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Abstract
Natural cellulose was extracted from Sesbania sesban plant. A novel approach toward chemically modified cellulose, bearing 
active chelating Schiff base, was synthesized using 2-hydroxy-5-methyl benzaldehyde. The chemical and structural features of 
the adsorbent were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), 
and energy dispersive analysis of X-ray (EDAX) observations, elemental analysis, and thermogravimetric analysis (TGA). It 
was used as a cheap and renewable biosorbent for removal of cadmium (II). SEM image confirmed the microfibril structure 
of microcomposite. TGA showed that the stability of modified cellulose was increased to 700 °C. EDAX showed the ele-
ments of C and O of cellulose and Si, Fe and Cl of modified cellulose-based ligand of 2-hydroxy-5-methyl benzaldehyde. 
The elemental analysis confirmed the presence of Schiff base ligand in the structure of microcomposite. The experimental 
conditions and adsorption parameters, including pH, initial metal ion concentration and adsorbent dosage were optimized. 
The cellulose biomass exhibited the highest metal ions uptake capacity (9.39 mg/g) at pH value of 4.0, biomass dosage of 
0.01 g/L and cadmium concentration of 150 mg/L.
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Introduction

Industries generate 2.4 million tons of toxic metals annu-
ally [1]. Among these metals such as As, Cd, Cr, Cu, Hg, 
Ni, Pb, Se, V, and Zn, easy mobility in the environment and 
high toxicity of cadmium can be dangerous and are of much 
environmental concern [2, 3]. It causes renal dysfunction, 
bone degeneration, lung insufficiency, liver damage, and 
hypertension in humans [4, 5].

Numerous processes exist for removing dissolved heavy 
metals, including ion exchange, precipitation, phytoextrac-
tion, ultrafiltration, reverse osmosis, and electrodialysis [6]. 
The need for expensive equipment and monitoring systems, 

high reagent or energy requirement or generation of toxic 
sludge or other waste products were significant disadvantages 
of these techniques [7]. On the other hand, when metal ion 
concentration in aqueous solution is as low as ppm (parts per 
million), they are believed ineffective. Hence, the practical 
and simplest process is biosorption, which uses various natu-
ral materials of biological origin, including bacteria, fungi, 
yeasts, algae, molds, and composting materials [8]. Adsorption 
techniques have been widely used because of their simplicity 
and facile accessibility. Hence, adsorption has become one 
of the alternative treatment techniques for wastewater laden 
with heavy metals recently [9]. Basically, adsorption is a mass 
transfer process by which a substance is transferred from the 
liquid phase to the surface of a solid, and it is bounded by 
physical and/or chemical interactions [10]. Various low-cost 
adsorbents, derived from agricultural wastes, industrial by-
products, natural materials, or modified biopolymers, have 
been recently developed and applied for the removal of heavy 
metals from metal-contaminated wastewater. Technical appli-
cability and cost-effectiveness are the key factors that play 
major roles in the selection of the most suitable adsorbent to 
treat inorganic effluent [11]. Hence, the synthesis of cellulosic 
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low-cost biosorbent has opened up a new horizon for this area 
of research. They are used in heavy metal sequestration due to 
their low economic value and widespread availability, and also 
the potential to treat wastewater at a large scale [12].

In continuing our work on the synthesis of new com-
pound-based natural materials and also environmental 
friendly systems; for example, Honarmand et al. [13] have 
worked on a novel and recyclable organocatalyst for one-
pot three-component synthesis of 2-amino-3-cyano-4H-
pyran derivatives, Naeimi et al. [14] have synthesized a 
novel nanocomposite based on natural plant such as Ses-
bania sesban and investigated its catalytic activities. Also 
Tajik et al. [15] have studied the catalytic application of 
one immobilized Schiff base complex on natural cellulose. 
We report herein a novel microcomposite synthesized and 
used as a biosorbent for removing the cadmium as a heavy 
metal. Novelty of the present work includes the following 
items: the immobilization of a novel Schiff base on extracted 
natural cellulose from Sesbania sesban, the synthesis and 
characterization of a bio-microcomposite. The adsorption 
activity of this degradable hybrid adsorbent has been evalu-
ated on the removal of cadmium from contaminated solution 
and 9.3 mg/g was the maximum adsorption capacity of this 
biosorbent in the optimized condition.

