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Introduction

Graphene, a monolayer with sp2-bonded carbon atoms 
arranged in a honeycomb lattice, has attracted much atten-
tion since the first report of its successful separation from 
graphite by Novoselov et al. in 2004 [1]. It is the thinnest 
and hardest nanomaterial in the world [2, 3]. Because of 
its individual nanostructures and remarkable physical and 
chemical properties [4, 5], it has been considered as a filler 
candidate to improve the integrated properties of polymers 
[6]. The nanomaterials, such as layered clay silicate (mont-
morillonite) [7, 8], SiC [9], SiO2 [10], and carbon nano-
tubes (CNTs) nanoparticles [11, 12], etc., were investigated 
according to the literature in the previous works. Interest-
ingly, graphene and its derivatives are frequently used in 
polymers, such as, poly (methyl methacrylate) (PMMA) 
[13], polyurethane (PU) [14], polyamide (PA) [15], poly-
styrene (PS) [16], polypropylene (PP) [17], bismaleimide 
[18–20], epoxy [21–23], cyanate ester [24, 25] and so on. 
However, two problems with the polymers prevail which are 
as follows: (1) graphene is hard to disperse uniformly in the 
matrices; (2) the interfacial bonding between graphene and 
matrices is weak. Therefore, it is necessary to explore the 
effective methods for graphene functionalization [26, 27].

In this study, cyanate ester (CE) resin was selected as 
the basic matrix because it has remarkable properties, 
such as good dielectric [28–30] and mechanical properties 
[31], excellent thermal stability [32, 33] and good process-
ing characteristics [34], thus it can be a good alternative 
to other thermosetting resins used in the fields of aviation 
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and aerospace, microelectronics, surface mount technology 
(SMT) and electronic printed circuit board (PCB), etc.

In this work, the functional graphene nanoflakes (FGNs) 
were prepared by chemical method. The FGNs/CE/EP 
nanocomposites were prepared via solution intercala-
tion method, and then the comprehensive properties of the 
nanocomposites were investigated.

Experimental

Materials

Bisphenol A dicyanate (BADCy) ester, a white crystal pow-
der, (purity ≥99 %, cyanate equivalent of 139 g/eq), was 
purchased from Jiangdu Wuqiao Resin Factory (Yangzhou, 
China). Bisphenol A epoxy resin, (viscosity: 12,000–15,000 
cp, EEW: 0.51), a colorless, transparent and syrupy liquid, 
was obtained from Xi’an Resin Factory (Xi’an, China). 
Natural graphene flakes were provided by Xinghe Graphite 
Co., Ltd., (Qingdao, China). γ-(2,3-Epoxypropoxy) propyl-
trimethoxysilane was purchased from Sinopharm Chemical 
Reagent Co., Ltd., (Xi’an, China). The potassium perman-
ganate (KMnO4), sulfuric acid (H2SO4, 98 %), absolute 
ethyl alcohol and acetone were obtained from Xi’an Chem-
ical Reagent Factory (Xi’an, China).

Preparation of graphene oxide (GO)

Graphene oxide (GO) was synthesized from natural gra-
phene through Hummers’ method according to the litera-
ture procedure [35]. The steps were as follows: 3.0 g natu-
ral graphite flakes, 3.0 g NaNO3 and 147 mL concentrated 
H2SO4 were mixed with stirring in an ice-water bath. 
Then, 18 g KMnO4 was added into the mixture slowly. 
In the next step, the solution was stirred for 3 h at 35 °C 
to form a thick paste. Deionized water of 120 mL was 
injected into the thick paste slowly and the resulting solu-
tion was stirred for 30 min while the temperature increased 
to 85 °C. Finally, 750 mL deionized water containing 
30 mL H2O2 was added until the color turned into brown-
ish yellow, followed by filtering the solution before cool-
ing. After that, the filter cake was washed with deionized 
water several times until its pH was neutral and dried in 
a vacuum oven at 60 °C for 24 h. The GO was sealed and 
stored at room temperature for further use.

