ORIGINAL RESEARCH

Catalytic hydrolysis of corncob cellulosic polysaccharide into saccharides using SnO₂-Co₃O₄/C biochar catalyst

Qingyan Liu¹ \cdot Hongxian Fan¹ \cdot Jian Qi¹ \cdot Songmei Zhang¹ \cdot Gang Li¹

Received: 10 July 2019 / Accepted: 2 March 2020 / Published online: 16 March 2020 $\ensuremath{\textcircled{}}$ Iran Polymer and Petrochemical Institute 2020

Abstract

This paper presents hydrothermal decomposition of cellulosic polysaccharides in corncob using $SnO_2-Co_3O_4/C$ biochar catalyst to nine soluble monosaccharides including xylose, mannose, galactose, glucose, xylulose, arabinose, fructose, maltose and sucrose. H_3O^+ can convert hemicellulose and cellulose to soluble sugars by saccharification, following the Lewis acid sites from $SnO_2-Co_3O_4-2/C$ catalyst make the isomerization of xylose to xylulose or arabinose, as well as glucose to fructose. The xylulose and fructose would be furthermore dehydrated to small compounds due to the acid strength of catalyst. Maltose and sucrose could be produced by the condensation of monosaccharides with prolonged reaction time. The maximum yield of reducing sugars reached 83.3% under the optimized operation condition as 5 g dried corncob particles, 0.3 g $SnO_2-Co_3O_4/C$ biochar catalyst and 100 mL H_2O charged in the reactor at 180 °C for duration of 170 min.

Introduction

Biomass is one of the most abundant natural sources of carbon resources for the production of a wide range of chemicals with various applications [1–4]. Biomass (lignocellulosic) has a complex structure consists of cellulose, hemicelluloses and lignin. Agricultural lignocellulose is the most abundant and less expensive type of biomass on earth, therefore, being a promising feedstock for the production of renewable energy, especially biofuels, and chemicals [5]. Corncob is a by-product of the corn process industry that is traditionally used as livestock feed, firewood substitute, or rotted in the farmland. The major compositions of the corn-cob are about 38 wt% hemicelluloses, 35 wt% cellulose and 20 wt% lignin [6]. Hemicellulose is heteropolysaccharide

Hongxian Fan fanhongxian@hebut.edu.cn

Gang Li ligang@hebut.edu.cn

composed of different polysaccharides, such as mannans, xylans, arabinans, galactans and glucomannan. Cellulose is a homopolysaccharide composed of glucose units linked to each other through β -1-4-glucosidic bonds [7]. The biomass-derived starting materials have attracted much attention due to their convenient production from renewable sources [8–11]. Furfural, derived from hemicellulose, is a key platform compound which can be widely converted to a variety of chemicals and biofuels [12–15]. Hydrogenation is one of the potential routes for furfural conversion [16–21]. However, the furfural is produced not only by fructose conversion.

Lignocellulosic biomass materials are usually divided into monosaccharides, disaccharides, oligosaccharides and polysaccharides, wherein monosaccharides and disaccharides are commonly referred to sugars [22]. The past few decades have witnessed significant researches and development activities using different methods for hydrolysis and conversion hemicellulose and cellulose, such as mineral acids, bases and enzymes [23, 24]. Liquid acid-catalyzed hydrolysis of cellulose is efficient. However, corrosion, waste disposal and solvent recycle make this method unattractive.

Some attempts have been made on the hydrolysis of cellulose in ionic liquids since cellulose has good solubility

¹ Hebei Provincial Key Lab of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China

in chloride and acetate anion ionic liquids. Zhou [25] reported that cellulose was degraded by WCl₆ in 1-butyl-3-methyl imidazole chloride at 80 °C and lower, and 83% and 85.5% yield of total reducing sugar was obtained at 70 and 80 °C, respectively. Recently, sugarcane bagasse was pretreated with alkali and enzymatic delignification to be obtained de-lignified bagasse and then produced ethanol by saccharification and fermentation [26]. Daniel described the different methods of producing xylose, mannose, and arabinose sugars from hemicellulosic oligosaccharides of biomass by enzymatic and thermochemical pretreatments, and demonstrated that the oligosaccharides, such as xylooligosaccharides, arabinooligosaccharides and mannooligosaccharides have great potential from agricultural crop residues [27]. Ruppert had obtained the monosaccharide and disaccharides from carbohydrates by hydrogenolysis and hydrogenation [28]. In addition, some researcher works indicated that the contents of xylose and arabinose could be increased to 70% and 18%, respectively, by ionic liquid pretreatment to change the structure of hemicellulose from corncob [29]. Moreover, Liu demonstrated a novel and facile approach of conversion monosaccharides (glucose and xylose) to oligosaccharides [cello-oligosaccharides (COS) and xylo-oligosaccharides (XOS)], the yields of COS and XOS reached 4.62% (38 s) and 47.09% (30 s), respectively, at 500 °C reaction temperature coupled with sharp-quenching method [30]. Although these methods are improvements over the use of mineral acids alone, they are limited by the nature of the catalyst and its activity at the given conditions. Carbon materials derived from activated carbon, sugar or cellulose are solid acid catalysts that have the potential to eliminate many of the problem associated with solvent recycle and separation and can be made from renewable resources [31, 32].