The effects of pH, adsorbent dosage and initial cadmium 
concentration on the performance of microcomposite bio-
mass removal of Cd(II) ions were applied for the experimen-
tal design and analysis of the results.

Experimental

Materials and methods

2-Hydroxy-5-methyl benzaldehyde, (3-aminopropyl) trieth-
oxysilane 98% (APTS), and Cd (99% extra pure) (Aldrich) 
were used. Sesbania sesban plant was provided from Uni-
versity of Jiroft. FTIR spectra of cellulose and microcom-
posite were recorded by FTIR spectrophotometer (Nicolet 
iS10). Morphology of microcomposite, before and after 
the removal of Cd(II), was carried by scanning electron 
microscopy (Hitachi, s4160, Japan) at accelerating voltage 
of 15 kV. The elemental composition was analyzed using 
an X-ray energy-dispersive spectroscopy (EDS) detector 
(IE 300X, Oxford, UK). Thermostability of microcomposite 
was investigated by a Shimadzu thermogravimetric analyzer 
(TG-50, Japan).

Immobilization of Schiff base using functionalized 
microcellulose

Extraction of cellulose and its functionalization by an amine 
group were performed using the methods reported previ-
ously [15]. Then, 2 g of amino cellulose was sonicated in 

methanol for 30 min and 2-hydroxy-5-methyl benzaldehyde 
(3 mmol, 0.4 g) was added. The immobilized aldehydes were 
removed by soxhlet extraction by methanol. The dark-yellow 
product was dried in an oven at 40 °C within 5 h.

Preparation of metal ions solution

Cadmium solutions were prepared by diluting 1000 mg 
cadmium/L stock solution, which was obtained by dissolv-
ing a weighed quantity of cadmium (1.85 g) in sulfate salt 
form, CdSO4 using distilled water. HNO3 (1 M) and NaOH 
(1 M) solutions were used for the pH of each test solutions 
at the start of the experiment [16].

Batch adsorption experiments

Batch systems were applied for biosorption of Cd2+ ions 
from aqueous solutions. The pH, initial ions concentration 
and initial biomass dosage of the medium on the uptake 
capacity were optimized. The effects of these factors on the 
biosorption were investigated at Cd2+ ions concentration of 
50–300 mg/L, biomass dosage of 0.01–0.6 g/L and in the 
pH range of 2.0–8.0. For each experiment, 100 mL of cad-
mium solutions was added in 250 mL Erlenmeyer flasks. To 
acquire equilibrium, known amounts of biomass were added 
to metal solutions and flasks were agitated on a shaker at 
150 rpm constant shaking rate within 60 min [17]. Differ-
ent times (0, 10, 20, 40, and 60 min) were investigated for 
5 mL cell suspension and filtered through 0.25 µm filters. 
Filtered samples were analyzed for residual cadmium ion 
concentration [16]. All the experiments were repeated three 
times and the data presented the average obtained values. 
The limit of experimental error of each duplicates was ± 5% 
and any experiment which resulted in higher than this limit 
was repeated [18, 19]. Metal uptake capacity for the cad-
mium ions was calculated using Eq. 1:

where qe as the metal uptake at equilibrium (mg/g), C0 is 
the initial metal ion concentration (mg/L), Ceq is the con-
centration of the equilibrium metal ion (mg/L), V is solution 
volume (L) and M is the initial concentration of biosorbent 
in the solution (g/L) [20, 21].

