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Abstract
The coating process is significant in terms of its practical applications in the field of paint and electronics industries. The 
coating process offers a protective layer in paints; however, it stores information in electronics industries. Current study 
gives insight on the blade coating analysis by passing an upper convected Jeffery’s material through the narrow gap between 
the moving substrate and a fixed blade. The basic flow expressions were simplified by utilizing lubrication approximation 
theory, and then solved using the perturbation analysis and numerical shooting technique. The study discussed the effects 
of material parameters in both cases of plane and exponential coaters. The variations of Weissenberg number, viscosities 
ratio and normalized coating thickness on the maximum pressure, pressure gradient, coating thickness, pressure, and load 
are presented through graphs and in a tabular manner. In addition, the perturbation results were validated by comparing 
with the numerical outcomes and found an excellent agreement. It is noted that increasing both the Weissenberg number and 
viscosities ratio resulted in reduced coating thickness and increased blade load, hence were the controlling parameters, as 
they certified the coating quality and life of the substrate. Besides, the parameters had significant impacts on the velocity and 
pressure profiles. In addition, maximum pressure was directly proportional to the Weissenberg number and viscosities ratio.
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Introduction

Blade coating is a procedure of fluid layer coating on a mov-
ing substrate amid the wedge created between the blade and 
substrate. The coating technique is significant in terms of 
its practical applications in the field of paint and electronics 
industries. The coating offers a protective layer in paints; 
however, it stores information in electronics industries. A 
common lab process is blade coating, with practical appli-
cations in the production of newspapers, magnetic storage 
devices, and photographic films. A plane coater is widely 
used for practical purposes as well as the exponential coater 
that is also considered in some cases. First, Ruschak [1] in 
his research article and Middleman [2] in his book, provided 
a comprehensive study on the blade coating process. Greener 
and Middleman [3] theoretically inspected the viscoelastic 
fluids in blade coating by applying the perturbation tech-
nique to analyze the viscoelastic impact on the flow and 
engineering parameters. Hwang [4] analyzed the laminar 
flow of the power-law model in the blade coating phenom-
ena. Ross et al. [5] have studied the generalized Newtonian 
fluid considering the power-law model in both plane and 

exponential blade coaters. Penterman et al. [6] presented 
the analysis of liquid crystal coating after passing inside the 
blade and plastic substrate. The coating process of nematic 
liquid crystal and optical layers has been analyzed by Quin-
tans et al. [7] via blade coating theory and Ericksen–Les-
lie expressions were employed to devise the mathematical 
model for this process of a nematic liquid crystal. Giaco-
min et al. [8] studied the flexible blade coating process of 
a Newtonian fluid. Willinger and Delgado [9] reported an 
analytical investigation of roll coating process for the case 
of counter-rotating deformable rolls and negative gaps. Wil-
liamson fluid model for blade coating analysis was evaluated 
by Siddique et al. [10]. Rana et al. [11] scrutinized the blade 
coating process by adopting a Powell–Eyring fluid flow in 
a theoretical study. Ali et al. [12] inspected the roll-over 
web coating analysis by employing the couple stress model. 
The roll coating technique was also employed by Atif et al. 
[13] in the case of micropolar fluid to explore the rheology 
of non-Newtonian fluid. Under Lubrication approximation 
theory (LAT), they simplified the governing system and 
later numerically solved by employing the Runge–Kutta 
method. Sajid et al. [14] utilized the third-grade model in 
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fixed blade coating and simplified equations were solved by 
both numerical and perturbation techniques. Again, Sajid 
et al. [15] discussed the magnetic field impact along with 
slip condition in the blade coating process on a Newtonian 
model. The shooting technique was utilized to numerically 
solve the simplified differential equations. Both the magnetic 
field and slip parameters at the surface provide the control-
ling parameters for the sheet velocity and coating thickness.