In previous studies, we mainly investigated the process of furfural generation from cellulose. However, it was found that the furfural production process was not only through fructose. In this work, it is to produce soluble sugars by corncob hydrothermal degradation in the present of SnO₂-Co₃O₄/C biochar catalyst, which was prepared by sugar solution and lignocelluloses residue from corncob degradation, as well as mixture precipitated Sn(OH)₄ and $Co(OH)_2$. There are few reports that nine kinds of sugars are obtained at the same time. It was included saccharification of hemicellulose and cellulose of corncob which produces a series of saccharides, and isomerization of xylose to xylulose or arabinose, as well as glucose to fructose. Meanwhile, it also found that there were condensation reactions of monosaccharide to disaccharide, and partly dehydration of monosaccharides to furfural (FF) or 5-hydroxymethylfurfural (HMF) along with the saccharification of corncob over SnO₂-Co₃O₄/C biochar catalyst.

Experimental

Material

Corncob was supplied from a local farm located in Hebei Province, China. Corncob was firstly chopped into small pieces and dried at 60 °C under vacuum for 24 h. Then, the dried corncob particles were sieved through 20 and 80 meshes to collect particles sized between 0.9 and 0.2 mm for experiments. Xylose, xylulose, arabinose, mannose, galactose, glucose, fructose, maltose and sucrose were supplied from Bioreagent Company, Shanghai, China. The chemicals and organic solvents used in experiments were all of the analytical grades and purchased from Tianjin Kermel Chemical Reagents Co. Ltd, China. Distilled water was used in the preparation of all solutions.

Preparation of SnO₂-Co₃O₄/C biochar catalyst

The amounts of 1.744 g SnCl₄·5H₂O and 0.6 g CoCl₂·6H₂O as the metal raw materials were used to prepare sol-gel Sn(OH)₄ and Co(OH)₂ mixture hydroxide. The sol-gel mixture hydroxide was directly added to 1.5 g lignocellulose residues and 150 mL degradation solution (containing 20.7 g soluble reducing sugars) and then concentrated to paste by rotary evaporation at 45 °C under 0.09 MPa absolute pressure. The paste carbonization was carried out in a tube-carbide furnace at 200 °C for 48 h with a nitrogen gas atmosphere. After cooling down to the ambient temperature, the carbonized solid mixture was ground into powder (60-80 meshes) to give the SnO₂-Co₃O₄/C biochar catalyst. With a similar procedure, a group of biochar catalysts such as SnO₂/C, Co₃O₄/C, SnO₂-SiO₂/C, SnO₂-Al₂O₃/C and SnO₂-TiO₂/C were also prepared and employed to make comparison. In this work, there was no need to consider the recovery of biochar catalysts because they were utilized from lignocellulose residues to make new biochar catalyst in next cycle.

Determination of acid density of SnO₂-Co₃O₄/C biochar catalyst

The acid density of $\text{SnO}_2\text{-}\text{Co}_3\text{O}_4/\text{C}$ biochar catalyst was estimated by neutralized titration method [33] as the following steps: 0.2 g of $\text{SnO}_2\text{-}\text{Co}_3\text{O}_4/\text{C}$ biochar catalyst was added to 40 mL of 2 mol/L NaCl solution and stirred at room temperature for 24 h so that Na⁺ and H⁺ equilibrium on the catalyst surface was changed. After separation of the catalyst by filtration, the filtrate was titrated with 10 mmol/L NaOH solution. The acid density of $\text{SnO}_2\text{-}\text{Co}_3\text{O}_4/\text{C}$ biochar catalyst was calculated using the following formulas, and the equivalent concentration of sulphuric acid employed in corncob hydrolysis was also determined by stoichiometric proportion according to the acid density of SnO_2 - Co_3O_4/C biochar catalyst.

Acid density of catalyst =
$$\frac{CV}{m}$$
, (1)

Concentration of sulphuric acid = $\frac{CV}{2M}$, (2)

where *C* is the concentration of NaOH solution, *V* is the volume of using NaOH solution, *M* is the relative molecular mass of sulphuric acid and *m* is the quality of SnO_2 - Co_3O_4/C biochar catalyst.

Catalytic hydrolysis of corncob

The catalytic hydrolysis of corncob was performed in a stainless steel batch autoclave equipped with a liner of ODS-EP C18 reversed-phase column (4.6×250 mm) at 40 °C column temperature. In the measurement, a mixture of water and methanol (77:23, v/v) was used as the mobile phase with a flow rate of 1.0 mL/min and injecting sample solution of 20 μ L in volume.

