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Introduction

Polymer nanocompsites have attracted a lot of attention due 
to their high performance which is attributed to the drastic 
enhanced effects of nanoparticles on mechanical proper-
ties. However, they excel other common counterpart-com-
posites in lighter weight and less required reinforcements. 
Consequently, many investigations have been carried out to 
model the mechanical properties of this group of materials. 
Halpin presented a model for laminated systems assuming 
randomly oriented fibers in a matrix [1, 2]. Other research-
ers have intended to develop the theory of a rigid dispersed 
phase in a non-rigid matrix, based on Einstein’s equation to 
calculate the viscosity of a suspension of rigid inclusions 
[3–5]. Assuming interactions between the dispersed parti-
cles, Deng et al. [6, 7] proposed a model termed as “inter-
action direct derivation” (IDD), in which Eshelby tensors 
were used to impose the influence of particle shape in the 
model. Takayanagi [8] introduced another model assum-
ing the semi-crystalline polymers consisting of amor-
phous and crystalline phases used for polymer composites, 
blends, and also nanocomposites. Jianfeng et al. [9] pro-
posed a straight forward analytical approach to estimate the 
mechanical properties of polymer nanocomposites. Their 
model could treat nanocomposites comprised of nanoparti-
cles as isolated or aggregated dispersed phase.

Based on different assumptions, there are further mod-
els which describe the mechanical response mechanisms 
of polymer nanocomposites against applied stresses. How-
ever, a nanocomposite consists of three different phases 
(matrix, interface, and reinforcing phase). By enhanc-
ing the mechanical properties, interface plays a remark-
able role in nanocomposite systems. Most of the intro-
duced models suffer from lack of accuracy in the final 
results caused by ignoring the interface region which 
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has an irrefutable quota in nanocomposites’ mechanical 
properties. By taking into account the interface region in 
Takayanig’s model, Xiang et al. [10] found better agree-
ment and more reliable results in mechanical properties 
of the nanocomposites. Deng et al. [11] considered effec-
tive particles, comprised of nanoparticles and interface 
factor, to simplify the calculation procedure. This was a 
new approach in which a nanocomposite can be consid-
ered as a convenient short- or long-fiber composite. In the 
case of platelet and cylindrical nanoparticles, the orienta-
tion should be considered as an important factor. Xing et 
al. have assumed two vertical and perpendicular orienta-
tions of particles to the direction of exerted stress which 
certainly improves the results. This parameter has a key 
role by which the accuracy of model can be affected. In 
this work, random orientation of nanoparticles in a nano-
composite is assumed to be comprised of interface region. 
It is essential to find out that how an exerted stress works 
on the interface region due to the orientation angle. Unlike 
the recently published works, a basically different model is 
presented here which describes the mechanical properties 
of all specific composites comprised of plate-like, cylin-
drical, or spherical nanoparticles. The thickness of inter-
face and the modulus of the surface of nanoparticles are 
two important parameters which both directly affect the 
properties. In this study, a numerical approximation sys-
tem (NAS) is proposed to predict the mechanical proper-
ties of nanocomposites including the influence of effective 
parameters. Furthermore, based on the error value, more 
than one possible answer could be found for the interface 
thickness and the modulus of the surface of nanoparticle. 
Therefore, the best answer could be reasonably chosen. 
Bonding between the functions on the surface of a nano-
particle and the corresponding groups on the polymer 
chain causes a variation of modulus in normal direction 
of nanoparticle surface. This effect continues towards the 
end of interface region where after the modulus does not 
change any more.

Samples of PA/Cloisite 30B were prepared to check the 
accuracy NAS model. Besides, other data from correspond-
ing investigations were also used to prove the generality of 
our model.

Model background

NAS model can be proposed in three different sections:

1.	 Nanocomposites including platelet nanoparticles.
2.	 Nanocomposites including cylindrical nanoparticles.
3.	 Nanocomposites including spherical nanoparticles.