Ershad-Langroudi and Rahimi [16] studied the corro-
sion protection by hybrid coatings of zirconia nanoparti-
cles. Sugumaran et al. [17] applied the dip coating method 
and Mirmohseni et al. [18] employed the antistatic coat-
ing technique in their experimental studies. Nal et al. [19] 
applied epoxy coating using bio-based materials (eugenol 
and vanillin) for the synthesis of a novel crosslinking agent. 
Zheng et al. [20] analysed the reverse roll coating procedure 
to calculate the coating windows of liquid films. Recently, 
Oldroyd 4-constant fluid was adopted in the blade coating 
technique by Shahzad et al. [21] to study both plane and 
exponential coaters. Wang et al. [22] applied a viscous fluid 
model to analyze the blade coating procedure to observe the 
effects of the magnetic field (MHD) in case of the flexible 
coater. Khaliq and Abbas [23] presented the Cu–water nano-
particles suspended in a Newtonian fluid to observe the roll 
coating process on a porous web. Then, flexible blade coater 
was investigated by Kanwal et al. [24] using the same nano-
fluid model to debate the blade coating analysis. Viscous 
nanofluid was discussed by Abbas and Khaliq [25] in their 
investigation of the calendering process to analyze the influ-
ence of Cu-nanoparticles. Recently, Khaliq and Abbas [26] 
examined the viscoelastic effects during blade coating analy-
sis by employing the simplified Phan–Thien–Tanner (SPTT) 
model. Zahid et al. [27] studied the calendering process by 
employing the upper convected Jeffery’s fluid. Khaliq and 
Abbas [28] investigated the effect of temperature depend-
ent viscosity on the blade coating process of non-isothermal 
viscous fluid. Mughees et al. [29] applied a second grade 
fluid coating on a porous substrate in blade coating analysis. 
Numerical technique was employed to verify the results in 
this study. Azam et al. [30] applied a numerical technique 
to study the cross-nanofluid model with heat source/sink. In 
addition, Azam et al. [31] in their study, adopted the radia-
tive cross nanofluid model to study the impacts of Arrhenius 
activation energy and binary chemical reaction on a radially 
stretching surface.

Oldroyd-B fluid model is among the simplest non-linear 
models to study the viscoelastic effects in modeling and 
simulation. In this non-linear model, when the frame invar-
iance is considered, becomes equivalent to Jeffery’s fluid 
model. In addition, swapping the time partial derivatives 
in Jeffery’s model with the Upper-Convected time deriva-
tive leads to the Oldroyd-B model, with extra stress tensor (
𝜏 + 𝜆1�̇� = 𝜇

(
A1 + 𝜆2Ȧ1

))
 . The upper-convected Maxwell 

model can be achieved by taking �2 = 0 , and finally a New-
tonian model is attained by keeping �1 = �2 = 0 . The infinite 
extensional rate offered by this model is naturally unrealis-
tic and a major limitation of Oldroyd-B is that it does not 
facilitate second normal stress difference as well as strain 
dependency. Inquiry on this fluid material over the past few 
years was reviewed as follows. First, analytical solutions of 
Oldroyld-B liquid were attained by Rajangopal and Bhatna-
gar [32] for numerous modest streams. Five distinct prob-
lems were studied by Hayat et al. [33] by obtaining closed 
form solutions of the Oldroyd-B model. Brandi et al. [34] 
investigated this model’s stability of the problem between 
two parallel plates. Chemical reaction effect on the Jeffery 
fluid with Lorentz force was recently studied by Abbas et al. 
[35] in peristaltic channel flow. Hayat et al. [36] in their 
study used Oldroyd-B nanofluid flow with impacts of double 
stratified radiation and nonlinear convection.

The present work involves the theoretical analysis of Jef-
fery’s fluid material to report the viscoelastic effects in the 
blade coating process by taking both the plane and expo-
nential coaters. The section of experimental gives details 
of the flow problem and geometry description. Next section 
gives the governing Oldroyd-B expressions. Then, simpli-
fication of the equations and the asymptotic solution of the 
dimensionless system is given. The results and discussion 
section explains the analysis outcome in detail. Finally, main 
conclusions derived from the acquired outcomes are given 
in the last section.

Experimental

Problem description

Schematic of a blade coater along with moving substrate is 
represented in Fig. 1. For this investigation, an incompress-
ible, unsteady, upper convected Jeffery’s material is passed 
with velocity u ( x−axis) through a thin gap between the 
blade and substrate to produce a uniform layer of coating 

Fig. 1  Schematic of a blade coater along a moving substrate
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with thickness H. Blade with length L is fixed at y = h(x) 
and having height H1 at x = 0 , H0 at x = L.

Governing equations and mathematical formulation

The basic expressions for incompressible, steady, and iso-
thermal flow of upper-convected Jeffery’s fluid material 
minus the body forces are given as follows:

where ℑ as an extra stress tensor, satisfying this equation 
[32, 33] as follows:

and

where t represents the transpose and

the velocity field for this flow under consideration is given 
as follows:

applying Eq. (7) in Eq. (4), we get

Likewise, A1 is equal to

(1)div V = 0
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)
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1

2
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Taking Eqs. (8) and (9) into consideration, Eqs. (1, 2, 3) 
were expanded as follows:
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with physical conditions:

assuming the coating thickness H is considerably small 
as compared with the blade length L, i.e.,H∕L ≪ 1 , consid-
ering the lubrication approximation theory (LAT). Moreo-
ver, a parallel flow was assumed in the gap between the sub-
strate and blade for convenience. These assumptions lead to 
v << u and 𝜕

𝜕x
<<

𝜕

𝜕y
 . Therefore, Eqs. (10, 11, 12, 13, 14, 15) 

were simplified as follows:
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by solving Eqs. (19, 20, 21) and Eq. (17) the following equa-
tion was obtained:

then, Eq. (25) was integrated with respect to ‘y’:

The above system was non-linear and its exact solu-
tion was not possible. Hence, an asymptotic solution was 
obtained and verified with the numerical solution for this 
above-modelled expression.