The total reducing sugar was measured using 3,5-dinitrosal-icylic acid (DNS) method following procedures previously reported in the literature [34]. The analysis of compositions in the reducing sugar was performed using an HPLC instrument (LC-20AD, Shimadzu, Japan) equipped with an evaporative light scattering detector (ELSD) (Alltech LC-2000ES) and an XBridge BEH Amide Column (4.6 mm × 250 mm). The chromatograms of standard sugars mixture were also shown as reference. The pre-set chromatographic conditions are listed in Table 2.

The yields of products and the corncob conversion ratio were calculated based on the following equations:

Souble sugar yield
$$\% = \frac{[\text{Souble sugar}]_{\text{mass}}}{[\text{Hemicellulose} + cellulose]_{\text{mass fraction}} \times [\text{Charged corncob}]_{\text{mass}}} \times 100\%,$$
 (3)

$$Furfural yield\% = \frac{[Furfural]_{mass}}{[Hemicellulose]_{mass fraction} \times [Charged corncon]_{mass}} \times 100\%,$$
(4)

HMF yield% =
$$\frac{[HMF]_{mass}}{[Cellulose]_{mass fraction} \times [Charged corncob]_{mass}} \times 100\%,$$
(5)

polytetrafluoroethylene. As a typical run, 5 g dried corncob particles, 0.1–0.4 g $\text{SnO}_2\text{-Co}_3\text{O}_4/\text{C}$ biochar catalyst and 80–140 mL water were charged in the reactor, fasten the cover of autoclave and the mixture was then heated at 160–200 °C with a duration of 160–200 min in the oven. After the hydrolysis reactions, the mixture of corncob degradation solution and unreacted solid residue were separated by filtration. In this study, the effect of different operation conditions (time, temperature, catalyst dosage, the ratio of corncob to water) on the corncob hydrolysis to soluble sugars was investigated intensively.

Product analysis and corncob conversion ratio

Based on the calibration curve, FF and 5-HMF concentration in the products of corncob degradation was determined quantitatively using a high-performance liquid chromatography (HPLC) instrument (LC-20AD, Shimadzu, Japan) equipped with a SPD-M20AV UV detector and an Inertsil

Corncob conversion yield% =
$$\frac{[\text{Reacted corncob}]_{\text{mass}}}{[\text{Total corncob}]_{\text{mass}}} \times 100\%.$$
(6)

Results and discussion

Characterization of biochar catalyst

The determination of type (Brønsted or Lewis) of acid sites of the catalysts was performed by Fourier transform infrared (FTIR) spectroscopy combined with in situ adsorption of pyridine. The absorption bands appearing at 1545 and 1455 cm⁻¹ in the IR difference spectra were acceptedly assigned to adsorbed pyridinium ions and pyridine coordinated to Lewis acid sites, respectively [35]. The peak at 1457 cm⁻¹ was considered to relate to the characteristic vibrations of Lewis acid sites, as shown in Fig. 1. After SnO₂ and Co₃O₄

Fig.1 FTIR spectra of ${\rm SnO_2\text{-}Co_3O_4\text{-}2/C}$ catalyst after pyridine adsorption

Fig. 2 XPS spectra of SnO₂-Co₃O₄-2/C catalyst

loading on biochar carrier, the acid site of SnO_2 - Co_3O_4/C biochar catalyst was changed from Brønsted acid to Lewis.

To identify the elemental compositions and chemical states of the product, X-ray photoelectron spectroscopy (XPS) analysis was carried out for SnO_2 -Co₃O₄-2/C catalyst. Figure 2 shows the survey spectrum of Co, Sn and O elements in the region of 0–1000 eV. It was certain that the content of C and O was about 94%, and the remaining content was made up with N, Sn, Co and few Si. The SnO₂ species were the main Sn species on the surfaces of the bimetallic SnO₂-Co₃O₄-2/C catalyst, and the Co₃O₄ was also existed.

Figure 3 shows the X-ray diffraction (XRD) patterns of SnO_2 - Co_3O_4 -2/C catalyst. The diffraction peaks 2θ at 31° - 36° correspond to crystal planes of Co_3O_4 and SnO_2 . In addition, the diffraction peaks 2θ at 21.5° , 23.5° , 35.2° ,

Fig. 3 XRD patterns of SnO₂-Co₃O₄-2/C catalyst

Fig. 4 HPCL-ELSD chromatograms of water-soluble sugars from corncob hydrolysis with SnO_2 -Co₃O₄/C catalyst

 45.1° , 53.3° , 61.4° , 68.7° in the SnO₂-Co₃O₄-2/C catalyst can be indexed as carbon carrier. It indicates that there are more SnO₂ and Co₃O₄ particles attached to the biomass carrier.

Corncob saccharification

Lignocellulose could be hydrolyzed under acid conditions and produce arabinose, xylose, glucose and other compounds [36]. In the degradation solution of corncob hydrolysis over SnO_2 - Co_3O_4/C biochar catalyst with Lewis acid circumstance in water medium, nine sugar components were identified, as shown in Fig. 4. The chromatograms of nine standard sugars mixture were also shown as reference. There were also other unknown sugars from corncob hydrolysis.