Equivalent box model (EBM) is used in order to sim-
plify the assumed geometrical structure of NAS model [8, 

12]. The variation of modulus at the interface is assumed 
to be linear to simplify the calculation of modulus which 
characterizes the mechanical properties of this region. 
Here, the constituted particles in the polymeric matrix are 
considered to be fully exfoliated, which is a general pre-
sumption for the given sections which are totally reliable at 
low content of dispersed phase and good mixing. Interface, 
nanoparticle, and matrix region are assumed to be isotropic 
in nanoscale as well as nanocomposite in macroscale. In 
interface region, the bonding between nanoparticle and 
matrix is extremely stiff which loses its failure possibil-
ity during the exposure to any stress. Modeling algorithm 
is based on unidirectional exposed stress on the surface of 
nanocomposite, whereas the dispersed phase is assumed to 
be randomly oriented and the direction of exerted stress is 
ignorable. Scheme  1 illustrates a flowchart describing the 
whole analytical process.

Consideration of a hypothetic geometrical 
shape corresponding to the nanocompostite

Derivation of main equation related to the 
responding mechanism against exerted stress

Formulation of volume fractions of different 
parts of EBM model based on random 

orientation angle ( β )

Integration from main equation in the interval 

of 0 to 
2

π
,in order count for the influences of 

Indication of Equivalent Box Model (EBM) 
to discretize the hypothetic geometrical shape

Comparison of model prediction to the actual 
results from tensile test

Scheme 1   Flow chart describing the whole analytical process under 
study
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Nanocomposites comprised of platelet nanoparticles

Figure  1 illustrates the proposed model schematically, 
which consists of nanoparticle, interface, and matrix 
phases. Each region is considered as a discrete part which 
acts separately based on its volume fraction. The orienta-
tion angle of nanoparticles to the direction of exerted stress 
is indicated as β, which is in the range of 0°–90°.

EBM model is used to show how three different constit-
uent parts are arranged in series (Fig. 2). For each A, B, and 
C sections in Fig. 2, the volume fractions are as follows:

where k and z are the model parameters.
As shown in Fig.  3, increasing β to the values higher 

than 0°, the exerted stress (σ) will be segregated into two 

(1)

φA = 1 − k

φB = k − z

φC = z,

different stress components which are, σ sin(β) and σ 
cos(β) (Fig. 3).

Subsequently the strain corresponding to each section of 
EBM model is

where σ is the unidirectional exerted stress, EM, Ei, and EN 
are the modulus of polymeric matrix, interface region, and 
nanoparticle, respectively.

Final strain of the components in series arrangement:

While there are two perpendicular stress components, 
it can be helpful to use Poisson’s ratio to correlate two 
induced strains on different directions. However, the stress 
component σ sin(β) can be considered as shear stress 
exerted on the geometrical structure and the corresponding 
EBM model which results as

(2)

εA =
σ cos(β)

EA

εB =
σ cos(β)

EB

εC =
σ cos(β),

EC

(3)(εc)s = εAφA + εBφB + εCφC

(4)

Gc =
1

φC

GC
+

φB

GB
+

φA

GA

G =
E

2(1 + ϑ)
and E =

σ sin(β)

ε

(εc)P =

[

φC

EN

(1 + ϑC)

(1 + ϑCc)
+

φB

Ei

(1 + ϑB)

(1 + ϑCc)
+

φA

EM

(1 + ϑA)

(1 + ϑCc)

]

σ sin(β)

Fig. 1   The 3D geometrical structure of NAS model and its corre-
sponding 2D structure for nanocomposites comprising platelet nano-
particles

Fig. 2   Considered equivalent box model (EBM) corresponding to the 
2-D assumed structure of nanocomposite comprised of platelet nano-
reinforcing particles. Subscripts M, i, and N denote matrix phase, 
interface region, and nanoparticle, respectively

