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Introduction

Polyurethanes (PUs) are among the most useful commer-
cial classes of polymers which are widely used in both 
engineering and consumer products like coatings, adhe-
sives, reaction molding plastics, fibers, foams, rubbers, 
thermoplastic elastomers, and composites [1, 2]. Polyu-
rethane elastomers (PS) show excellent mechanical and 
elastic properties because of their microphase separated 
structure [3], but they have low thermal stability. From an 
application point of view, thermal stability is one of the 
most important properties, which has attracted considerable 
attention in the literature over the past decades [4, 5]. PUs 
are commonly known to be thermally stable up to 250 °C, 
and their decomposition is initiated at hard segments of 
urethane linkages [6].

Degradation may cause serious problems to these poly-
meric materials during service life at elevated temperatures. 
Preparing polyurethane block copolymers modified with 
polyamides, polycarbonate-polyurethanes, hard segments 
based on aromatic diamine groups, and soft segments based 
on polybutadiene, polyisobutylene, and polydimethylsilox-
ane is one of the most promising strategies to overcome 
these disadvantages [7].

Polysiloxanes are versatile materials used in many appli-
cations due to the diversity of properties and processing 
technologies. They have unique combination of properties, 
which is related to their chemical structure and macromo-
lecular architecture [8–10].

Polydimethylsiloxane (PDMS) is an important exam-
ple of this class of polymers. Such materials may find uses 
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as materials with desired thermal, optical, electrical, and 
mechanical properties.

According to the literature, polyurethane–siloxane poly-
mers could be obtained in form of linear copolymers, inter-
penetrating polymer networks as well as classical polymer 
blends. These materials contain the main advantages of 
both urethane and siloxane moieties, i.e., good elasticity 
and tensile strength which are characteristic of PUs, and 
high elasticity (especially at low temperatures) combined 
with good thermal and chemical stability which are attrib-
uted to the structure of polysiloxanes [11]. The influence 
of different polydimethylsiloxanes on lowering the value of 
free surface energy of PUs is also significant [6].

The thermal degradation and stability of polydimethyl-
siloxane-based PUs have been extensively investigated 
because of the great importance of the PU which lies in its 
ease of processing and diversity of applications [12, 13].

Saunders has shown that a urethane segment may 
degrade in three general degradation steps: (1) dissociation 
to isocyanate and alcohol, (2) formation of primary amine, 
carbon dioxide, and olefin, and (3) formation of second-
ary amine [14]. However, the mechanism of degradation of 
PU, that forms products such as amines, olefins, and carbon 
dioxide, remains somewhat unclear [15].

Lal and co-workers calculated the degradation activa-
tion energy of PUs containing various feed loadings of 
non-linear optical chromophore [16]. They concluded that 
values of the activation energies are directly proportional 
to feed concentration. Gupta has studied the thermal degra-
dation profile of hydroxyl-terminated polybutadiene-based 
polyurethane–urea as a function of chain extender concen-
tration [17]. The accelerated aging of polyurethane in air 
has shown to be a source of reduction in tensile strength 
with time.

Gopalakrishnan and co-worker calculated the activation 
energy of polyurethane by two kinetic models and com-
pared the results [18].

Yeh et al. investigated the thermal degradation of 
poly(ether-urethane) and poly(siloxane-urethane) copoly-
mer by TG-FTIR analysis [7].

Król and co-workers focused on the degradation steps of 
a polyurethane siloxane. They revealed that the activation 
energy increased as a result of siloxane introduction into 
the PU chains [6].

In the present work, first, polyurethane–ureas based on 
PDMS diol (PUUS), PTMG diol (PUUR), and a combi-
nation of PDMS/PTMG diols with a molar ratio of 20/80 
(PUUSR) were synthesized by reaction with a diamine 
chain extender, 4,4′-methylene-bis(3-chloro-2,6-diethyl-
aniline) (M-CDEA), and the chemical characterization of 
the polymers obtained was carried out using ATR-FTIR. 
Then, the thermal stability of the polymers was examined 

by thermogravimetric analysis (TGA), and the activation 
energy for each step of degradation was established by five 
isoconversional approaches, namely Flynn–Wall–Ozawa 
(FWO), Kissinger–Akahira–Sunose (KAS), Starink, Fried-
man, and Vyazovkin methods.

Although many works have been reported on the thermal 
stability of PUs in the literature [19, 20], to the best of our 
knowledge, this is the first report on the study of PDMS 
and PTMG-based polyurethane synthesized with M-CDEA 
chain extender.