In this work, the degradation solution contained about 83.3% reducing sugars was formed from the saccharification of hemicellulose and cellulose in corncob. The experimental data in Fig. 4 indicate that the glucose and xylose were the main products among monosaccharides, their contents were up to 34.1%. Because xylose could further be converted to xylulose or FF under the Lewis acid function [37], the content of glucose remained in degradation solution higher than that of xylose. It was demonstrated that the SnO_2 - Co_3O_4/C biochar catalyst was more suitable for cellulose and hemicellulose hydrolysis. In addition, the

I 100 **II** 100 reducing sugars glucose glucose galactose reducing sugars xylulose 90 arabinose fructose xylose 🕢 xylulose 0.3 g catalyst 5 g corncob arabinose 80 80 mannose 🕅 fructose 100 mL H₂O at 180°C for galactose 70 170 min mannose 0.3 g SnO₂-Co₃O₄ catalyst, Sugar yield (%) Sugar yield (%) 60 60 5 g corncob, 100 mL H₂O xylose for 170 min 50 40 40 30 20 20 10 Sno²Co²O²Co² Sno, At O'C Sno vito Sno Sio/C 0 0 Sno C 160 200 170 180 190 Reaction temperature (°C) Different catalysts IV III alucose galactose reducing sugars 100 reducing sugars xylulose glucose 90 arabinose fructose xylulose galactose arabinose fructose 80 xylose mannose 80 mannose 70 xylose 5g corncob, 100mL H₂O 0.3 g SnO₂-Co₃O₄/C Yields of sugars (%) Sugar yield (%) 60 at 180°C for 170min catalyst, 5 g corncob, at 60 180°C for 170 min 50 with H₂O 40 40 30 20 20 10 0 C 0.1 0.2 Without 0.3 0.4 0.5 1:12 1:16 1:20 1:28 1:24 catalyst Castalyst dosage (g) The ratio of corncob to water (g/mL)

387

disaccharide was also synthesized from the corresponding monosaccharide by condensation reaction.

Optimized conditions for corncob saccharification with SnO_2 - Co_3O_4/C biochar catalyst

It has reported that acid strength has a significantly influence on corncob saccharification [38]. The aldose could be isomerized to ketose by Lewis acidity, and some metal oxides containing Sn (IV) were also regarded as a strong Lewis acid due to the availability of Lewis acid sites [39]. The effect of different biochar catalysts on the sugars yields is illustrated in Fig. 5I. The content of reducing sugars was the highest with 83.3% yield. The yields of monosaccharides, such as xylose, glucose, mannose and galactose

Fig. 5 Effects of reaction factors on corncob saccharification. (I) different catalysts, (II) temperature, (III) ratio of corncob to water, and (IV) catalyst dosage

were 11.9%, 22.2%, 3.29% and 3.01%, respectively, when 0.3 g SnO_2 -Co₃O₄/C biochar catalyst was added in the reactor, compared with single SnO_2/C and Co_3O_4/C catalyst. The BET surface area of SnO₂-Co₃O₄-2/C catalyst was 6.338 m^2 /g and its acid density was 0.538 mmol/g. The SnO₂ played an important role in supplying Lewis acid sites on the surface of SnO_2 - Co_3O_4 -2/C catalyst. There was a synergetic action between SnO₂ and Co₃O₄ for corncob hydrolysis. The elemental contents of Sn and Co in the SnO₂-Co₃O₄-2/C catalyst were 391.43 and 90.24 µg/g by AAS analysis, respectively. However, the catalytic performance of SnO_2 -SiO₂/C, SnO₂-Al₂O₃/C and SnO₂-TiO₂/C catalysts was not better than that of SnO₂/C. Perhaps they were more suited to generate terminal products than saccharification process to give monosaccharides, such as FF, HMF, lactic acid, levulinic, ethanol, etc. [40, 41].

Figure 5II shows the yields of sugars which are dramatically increased with the reaction temperature from 160 to 180 °C. However, the enhancement of xylulose, arabinose and fructose yields were not high as compared with the reducing sugars. This was just according to a report by Vinit Chuhdhary who claimed that aldose isomerization to ketosis does not require much energy. It was proved that the corncob saccharification needed higher reaction temperature than isomerization [42].

The amount of catalyst has mainly affected the acidity of catalyst in the reaction of corncob saccharification. As shown in Fig. 5III, when the dosage of catalyst was 0.3 g, the catalytic effect was better and the yield of reducing sugar was up to 83.3%. The yield of monosaccharide increased with the amount of catalyst in the range of 0–0.3 g. The increased yield of xylose, arabinose and fructose is due to the isomerization of xylose and glucose under the SnO_2 - Co_3O_4/C catalyst. In addition, with the increase in the amount of catalyst, the yield of soluble sugar decreased, mainly because the increase of acidity converted the cellulose and semi-fiber in the corncob to other small molecular compounds.