Fig. 3   Effects of nano-reinforcing particles orientation angle (β) on 
the considered structure of NAS model
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where ϑA, ϑB, and ϑC are the Poisson’s ratio for matrix, 
interface, and nanoparticle, respectively and G is the shear 
modulus of different parts. Generally the Poisson’s ratio for 
polymers is in the range of 0.3–0.5 [13]. In this case, the 
Poisson’s ratio for composite obeys the rule of mixtures:

where φ indicates the volume fraction and subscripts M, i, 
and N denote matrix phase, interface region, and nanoparti-
cle, respectively.

The modulus of interface is a linear function of distance 
from the surface of nanoparticles [10]:

where Ei(0) is the modulus of interface region on the sur-
face of nanoparticle and a is the variable thickness of inter-
face in the normal direction.

Using reverse mixtures rule, the modulus of interface 
region can be calculated:

whereas both shear and tensile components of exerted 
stress are functions of β, the modulus of nanocomposite 
should be indicated as a function of the orientation angle 
as follows:

The parameters k and z are functions of interface thick-
ness (τ).

Parameters k and z are calculated based on the analogy 
of considered geometrical model and the characteristics of 
nanoparticle in real sample, e.g. analogy of interface area 
(between nanoparticle and interface region) in actual sample 
and hypothetical geometry of a nanocomposite structure:

where τ and t are thicknesses of interface and platelet par-
ticle, respectively, w indicates the numerical correlation 
between the proposed model and real sample, and φd is the 
volume fraction of nanoparticles in real samples.

Considering an isotropic nanocomposite system in mac-
roscale, the total modulus is given by

(5)ϑCc = φAϑA + φBϑB + φCϑC ,

(6)Ei(a) = Ei(0) +
EM − Ei(0)

k − z
(a − z),

(7)
1

EB

=
1

(k − z)

k
∫

z

da

Ei(a)
,

(8)

EC(β) = [
√

N + cos2(β)(M − N)]−1

M =
[

φC

EC

+
φB

EB

+
φA

EA

]2

N =
[

φC

EC

(1 + ϑC)

(1 + ϑCc)
+

φB

EB

(1 + ϑB)

(1 + ϑCc)
+

φA

EA

(1 + ϑA)

(1 + ϑCc)

]2

(9)

z =
φd

w

k =
φd

w

(

1 +
2τ

wt

)

,

Nanocomposites comprised of cylindrical nanoparticles

The calculation procedure for this model is generally the 
same as pervious section. Figure  4 illustrates a general 
approach for cylindrical model consisting of three co-axial 
cylindrical structures in which the core is considered to be 
the nanoparticle, the internal shell is the interface region, 
and the external one is the polymeric matrix. EBM model 
is used to describe three different indicated parts in series 
of the main model which constitute different elements 
(Fig. 5). The volume fraction corresponding to each section 
of EBM model is as follows:

where parameters θ, λ and ϕ can be calculated as follows:

(10)
EC =

π
2
∫

0

EC(β)·dβ

π
2

(11)

φmA =
�

2
− 1

2
k

√
1 − k2

π
4

φi1 =
θk

2

2
−

(

1
2

z

√
k2 − z2

)

1
2
(ϕ − �) + 1

2

(

k

√
1 − k2 − z

√
1 − z2

)

φmB =
1
2
(ϕ − �) + 1

2

(

k

√
1 − k2 − z

√
1 − z2

)

−
[

θk
2

2
−

(

1
2

z

√
k2 − z2

)]

1
2
(ϕ − �) + 1

2

(

k

√
1 − k2 − z

√
1 − z2

)

φn =
πz

2

4

π
4

−
[

ϕ
2

− 1
2

z

√
1 − z2

]

φi2 =
1
4
π(k2 − z

2) −
(

θk
2

2
− 1

2
z

√
k2 − z2

)