Dimensionless analysis

The following dimensionless parameters were invoked to 
study the current problem [27]:
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equations (ignoring the bar (-) sign for simplicity):
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In addition, the pressure at both the detachment and 
entrance points approached to zero, which directed to pres-
sure boundary conditions as follows:

and variable height h(x) was given by

The flow rate was defined as

where the substrate speed was U having width W and 
H
/
H0 = � was the dimensionless coating thickness. In addi-

tion, Load (Π) was given by the following relation:

Solution of the problem

The solution of dimensionless velocity (u), pressure, con-
stant (C), blade load (Π) , and sheet thickness (�) was found 
by employing the asymptotic perturbative technique with 
𝜀 << 1 (as perturbation parameter) as follows:

Putting Eq. (35) in Eq. (29), we got
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In system Eqs. (36, 37, 38, 39), the like powers of � were 
compared, led to zeroth and first-order sub-problems solved 
as follows.

Solution of zeroth‑order problem

The sub-problem of �0 was
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velocity profile was obtained as follows:
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which was the same as Middleman’s [2]. Zeroth-order pres-
sure gradient was found by substituting Eq. (44) in Eq. (42) 
as follows:

Integrating Eq. (45) using pressure conditions in Eq. (41), 
we get the values of film thickness and pressure and then 
load was calculated using Eq. (43). We get the following 
equations for both plane and exponential coaters:

For plane coater
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Solution of the first‑order problem

The system of �1 is

putting Eqs. (44) and (45) in Eq. (52) and solving the result-
ing equation using Eq. (53), we got the velocity profile as 
follows:

Equation (56) was substituted in Eq. (54), to attain the 
first-order pressure gradient as follows:

integrating Eq. (57) using pressure conditions in Eq. (53), 
we acquired the value of the film thickness and pressure, 
while load was calculated using Eq. (55). We got the fol-
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and

For exponential coater

and

Numerical solution

The numerical solution of differential Eq. (28) was found by 
employing shooting technique. First, the stream functions 
were introduced as follows:

applying Eq. (64) in Eq. (28), we got

pressure gradient ( dp∕dx ) was eliminated when Eq. (65) 
was differentiated for y, as follows:

(59)p1(x) =
12(� − 1)

25(1 + �)3

⎡
⎢⎢⎢⎢⎣

13 + 8� + 13�2

� − �2
+

(1 − �)
�
13 − � + 13�2

�

(x − �x + �)2�
−

35(1 + �)3

(x + � − �x)3(1 − �)

+
90�3 − 120(−x − � + �x)(� + 1)2� + 162(−x − � + �x)(� + 1)�2

(1 − �)(x + � − �x)6

⎤
⎥⎥⎥⎥⎦

(60)Π1 =
12(� − 1)(� − 1)

(
13 − � + 3�2

)

25�2(1 + �)3
.

(61)�1 =
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(
88 + 440� + 745�2 + 604�3 + 745�4 + 88�5(5 + �)

)

2800�
(
1 + � + �2

)4

(62)

p1(x) =
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)4
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 Equation (33) was modified in terms of Φ and used to find 
the coating thickness (dimensionless) as follows:

Equation (66) required two additional conditions on Φ 
given as follows:

along with, Eq. (30) was converted as follows:

to start the numerical procedure, Eq. (66) was solved for 
Φ with boundary conditions in Eqs. (68) and (69) for the 
particular value of � . In the second step, Eq. (65) was solved 
after substituting the value of Φ to acquire pressure gradient. 

(66)
�2

�y2

⎛
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�
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�y2

�
+ ��

�
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�
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�
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�2
�

⎞
⎟⎟⎟⎟⎠
= 0.

(67)� =

h

∫
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�Φ

�y
dy.

(68)Φ(x, h) = �,Φ(x, 0) = 0

(69)
�Φ

�y
(x, 0) = 1,

�Φ

�y
(x, h) = 0
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Next, pressure was found by integrating the last result. 
Finally, Eq. (34) was employed to find blade load. In this 
whole procedure, a root finding algorithm was used to adjust 
the value of � to satisfy the condition p(1) = 0.