The principle of cellulose hydrolysis could be described as the chemical formulation: $(C_6H_{10}H_5)_n + n H_2O \rightarrow n$ $(C_6H_{12}O_6)$. It can be clearly seen in Fig. 5IV that the water volume and suitable ratio of corncob to water have a great effect on the corncob saccharification. When the amount of water was less than 16 mL per 1 g of corncob, the corncob saccharification was insufficient and the sugars yields were lower, even no mannose and galactose produced. Based on the hydronium ion H_3O^+ from overstock water and hot temperature [43], the production of xylose and glucose decreased due to the isomerization to xylulose and fructose, respectively, and then FF and HMF were generated by dehydration.

Accompanied by the saccharification of corncob over SnO_2 - Co_3O_4/C biochar catalyst at temperature 180 °C for the duration of 160–200 min, it was also found that there

Time (min)	$H_2O(mL)$	Catalyst dosage (g)	Conversion	Yields of	f products (%)	0								
			ratio (%)	Xylose	Mannose	Galactose	Glucose	Xylulose	Arabinose	Fructose	Maltose	Sucrose	FF	HMF
160	80	0.4	40.6	3.93	0.71	0.89	7.59	1.08	0.86	1.16	1.00	0.93	6.18	4.81
170	100	I	35.2	4.38	0.96	0.78	9.32	0.82	1.13	0.68	0.77	0.64	5.07	2.17
170	120	0.2	45.4	13.9	3.65	3.78	25.2	1.08	0.98	1.18	1.01	1.49	12.9	3.91
170	100	0.3	48.2	11.9	3.29	3.01	22.2	5.89	3.42	4.25	2.79	2.11	15.8	8.54
170	100	${ m H_2SO_4}$ ^a	51.3	6.56	1.00	1.12	17.5	1.04	0.90	1.21	1.35	1.08	21.3	9.85
170	140	0.1	49.4	6.30	0.85	1.14	13.3	1.91	1.02	1.98	1.24	1.47	14.1	4.63
170	100	0.4	49.4	8.63	2.46	2.33	18.2	4.38	2.46	2.74	1.65	1.31	11.8	5.34
180	100	0.3	55.8	7.56	3.01	3.70	15.3	5.24	4.55	5.63	2.26	1.64	19.0	9.54
190	100	0.3	59.8	5.48	1.64	1.42	14.4	6.83	5.17	6.07	3.23	2.89	23.5	12.9
190	120	0.3	54.2	5.17	1.04	1.12	10.2	4.17	3.84	3.85	2.05	1.91	24.6	15.0
200	100	0.3	56.3	3.91	1.01	0.93	10.1	1.94	1.08	2.18	1.04	0.75	28.2	11.8
200	120	0.3	62.7	3.26	0.87	0.00	9.25	1.32	0.99	1.74	0.96	0.80	30.1	16.0
200	120	0.1	47.8	4.76	0.79	0.69	9.03	1.00	0.90	1.03	0.94	0.89	18.6	<i>T.T</i>
Reaction con	dition: 5 g corr	ncob at 180 °C. H ₂ SO ₄ ^a	(98%) of 4.5wt	% was use	ed that has alr	most equivaler	nt acidity to	the SnO ₂ -Co	O₄/C catalyst					
						,								

Table 1 Effect of SnO₂-Co₂O₄/C catalyst dosage, water and reaction time on the production of sugars

were isomerization, condensation and dehydration simultaneously. It can be seen that in Table 1 the yields of xylulose, arabinose and fructose were lower when 4.5 wt% H_2SO_4 was employed as Brønsted acid catalyst, which had almost equivalent acidity to the SnO_2 - Co_3O_4/C biochar catalyst (0.542 mmol/g). Beyond the corrosive action to instrument, the H_2SO_4 could make the dehydration of xylose to FF and glucose to HMF directly. There was no isomerization reaction observed during corncob saccharification with H_2SO_4 catalyst.

When corncob saccharification was performed under the optimum operation condition as 5 g corncob, 0.2 g SnO_2 -Co₃O₄/C biochar catalyst and 120 mL H₂O at 180 °C for 170 min duration, the highest yields of xylose, mannose, galatose, glucose were 13.9%, 3.65%, 3.78%, 25.2%, respectively. The optimized condition for monosaccharides isomerization could give to xylulose (5.89%), arabinose (3.42%) and fructose (4.25%). The condensation reaction proceeded with the reaction time prolonged to 190 min with 0.3 g SnO_2 -Co₃O₄/C biochar catalyst and 100 mL H₂O at 180 °C, and the yield of maltose and sucrose reached 3.23% and 2.89%, respectively.

Saccharification and isomerization of corncob with SnO_2 - Co_3O_4/C biochar catalyst

The hemicellulose in corncob is a typical heterogeneous polymer constructed with pentose and hexose sugars [44], such as xylose, arabinose, glucose, galactose and mannose, etc. Cellulose is considered to be a major source of glucose, so it is readily available and renewable. Therefore, the saccharification was taken as a depolymerization of hemicellulose and cellulose to sugars by acidic hydrolysis. It is an interesting process especially for the production of rare sugars which are high value-added compounds in the future biorefinery. Daizo had employed carbon-based solid acid catalyst to catalytic conversion of starch to glucose and obtained the glucose yield of 77.54% [45]. Although there were only 13.9% xylose and 25.2% glucose by corncob saccharification with SnO₂-Co₃O₄/C biochar catalyst in our experiment, the final nine monosaccharides, as the special bio-energy resources, were made from cellulose and hemicellulose in non-food crop.