Experimental

Materials

Hydroxyl-terminated PDMS (with number average molec-
ular weight of 2500 g/mol) was obtained from Evonik 
(Germany) and methylenediphenyl diisocyanate (MDI) of 
Merck (Germany) was used as received. Polytetramethyl-
ene ether glycol (with number average molecular weight 
of 2000 g/mol) was purchased from Merck. All the diols 
were dried thoroughly under vacuum for at least 12 h prior 
to synthesis. M-CDEA was purchased from Lonza group 
(Switzerland) and used as received. Tetrahydrofuran (THF) 
and toluene were dried over sodium, and dimethylforma-
mide (DMF) was dried over CaH2.

Synthesis of polyurethane–urea thermoplastic 
elastomers

The polyurethane–urea thermoplastic elastomers (PUUs) 
were synthesized by a two-step solution polymerization 
method. Molar ratios of polyols, isocynate, and chain 
extenders were kept constant at 1:2:1. A typical two-step 
solution polymerization procedure was performed as was 
reported in our previous work [11]. Briefly, molten MDI 
was poured in a three-necked round flask equipped with 
a stirrer, nitrogen inlet, and an additional funnel, and the 
flask was placed in an oil bath at 68–70 °C. The macro-
diol, PDMS (1 mol), in the mixture (50:50 v/v) of dried 
THF and toluene was added to the flask. After mixing for 
2 h, the solution of M-CDEA in dried DMF was added 
into the reactor and the obtained viscous polymer was 
immediately cast in a Teflon mold and cured for 24 h in 
an oven at 100 °C PUUS. The same method was applied 
for the preparation of PUUR, a polyurethane–urea based 
on PTMG; and PUUSR, a mixture of PTMG/PDMS 
diols (0.8/0.2 mol). The formulations of the prepared 
polyurethane samples are tabulated in Table 1 and their 
chemical structures and the reaction of PUU are given in 
Scheme 1.
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Characterization

Fourier transform infrared spectroscopy (FTIR)

FTIR analysis was performed on a Bruker Equinox spec-
trometer (Germany) equipped with a Golden Gate single 
reflection ATR-FTIR attachment (attenuated total reflec-
tion) accessory. The resolution for all the infrared spectra 
was 4 cm−1, and there were 16 scans for each spectral 
run. The test specimens were in the form of polymeric 
sheets.

Thermogarvimetric analysis (TGA)

The thermal stability of PUUs was investigated using a 
Mettler Toledo/DSC/TGA1 (UK). The heating rates of 5, 
10, 15, and 20 °C/min were applied up to 700 °C under 

nitrogen gas. The weight of the sample was around 10 mg 
for each heating rate.

Results and discussion

Figure 1 shows ATR-FTIR spectra for polyurethane–urea 
samples containing different soft segments. As it can be 
seen in this figure, the absorption peaks of NCO groups 
at 2270 cm−1 and the wide peaks related to diol hydroxyl 
groups at 3300–3500 cm−1 are disappeared after comple-
tion of synthesis. Sharp absorption bands appeared at 3300, 
1729, 1645, and 1530 cm−1 are, respectively, related to 
NH, urethane, urea, and –CNH groups [21]. These results 
confirm the reaction between polyol and isocyanate. The 
absorption bands in a typical ATR-FTIR spectrum of silox-
ane-containing copolymer consist of 1260 cm−1 (sym. 

Table 1  Constituent 
components in the synthesis of 
polyurethane–ureas

* Hard segment content: (wt%) = (MDI + M-CEDA)/(MDI + M-CEDA + PTMG + PDMS) × 100

Sample code Diisocyanate (g) Chain extender (g) Polyol (g) Hard segment  
content (%)*

MDI M-CEDA PDMS PTMG

PUUS 5.01 3.78 25.00 – 26

PUUR 5.01 3.78 – 20.00 30

PUUSR 5.01 3.78 5.00 16.00 29.5

Scheme 1  Chemical structures of PUUs
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CH3 bending), 1020 and 1100 cm−1 (Si–O–Si stretching), 
803 cm−1 (CH3 rocking), 3320 cm−1 (urea N–H stretch), 
1645 cm−1 (H-bonded urea C=O), which are assigned 
to the urea linkage, 3331 cm−1 (urethane N–H stretch), 
1703 cm−1 (H-bonded urethane C=O), 1080 cm−1 (C–O–C 
aliphatic ether stretching), and 1595 cm−1 and 1412 cm−1 
(C–C aromatic ring stretching).