Analytical methods

The residual Cd2+ concentrations were analyzed using 
atomic absorption spectrophotometer (Perkin Elmer, USA). 
Elemental analysis was carried out on a Costech 4010 CHNS 
elemental analyzer. FTIR spectrophotometer was used to 
record the FTIR spectra (Nicolet iS10). Scanning electron 
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microscopy (SEM) (Hitachi, s4160, Japan) at accelerating 
voltage of 15 kV was used to investigate the morphology of 
the products. Thermogravimetric analysis (TGA) was car-
ried out by a Shimadzu thermogravimetric analyzer (TG-
50, Japan). 2-Hydroxy-5-methyl benzaldehyde 99% and 
(3-aminopropyl) triethoxysilane (APTS) were purchased 
from Across and EXIR GmbH, respectively. Sesbania ses-
ban was provided from University of Jiroft.

Results and discussion

Characterization of microcomposite

Cellulose was extracted from Sesbania sesban plant and 
modified by (3-aminopropyl) triethoxysilane and 2-hydroxy-
5-methyl benzaldehyde to form Schiff base ligand supported 
on natural cellulose (Scheme 1).

Fourier transform infrared spectroscopy spectra of 
extracted cellulose from Sesbania sesban and microcom-
posite are shown in Fig. 1. This natural cellulose shows the 
absorption bands related to characteristic chemical groups 
bending vibrations and stretching of cellulose. A broad 
band at 3500–3200 and 2900 cm−1 region is related to the 
hydroxyl groups and alkyl groups in cellulose, respectively 
(Fig. 1a). In Fig. 1b, the FTIR of microcomposite in KBr 
matrix revealed the stretching vibrations at 2800–3000 and 
3446 cm−1, attributed to APTS on cellulose. It should be 
noted that the strong absorption band at 1630 cm−1 could be 
assigned to the imine stretching frequency of the coordinated 
ligand. At around 1640 and 1430 cm−1, the presence of water 
absorbed into cellulose fiber structure and CH2 symmetric 
bending in cellulose were confirmed, respectively [22–24].

The surface morphology of microcomposite was evalu-
ated by SEM image (Fig. 2). In this image the fibril structure 
can be observed very well. Figure 3 shows the EDAX of 

Scheme 1   The synthesis proce-
dure of microcomposite
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cellulose and microcomposite to confirm the formation of 
microcomposite from natural cellulose. EDAX analysis of 
microcomposite confirmed the silylation of cellulose and 
immobilized Schiff base ligand on the natural cellulose. In 
the spectra of cellulose C and O and in the spectra of micro-
composite, Si and Fe and Cl peaks were observed (Fig. 3a, 
b). These observations confirmed that chemical modification 
of the cellulose was achieved.

The thermal stability of microcomposite was investigated 
by thermogravimetric analysis. According to the TGA, the 
weight loss of this novel microhybrid occurred in two steps 
after around 100 and 287 °C. The first step was related to the 
removal of physically adsorbed water, and the decomposi-
tion of hydroxyl groups on surfaces. Decrease in weight at 
290 °C was rationalized to decomposition of Schiff base 
followed by oxidation of cellulose (Fig. 4).

The elemental analysis of natural cellulose and micro-
composite is illustrated in Fig. 5. The results are shown 
very well that the nitrogen, carbon and hydrogen content 

of sample have increased significantly, by immobilizing the 
Schiff base on cellulose. This matter confirmed the insertion 
of the ligand onto the extracted cellulose [25].

By comparison, the maximum adsorption capacities of 
cellulose, extracted from Sesbania sesban (3.31 mg/g) with 
microcomposite (9.39 mg/g), ability of coordination of metal 
to oxygen and nitrogen ligand were confirmed (Scheme 2). 
The evidence clearly approved that the chelating sites of the 
modified cellulose can adsorb Cd(II) and this matter can be 
inferred from FTIR of cadmium(II) loaded on microcom-
posite. The strong absorption band at 1630 cm−1 can be 
assigned to the imine stretching frequency of the coordinated 
ligand, whereas for the AC the same band was observed at 
1617 cm−1. The shift of this band toward lower frequency 
on complexation with the metal suggests coordination to the 
metal ion through imine nitrogen atom [26, 27]. When band 
of 3416 cm−1 was shifted to 3410 cm−1, it meant that OH 
of the ligand Schiff base was coordinated to metal (Fig. 6).