Typical simplified saccharification and isomerization reaction schemes of hemicellulose and cellulose are shown

Fig. 6 a Supposed saccharification and isomerization reaction scheme of hemicellulose with SnO_2 - Co_3O_4/C catalyst. b Supposed saccharification and isomerization reaction scheme of cellulose with SnO_2 - Co_3O_4/C catalyst

Table 2Pre-setchromatographic conditionsof gradient elution and ELSDdetector

Elapsed time (min)	Gradient solvent		Drift tube temperature (°C)	Gas flow (L/min)	Impactor	Gain
	Acetonitrile%	H ₂ O%				
0–40	90–80	10–20	95	2.0	off	1
40–50	80–90	20-10				
50-60	90	10				

Fig. 7 Suggested pathway for condensation and dehydration of xylose and glucose

in Fig. 6a, b, respectively. The hemicellulose in corncob was saccharified to xylose by hydronium ion H_3O^+ [40] under hydrothermal condition at temperature 180 °C. Then, Lewis acid sites on the surface of SnO₂-Co₃O₄-2/C catalyst facilitated the isomerization of xylose to xylulose that is an interconversion reaction with aldose to ketose of pentose sugars [46]. Because the aldose-ketose isomerization is a reversible reaction, the distribution of products was kept up with chemical equilibrium. For increasing the selectivity and yield of a monosaccharide, suitable reaction condition for saccharification and isomerization of corncob with SnO_2 - Co_3O_4/C biochar catalyst is indispensable. As Table 2 shows, when 5 g corncob, 0.2 g SnO₂-Co₃O₄/C biochar catalyst and 120 mL H₂O were charged in the reactor and the corncob was hydrolyzed at 180 °C for 170 min duration, the total yield of monosaccharides was up to 49.77% and disaccharides was only 2.5%.

Condensation and dehydration of monosaccharide with SnO₂-Co₃O₄/C biochar catalyst

Xylose and glucose, as the raw material of biomass-based chemicals, were correspondingly converted to FF and HMF under acidity circumstance by dehydration [47]. The suggested pathway of condensation and dehydration of xylose and glucose, which were the products of corncob

degradation by hydrothermal process with SnO₂-Co₃O₄/C biochar catalyst, is illustrated in Fig. 7. The hydronium ion H_3O^+ from hot water provides weak acidity, so the yields of FF and HMF are improved with the increasing volume of water. As shown in Table 2, the highest yields of FF and HMF have reached 30.1% and 16.0% with 5 g corncob, 0.3 g SnO_2 -Co₃O₄/C biochar catalyst and 120 mL water at 180 °C for 200 min duration. Meanwhile, two molecules of glucose could couple to maltose by condensation reaction under acidic catalysis, like glucose and fructose coupling to sucrose. That was the reason why the content of sucrose and maltose increased with the longer reaction time. When 5 g corncob, 0.3 g SnO₂-Co₃O₄/C biochar catalyst and 100 mL H₂O were charged in the reactor and the corncob was hydrolyzed at 180 °C for 190 min duration, the total yield of maltose reached 3.23% and sucrose was 2.89%.

The validation experiment for preparation of furfural, as a comparison with H_2SO_4 catalyst, was performed, and the yield of furfural was only 6.8% with the same content of SnO_2 - Co_3O_4/C biochar catalyst. The experimental results indicated that the SnO_2 - Co_3O_4/C biochar catalyst was more suitable for saccharification of hemicellulose and cellulose, as well as for isomerization of xylose to xylulose, rather than dehydration of xylulose.

Conclusion

This study investigated a hydrothermal process for efficient conversion of corncob into reducing sugars (as much as 3.04 g/5 g corncob) using $\text{SnO}_2\text{-Co}_3\text{O}_4/\text{C}$ biochar catalyst. After optimizing the hydrolysis parameters at 180 °C for 170 min, the total yield of monosaccharides was up to 49.77% and a maximum level of 13.9% xylose, 3.65% mannose, 3.78% galatose and 25.2% glucose were produced. There were also xylulose, arabinose and fructose in products as isomerization reaction of aldose to ketose during corncob saccharification with $\text{SnO}_2\text{-Co}_3\text{O}_4/\text{C}$ biochar catalyst. The advantage of this process was hydrolysis of cellulose and hemicellulose in corncob to soluble sugars without conflicting food crop (cornstarch), and the degradation solution containing monosaccharides had no acidic properties and did not corrode the instrument.

Acknowledgements This work was financially supported by the National Natural Science Foundation of China (Grant No. 21576067).