π
4

−
(

ϕ
2

− 1
2

z

√
1 − z2

)

φmC =
π
4
(1 − k

2) − 1
2

[

ϕ − θk
2 − z(

√
1 − z2 −

√
k2 − z2)

]

π
4

−
(

ϕ
2

− 1
2

z

√
1 − z2

) ,

Fig. 4   The 3-dimensional geometrical structure of NAS model and 
its corresponding 2-dimensional structure for nanocomposites com-
prised of cylindrical nano-reinforcing particles
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where k and z are the model parameters.
Similar to “Nanocomposites comprised of cylindri-

cal nanoparticles”, both components of exerted stress [σ 
sin(β) and σ cos(β)] should be taken into consideration as 
β reaches values higher than 0°. In the case of each stress 
component, the model response should be characterized. 
The shear component has significant influence on the final 
properties of the composite which is a function of modulus 
and Poisson’s ratio. Based on assumed cylindrical structure 
in Fig.  3 the volume fraction of sections A, B, and C are 
required to calculate the total strain of composite due to the 
tensile component of the exerted stress:

(12)

θ = arcsin

(√
k2 − z2

k

)

� = arcsin

(
√

1 − k2

)

ϕ = arcsin

(
√

1 − z2

)

,

Subsequently, the strain of each section of model accord-
ing to tensile component is as follows:

where φx indicates the volume fraction of different parts 
of EBM model and subscripts M, i, and N denote matrix 
phase, interface region, and nanoparticle, respectively.

The total strain of nanocomposite according to tensile 
component is

where φ and ɛ indicate the volume fraction and strain of 
different parts of EBM model.

In series arrangement of EBM model against stress compo-
nent σ cos(β), the Young’s modulus can be proposed as follows:

GA, GB, and GC are given as

(13)

φA =
�

2
− 1

2
k
√

1 − k2

π
4

φB =
1
2
(ϕ − �) + 1

2

(

k
√

1 − k2 − z
√

1 − z2

)

π
4

φC =
π
4

−
(

ϕ
2

− 1
2

z
√

1 − z2

)

π
4

(14)

εA =
σ cos(β)

EM

εB =
σ cos(β)

φi1Ei + φmBEM

εC =
σ . cos(β)

φnEN + φi2Ei + φmCEM

,

(15)(εC) = φAεA + φBεB + φCεC

(16)

Gs =
1

φA

GA
+ φB

GB
+ φC

GC

Gi , i = A,B,C =
Ei

2(1 + ϑi)

Fig. 5   Considered equivalent box model (EBM) corresponding to 
the 2-D assumed structure of nanocomposite comprised of cylindri-
cal nano-reinforcing particles. Subscripts M, i, and N denote matrix 
phase, interface region and nanoparticle, respectively

(17)

GA =
EM

2(1 + ϑM)

GB =
EB

2(1 + ϑB)
→















1

EB

=
φmB

EM

+
φi1

Ei

, E′
B = φmBEM + φi1Ei

ϑ ′
B = φi1ϑi + φmBϑM , ϑB = ϑ ′

B

EB

E′
B

GC =
EC

2(1 + ϑC)
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













1

EC

=
φmC

EM
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+
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, E′
C = φmCEM + φi2Ei + φN EN

ϑ ′
C = φi2ϑi + φmCϑM + φNϑN , ϑC = ϑ ′

C

EC

EC′

ES = (
φA

EM

(1 + ϑM)

(1 + ϑS)
+

φB

EB

(1 + ϑB)

(1 + ϑS)
+

φC

EC

(1 + ϑC)

(1 + ϑS)
)−1

where

�

ES = 2GS(1 + ϑS)

ϑs = ϕAϑM + ϕBϑB + ϕCϑC

,
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where ϑ is Poisson’s ratio and E is Young’s modulus. Sub-
scripts M, N, and i denote matrix, nanoparticle, and inter-
face, respectively.