Preparation of the functional graphene nanoflakes 
(FGNs)

100 mg GO was heated in a tube furnace at 1050 °C for 
30 s, and then cooled at room temperature. The resultant 
product was denoted as graphene (GN).

100 mg GN was dispersed in 100 mL absolute ethyl alco-
hol (1 mg/mL), and sonicated for 1 h. Next, 10 mL of 95 % 
ethanol solution with 0.5 g γ-(2,3-epoxypropoxy) propyltri-
methoxysilane was added slowly with continuous stirring at 
65 °C for 24 h. Finally, deionized water was used to filter 
and wash the filter cake several times to remove the unre-
acted coupling agent. The filter cake was dried in an oven 
to obtain functional graphene nanoflakes, denoted as FGNs. 
Then, xFGNs (x = 0.5, 1.0, 2.0, and 3.0 wt%) were dispersed 
in acetone (1 mg/mL) and sonicated for 5 h for further use.

Preparation of CE/EP copolymer

The cyanate ester (CE) monomer was stirred at 130 °C for 
1 h, and then appropriate epoxy (EP) was incorporated into 
the liquid and stirred at 100 °C for 2 h to form a homogene-
ous prepolymer, which was denoted as CE/EP prepolymer. 
After that, the mixture was degassed to remove entrapped 
air at 100 °C for 30 min in a vacuum oven. Finally, the mix-
ture was poured into a mold, the inner surface of which was 
coated with Teflon release paper. The cure and post-cure 
processes followed the protocol: 180 °C/2 h + 200 °C/6 h 
and 220 °C/4 h, successively.

Preparation of FGNs/CE/EP nanocomposites

The pre-weighed xFGNs were added into the CE/EP pre-
polymer, prepared according to the above procedure, and 
stirred at 100 °C for 1 h. The residual acetone was evapo-
rated with vacuum distillation. The mixture was degassed 
to remove entrapped air at 100 °C for 30 min in a vac-
uum oven, and then the mixture was poured into a mold, 
the inner surface of which was coated with Teflon release 
paper. The cure and post-cure processes followed the proto-
col: 180 °C/2 h + 200 °C/6 h, and 220 °C/4 h, successively.

Characterizations and measurements

Differential scanning calorimeter (DSC)

Differential scanning calorimeter (DSC) 700 (A Mettler 
Toledo Instruments, Switzerland) was used to character the 
prepolymer. Each sample weighed 5–10 mg and was placed 
in sealed aluminum crucible under N2 atmosphere at a 
60 mL/min flow rate. The samples for non-isothermal scans 
were heated from room temperature to 350 °C at different 
heating rates of 5, 10, 20, and 30 °C/min, respectively.

Mechanical properties

The mechanical properties of the samples including unnotched 
impact (Izod) and flexural strength were tested using an 
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Instron Universal Testing Apparatus (USA), according to 
GB/T2571-1995 and GB/T2570-1995 and the dimensions of 
impact and flexural test specimens were 80 × 10 × 4 mm3 
and 80 × 15 × 4 mm3, respectively. Meanwhile, at least five 
samples needed to be prepared for each measurement.

Scanning electron microscopy

The flexural and impact fractured surfaces of the specimens 
were observed using a Quanta 200 SEM (USA) at an accel-
erated voltage of 20 kV. All the specimens were dried at 
65 °C for 24 h, and then they were coated with a thin layer 
of Au for SEM imaging.

Dielectric properties

The dielectric properties of the specimens were tested with 
a S914 broadband dielectric loss spectrometer (QBG-3D, 
China). Each specimen had the thickness of 2 mm and 
diameter of 27 mm.

Thermogravimetry analysis (TGA)

Thermal analysis of the specimens was performed with 
a Q50 TGA (TA Instrument Co., USA) from room tem-
perature to 800 °C with heating rate of 20 °C/min, in N2 
atmosphere.