Results and discussion

Blade coating process was reported in this study of both 
plane and exponential coaters by passing an upper-convected 
Jeffery’s material through moving substrate and blade. 
Both perturbation and numerical solutions were found and 
discussed through graphs and tables for distinct values of 
perturbation parameter (�) , viscosities ratio (�) and nor-
malized coating thickness (�) . Perturbation and numerical 
techniques were compared on the pressure profile by vary-
ing � , as presented in Fig. 2. The perturbation solution is 
indicated by a solid line, whereas the numerical solution is 
in dashed line. Both solutions in Fig. 2 were overlapped by 
taking small values of � ; however, solution difference was 
slightly increased as noted for enhanced values of � . As this 
study was assumed for small perturbation parameter, hence 
the perturbation solution showed good agreement with the 
numerical technique.

Fig. 2  Comparison of perturbation and numerical solutions on pres-
sure profile at a ε = 0.1 and b ε = 1 (for α = 3 and γ = 2)

Fig. 3  Pressure gradient versus x for plane coater by changing � val-
ues (for α = 3 and γ = 2)

Fig. 4  Pressure gradient versus x for plane coater by changing � val-
ues (for ε = 0.1 and γ = 2)

Fig. 5  Pressure gradient versus x for plane coater by changing � val-
ues (for ε = 0.1 and α = 3)
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In Figs. 3, 4, 5, 6, 7, 8, 9, 10, plane coater results are 
presented and exponential coater results are given in Figs. 
S1–S8 in Supplementary file. Figures 3, 4, 5 represent the 
pressure gradient curves by taking distinct values for � , � 

and � , respectively. One can notice that pressure gradient 
was maximum at the start of the blading, then, it decreased 
and reached to its minimum value at the blade tip. This 
minimum pressure gradient increased the coating material 
velocity near the blade, helps in coating of fluid on the sub-
strate. In these figures, the magnitude of pressure gradient 
was enhanced by increasing � (Fig. 3) and � (Fig. 4), and by 
reducing � (Fig. 5). In Fig. 3, as Weissenberg number (per-
turbation parameter) is the ratio of elastic forces to viscous 
forces; hence by enhancing the Weissenberg number, it was 
led to dominant elastic forces, which further led to enhance 
the magnitude of pressure gradient. Moreover, it is worth 
mentioning that, fluid is more elastic as it reached the point 
after blade tip, hence fluid coating on the substrate occurs 
due to these dominant elastic forces over viscous forces. In 
addition, at � = 0 it presents the Newtonian case already 
discussed by Middleman [2]. The effects for the exponential 
coater cases in Figs. S1–S3 are similar to the plane coater 
cases.

Fig. 6  Plots of pressure versus x for plane coater by changing � values 
(for α = 3 and γ = 2)

Fig. 7  Plots of pressure versus x for plane coater by changing � val-
ues (for ε = 0.1 and γ = 2)

Fig. 8  Plots of pressure versus x for plane coater by changing � values 
(for ε = 0.1 and α = 3)

Fig. 9  Plots of maximum pressure versus � for plane coater by chang-
ing � values (for α = 3 and γ = 2)

Fig. 10  Plots of maximum pressure versus � for plane coater by 
changing � values (for ε = 0.1 and γ = 2)
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In Figs. 6, 7, 8, pressure profiles were portrayed by taking 
distinct values for � , � and � , respectively. One observes that, 
pressure was zero at the start of the blade, then, it increased 
to its maximum value and then dropped to zero at the blade 
tip. Pressure is positive under the blade. From these fig-
ures, we noticed a rise in the pressure curve by increasing 
� (Fig. 6 and Fig. S4 in Supplementary file) and � (Fig. 7 
and Fig. S5 in Supplementary file) due to dominant elastic 

Table 1  Coating thickness and 
load variations in (plane coater) 
and [exponential coater] cases

� � = 2

� = 3

� = 2

� = 5

� = 3

� = 3

� Π � Π � Π

0.01 (0.665) (0.164) (0.663) (0.170) (0.746) (0.152)
[0.641] [0.168] [0.640] [0.174] [0.689] [0.163]

0.03 (0.661) (0.176) (0.655) (0.193) (0.737) (0.161)
[0.638] [0.180] [0.633] [0.197] [0.683] [0.172]

0.05 (0.657) (0.187) (0.650) (0.215) (0.730) (0.170)
[0.635] [0.191] [0.627] [0.220] [0.677] [0.181]