TGA was used to examine the thermal degradation 
steps of the materials. TGA decomposition information 
can be used to predict the useful life times of polymeric 
materials. Samples are heated at three or more different 
heating rates, because the use of the different heating 
rates changes the time scale of the decomposition event. 
The faster the applied heating rate, the higher the given 
decomposition temperature becomes. This approach 
establishes a link between time and temperature for the 
polymer decomposition and provides beneficial informa-
tion which can be used to model the decomposition kinet-
ics [22].

The TGA measurements of the polymers were per-
formed at four different heating rates of 5, 10, 15, and 
20 °C/min. In Fig. 2, a typical TGA thermogram of the syn-
thesized PUUs at 10 °C/min is illustrated. As it can be seen 
in this figure, all samples show a three-step degradation 
process. The first and second steps of decomposition for 
all polymers occurred at more or less similar temperatures. 
The first degradation step occurred between about 270 and 
330 °C which can be attributed to the thermal cleavage of 
the urethane bonds [22, 23]. The second step between 330 

and 390 °C can be assigned to the thermal cleavage of the 
chain extender in the PUUs [24]. The corresponding over-
all weight loss for these two stages is about 30 % with a 
slightly smaller value registered for PUUS. The results are 
in good agreement with the theoretical calculated data of 
hard segments for each individual polymer (Table 1). In 
contrast, the third degradation step of PUUS occurred at 
a much higher temperature compared to that of the PUUR 
and PUUSR. Since the degradation of the third step is 
accounted for the polyol segment chain scission, a signifi-
cantly higher degradation temperature is predictable for the 
PDMS-containing formulations because of the relatively 
high thermal stability of PDMS.

Onset temperatures of the first, second and third steps 
of degradation as well as ash content are deduced from the 
TGA curves and presented in Table 2 for all samples. As it 
is expected, the initial degradation temperatures of all the 
three degradation steps increase with heating rate. As it can 
be seen, the thermal stability of the polymer based on just 
siloxane diol is significantly higher than the others.

The thermal degradation kinetics of the synthesized 
polyurethane–ureas were investigated, and the activa-
tion energy of each polymer was estimated using TGA 
data. The activation energy of degradation at each single 
step of weight loss was established through five methods, 

Fig. 1  ATR-FTIR spectra of polyurethane–ureas

Fig. 2  A typical TGA/DTG thermogram of the synthesized polyure-
thane–ureas at a heating rate of 10 °C/min
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namely FWO, KAS, Starink, Friedman, and Vyazovkin, 
and the last was used to provide valid data for activation 
energy.

Flynn–Wall–Ozawa method (FWO)

FWO is an isoconversional method based on the measure-
ment of the temperature (T) in a given value of conversion 
(α). In this method, a set of experiments conditioned by dif-
ferent rates of heating (β) is used to calculate the activation 
energy at any particular value of α (Eα). The Eα is calcu-
lated using the following equation:

where R is universal gas constant. Here, it is noticeable that 
a change in Eα value as a function of α can be explained by 
a multi-stage reaction mechanism [25, 26].

Kissinger–Akahira–Sunose (KAS)

The next isoconversional method used in this study is the 
KAS method developed based on Eq. (2):

Similar to FWO, the Eα can be calculated without the 
need for the conversion-dependence function (f (α) or g 
(α)). The activation energy is calculated using the slope of 
the curve of ln (β/T2) versus 1/T [27].

Starink method

Starink showed that the KAS equation (Eq. 2) can be 
improved to a somewhat more accurate expression [27]. 
Starink assumed that the transformation rate is the product 

(1)ln β = Const− 1.052
Eα

RT
,

(2)ln

[

β

T2

]

= Const−
Eα

RT
.

of the absolute temperature and the fraction transformed 
and derived the following equation:

Friedman method

The Friedman method, a differential isoconversional 
method, is used to calculate the activation energy at any 
given conversion using the following equation [28]:

In this method, the value of Eα is determined from the 
slope of the curve of ln (β dα/dt) against 1/T.

Vyazovkin method

The Vyazovkin method is an advanced integral isoconver-
sional method for analysis of Eα-dependent mechanisms 
and process kinetics prediction [29]. For avoiding prob-
lems and inaccuracies associated with most isoconversional 
computational methods, such as KAS, FWO and Starink 
methods, this advanced approach is adopted in our work. 
According to this method for a set of n experiments, carried 
out at different arbitrary heating programs Ti(t), the activa-
tion energy is determined at any particular value of α by 
fitting the value of Eα that minimizes the Ф(Eα) given in the 
following equation [30, 31]:

(3)ln

[

β

T1.92

]

= Const− 1.0008
Eα

RT
.