Results and discussion

Dynamic DSC analysis

Figure 1 presents the detail of non-isothermal DSC curves 
including the CE/EP and CE/EP/FGNs prepolymers at the 
heating rates of 5, 10, 20, and 30 °C/min, respectively. The 
exothermic peaks are upwards. In Fig. 1, the temperatures 
corresponding to the peak of CE/EP/FGNs prepolymer are 
lower than those of CE/EP at the same heating rate. The 

Fig. 1  The comparison of DSC 
curves between the CE/EP and 
the CE/EP/FGNs prepolymers 
at different heating rates, a 
5 °C/min, b 10 °C/min, c 20 °C/
min and d 30 °C/min

Fig. 2  Mechanical properties of FGNs/CE/EP nanocomposites
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Scheme1  The reaction mecha-
nism of CE and EP as well as 
the structure of the FGNs/CE/
EP nanocomposites a the reac-
tion mechanism of CE and EP 
and b the structure of the FGNs/
CE/EP nanocomposites
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result of the comparison clearly indicates that the FGNs 
have catalytic effect on the curing process of the CE/EP/
FGNs prepolymer.

Mechanical properties of the FGNs/CE/EP 
nanocomposites

The mechanical properties of the FGNs/CE/EP nanocom-
posites with various FGNs contents are shown in Fig. 2. It 
can be seen that the flexural and impact strength increase in 
the initial phase. The flexural and impact strength with 2.0 
wt% FGNs reach up to the maximum values, 170.8 MPa 
and 15.5 kJ/m2, i.e., by 1.17 times and 1.21 times, respec-
tively. However, the curves slightly decrease by further 
increasing of the FGNs content. It is believed that the 
incorporation of appropriate FGNs content in the FGNs/
CE/EP nanocomposites improves their mechanical prop-
erties. A detail polymerization mechanism analysis con-
ducted to examine the results is that: the silane coupling 

agent, as a “bridge” group, can react with the hydroxyls of 
the graphene surface and isocyanate groups of the matrix, 
forming strong interfacial bonding between different com-
ponents [36]. The reaction mechanism of the CE and EP 
as well as the structure of the nanocomposites is shown in 
Scheme 1, respectively.

The variation of the flexural modulus versus the content 
of FGNs and the variation of deflection versus the content 
of FGNs at break are shown in Figs. 3 and 4, respectively. 
It can be seen that for the FGNs/CE/EP nanocomposites, 
the flexural modulus and deflection achieve the maximum 
value with 2.0 wt% FGNs content, corresponding to the 
result of the flexural strength in Fig. 2. Figure 5 shows the 
strain–stress curves of the FGNs/CE/EP nanocomposites 
at various FGNs contents. From Fig. 5, it can be seen that 
for the FGNs/CE/EP nanocomposites, the stress-at-break 
increases with the FGNs content (2.0 wt% FGNs), while 
the strain-at-break decreases initially and then it increases 
with increasing the FGNs content.

SEM micrographs of the FGNs/CE/EP nanocomposites

Typical images of the flexural and impact fracture surfaces 
on the FGNs/CE/EP nanocomposites with different FGNs 
contents are displayed in Fig. 6. The flexural fracture sur-
faces of the FGNs/CE/EP nanocomposites with 0, 1.0 and 
3.0 wt% FGNs contents are shown in Fig. 6a–c, respec-
tively. The impact fracture surfaces of the FGNs/CE/EP 
nanocomposites with 0, 1.0 and 3.0 wt% FGNs contents 
are shown in Fig. 6d–f, respectively. The CE/EP copolymer 
exhibits river, tongue and scales patterns (Fig. 6a, d), sug-
gesting a typical brittle feature. Meanwhile, rougher sur-
faces are observed in the fracture surfaces of the FGNs/CE/
EP nanocomposites with various FGNs contents. Dimple 
zones like sea waves, smaller scales and fibrous patterns 
are observed in the fracture surfaces of the FGNs/CE/EP 

Fig. 3  Variation in flexural modulus versus the FGNs content

Fig. 4  Variation in deflection versus the FGNs content

Fig. 5  Stress–strain curves
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nanocomposites, indicating that the fracture surfaces have a 
typical tough feature.