References

- Wang G, Yao R, Xin H, Guan Y, Wu P, Li X (2018) At room temperature in water: efficient hydrogenation of furfural to furfuryl alcohol with a Pt/SiC-C catalyst. RSC Adv 8:37243–37253
- Singh SK (2018) Heterogeneous bimetallic catalysts for upgrading biomass-derived furans. Asian J Org Chem 7:1901–1923
- Guo H, Zhang H, Zhang L, Wang C, Peng F, Huang Q, Xiong L, Huang C, Ouyang X, Chen X, Qiu X (2018) Selective hydrogenation of furfural to furfuryl alcohol over acid-activated attapulgitesupported NiCoB amorphous alloy catalyst. Ind Eng Chem Res 57:498–511
- Sadjadi S, Farzaneh V, Shirvani S, Ghashghaee M (2017) Preparation of Cu-MgO catalysts with different copper precursors and precipitating agents for the vapor-phase hydrogenation of furfural. Korean J Chem Eng 34:692–700
- Ribeiro LS, de Melo Órfão JJ, Pereira MFR (2017) Direct catalytic production of sorbitol from waste cellulosic materials. Bioresour Technol 232:152–158
- Liu Q, Yang F, Sun X, Liu Z, Li G (2017) Preparation of biochar catalyst with saccharide and lignocellulose residues of corncob degradation for corncob hydrolysis into furfural. J Mater Cycles Waste 19:134–143
- Kannam SK, Oehme DP, Doblin MS, Gidley MJ, Bacic A, Downton MT (2017) Hydrogen bonds and twist in cellulose microfibrils. Carbohydr Polym 175:433–439
- Liu CG, Xiao Y, Xia XX, Zhao XQ, Peng L, Srinophakun P, Bai FW (2019) Cellulosic ethanol production: progress, challenges and strategies for solutions. Biotechnol Adv 37:491–504
- Shirvani S, Ghashghaee M, Farzaneh V, Sadjadi S (2018) Influence of catalyst additives on vapor-phase hydrogenation of furfural to furfuryl alcohol on impregnated copper/magnesia. Biomass Conv Biorefin 8:79–86
- Ghashghaee M, Shirvani S, Ghambarian M (2017) Kinetic models for hydroconversion of furfural over the ecofriendly Cu-MgO catalyst: an experimental and theoretical study. Appl Catal A-Gen 545:134–147
- 11. Ghashghaee M, Sadjadi S, Shirvani S, Farzaneh V (2017) A Novel consecutive approach for the preparation of Cu-MgO catalysts with high activity for hydrogenation of furfural to furfuryl alcohol. Catal Lett 147:318–327
- Guo H, Zhang H, Tang W, Wang C, Chen P, Chen X, Ouyan X (2017) Furfural hydrogenation over amorphous alloy catalysts prepared by different reducing agents. BioResources 12:8755–8774
- Gilkey MJ, Xu B (2016) Heterogeneous catalytic transfer hydrogenation as an effective pathway in biomass upgrading. ACS Catal 6:1420–1436
- Gong W, Chen C, Zhang H, Wang G, Zhao H (2018) Highly dispersed Co and Ni nanoparticles encapsulated in N-doped carbon nanotubes as efficient catalysts for the reduction of unsaturated oxygen compounds in aqueous phase. Catal Sci Technol 8:5506–5514
- Ghashghaee M, Shirvani S, Farzaneh V (2017) Effect of promoter on selective hydrogenation of furfural over Cu-Cr/TiO₂ catalyst. Russ J Appl Chem 90:304–309
- 16. Yang Z, Huang YB, Guo QX, Fu Y (2013) RANEY[®] Ni catalyzed transfer hydrogenation of levulinate esters to γ -valerolactone at room temperature. Chem Commun 49:5328–5330