0.08 (0.652) (0.204) (0.637) (0.248) (0.716) (0.182)
[0.630] [0.208] [0.617] [0.254] [0.668] [0.195]

0.1 (0.648) (0.215) (0.630) (0.271) (0.708) (0.190)
[0.627] [0.220] [0.610] [0.277] [0.662] [0.204]

0.2 (0.630) (0.271) (0.592) (0.383) (0.665) (0.233)
[0.610] [0.277] [0.580] [0.393] [0.631] [0.250]

0.3 (0.611) (0.327) (0.555) (0.495) (0.623) (0.275)
[0.594] [0.335] [0.545] [0.508] [0.600] [0.260]

0.4 (0.592) (0.383) (0.517) (0.607) (0.581) (0.317)
[0.578] [0.393] [0.513] [0.623] [0.570] [0.342]

Table 2  Comparison of perturbation and numerical values of coating 
thickness in (plane coater) and [exponential coater] cases

� � = 2 and � = 3

η (Perturbation) η (Numerical)

0.01 (0.665) (0.665)
[0.641] [0.641]

0.03 (0.661) (0.661)
[0.638] [0.638]

0.05 (0.657) (0.657)
[0.635] [0.635]

0.08 (0.652) (0.652)
[0.630] [0.630]

0.1 (0.650) (0.650)
[0.630] [0.630]

0.2 (0.630) (0.629)
[0.610] [0.610]

0.3 (0.611) (0.611)
[0.594] [0.594]

0.4 (0.592) (0.592)
[0.580] [0.580]

forces. In addition, pressure decreased by increasing � as 
shown in Fig. 8 and Fig. S6 in Supplementary file. More-
over, increasing � resulted in maximum pressure shifting 
toward the blade tip as is represented in Fig. 8. Physically, 
increasing � increased the blade height ratio, enhancing the 
film thickness and, therefore, less pressure was needed to 
maintain the flow. The exponential coater results in Figs. 
S4–S6 in Supplementary file are the same as plane coater 
results. In addition, at � = 0 it presents the Newtonian case 
already discussed by Middleman [2].

Variations of maximum pressure influenced by normal-
ized coating thickness � are portrayed in Figs. 9 and 10 for 
plane coater samples by taking distinct values for � and � , 
respectively. We noted that for initial values of � , maximum 
pressure showed an abrupt increase at first, then reduced 
smoothly leading to a constant value at higher � . As � was 
related to blade height ratio, hence increasing � indicated 
less maximum pressure value. Moreover, maximum pressure 
was enhanced by increasing � (Fig. 9) and � (Fig. 10). By 
comparison of results of the plane coater with those of the 
exponential coater (Figs. S7 and S8 in Supplementary file), 
the decrease in pmax was more prominent in plane coater than 
in the exponential coater at higher values of �.

Table 1 presents the calculated values of coating thick-
ness � and load Π by taking distinct values of � , � and � . 
Table 1 indicates that coating thickness was reduced as a 
result of increases in � and � , but with the same outcome in 
plane and exponential coater cases by decreasing � . Moreo-
ver, blade load Π was enhanced as we increased � and � val-
ues, and was enhanced as we decreased � value. As increase 
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of Weissenberg number led to dominant elastic forces, 
hence coating thickness was decreased. Physically, this 
decrease in coating thickness by these rheological param-
eters resulted in more efficient coating process as compared 
with the Newtonian case (Middleman [2]), hence improv-
ing the life of the substrate. On the other hand, increasing � 
resulted in increased blade angle, hence coating thickness 
was increased.

The perturbation and numerical results are compared 
in terms of coating thickness displayed in Table 2 and for 
numerous values of perturbation parameter, � , both methods 
were observed to be in good agreement with each other.

Conclusion

In this work, an upper-convected Jeffery’s model was 
adopted to examine the blade coating analysis. The basic 
equations were stated and simplified using LAT, then trans-
formed into dimensionless equations. Asymptotic perturba-
tion and shooting technique were employed to find the prob-
lem solution. The effect of material parameters on various 
flow and engineering quantities were debated through graphs 
and in a tabular manner. The main findings are given as: both 
pressure distribution and pressure gradient were enhanced 
for increased values of � and � . Enhancing � resulted in 
decreased values of pressure distribution and pressure gra-
dient. Maximum pressure was directly proportional to � and 
� . Parameters � and � were the controlling parameters for 
both the load and final coating thickness, hence may help in 
increasing the efficiency of coating process. Increasing � and 
� resulted in reduced coating thickness and increased blade 
load. Perturbation results were validated by comparing with 
the numerical outcomes and found good agreement.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s13726- 021- 01002-y.
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