(4)ln

(

β.
dα

dt

)

= Const−
Eα

RT
.

(5)Φ(Eα) =

n
∑

i=1

n
∑

j �=i

J
[

Eα , Ti(tα)
]

J
[

Eα , Tj(tα)
] ,

(6)
J
[

Eα , Ti(tα)
]

=

tα
∫

tα−�α

exp

(

−Eα

RTi(t)

)

dt.

Table 2  Thermal properties of 
polyurethane–ureas

T1 Onset temperature of degradation for in the first step, T2 Onset temperature of degradation for the sec-
ond step, T3 Onset temperature of degradation for the third step, 1 Heating rate = 5 °C/min, 2 Heating 
rate = 10 °C/min, 3 Heating rate = 15 °C/min, 4 Heating rate = 20 °C/min

Sample code T1 (°C) T2 (°C)

1 2 3 4 1 2 3 4

PUUS 259 264 275 282 328 342 358 358

PUUR 270 274 284 287 330 348 360 367

PUUSR 272 274 285 284 336 351 361 369

Sample code T3 (°C) Ash content (%)

1 2 3 4 1 2 3 4

PUUS 413 433 431 436 6.8 6.1 6.5 6.4

PUUR 392 399 410 416 4.3 3.2 4.7 4.1

PUUSR 390 404 413 419 4.6 4.5 4.2 4.4
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Equation (6) is evaluated numerically, using the trape-
zoidal rule, for a set of experimental heating programs. A 
computer code was developed based on genetic algorithm 

to minimize Φ(Eα), as defined in Eq. (5), for α values 
between 0.01 and 0.99 with a step of ∆α = 0.01.

The activation energy values of degradation for the PUU 
samples calculated by OFW, KAS, Starink, Friedman, and 
Vyazovkin methods are presented in Fig. 3. The plots imply 
that the thermal degradation kinetics of the samples com-
prised at least three stages. The obtained results of Fried-
man method are in agreement with the Vyazovkin results 
due to introduction of conversion rate in the both equations, 
while the results of KAS, Starink, and FWO methods are 
more or less similar. The first step is actually associated 
with depolycondensation of urethane linkages (–OCONH–) 
[23]. In the second degradation step, i.e., in the conversion 
interval 0.2–0.4 which is associated to the adsorption of 
volatile fragments, the activation energy increases, since 
the process is diffusion controlled. The degradation of pol-
yol occurs in the third step.

In the second and third steps, the activation energies 
obtained by Friedman and Vyazovkin methods are larger 
than those obtained by KAS, Starink, and OWF methods, 
while in the first step, this is vice versa.

As it is expected, the thermal degradation of PUUS in 
the third step takes place at much higher temperature com-
pared to the PUUR and PUUSR, but the associated activa-
tion energy is lower for PUUS polymer. This is due to the 
nature of the depolymerization of PDMS which is mainly 
governed by the molecular structure and kinetic considera-
tions instead of bond energies. As Camino et al. reported, 
PDMS thermally degrades into volatile cyclic oligomers 
via chain-folded scission of Si–O bonds by oxygen-cata-
lyzed depolymerization [32]. Silicon d-orbital participation 
was postulated with siloxane bond rearrangement leading 
to the elimination of cyclic oligomers and chain shorten-
ing. As it is shown in Scheme 2, this mechanism is clarified 
by formation of the smallest cyclic product, hexamethylcy-
clotrisiloxane [33].

Conclusion

A series of segmented poly(urethane–urea) block copoly-
mers were synthesized via a two-step solution polymeriza-
tion which PDMS, PTMG and mixture of PDMS/PTMG 
were used as diol and MDI and M-CDEA were, respec-
tively, used as diisocyanate and chain extender. FTIR spec-
tra confirmed that the reaction had taken place between 

Fig. 3  Activation energy versus conversion for the degradation of 
PUUS, PUUR, and PUUSR

Scheme 2  Depolymeriza-
tion mechanism of PDMS by 
random scission [32]
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the polyol and isocyanate. Degradation of the synthesized 
copolymers were investigated using TGA experiments 
at 4 different heating rates, and the degradation kinet-
ics were studied by five isoconversional methods includ-
ing KAS, Starink, FWO, Friedman, and Vyazovkin. The 
results showed that the thermal degradation process of the 
copolymers comprised at least three stages. It was found 
that there were relatively similar results had obtained by 
the five methods. The differential isoconversional Friedman 
method was in a good agreement with the integral isocon-
versional Vyazovkin method.
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