Table 1 presents the maximum adsorption capacities 
compared with some recent reports using cellulose or 
amine group modification as different types of adsorbent. 

Fig. 1   FTIR of cellulose extracted from Sesbania sesban (a) and 
microcomposite (b) 

Fig. 2   SEM image of microcomposite

Fig. 3   EDAX of microcomposite

Fig. 4   Thermogravimetric analysis of microcomposite
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The maximum adsorption capacities of this cellulose bear-
ing Schiff base are a highly efficient one for the removal 
of Cd(II) ions compared to other materials. It shows that 
the geometry of the ligand and the high donor properties 
of nitrogen and oxygen toward cadmium have the potential 
as a commercial adsorbent.

Cadmium biosorption process

By changing the pH of the solution the surface charge of 
sorbent can be modified [28]. To find out the optimum pH 
for the adsorption process, the effect of pH 2–8 on adsorp-
tion of cadmium onto microcomposite was considered. 
The results showed clearly that maximum adsorption was 
achieved at pH 4 and the adsorption was increased by 
enhancing pH. It seems that the repulsive forces between 
the metal ions and positively charged (protonated) adsorp-
tive surface were observed at pH 2–4. Biomass has sorp-
tion around 7.16 mg/g uptake capacity at pH 4 for cadmium 
metal ions. This indicates that interaction of the biomass 
with Cd2+ was favorable in the range of pH 3–4 with a maxi-
mum uptake being exhibited at pH 4. At lower pH, the proto-
nation of active sites, imine groups on the adsorbent surface 
takes place resulting in the electrostatic repulsions between 
the metal cations and the protonated groups and prevents 
the adsorption of the metal ions and hence resulting in lower 
metal ion uptake [29, 30]. At higher pH, free imine groups 
are available on the adsorbent for ion-adsorption. The results 
of pH affecting cadmium sorption by microcomposite are 
presented in Fig. 7.

Li et al. [24] investigated the effect of pH on the adsorp-
tion of Cd(II) by orange peel cellulose adsorbents. Results 
showed that the optimum pH range was 5.0–7.0. Also Sara-
vanan et al. reported that the best adsorption of Cu(II) and 
Pb(II) was obtained in pH 6. This value of pH was in the 
middle range of 2–8 [31]. Radi et al. (similar to this study) 
showed that optimum value of pH for cadmium adsorption 
was in the range of 4–5 [23]. Also Boroumand Jazi et al. 
evaluated the influence of pH on the adsorption of Cd(II) in 
the range of 1–9 and high adsorption occurred when the pH 
value was 4 [22].

The effect of biomass dosage on the uptake capacity of 
cadmium from aqueous solution was investigated. In this 
study, the effect of biomass dosage (0.01–0.60 g/L) on 
uptake of cadmium by this novel biopolymer was considered. 
A partial aggregation of biomass was observed at higher bio-
mass concentrations, because of diminishing effective sur-
face area for the biosorption. Uptake capacity in different 
amounts of biomass dosage was very close together, there-
fore, the optimum biomass dosage was selected as 0.01 g/L 

Fig. 5   Analysis elements of extracted cellulose and microcomposite

Scheme 2   The adsorption mechanism of Cd(II) by the microcompos-
ite

Fig. 6   The FTIR of cellulose (a) and microcomposite (b) after 
adsorption of Cd(II)

Table 1   The elemental analysis of natural cellulose and microcom-
posite

Entry Element name Extracted cel-
lulose

Microcomposite

1 Nitrogen 0.38 0.61
2 Carbon 44.14 45.76
3 Hydrogen 5.81 5.97
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for further experiments because of economic costs. The 
results of initial biomass dosage affecting cadmium sorp-
tion by microcomposite are presented in Fig. 8.