In parallel arrangement of EBM model against stress 
component σ sin(β) the Young’s modulus can be proposed 
as follows:

The variation of modulus at the interface region is con-
sidered to be linear through ⇀r  direction [10]; therefore, the 
modulus of this phase is

Ec could be found as a function of β using Eqs. 11–19:

Rearranging Eq. 20 results in

In the case of nanocomposites comprised of cylindrical 
nanoparticles, k and z are calculated as follows:

where r is the radius of an individual nano-cylindrical par-
ticle, τ is thickness of interface, w indicates the numerical 

(18)

GP =
1

φip

Gi
+ φMp

GM
+ φN

GN

→











φip = k2 − z2

φMp = 1 − k2

φN = z2

Ep =
�

φip

Ei

(1 + ϑi)

(1 + ϑC)
+

φMp

EB

(1 + ϑM)

(1 + ϑC)
+

φN

EN

(1 + ϑN )

(1 + ϑC)

�−1

→

�

Ep = 2Gp(1 + ϑC)

ϑC = φipϑi + φMpϑM + φN EN

(19)

Ei(a) = Ei(0) +
EM − Ei(0)

k − z
(a − z)

1

Ei

=
2

(k2 − z2)

k
∫

z

a·da

Ei(a)

(20)

εC(β) = (

�

(εC)2
P + (εC)2

S) →















(εC)S =
σ cos(β)

ES

(εC)P =
σ sin(β)

EP

1

EC(β)
=

εC(β)

σ

(21)

EC(β) =
(

√

N + cos2 (β)(M − N)

)−1

M =
(

φA

EM

(1 + ϑM)

(1 + ϑs)
+

φB

EB

(1 + ϑB)

(1 + ϑs)
+

φC

EC

(1 + ϑC)

(1 + ϑs)

)2

N =
(

φiP

Ei

(1 + ϑi)

(1 + ϑC)
+

φmP

EM

(1 + ϑM)

(1 + ϑC)
+

φN

EN

(1 + ϑN )

(1 + ϑC)

)2

(22)

z =
√

φd

w

k =
√

φd

w

(

1 +
τ

4rw

(

2 +
τ

r

))

,

correlation between the proposed model and real sam-
ple, and φd is the volume fraction of nanoparticles in real 
samples.

Since the nanocomposite is considered isotropic in mac-
roscale, Eq. (20) should be averaged to obtain an exclusive 
value for Ec. The following equation shows the total modu-
lus of composite as a function of dispersed phase volume 
fraction:

Nanocomposite comprised of nano-spherical dispersed 
phase

In nanocomposites comprised of nano-spherical dispersed 
phase, model components are just considered in series 
(because of spherical coordination). Figure  6 illustrates 
the spherical structure which consists of nanoparticle (the 
core), interface (internal shell), and the matrix phases 

(23)
EC =

π
2
∫

0

EC(β)·dβ

π
2

Fig. 6   The 3-dimensional geometrical structure of NAS model and 
its corresponding 2-dimensional structure for nanocomposites com-
prised of spherical nano-reinforcing particles

Fig. 7   Considered equivalent box model (EBM) corresponding to 
the 2-D assumed structure of nanocomposite comprised of spheri-
cal nano-reinforcing particles. Subscripts M, i, and N denote matrix 
phase, interface region and nanoparticle, respectively
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(external shell). The EBM model is also used to show the 
sequence of constituent sectors of the assumed spherical 
model (Fig.  7). Based on the same assumptions as in the 
latter sections, the volume fraction of each sector is

The shear modulus of nanocomposite system is proposed 
as follows:

(24)

ϕmA =
(1 − k)

[

3(1 − k
2) + (1 − k)2

]

4

ϕiB =
(k − z)

[

3(k2 − z
2) + (k − z)2

]