Dielectric properties of the FGNs/CE/EP 
nanocomposites

It is well known that the remarkable dielectric property 
is one of the most desirable properties for the cyanate 

resin and its derivates. The dielectric properties of the 
FGNs/CE/EP nanocomposites are shown in Fig. 7. For 
the FGNs/CE/EP nanocomposites, the dielectric con-
stant increases and the dielectric loss factor enhances 
significantly with 2.0 wt% FGNs content. The reasons 
are that the dielectric loss of the FGNs and the inter-
face polarization between the FGNs and the matrix are 
large.

Fig. 6  SEM images of the 
flexural fracture surfaces and 
the impact fracture surfaces 
corresponding to the FGN/CE/
EP system with various FGNs 
contents. Flexural fracture 
surfaces: a 0 wt% FGNs, b 
1.0 wt% FGNs and c 3.0 wt% 
FGNs; Impact fracture surfaces: 
d 0 wt% FGNs, e 1.0 wt% 
FGNs and f 3.0 wt% FGNs
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TG analysis

The thermal degradation behaviors of the pure CE resin, 
CE/EP copolymer and FGNs/CE/EP nanocomposites with 
different FGNs contents were evaluated by TG in combi-
nation with DTG analyses. The curves of TG and DTG 
are presented in Fig. 8a, b, respectively. The characteris-
tic temperatures T5 %, Tmax and Tfinal of the FGNs/CE/EP 
nanocomposites obtained from TG analysis are shown in 
Table 1. From Fig. 8a, the weight loss increases gradually 
from 300 to 600 °C and the nanocomposites show higher 
char residue than that of the CE/EP copolymer, but lower 
than that of pure CE resin. Thus, the addition of FGNs 
increases the thermal stability of the FGNs/CE/EP nano-
composites. This is because the macromolecular chain sta-
bility of the FGNs/CE/EP nanocomposites is enhanced by 
the interfacial bonding between the FGNs and the matrix. 
Figure 8b shows that the thermal degradation temperatures 

corresponding to the peaks enhance slowly with increasing 
the FGNs content. The thermal degradation temperatures 
of the FGNs/CE/EP nanocomposites are higher than that 
of the CE/EP copolymer, but lower than that of pure CE 
resin as well. These phenomena indicate that the addition 
of FGNs improves the thermal stability of the FGNs/CE/EP 
nanocomposites.

Conclusion

Functional graphene nanoflakes were employed as fill-
ers to improve the integrated properties of the FGNs/CE/
EP nanocomposites. The results described that the FGNs/
CE/EP nanocomposites with appropriate FGNs contents 
had excellent comprehensive properties. The flexural and 
impact strength of the FGNs/CE/EP nanocomposites with 
2.0 wt% FGNs content reached 170.8 MPa and 15.5 kJ/

Fig. 7  Dielectric constant and 
dielectric loss of the FGNs/
CE/EP nanocomposites with 
different FGNs content from 
10 to 60 MHz, respectively; a 
dielectric constant versus FGNs 
content and b dielectric loss 
versus FGNs content

Fig. 8  TG-DTG curves of pure 
CE resin, CE/EP copolymer 
and the CE/EP/xFGNs system 
(x = 0.5, 1.0, 2.0, and 3.0 wt%); 
a TG curves and b DTG curves

Table 1  Characteristic 
temperatures of FGNs/CE/EP 
nanocomposites obtained from 
TG analysis

Pure CE CE/EP CE/EP/0.5FGNs CE/EP/1.0FGNs CE/EP/2.0FGNs CE/EP/3.0FGNs

T5 % 289.8 254.2 297.2 300.6 282.6 289.0

Tmax 525.5 417.9 417.0 412.9 412.7 416.1

Tfinal 838.2 838.5 838.6 838.3 813.6 813.7
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m2, respectively. The dielectric and thermal properties of 
the FGNs/CE/EP nanocomposites with 2.0 wt% FGNs 
increased as well. Therefore, the incorporation of the 
FGNs into the CE/EP copolymer had a significant effect 
in improving the physical and chemical properties of the 
nanocomposites. The FGNs acted not only as a catalyst in 
the whole curing process, but also as a reinforcing agent in 
the FGNs/CE/EP nanocomposites.
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