the MIP-coated sam-
ples indicated that the polymer coating exhibits complete 
thermal decomposition at 500 °C. This finding is in agree-
ment with the data reported by Mirzayi et al. [37]. From 
these results, it is possible to conclude that the thickness of 
the polymer coating increases at longer reaction times.

The microparticles’ PDA content was estimated from the 
TGA analyses employing Eq. 1 and the results are presented 
in Table 1. The PDA content after 1 h of reaction is consider-
ably lower than those obtained after 5 and 24 h of reaction, 
as well as the resulting PDA thickness. On the other hand, a 
difference between the coating thickness of MIPs and NIPs 
was observed. This variation is attributable to the interaction 
between the BSA and the monomer during the synthesis of 

the MIPs, which may decrease the polymerization rate of 
DA.

Crystalline forms of CaCO3 microparticles and PDA-
coated microparticles were analyzed by employing XRD 
diffractogram (Fig. 5). Peaks related to CaCO3 structures at 
23.05, 29.35, 35.95, 39.35, 43.05, 47.05, and 56.45° were 
observed in both samples, which were are also reported in 
the previous works [38, 39]. Additionally, MIP particles dis-
played a broad and low-intensity peak between 20 and 25° 
that was attributed to diffraction from the amorphous PDA 
structures [40].

Figure 6a shows the FTIR spectra of CaCO3 micropar-
ticles, DA, and CaCO3 microparticles with PDA coating 
after 24 h of reaction. In the FTIR spectrum correspond-
ing to CaCO3, the following signals are distinguished: 
the bending of the C–O bond of the carbonate group at 
865 cm−1, the stretching of the C–O bond of the carbonate 
at 1425 cm−1 and the band associated with water adsorption 
at 3722 cm−1 [41]. In the DA spectrum, the bands located 
at 878 and 1600 cm−1 are related to bending of the N–H 

Fig. 3   a, b TEM micrographs of CaCO3 microparticles, and c, d microparticles coated with MIPs
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bond of the amino group (H–N–H), and those located at 
1190 and 1290 cm−1 are attributed to bending of the C–C–H 
bond [9]. These characteristic peaks are absent or reduced 
in the spectra obtained for MIP and NIP samples. Therefore, 
the results support the effective polymerization of DA in 
the experimental conditions studied. It can be observed that 

Fig. 4   TGA and DTGA thermograms: a, c CaCO3 microparticles coated with MIPs, and b, d CaCO3 microparticles coated with NIPs

Table 1   PDA content and coating thickness of MIPs and NIPs

Sample PDA content (%) PDA thick-
ness (nm)

MIP-1 h 2.0 2.4
MIP-5 h 4.1 5.1
MIP-24 h 4.1 5.1
NIP-1 h 2.2 2.7
NIP-5 h 4.8 6.0
NIP-24 h 5.0 6.3

Fig. 5   XRD patterns of CaCO3 microparticles and MIP particles
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the spectra of microparticles coated with MIPs and NIPs 
(Fig. 6a) exhibit several structural features common to PDA 
and CaCO3. For example, the band centered at 1600 cm−1 
corresponding to the N–H bending of the aromatic regions 
of PDA and the bands of the carbonate group of CaCO3 are 
observed in the MIP and NIP samples. Figure 6b shows the 
FTIR spectra of BSA, MIP-BSA, and MIP. The MIP-BSA 
sample corresponds to MIPs that were incubated in a BSA 
solution for 5 h. In the BSA spectrum, characteristic peaks 
arise from the amide bonds linking the amino acids, in par-
ticular, the primary amide and secondary amide bands. The 
characteristic primary amide peak of BSA, corresponding to 
the stretching of the C–O bond of the amide, can be observed 
at 1650 cm−1; the peak at 1545 cm−1 is attributed to the 

bending mode of the N–H bond of the secondary amide, 
while the band centered at 3435 cm−1 can be attributed to 
the primary amines. The hydroxyl stretching peaks are domi-
nant in the region between 2500 and 3500 cm−1 [42]. The 
spectrum obtained from MIP-BSA presents characteristic 
peaks from BSA, indicating that the specific binding sites 
of the MIPs are able to recognize the protein. In Fig. 6c, the 
FTIR spectra of MIPs prepared at different reaction times 
are displayed. It is worth to be noted that an increase in the 
peak corresponding to the N–H bond of PDA (1640 cm−1) is 
observed with the evolution of the polymerization reaction.