(1 − z)
{

3.(1 − z2) + (1 − z)2 − (1 − k)
[

3(1 − k2) + (1 − k)2
]}

ϕmB = 1 − ϕiB

ϕn =
4 − z

3

4 − (1 − 4)
[

3(1 − z2) + (1 − z)2
]

ϕiC =
4(k3 − z

3) − (k − z)

[

3(k2 − z
2) + (k − z)2

]

4 − (1 − z)
[

3(1 − z2) + (1 − z)2
]

ϕmc = 1 − (ϕN + ϕiC)

where ϑ is Poisson’s ratio and E is Young’s modulus. Sub-
scripts M, N, and i denote matrix, nanoparticle, and inter-
face, respectively.

The volume fractions of sections A, B, and C (Fig. 6) are 
as follows:

The model characteristic parameters (z and k) are calcu-
lated through following equations:

(26)

ϕA =
(1 − k)

[

3(1 − k
2) + (1 − k)2

]

4

ϕB =
(1 − z)

[

3(1 − z
2) + (1 − z)2

]

− (1 − k)
[

3(1 − k
2) + (1 − k)2

]

4

ϕC = 1 − (ϕA + ϕB)

(27)

z = 3

√

φd

w

k = 3

√

φd

w

(

1 +
1

8w

(

(r + τ)3

r3
− 1

))

,

Table 1   Comprehensive equation of NAS model for different geometries of nano-reinforcing particles

EC = 2
π

π
2
∫

0

EC(β)·dβEC(β) =
(

√

N + cos2 (β)(M − N)

)−1

Geometrical structure of nano-particle M N β

Platelet (

φA

EM
+ φB

Ei
+ φC

EN

)2 







φA

EM

(1 + ϑA)

(1 + ϑCc)
+

φB

Ei

(1 + ϑB)

(1 + ϑCc)

+
φC

EN

(1 + ϑC)

(1 + ϑCc)









2 0 − π
2

Cylindrical








φA

EM

(1 + ϑM )

(1 + ϑs)
+

φB

EB

(1 + ϑB)

(1 + ϑs)

+
φC

EC

(1 + ϑC)

(1 + ϑs)









2








φiP

Ei

(1 + ϑi)

(1 + ϑC)
+

φmP

EM

(1 + ϑM)

(1 + ϑC)

+
φN

EN

(1 + ϑN )

(1 + ϑC)









2 0 − π
2

Spherical 







φA

EM

(1 + ϑM)

(1 + ϑCo.)
+

φB

EB

(1 + ϑB)

(1 + ϑCo.)
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where r is the radius of an individual nano-cylindrical parti-
cle, τ is thickness of the interface, w indicates the numerical 
correlation between the proposed model and real sample, and 
φd is the volume fraction of nanoparticles in real samples.

Similar to the last two sections, the variation of modulus 
in the interface region is considered to be linear in r direc-
tion [10]. Therefore, the modulus for this region is calcu-
lated as follows:

Consequently the total modulus of nanocomposite is

As a result, the final equation of NAS model can be rep-
resented as follows:

Table 1 shows the parameters M and N for different cat-
egories of NAS model.

Experimental

Materials and sample preparation

The polyamide 6 (Akulon F223D) was purchased 
from DSM company with density of 1.13 (g/cm3), and 

(28)
1

Ei

=
3

(k2 − z2)

k
∫

z

a2da

Ei(a)

(29)

ET =
(

φA

EM

(1 + ϑM)

(1 + ϑT )
+

φB

EB

(1 + ϑB)

(1 + ϑT )
+

φC

EC

(1 + ϑC)

(1 + ϑT )

)−1

where

{

ET = 2GT (1 + ϑT )

ϑT = ϕAϑM + ϕBϑB + ϕCϑC

(30)

EC(β) =
(

√

N + cos2 (β)(M − N)

)−1

and

EC =

π
2
∫

0

EC(β)·dβ

π
2

layer-shaped montmorillonite modified with a quaternary 
ammonium salt (cloisite 30B) was provided from Southern 
Clay Products with specific gravity of 1.98 (g/cm3). Both 
materials were dried in a vacuum oven for 24 h at 80 °C. 
The samples were prepared via melt mixing in an internal 
mixer (Brabender 55 WTH) with mixing temperature of 
235 °C and rotor speed of 60 rpm for 10 min. Thereafter, 
the dumb-bell form samples were molded by a compres-
sion molding machine with temperature of 240  °C. The 
samples were dried at 80 °C for 24 h before tensile test.