The maximum value of biosorption capacity was 
7.45 mg/g in 0.01 g/L initial biomass dosage. We proposed 
that limited availability of metal, increased electrostatic 
interactions, interference between binding sites and reduced 
mixing at higher biomass concentrations could affect the 
adsorption process [30–32]. Similar to this work, results 
from the experiments of Radi et al. showed that the best 
removal of Cu(II) and Pb(II) was obtained in low values 
(lower than 0.03 mg/g) of biosorbent and with increase in 
the biomass dosage, adsorption capacity was decreased [23].

Initial concentration of cadmium can have effect on the 
percentage removal of cadmium. The highest value of uptake 
capacity was 9.39 mg/g with initial ions concentration of 
150 mg/L (Fig. 9). At low cadmium concentrations solution, 
saturation of biomass by active site of biomass could not be 
achieved, as the number of cadmium ions was smaller than 
the number of binding sites present on the biomass. Increas-
ing the concentration of cadmium in the solution enhanced 
the removal till the saturation of biomass was attained. 
The slow increase in uptake capacity at higher concentra-
tions could be related to different concentration gradients 

between the solution and inside of the microbial cells [29]. 
The results obtained for metal adsorption in the initial Cd(II) 
ions concentrations (5–100 mg/L) with Boroumand Jazi 
et al. [22] showed that the optimum adsorption was reported 
in the highest value (100 mg/L) and therefore, biosorbent 
exhibited high quantity of adsorption for high concentration 
of cadmium. This is similar to our present study.

Advantages of microcomposite for cadmium 
adsorption studies in comparison with other 
materials

There are many chemical materials for adsorption of Cd(II) 
from wastewater. Cadmium is very dangerous in environ-
ment, and therefore, many works have been performed on 
removal efficiency of this metal. According to the researches, 
microcomposite and chemical biomasses are suitable cases 
for biosorption. Results of other studies are presented in 
Table 2 and they focus on biosorption of cadmium with 
materials in different pH values, initial ion concentration 
and biomass dosage. In these studies, chemical materials 
have lower uptake capacity in comparison with this micro-
composite. This table has confirmed our results on good 
efficiency of microcomposite for cadmium adsorption from 
aqueous solutions. However, these results have encouraged 
us to consider the change the morphology and fibril structure 
of this microcomposite based on SEM study. The aggrega-
tion of micro-fibril was observed after removal of cadmium 
(II) (Fig. 10).

Conclusion

An extracted environmentally friendly cellulose from Ses-
bania sesban was fabricated through a Schiff base ligand 
with 2-hydroxy-5-methyl benzaldehyde. The structure and 
thermostability of this novel organic–inorganic hybrid 

Fig. 7   The effect of solution pH on the adsorption of cadmium by 
microcomposite

Fig. 8   The effect of initial biomass dosage on the adsorption of cad-
mium by microcomposite

Fig. 9   The effect of initial metal ions concentration on the adsorption 
of cadmium by microcomposite
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was characterized by SEM, IR, EDAX, elemental analy-
sis, and TGA. The application of a biosorbent in uptake 
capacity of cadmium (II) was evaluated. The operating 
parameters, solution pH, initial cadmium concentration 
and initial biomass dosage were effective on the uptake 
capacity of Cd(II). It was shown that good uptake capacity 
of heavy metals form aqueous solution compared to alter-
native described materials. According to the experiments, 
microcomposite could remove as much as 9.39 mg/g of 
Cd2+ from aqueous solution containing 150 mg/L concen-
tration of metal ions, 0.01 g/L biomass dosage and pH 4. 
Cellulose-based organometallic has natural binding capac-
ity for heavy metals. Therefore, simple approach, inexpen-
sive cellulose feed stock, their availability in a large scale, 
high adsorption speed and good adsorption capacity for 
highly efficient removal of cadmium ions from the aque-
ous solution are features of this adsorption system. This 
opens interesting prospects in environmental science for 
water cleaning processes.
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