Adsorption experiments were performed to determine 
the binding properties of MIPs and NIPs towards BSA. 
Figure 7 compares the adsorption capacities for the MIPs 

Fig. 6   FTIR spectra: a DA, PDA-coated and uncoated CaCO3 microparticles, b MIPs in the presence of BSA, and c MIPs synthesized at differ-
ent reaction times
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and NIPs’ samples prepared at different reaction times. The 
results show that the adsorption capacities of MIPs and NIPs 
obtained after 1 h of polymerization (MIP-1 h and NIP-1 h, 
respectively) are very low, possibly due to the low forma-
tion of specific binding sites for BSA related to incomplete 
polymerization of DA. The binding capacities of MIPs 
obtained after 5 and 24 h of polymerization were notably 
higher compared to NIPs, indicating a higher interaction 
with the protein due to the presence of specific binding. In 
the case of MIPs and NIPs synthesized during 24 h of reac-
tion, they exhibit a slight decrease in adsorption capacity 
possibly due to the generation of a denser polymeric matrix 
that affects the protein removal or uptake. Table 2 presents 
the values of Q and IE for the different systems. The IE val-
ues obtained after 24 h of reaction were higher than those 
reported by Wang et al. for particles with different mor-
phologies (around 4.55). Due to its high Q and IE values, 
MIP-24 h is going to be employed to perform selectivity and 
adsorption kinetics studies.

To investigate the BSA adsorption capacity of the devel-
oped MIP, an adsorption isotherm experiment was per-
formed by incubating a fixed mass of MIP in BSA aque-
ous solutions of different concentrations (0.125, 0.25, 0.5, 
and 0.75 mg/mL) (Fig. 8a). The data showed a significant 
increase in the Q value from protein concentrations of 0.125 
to 0.5 mg/mL, after which the Q value remained essentially 
stable evidencing that MIP-binding sites are completely 
occupied under this condition. BSA adsorption as a func-
tion of time was also evaluated to determine the kinetic 
behavior of MIPs towards BSA (Fig. 8b). It is observed that 
the MIPs present the highest adsorption capacity after 1 h, 
implying that BSA has completely occupied the binding sites 
of the MIPs under this condition. During the first 60 min of 

Fig. 7   Adsorption capacity of MIPs and NIPs prepared at different 
reaction times

Table 2   Adsorption capacity 
values of the MIPs and NIPs

Sample Q (mg 
BSA/g 
sample)

IE

MIP-1 h 4.4 ± 3.7 –
NIP-1 h 7.9 ± 6.2
MIP-5 h 53.7 ± 0.8 2.1
NIP-5 h 25.7 ± 3.8
MIP-24 h 50.2 ± 5.9 8.1
NIP-24 h 6.2 ± 4.8

Fig. 8   a Adsorption isotherm and b adsorption kinetics of BSA on MIPs
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experiment, the adsorption capacity increases rapidly, reach-
ing adsorption capacity values of about 50 mg/g approxi-
mately at equilibrium. Two stages can be distinguished in the 
adsorption kinetics: in the first stage, BSA diffuses rapidly 
from the solution towards the surface of the MIPs generating 
non-covalent type interactions, such as hydrogen bonding. In 
a second stage, the adsorption rate of BSA decreases due to 
the resulting steric hindrance between the polymeric matrix 
of the imprinting site and BSA.

Selectivity tests were performed to study the recogni-
tion capacity of MIPs towards other proteins with similar 
physicochemical properties: OVA and CAS. The molecular 
weights of BSA, OVA, and CAS are: 66.4, 45, and 24 kDa, 
respectively; and the isoelectric points are 4.7, 4.5, and 4.6, 
respectively. The results presented in Fig. 9a showed that 
the adsorption capacity of OVA and CAS is lower than that 
of BSA. In particular, the lower CAS adsorption capacity 
is possibly due to greater differences in chemical structure 
and molecular weights, and to the alkaline environment of 
the adsorption medium. A similar behavior was observed 
for MIPs obtained after 5 and 24 h of reaction. It should be 
noted that the materials presented a remarkable differen-
tial adsorption capacity towards BSA despite the structural 
complexity of the proteins. To study the selectivity of MIPs, 
adsorption experiments of BSA and OVA mixed solutions 
(0.5 mg/mL each) were carried out. After the assay, MIP 
particles were recovered by centrifugation and the proteins 
were desorbed from MIP using a 0.5 M NaCl solution or a 
150 mM NH4OH solution. The protein solution after the 
adsorption assay and the MIPs desorption solution with 
NaCl or NH4OH were studied by SDS-PAGE gel electropho-
resis, and the results are shown in Fig. 9b. In both desorption 
conditions, the bands related to BSA (about 66 kDa) showed 
a higher intensity than those related to OVA (about 40 kDa). 
To sum up, the adsorption studies showed not only a higher 
selectivity of the MIP towards BSA but also demonstrated 

the potential application of the developed material for pro-
tein purification.

Conclusion

CaCO3 microparticles were prepared as support for the 
synthesis of BSA-imprinted polymeric coatings by the self-
polymerization of DA in alkaline solution. DA as a water-
soluble functional monomer did not affect the protein struc-
ture, and thus, the imprinted cavity structures on the MIPs 
allowed the selective binding of the template protein. The 
PDA-based molecular imprinted polymers exhibited excel-
lent adsorption capacity towards BSA, and lower adsorp-
tion capacities were observed against other proteins with 
similar characteristics. The presented method is a simple 
and promising alternative for the development of materi-
als for the selective recognition and separation of biological 
molecules, with potential application as stationary phase in 
liquid chromatography.
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