Tensile test

Using SANTAM STM-20 tensile tester with crosshead 
speed of 45 mm/min, tensile measurements were taken in 
accordance with ASTM D-638 at room temperature. The 
Young moduli of the samples were determined by the initial 
slope of stress–strain curves, and the results are reported as 
the average of five runs.

Results and discussion

The experimental and predicted moduli are demonstrated 
in Fig. 8. Clearly, the predicted modulus from NAS model 
shows a high degree of agreement with experimental data. 
Furthermore, some other reported results of different 
studies on modulus of nanocomposites (containing vari-
ous shapes of nano-reinforcing phase) were also used to 
investigate the validity of the proposed models (Figs.  9, 
10, 11, 12). Table 2 lists the data of tensile modulus and 
Poisson’s ratio of polymer matrix and nanoparticles of 
each figure. However, the Poisson’s ratio of interface 
region is considered to be 5  % less than the Poisson’s 
ratio of polymer matrix as a good approximation which 
leads to good results. As a result, the modulus of nano-
composite system increases by increasing the thickness of 
interface; however, the modulus on the surface of nano-
composite also plays an important role. For the reason 

Fig. 8   Comparison of  
experimental result with the 
predictions of NAS model  
(PA/Cloisite 30B). w = 1, error 
(%) = 0.1, τ = 1.64 × 10−8, 
E(0)/EM = 1.84
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that the geometrical differences of nano-reinforcing par-
ticle directly affect the calculation procedure, it has been 
shown that the proposed model can perfectly cover all 
possible differences. Considering the random orienta-
tion of nano-reinforcing particle placed in the polymeric 
matrix, the direction of exerted stress on the sample is 
negligible although the orientation is meaningless for 
spherical shape nanoparticles. By ignoring those terms by 
which the interface is involved in modeling procedure, the 
proposed models could be also used for untreated nano-
reinforcing particles because there is no interface region 
in such systems.

Conclusion

Considering region and random orientation of nano-
reinforcing particles in nanocomposite systems, a model 
including three different parts was proposed. All parts 
were based on the same presumptions which reveal the 
similarity of modeling fundamentals. Dispersion of parti-
cles was assumed to be fully exfoliated, which means there 
was no agglomeration in the final nanocomposite sample. 
Three different shapes of nanoparticles (platelet, cylindri-
cal, and spherical) were considered in each model. Accept-
able and remarkable coincidence of NAS predictions of 

Fig. 9   Comparison of 
experimental results with the 
predictions of NAS model 
(PA/montmorillonite); w = 1, 
error (%) = 0.2, τ = 9 × 10−9, 
E(0)/EM = 15.65 [10]

Fig. 10   Comparison of 
experimental results with the 
predictions of NAS model 
(SBR/CNT); w = 2, error 
(%) = 3.7, τ = 9.6 × 10−8, 
E(0)/EM = 485152.04 [14]

Fig. 11   Comparison of 
experimental results with the 
predictions of NAS model 
(iPP/CNT); w = 1, error 
(%) = 0.4, τ = 1.76 × 10−8, 
E(0)/EM = 857.62 [15]
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experimental data proves that the whole presumptions and 
mathematical procedures are sufficiently accurate. It should 
also be mentioned that because of complications arising 
from complex mathematical calculations, MATLAB soft-
ware is generally used as programing software.
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