- Shumeiko B, Schlackl K, Kubička D (2019) Hydrogenation of bio-oil model compounds over Raney-Ni at ambient pressure. Catalysts 9:268
- Gundekari S, Srinivasan K (2019) Screening of solvents, hydrogen source, and investigation of reaction mechanism for the hydrocyclisation of levulinic acid to γ-valerolactone using Ni/ SiO₂-Al₂O₃ catalyst. Catal Lett 149:215–227
- Ghashghaee M, Shirvani S, Farzaneh V, Sadjadi S (2018) Hydrotalcite-impregnated copper and chromium-doped copper as novel and efficient catalysts for vapor-phase hydrogenation of furfural: effect of clay pretreatment. Braz J Chem Eng 35:669–678
- Banik BK, Barakat KJ, Wagle DR, Manhas MS, Bose AK (1999) Microwave-assisted rapid and simplified hydrogenation. J Org Chem 64:5746–5753
- Villaverde MM, Garetto TF, Marchi AJ (2015) Liquid-phase transfer hydrogenation of furfural to furfuryl alcohol on Cu-Mg-Al catalysts. Catal Commun 58:6–10
- 22. Dunning JW, Lathrop EC (1945) The saccharification of agricultural residues. Ind Eng Chem Res 37:24–29
- Chen H, Liu J, Chang X, Chen D, Xue Y, Liu P, Li H, Han S (2017) A review on the pretreatment of lignocellulose for highvalue chemicals. Fuel Process Technol 160:196–206
- Varma AJ, Kulkarni MP (2002) Oxidation of cellulose under controlled conditions. Polym Degrad Stabil 77:25–27
- Zhou L, Zhang S, Li Z, Zhang Z, Liu R, Yun J (2019) WCl6 catalyzed cellulose degradation at 80 °C and lower in [BMIM] Cl. Carbohydr Polym 212:289–296
- Asgher M, Ahmad Z, Ipbal HMN (2013) Alkali and enzymatic delignification of sugarcane bagasse to expose cellulose polymers for saccharification and bio-enthanol production. Ind Crop Prod 44:488–495
- 27. Daniel O, Ahring BK (2012) The potential for oligosaccharide production from the hemicellulose fraction of biomasses through pretreatment processes: xylooligosaccharides (XOS), arabino-oligosaccharides (AOS), and mannooligosaccharides (MOS). Carbohydr Res 360:84–92
- Ruppert AM, Weinber K, Palkoits R (2012) Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. Angew Chem Int Edit 51:2564–2601
- Sun SN, Li MF, Yuan TQ, Xu F, Sun RC (2012) Effect of ionic liquid pretreatment on the structure of hemicelluloses from corncob. J Agric Food Chem 60:11120–11127
- Liu X, Wei W, Wu S, Lei M, Liu Y (2018) A promptly approach from monosaccharides of biomass to oligosaccharides via sharp-quenching thermo conversion (SQTC). Carbohydr Polym 189:204–209
- Liu Q, Yang F, Liu Z, Li G (2015) Preparation of SnO₂-Co₃O₄/C biochar catalyst as a Lewis acid for corncob hydrolysis into furfural in water medium. J Ind Eng Chem 26:46–54
- Cao X, Sun S, Sun R (2017) Application of biochar-based catalysts in biomass upgrading: a review. RSC Adv 7:48793–48805
- Ormsby R, Kastner JR, Miller J (2012) Hemicellulose hydrolysis using solid acid catalysts generated from biochar. Catal Today 190:89–97
- Liu X, Ai N, Zhang H, Lu M, Ji D, Yu F (2012) Quantification of glucose, xylose, arabinose, furfural, and HMF in corncob hydrolysate by HPLC-PDA-ELSD. Carbohydr Res 353:111–114
- 35. Marianou AA, Michailof CM, Pineda A, Iliopouloua EF, Triantafyllidis KS, Lappas AA (2018) Effect of Lewis and Brønsted acidity on glucose conversion to 5-HMF and lactic acid in aqueous and organic media. Appl Catal A Gen 555:75–87
- Yamaguchi D, Hara M (2010) Starch sacchsrification by carbonbased solid acid catalyst. Solid State Sci 12:1018–1023

- Román-Leshkov Y, Davis ME (2011) Activation of carbonylcontaining molecules with solid Lewis acid in aqueous media. ACS Catal 1:1566–1580
- Jiang N, Qi W, Huang R, Wang M, Su R, He Z (2013) Production enhancement of 5-hydroxymethyl furfural from fructose via mechanical stirring control and high-fructose solution addition. J Chem Technol Biotechnol 89:56–64
- 39. Cao X, Peng X, Sun S, Zhong L, Chen W, Wang S (2015) Hydrothermal conversion of xylose, glucose, and cellulose under the catalysis of transition metal sulfates. Carbohydr Polym 118:44–51
- Li S, Deng W, Li Y, Zhang Q, Wang Y (2019) Catalytic conversion of cellulose-based biomass and glycerol to lactic acid. J Energy Chem 32:138–151
- Choudhary V, Caratzoulas S, Vlachos DG (2013) Insights into the isomerization of xylose to xylulose and lyxose by a Lewis acid catalyst. Carbohydr Res 368:89–95

- 42. Maki-Arvela P, Salmi T, Holmbom B, Willfor S, Murzin DY (2011) Synthesis of sugars by hydrolysis of hemicelluloses—a review. Chem Rev 111:5638–5666
- 43. Li B, Relue P, Varanasi S (2012) Simultaneous isomerization and reactive extraction of biomass sugars for high yield production of ketose sugars. Green Chem 14:2436–2444
- 44. Yamaguchi D, Hara M (2010) Starch saccharification by carbonbased solid acid catalyst. Solid State Sci 12:1018–1023
- 45. Dong H, Nimlos MR, Himmel ME, Johnson DK (2009) The effect of water on β -D-xylose condensation reaction. J Phys Chem A 113:8577–8585
- Lamminpää K, Ahola J, Tanskanen J (2012) Kinetic of xylose dehydration into furfural in formic acid. Ind Eng Chem Res 51:6297–6303
- Rinaldi R, Palkovits R, Schuth F (2008) Depolymerization of cellulose using solid catalysts in ionic liquids. Angew Chem Int Ed 47:8047–8050